aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/bcm53xx/patches-3.14
diff options
context:
space:
mode:
authorHauke Mehrtens <hauke@openwrt.org>2014-08-19 20:12:36 +0000
committerHauke Mehrtens <hauke@openwrt.org>2014-08-19 20:12:36 +0000
commitee464c33a28aead45563a54e4f88986621b65532 (patch)
treed5638bdb0f992c660ae4843e3070e3c261f1f1ba /target/linux/bcm53xx/patches-3.14
parent3ba033ed1b74e693d29491e3ecb432a3461c3245 (diff)
downloadupstream-ee464c33a28aead45563a54e4f88986621b65532.tar.gz
upstream-ee464c33a28aead45563a54e4f88986621b65532.tar.bz2
upstream-ee464c33a28aead45563a54e4f88986621b65532.zip
bcm53xx: backport spi nor code form kernel v3.17-rc1.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> git-svn-id: svn://svn.openwrt.org/openwrt/trunk@42222 3c298f89-4303-0410-b956-a3cf2f4a3e73
Diffstat (limited to 'target/linux/bcm53xx/patches-3.14')
-rw-r--r--target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch2443
1 files changed, 2443 insertions, 0 deletions
diff --git a/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch b/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch
new file mode 100644
index 0000000000..fb916caf1f
--- /dev/null
+++ b/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch
@@ -0,0 +1,2443 @@
+This patches adds the SPI-NOR device support code form kernel 3.17-rc1.
+This patch does not contain any further code not in this mainline kernel.
+
+--- a/drivers/mtd/Kconfig
++++ b/drivers/mtd/Kconfig
+@@ -394,6 +394,8 @@ source "drivers/mtd/onenand/Kconfig"
+
+ source "drivers/mtd/lpddr/Kconfig"
+
++source "drivers/mtd/spi-nor/Kconfig"
++
+ source "drivers/mtd/ubi/Kconfig"
+
+ endif # MTD
+--- a/drivers/mtd/Makefile
++++ b/drivers/mtd/Makefile
+@@ -39,4 +39,5 @@ inftl-objs := inftlcore.o inftlmount.o
+
+ obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/
+
++obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/
+ obj-$(CONFIG_MTD_UBI) += ubi/
+--- /dev/null
++++ b/drivers/mtd/spi-nor/fsl-quadspi.c
+@@ -0,0 +1,1009 @@
++/*
++ * Freescale QuadSPI driver.
++ *
++ * Copyright (C) 2013 Freescale Semiconductor, Inc.
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/interrupt.h>
++#include <linux/errno.h>
++#include <linux/platform_device.h>
++#include <linux/sched.h>
++#include <linux/delay.h>
++#include <linux/io.h>
++#include <linux/clk.h>
++#include <linux/err.h>
++#include <linux/of.h>
++#include <linux/of_device.h>
++#include <linux/timer.h>
++#include <linux/jiffies.h>
++#include <linux/completion.h>
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/partitions.h>
++#include <linux/mtd/spi-nor.h>
++
++/* The registers */
++#define QUADSPI_MCR 0x00
++#define QUADSPI_MCR_RESERVED_SHIFT 16
++#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
++#define QUADSPI_MCR_MDIS_SHIFT 14
++#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
++#define QUADSPI_MCR_CLR_TXF_SHIFT 11
++#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
++#define QUADSPI_MCR_CLR_RXF_SHIFT 10
++#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
++#define QUADSPI_MCR_DDR_EN_SHIFT 7
++#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
++#define QUADSPI_MCR_END_CFG_SHIFT 2
++#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
++#define QUADSPI_MCR_SWRSTHD_SHIFT 1
++#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
++#define QUADSPI_MCR_SWRSTSD_SHIFT 0
++#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
++
++#define QUADSPI_IPCR 0x08
++#define QUADSPI_IPCR_SEQID_SHIFT 24
++#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
++
++#define QUADSPI_BUF0CR 0x10
++#define QUADSPI_BUF1CR 0x14
++#define QUADSPI_BUF2CR 0x18
++#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
++
++#define QUADSPI_BUF3CR 0x1c
++#define QUADSPI_BUF3CR_ALLMST_SHIFT 31
++#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
++
++#define QUADSPI_BFGENCR 0x20
++#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
++#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
++#define QUADSPI_BFGENCR_SEQID_SHIFT 12
++#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
++
++#define QUADSPI_BUF0IND 0x30
++#define QUADSPI_BUF1IND 0x34
++#define QUADSPI_BUF2IND 0x38
++#define QUADSPI_SFAR 0x100
++
++#define QUADSPI_SMPR 0x108
++#define QUADSPI_SMPR_DDRSMP_SHIFT 16
++#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
++#define QUADSPI_SMPR_FSDLY_SHIFT 6
++#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
++#define QUADSPI_SMPR_FSPHS_SHIFT 5
++#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
++#define QUADSPI_SMPR_HSENA_SHIFT 0
++#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
++
++#define QUADSPI_RBSR 0x10c
++#define QUADSPI_RBSR_RDBFL_SHIFT 8
++#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
++
++#define QUADSPI_RBCT 0x110
++#define QUADSPI_RBCT_WMRK_MASK 0x1F
++#define QUADSPI_RBCT_RXBRD_SHIFT 8
++#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
++
++#define QUADSPI_TBSR 0x150
++#define QUADSPI_TBDR 0x154
++#define QUADSPI_SR 0x15c
++#define QUADSPI_SR_IP_ACC_SHIFT 1
++#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
++#define QUADSPI_SR_AHB_ACC_SHIFT 2
++#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
++
++#define QUADSPI_FR 0x160
++#define QUADSPI_FR_TFF_MASK 0x1
++
++#define QUADSPI_SFA1AD 0x180
++#define QUADSPI_SFA2AD 0x184
++#define QUADSPI_SFB1AD 0x188
++#define QUADSPI_SFB2AD 0x18c
++#define QUADSPI_RBDR 0x200
++
++#define QUADSPI_LUTKEY 0x300
++#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
++
++#define QUADSPI_LCKCR 0x304
++#define QUADSPI_LCKER_LOCK 0x1
++#define QUADSPI_LCKER_UNLOCK 0x2
++
++#define QUADSPI_RSER 0x164
++#define QUADSPI_RSER_TFIE (0x1 << 0)
++
++#define QUADSPI_LUT_BASE 0x310
++
++/*
++ * The definition of the LUT register shows below:
++ *
++ * ---------------------------------------------------
++ * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
++ * ---------------------------------------------------
++ */
++#define OPRND0_SHIFT 0
++#define PAD0_SHIFT 8
++#define INSTR0_SHIFT 10
++#define OPRND1_SHIFT 16
++
++/* Instruction set for the LUT register. */
++#define LUT_STOP 0
++#define LUT_CMD 1
++#define LUT_ADDR 2
++#define LUT_DUMMY 3
++#define LUT_MODE 4
++#define LUT_MODE2 5
++#define LUT_MODE4 6
++#define LUT_READ 7
++#define LUT_WRITE 8
++#define LUT_JMP_ON_CS 9
++#define LUT_ADDR_DDR 10
++#define LUT_MODE_DDR 11
++#define LUT_MODE2_DDR 12
++#define LUT_MODE4_DDR 13
++#define LUT_READ_DDR 14
++#define LUT_WRITE_DDR 15
++#define LUT_DATA_LEARN 16
++
++/*
++ * The PAD definitions for LUT register.
++ *
++ * The pad stands for the lines number of IO[0:3].
++ * For example, the Quad read need four IO lines, so you should
++ * set LUT_PAD4 which means we use four IO lines.
++ */
++#define LUT_PAD1 0
++#define LUT_PAD2 1
++#define LUT_PAD4 2
++
++/* Oprands for the LUT register. */
++#define ADDR24BIT 0x18
++#define ADDR32BIT 0x20
++
++/* Macros for constructing the LUT register. */
++#define LUT0(ins, pad, opr) \
++ (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
++ ((LUT_##ins) << INSTR0_SHIFT))
++
++#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
++
++/* other macros for LUT register. */
++#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
++#define QUADSPI_LUT_NUM 64
++
++/* SEQID -- we can have 16 seqids at most. */
++#define SEQID_QUAD_READ 0
++#define SEQID_WREN 1
++#define SEQID_WRDI 2
++#define SEQID_RDSR 3
++#define SEQID_SE 4
++#define SEQID_CHIP_ERASE 5
++#define SEQID_PP 6
++#define SEQID_RDID 7
++#define SEQID_WRSR 8
++#define SEQID_RDCR 9
++#define SEQID_EN4B 10
++#define SEQID_BRWR 11
++
++enum fsl_qspi_devtype {
++ FSL_QUADSPI_VYBRID,
++ FSL_QUADSPI_IMX6SX,
++};
++
++struct fsl_qspi_devtype_data {
++ enum fsl_qspi_devtype devtype;
++ int rxfifo;
++ int txfifo;
++};
++
++static struct fsl_qspi_devtype_data vybrid_data = {
++ .devtype = FSL_QUADSPI_VYBRID,
++ .rxfifo = 128,
++ .txfifo = 64
++};
++
++static struct fsl_qspi_devtype_data imx6sx_data = {
++ .devtype = FSL_QUADSPI_IMX6SX,
++ .rxfifo = 128,
++ .txfifo = 512
++};
++
++#define FSL_QSPI_MAX_CHIP 4
++struct fsl_qspi {
++ struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
++ struct spi_nor nor[FSL_QSPI_MAX_CHIP];
++ void __iomem *iobase;
++ void __iomem *ahb_base; /* Used when read from AHB bus */
++ u32 memmap_phy;
++ struct clk *clk, *clk_en;
++ struct device *dev;
++ struct completion c;
++ struct fsl_qspi_devtype_data *devtype_data;
++ u32 nor_size;
++ u32 nor_num;
++ u32 clk_rate;
++ unsigned int chip_base_addr; /* We may support two chips. */
++};
++
++static inline int is_vybrid_qspi(struct fsl_qspi *q)
++{
++ return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
++}
++
++static inline int is_imx6sx_qspi(struct fsl_qspi *q)
++{
++ return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
++}
++
++/*
++ * An IC bug makes us to re-arrange the 32-bit data.
++ * The following chips, such as IMX6SLX, have fixed this bug.
++ */
++static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
++{
++ return is_vybrid_qspi(q) ? __swab32(a) : a;
++}
++
++static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
++{
++ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
++ writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
++}
++
++static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
++{
++ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
++ writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
++}
++
++static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
++{
++ struct fsl_qspi *q = dev_id;
++ u32 reg;
++
++ /* clear interrupt */
++ reg = readl(q->iobase + QUADSPI_FR);
++ writel(reg, q->iobase + QUADSPI_FR);
++
++ if (reg & QUADSPI_FR_TFF_MASK)
++ complete(&q->c);
++
++ dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
++ return IRQ_HANDLED;
++}
++
++static void fsl_qspi_init_lut(struct fsl_qspi *q)
++{
++ void __iomem *base = q->iobase;
++ int rxfifo = q->devtype_data->rxfifo;
++ u32 lut_base;
++ u8 cmd, addrlen, dummy;
++ int i;
++
++ fsl_qspi_unlock_lut(q);
++
++ /* Clear all the LUT table */
++ for (i = 0; i < QUADSPI_LUT_NUM; i++)
++ writel(0, base + QUADSPI_LUT_BASE + i * 4);
++
++ /* Quad Read */
++ lut_base = SEQID_QUAD_READ * 4;
++
++ if (q->nor_size <= SZ_16M) {
++ cmd = SPINOR_OP_READ_1_1_4;
++ addrlen = ADDR24BIT;
++ dummy = 8;
++ } else {
++ /* use the 4-byte address */
++ cmd = SPINOR_OP_READ_1_1_4;
++ addrlen = ADDR32BIT;
++ dummy = 8;
++ }
++
++ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
++ base + QUADSPI_LUT(lut_base));
++ writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
++ base + QUADSPI_LUT(lut_base + 1));
++
++ /* Write enable */
++ lut_base = SEQID_WREN * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
++
++ /* Page Program */
++ lut_base = SEQID_PP * 4;
++
++ if (q->nor_size <= SZ_16M) {
++ cmd = SPINOR_OP_PP;
++ addrlen = ADDR24BIT;
++ } else {
++ /* use the 4-byte address */
++ cmd = SPINOR_OP_PP;
++ addrlen = ADDR32BIT;
++ }
++
++ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
++ base + QUADSPI_LUT(lut_base));
++ writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
++
++ /* Read Status */
++ lut_base = SEQID_RDSR * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
++ base + QUADSPI_LUT(lut_base));
++
++ /* Erase a sector */
++ lut_base = SEQID_SE * 4;
++
++ if (q->nor_size <= SZ_16M) {
++ cmd = SPINOR_OP_SE;
++ addrlen = ADDR24BIT;
++ } else {
++ /* use the 4-byte address */
++ cmd = SPINOR_OP_SE;
++ addrlen = ADDR32BIT;
++ }
++
++ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
++ base + QUADSPI_LUT(lut_base));
++
++ /* Erase the whole chip */
++ lut_base = SEQID_CHIP_ERASE * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
++ base + QUADSPI_LUT(lut_base));
++
++ /* READ ID */
++ lut_base = SEQID_RDID * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
++ base + QUADSPI_LUT(lut_base));
++
++ /* Write Register */
++ lut_base = SEQID_WRSR * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
++ base + QUADSPI_LUT(lut_base));
++
++ /* Read Configuration Register */
++ lut_base = SEQID_RDCR * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
++ base + QUADSPI_LUT(lut_base));
++
++ /* Write disable */
++ lut_base = SEQID_WRDI * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
++
++ /* Enter 4 Byte Mode (Micron) */
++ lut_base = SEQID_EN4B * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
++
++ /* Enter 4 Byte Mode (Spansion) */
++ lut_base = SEQID_BRWR * 4;
++ writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
++
++ fsl_qspi_lock_lut(q);
++}
++
++/* Get the SEQID for the command */
++static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
++{
++ switch (cmd) {
++ case SPINOR_OP_READ_1_1_4:
++ return SEQID_QUAD_READ;
++ case SPINOR_OP_WREN:
++ return SEQID_WREN;
++ case SPINOR_OP_WRDI:
++ return SEQID_WRDI;
++ case SPINOR_OP_RDSR:
++ return SEQID_RDSR;
++ case SPINOR_OP_SE:
++ return SEQID_SE;
++ case SPINOR_OP_CHIP_ERASE:
++ return SEQID_CHIP_ERASE;
++ case SPINOR_OP_PP:
++ return SEQID_PP;
++ case SPINOR_OP_RDID:
++ return SEQID_RDID;
++ case SPINOR_OP_WRSR:
++ return SEQID_WRSR;
++ case SPINOR_OP_RDCR:
++ return SEQID_RDCR;
++ case SPINOR_OP_EN4B:
++ return SEQID_EN4B;
++ case SPINOR_OP_BRWR:
++ return SEQID_BRWR;
++ default:
++ dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
++ break;
++ }
++ return -EINVAL;
++}
++
++static int
++fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
++{
++ void __iomem *base = q->iobase;
++ int seqid;
++ u32 reg, reg2;
++ int err;
++
++ init_completion(&q->c);
++ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
++ q->chip_base_addr, addr, len, cmd);
++
++ /* save the reg */
++ reg = readl(base + QUADSPI_MCR);
++
++ writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
++ writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
++ base + QUADSPI_RBCT);
++ writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
++
++ do {
++ reg2 = readl(base + QUADSPI_SR);
++ if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
++ udelay(1);
++ dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
++ continue;
++ }
++ break;
++ } while (1);
++
++ /* trigger the LUT now */
++ seqid = fsl_qspi_get_seqid(q, cmd);
++ writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
++
++ /* Wait for the interrupt. */
++ err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
++ if (!err) {
++ dev_err(q->dev,
++ "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
++ cmd, addr, readl(base + QUADSPI_FR),
++ readl(base + QUADSPI_SR));
++ err = -ETIMEDOUT;
++ } else {
++ err = 0;
++ }
++
++ /* restore the MCR */
++ writel(reg, base + QUADSPI_MCR);
++
++ return err;
++}
++
++/* Read out the data from the QUADSPI_RBDR buffer registers. */
++static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
++{
++ u32 tmp;
++ int i = 0;
++
++ while (len > 0) {
++ tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
++ tmp = fsl_qspi_endian_xchg(q, tmp);
++ dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
++ q->chip_base_addr, tmp);
++
++ if (len >= 4) {
++ *((u32 *)rxbuf) = tmp;
++ rxbuf += 4;
++ } else {
++ memcpy(rxbuf, &tmp, len);
++ break;
++ }
++
++ len -= 4;
++ i++;
++ }
++}
++
++/*
++ * If we have changed the content of the flash by writing or erasing,
++ * we need to invalidate the AHB buffer. If we do not do so, we may read out
++ * the wrong data. The spec tells us reset the AHB domain and Serial Flash
++ * domain at the same time.
++ */
++static inline void fsl_qspi_invalid(struct fsl_qspi *q)
++{
++ u32 reg;
++
++ reg = readl(q->iobase + QUADSPI_MCR);
++ reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
++ writel(reg, q->iobase + QUADSPI_MCR);
++
++ /*
++ * The minimum delay : 1 AHB + 2 SFCK clocks.
++ * Delay 1 us is enough.
++ */
++ udelay(1);
++
++ reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
++ writel(reg, q->iobase + QUADSPI_MCR);
++}
++
++static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
++ u8 opcode, unsigned int to, u32 *txbuf,
++ unsigned count, size_t *retlen)
++{
++ int ret, i, j;
++ u32 tmp;
++
++ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
++ q->chip_base_addr, to, count);
++
++ /* clear the TX FIFO. */
++ tmp = readl(q->iobase + QUADSPI_MCR);
++ writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
++
++ /* fill the TX data to the FIFO */
++ for (j = 0, i = ((count + 3) / 4); j < i; j++) {
++ tmp = fsl_qspi_endian_xchg(q, *txbuf);
++ writel(tmp, q->iobase + QUADSPI_TBDR);
++ txbuf++;
++ }
++
++ /* Trigger it */
++ ret = fsl_qspi_runcmd(q, opcode, to, count);
++
++ if (ret == 0 && retlen)
++ *retlen += count;
++
++ return ret;
++}
++
++static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
++{
++ int nor_size = q->nor_size;
++ void __iomem *base = q->iobase;
++
++ writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
++ writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
++ writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
++ writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
++}
++
++/*
++ * There are two different ways to read out the data from the flash:
++ * the "IP Command Read" and the "AHB Command Read".
++ *
++ * The IC guy suggests we use the "AHB Command Read" which is faster
++ * then the "IP Command Read". (What's more is that there is a bug in
++ * the "IP Command Read" in the Vybrid.)
++ *
++ * After we set up the registers for the "AHB Command Read", we can use
++ * the memcpy to read the data directly. A "missed" access to the buffer
++ * causes the controller to clear the buffer, and use the sequence pointed
++ * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
++ */
++static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
++{
++ void __iomem *base = q->iobase;
++ int seqid;
++
++ /* AHB configuration for access buffer 0/1/2 .*/
++ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
++ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
++ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
++ writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR);
++
++ /* We only use the buffer3 */
++ writel(0, base + QUADSPI_BUF0IND);
++ writel(0, base + QUADSPI_BUF1IND);
++ writel(0, base + QUADSPI_BUF2IND);
++
++ /* Set the default lut sequence for AHB Read. */
++ seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
++ writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
++ q->iobase + QUADSPI_BFGENCR);
++}
++
++/* We use this function to do some basic init for spi_nor_scan(). */
++static int fsl_qspi_nor_setup(struct fsl_qspi *q)
++{
++ void __iomem *base = q->iobase;
++ u32 reg;
++ int ret;
++
++ /* the default frequency, we will change it in the future.*/
++ ret = clk_set_rate(q->clk, 66000000);
++ if (ret)
++ return ret;
++
++ /* Init the LUT table. */
++ fsl_qspi_init_lut(q);
++
++ /* Disable the module */
++ writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
++ base + QUADSPI_MCR);
++
++ reg = readl(base + QUADSPI_SMPR);
++ writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
++ | QUADSPI_SMPR_FSPHS_MASK
++ | QUADSPI_SMPR_HSENA_MASK
++ | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
++
++ /* Enable the module */
++ writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
++ base + QUADSPI_MCR);
++
++ /* enable the interrupt */
++ writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
++
++ return 0;
++}
++
++static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
++{
++ unsigned long rate = q->clk_rate;
++ int ret;
++
++ if (is_imx6sx_qspi(q))
++ rate *= 4;
++
++ ret = clk_set_rate(q->clk, rate);
++ if (ret)
++ return ret;
++
++ /* Init the LUT table again. */
++ fsl_qspi_init_lut(q);
++
++ /* Init for AHB read */
++ fsl_qspi_init_abh_read(q);
++
++ return 0;
++}
++
++static struct of_device_id fsl_qspi_dt_ids[] = {
++ { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
++ { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
++ { /* sentinel */ }
++};
++MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
++
++static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
++{
++ q->chip_base_addr = q->nor_size * (nor - q->nor);
++}
++
++static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
++{
++ int ret;
++ struct fsl_qspi *q = nor->priv;
++
++ ret = fsl_qspi_runcmd(q, opcode, 0, len);
++ if (ret)
++ return ret;
++
++ fsl_qspi_read_data(q, len, buf);
++ return 0;
++}
++
++static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
++ int write_enable)
++{
++ struct fsl_qspi *q = nor->priv;
++ int ret;
++
++ if (!buf) {
++ ret = fsl_qspi_runcmd(q, opcode, 0, 1);
++ if (ret)
++ return ret;
++
++ if (opcode == SPINOR_OP_CHIP_ERASE)
++ fsl_qspi_invalid(q);
++
++ } else if (len > 0) {
++ ret = fsl_qspi_nor_write(q, nor, opcode, 0,
++ (u32 *)buf, len, NULL);
++ } else {
++ dev_err(q->dev, "invalid cmd %d\n", opcode);
++ ret = -EINVAL;
++ }
++
++ return ret;
++}
++
++static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
++ size_t len, size_t *retlen, const u_char *buf)
++{
++ struct fsl_qspi *q = nor->priv;
++
++ fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
++ (u32 *)buf, len, retlen);
++
++ /* invalid the data in the AHB buffer. */
++ fsl_qspi_invalid(q);
++}
++
++static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
++ size_t len, size_t *retlen, u_char *buf)
++{
++ struct fsl_qspi *q = nor->priv;
++ u8 cmd = nor->read_opcode;
++ int ret;
++
++ dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
++ cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);
++
++ /* Wait until the previous command is finished. */
++ ret = nor->wait_till_ready(nor);
++ if (ret)
++ return ret;
++
++ /* Read out the data directly from the AHB buffer.*/
++ memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);
++
++ *retlen += len;
++ return 0;
++}
++
++static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
++{
++ struct fsl_qspi *q = nor->priv;
++ int ret;
++
++ dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
++ nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
++
++ /* Wait until finished previous write command. */
++ ret = nor->wait_till_ready(nor);
++ if (ret)
++ return ret;
++
++ /* Send write enable, then erase commands. */
++ ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
++ if (ret)
++ return ret;
++
++ ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
++ if (ret)
++ return ret;
++
++ fsl_qspi_invalid(q);
++ return 0;
++}
++
++static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
++{
++ struct fsl_qspi *q = nor->priv;
++ int ret;
++
++ ret = clk_enable(q->clk_en);
++ if (ret)
++ return ret;
++
++ ret = clk_enable(q->clk);
++ if (ret) {
++ clk_disable(q->clk_en);
++ return ret;
++ }
++
++ fsl_qspi_set_base_addr(q, nor);
++ return 0;
++}
++
++static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
++{
++ struct fsl_qspi *q = nor->priv;
++
++ clk_disable(q->clk);
++ clk_disable(q->clk_en);
++}
++
++static int fsl_qspi_probe(struct platform_device *pdev)
++{
++ struct device_node *np = pdev->dev.of_node;
++ struct mtd_part_parser_data ppdata;
++ struct device *dev = &pdev->dev;
++ struct fsl_qspi *q;
++ struct resource *res;
++ struct spi_nor *nor;
++ struct mtd_info *mtd;
++ int ret, i = 0;
++ bool has_second_chip = false;
++ const struct of_device_id *of_id =
++ of_match_device(fsl_qspi_dt_ids, &pdev->dev);
++
++ q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
++ if (!q)
++ return -ENOMEM;
++
++ q->nor_num = of_get_child_count(dev->of_node);
++ if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
++ return -ENODEV;
++
++ /* find the resources */
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
++ q->iobase = devm_ioremap_resource(dev, res);
++ if (IS_ERR(q->iobase)) {
++ ret = PTR_ERR(q->iobase);
++ goto map_failed;
++ }
++
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
++ "QuadSPI-memory");
++ q->ahb_base = devm_ioremap_resource(dev, res);
++ if (IS_ERR(q->ahb_base)) {
++ ret = PTR_ERR(q->ahb_base);
++ goto map_failed;
++ }
++ q->memmap_phy = res->start;
++
++ /* find the clocks */
++ q->clk_en = devm_clk_get(dev, "qspi_en");
++ if (IS_ERR(q->clk_en)) {
++ ret = PTR_ERR(q->clk_en);
++ goto map_failed;
++ }
++
++ q->clk = devm_clk_get(dev, "qspi");
++ if (IS_ERR(q->clk)) {
++ ret = PTR_ERR(q->clk);
++ goto map_failed;
++ }
++
++ ret = clk_prepare_enable(q->clk_en);
++ if (ret) {
++ dev_err(dev, "can not enable the qspi_en clock\n");
++ goto map_failed;
++ }
++
++ ret = clk_prepare_enable(q->clk);
++ if (ret) {
++ clk_disable_unprepare(q->clk_en);
++ dev_err(dev, "can not enable the qspi clock\n");
++ goto map_failed;
++ }
++
++ /* find the irq */
++ ret = platform_get_irq(pdev, 0);
++ if (ret < 0) {
++ dev_err(dev, "failed to get the irq\n");
++ goto irq_failed;
++ }
++
++ ret = devm_request_irq(dev, ret,
++ fsl_qspi_irq_handler, 0, pdev->name, q);
++ if (ret) {
++ dev_err(dev, "failed to request irq.\n");
++ goto irq_failed;
++ }
++
++ q->dev = dev;
++ q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
++ platform_set_drvdata(pdev, q);
++
++ ret = fsl_qspi_nor_setup(q);
++ if (ret)
++ goto irq_failed;
++
++ if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
++ has_second_chip = true;
++
++ /* iterate the subnodes. */
++ for_each_available_child_of_node(dev->of_node, np) {
++ const struct spi_device_id *id;
++ char modalias[40];
++
++ /* skip the holes */
++ if (!has_second_chip)
++ i *= 2;
++
++ nor = &q->nor[i];
++ mtd = &q->mtd[i];
++
++ nor->mtd = mtd;
++ nor->dev = dev;
++ nor->priv = q;
++ mtd->priv = nor;
++
++ /* fill the hooks */
++ nor->read_reg = fsl_qspi_read_reg;
++ nor->write_reg = fsl_qspi_write_reg;
++ nor->read = fsl_qspi_read;
++ nor->write = fsl_qspi_write;
++ nor->erase = fsl_qspi_erase;
++
++ nor->prepare = fsl_qspi_prep;
++ nor->unprepare = fsl_qspi_unprep;
++
++ if (of_modalias_node(np, modalias, sizeof(modalias)) < 0)
++ goto map_failed;
++
++ id = spi_nor_match_id(modalias);
++ if (!id)
++ goto map_failed;
++
++ ret = of_property_read_u32(np, "spi-max-frequency",
++ &q->clk_rate);
++ if (ret < 0)
++ goto map_failed;
++
++ /* set the chip address for READID */
++ fsl_qspi_set_base_addr(q, nor);
++
++ ret = spi_nor_scan(nor, id, SPI_NOR_QUAD);
++ if (ret)
++ goto map_failed;
++
++ ppdata.of_node = np;
++ ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
++ if (ret)
++ goto map_failed;
++
++ /* Set the correct NOR size now. */
++ if (q->nor_size == 0) {
++ q->nor_size = mtd->size;
++
++ /* Map the SPI NOR to accessiable address */
++ fsl_qspi_set_map_addr(q);
++ }
++
++ /*
++ * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
++ * may writes 265 bytes per time. The write is working in the
++ * unit of the TX FIFO, not in the unit of the SPI NOR's page
++ * size.
++ *
++ * So shrink the spi_nor->page_size if it is larger then the
++ * TX FIFO.
++ */
++ if (nor->page_size > q->devtype_data->txfifo)
++ nor->page_size = q->devtype_data->txfifo;
++
++ i++;
++ }
++
++ /* finish the rest init. */
++ ret = fsl_qspi_nor_setup_last(q);
++ if (ret)
++ goto last_init_failed;
++
++ clk_disable(q->clk);
++ clk_disable(q->clk_en);
++ dev_info(dev, "QuadSPI SPI NOR flash driver\n");
++ return 0;
++
++last_init_failed:
++ for (i = 0; i < q->nor_num; i++)
++ mtd_device_unregister(&q->mtd[i]);
++
++irq_failed:
++ clk_disable_unprepare(q->clk);
++ clk_disable_unprepare(q->clk_en);
++map_failed:
++ dev_err(dev, "Freescale QuadSPI probe failed\n");
++ return ret;
++}
++
++static int fsl_qspi_remove(struct platform_device *pdev)
++{
++ struct fsl_qspi *q = platform_get_drvdata(pdev);
++ int i;
++
++ for (i = 0; i < q->nor_num; i++)
++ mtd_device_unregister(&q->mtd[i]);
++
++ /* disable the hardware */
++ writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
++ writel(0x0, q->iobase + QUADSPI_RSER);
++
++ clk_unprepare(q->clk);
++ clk_unprepare(q->clk_en);
++ return 0;
++}
++
++static struct platform_driver fsl_qspi_driver = {
++ .driver = {
++ .name = "fsl-quadspi",
++ .bus = &platform_bus_type,
++ .owner = THIS_MODULE,
++ .of_match_table = fsl_qspi_dt_ids,
++ },
++ .probe = fsl_qspi_probe,
++ .remove = fsl_qspi_remove,
++};
++module_platform_driver(fsl_qspi_driver);
++
++MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
++MODULE_AUTHOR("Freescale Semiconductor Inc.");
++MODULE_LICENSE("GPL v2");
+--- /dev/null
++++ b/drivers/mtd/spi-nor/Kconfig
+@@ -0,0 +1,17 @@
++menuconfig MTD_SPI_NOR
++ tristate "SPI-NOR device support"
++ depends on MTD
++ help
++ This is the framework for the SPI NOR which can be used by the SPI
++ device drivers and the SPI-NOR device driver.
++
++if MTD_SPI_NOR
++
++config SPI_FSL_QUADSPI
++ tristate "Freescale Quad SPI controller"
++ depends on ARCH_MXC
++ help
++ This enables support for the Quad SPI controller in master mode.
++ We only connect the NOR to this controller now.
++
++endif # MTD_SPI_NOR
+--- /dev/null
++++ b/drivers/mtd/spi-nor/Makefile
+@@ -0,0 +1,2 @@
++obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o
++obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o
+--- /dev/null
++++ b/drivers/mtd/spi-nor/spi-nor.c
+@@ -0,0 +1,1160 @@
++/*
++ * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
++ * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
++ *
++ * Copyright (C) 2005, Intec Automation Inc.
++ * Copyright (C) 2014, Freescale Semiconductor, Inc.
++ *
++ * This code is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ */
++
++#include <linux/err.h>
++#include <linux/errno.h>
++#include <linux/module.h>
++#include <linux/device.h>
++#include <linux/mutex.h>
++#include <linux/math64.h>
++
++#include <linux/mtd/cfi.h>
++#include <linux/mtd/mtd.h>
++#include <linux/of_platform.h>
++#include <linux/spi/flash.h>
++#include <linux/mtd/spi-nor.h>
++
++/* Define max times to check status register before we give up. */
++#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
++
++#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
++
++/*
++ * Read the status register, returning its value in the location
++ * Return the status register value.
++ * Returns negative if error occurred.
++ */
++static int read_sr(struct spi_nor *nor)
++{
++ int ret;
++ u8 val;
++
++ ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
++ if (ret < 0) {
++ pr_err("error %d reading SR\n", (int) ret);
++ return ret;
++ }
++
++ return val;
++}
++
++/*
++ * Read the flag status register, returning its value in the location
++ * Return the status register value.
++ * Returns negative if error occurred.
++ */
++static int read_fsr(struct spi_nor *nor)
++{
++ int ret;
++ u8 val;
++
++ ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
++ if (ret < 0) {
++ pr_err("error %d reading FSR\n", ret);
++ return ret;
++ }
++
++ return val;
++}
++
++/*
++ * Read configuration register, returning its value in the
++ * location. Return the configuration register value.
++ * Returns negative if error occured.
++ */
++static int read_cr(struct spi_nor *nor)
++{
++ int ret;
++ u8 val;
++
++ ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
++ if (ret < 0) {
++ dev_err(nor->dev, "error %d reading CR\n", ret);
++ return ret;
++ }
++
++ return val;
++}
++
++/*
++ * Dummy Cycle calculation for different type of read.
++ * It can be used to support more commands with
++ * different dummy cycle requirements.
++ */
++static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
++{
++ switch (nor->flash_read) {
++ case SPI_NOR_FAST:
++ case SPI_NOR_DUAL:
++ case SPI_NOR_QUAD:
++ return 1;
++ case SPI_NOR_NORMAL:
++ return 0;
++ }
++ return 0;
++}
++
++/*
++ * Write status register 1 byte
++ * Returns negative if error occurred.
++ */
++static inline int write_sr(struct spi_nor *nor, u8 val)
++{
++ nor->cmd_buf[0] = val;
++ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
++}
++
++/*
++ * Set write enable latch with Write Enable command.
++ * Returns negative if error occurred.
++ */
++static inline int write_enable(struct spi_nor *nor)
++{
++ return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
++}
++
++/*
++ * Send write disble instruction to the chip.
++ */
++static inline int write_disable(struct spi_nor *nor)
++{
++ return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
++}
++
++static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
++{
++ return mtd->priv;
++}
++
++/* Enable/disable 4-byte addressing mode. */
++static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
++{
++ int status;
++ bool need_wren = false;
++ u8 cmd;
++
++ switch (JEDEC_MFR(jedec_id)) {
++ case CFI_MFR_ST: /* Micron, actually */
++ /* Some Micron need WREN command; all will accept it */
++ need_wren = true;
++ case CFI_MFR_MACRONIX:
++ case 0xEF /* winbond */:
++ if (need_wren)
++ write_enable(nor);
++
++ cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
++ status = nor->write_reg(nor, cmd, NULL, 0, 0);
++ if (need_wren)
++ write_disable(nor);
++
++ return status;
++ default:
++ /* Spansion style */
++ nor->cmd_buf[0] = enable << 7;
++ return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
++ }
++}
++
++static int spi_nor_wait_till_ready(struct spi_nor *nor)
++{
++ unsigned long deadline;
++ int sr;
++
++ deadline = jiffies + MAX_READY_WAIT_JIFFIES;
++
++ do {
++ cond_resched();
++
++ sr = read_sr(nor);
++ if (sr < 0)
++ break;
++ else if (!(sr & SR_WIP))
++ return 0;
++ } while (!time_after_eq(jiffies, deadline));
++
++ return -ETIMEDOUT;
++}
++
++static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor)
++{
++ unsigned long deadline;
++ int sr;
++ int fsr;
++
++ deadline = jiffies + MAX_READY_WAIT_JIFFIES;
++
++ do {
++ cond_resched();
++
++ sr = read_sr(nor);
++ if (sr < 0) {
++ break;
++ } else if (!(sr & SR_WIP)) {
++ fsr = read_fsr(nor);
++ if (fsr < 0)
++ break;
++ if (fsr & FSR_READY)
++ return 0;
++ }
++ } while (!time_after_eq(jiffies, deadline));
++
++ return -ETIMEDOUT;
++}
++
++/*
++ * Service routine to read status register until ready, or timeout occurs.
++ * Returns non-zero if error.
++ */
++static int wait_till_ready(struct spi_nor *nor)
++{
++ return nor->wait_till_ready(nor);
++}
++
++/*
++ * Erase the whole flash memory
++ *
++ * Returns 0 if successful, non-zero otherwise.
++ */
++static int erase_chip(struct spi_nor *nor)
++{
++ int ret;
++
++ dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
++
++ /* Wait until finished previous write command. */
++ ret = wait_till_ready(nor);
++ if (ret)
++ return ret;
++
++ /* Send write enable, then erase commands. */
++ write_enable(nor);
++
++ return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
++}
++
++static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
++{
++ int ret = 0;
++
++ mutex_lock(&nor->lock);
++
++ if (nor->prepare) {
++ ret = nor->prepare(nor, ops);
++ if (ret) {
++ dev_err(nor->dev, "failed in the preparation.\n");
++ mutex_unlock(&nor->lock);
++ return ret;
++ }
++ }
++ return ret;
++}
++
++static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
++{
++ if (nor->unprepare)
++ nor->unprepare(nor, ops);
++ mutex_unlock(&nor->lock);
++}
++
++/*
++ * Erase an address range on the nor chip. The address range may extend
++ * one or more erase sectors. Return an error is there is a problem erasing.
++ */
++static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
++{
++ struct spi_nor *nor = mtd_to_spi_nor(mtd);
++ u32 addr, len;
++ uint32_t rem;
++ int ret;
++
++ dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
++ (long long)instr->len);
++
++ div_u64_rem(instr->len, mtd->erasesize, &rem);
++ if (rem)
++ return -EINVAL;
++
++ addr = instr->addr;
++ len = instr->len;
++
++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
++ if (ret)
++ return ret;
++
++ /* whole-chip erase? */
++ if (len == mtd->size) {
++ if (erase_chip(nor)) {
++ ret = -EIO;
++ goto erase_err;
++ }
++
++ /* REVISIT in some cases we could speed up erasing large regions
++ * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
++ * to use "small sector erase", but that's not always optimal.
++ */
++
++ /* "sector"-at-a-time erase */
++ } else {
++ while (len) {
++ if (nor->erase(nor, addr)) {
++ ret = -EIO;
++ goto erase_err;
++ }
++
++ addr += mtd->erasesize;
++ len -= mtd->erasesize;
++ }
++ }
++
++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
++
++ instr->state = MTD_ERASE_DONE;
++ mtd_erase_callback(instr);
++
++ return ret;
++
++erase_err:
++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
++ instr->state = MTD_ERASE_FAILED;
++ return ret;
++}
++
++static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
++{
++ struct spi_nor *nor = mtd_to_spi_nor(mtd);
++ uint32_t offset = ofs;
++ uint8_t status_old, status_new;
++ int ret = 0;
++
++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
++ if (ret)
++ return ret;
++
++ /* Wait until finished previous command */
++ ret = wait_till_ready(nor);
++ if (ret)
++ goto err;
++
++ status_old = read_sr(nor);
++
++ if (offset < mtd->size - (mtd->size / 2))
++ status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
++ else if (offset < mtd->size - (mtd->size / 4))
++ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
++ else if (offset < mtd->size - (mtd->size / 8))
++ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
++ else if (offset < mtd->size - (mtd->size / 16))
++ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
++ else if (offset < mtd->size - (mtd->size / 32))
++ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
++ else if (offset < mtd->size - (mtd->size / 64))
++ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
++ else
++ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
++
++ /* Only modify protection if it will not unlock other areas */
++ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
++ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
++ write_enable(nor);
++ ret = write_sr(nor, status_new);
++ if (ret)
++ goto err;
++ }
++
++err:
++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
++ return ret;
++}
++
++static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
++{
++ struct spi_nor *nor = mtd_to_spi_nor(mtd);
++ uint32_t offset = ofs;
++ uint8_t status_old, status_new;
++ int ret = 0;
++
++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
++ if (ret)
++ return ret;
++
++ /* Wait until finished previous command */
++ ret = wait_till_ready(nor);
++ if (ret)
++ goto err;
++
++ status_old = read_sr(nor);
++
++ if (offset+len > mtd->size - (mtd->size / 64))
++ status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
++ else if (offset+len > mtd->size - (mtd->size / 32))
++ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
++ else if (offset+len > mtd->size - (mtd->size / 16))
++ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
++ else if (offset+len > mtd->size - (mtd->size / 8))
++ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
++ else if (offset+len > mtd->size - (mtd->size / 4))
++ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
++ else if (offset+len > mtd->size - (mtd->size / 2))
++ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
++ else
++ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
++
++ /* Only modify protection if it will not lock other areas */
++ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
++ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
++ write_enable(nor);
++ ret = write_sr(nor, status_new);
++ if (ret)
++ goto err;
++ }
++
++err:
++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
++ return ret;
++}
++
++struct flash_info {
++ /* JEDEC id zero means "no ID" (most older chips); otherwise it has
++ * a high byte of zero plus three data bytes: the manufacturer id,
++ * then a two byte device id.
++ */
++ u32 jedec_id;
++ u16 ext_id;
++
++ /* The size listed here is what works with SPINOR_OP_SE, which isn't
++ * necessarily called a "sector" by the vendor.
++ */
++ unsigned sector_size;
++ u16 n_sectors;
++
++ u16 page_size;
++ u16 addr_width;
++
++ u16 flags;
++#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
++#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
++#define SST_WRITE 0x04 /* use SST byte programming */
++#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
++#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
++#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
++#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
++#define USE_FSR 0x80 /* use flag status register */
++};
++
++#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
++ ((kernel_ulong_t)&(struct flash_info) { \
++ .jedec_id = (_jedec_id), \
++ .ext_id = (_ext_id), \
++ .sector_size = (_sector_size), \
++ .n_sectors = (_n_sectors), \
++ .page_size = 256, \
++ .flags = (_flags), \
++ })
++
++#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
++ ((kernel_ulong_t)&(struct flash_info) { \
++ .sector_size = (_sector_size), \
++ .n_sectors = (_n_sectors), \
++ .page_size = (_page_size), \
++ .addr_width = (_addr_width), \
++ .flags = (_flags), \
++ })
++
++/* NOTE: double check command sets and memory organization when you add
++ * more nor chips. This current list focusses on newer chips, which
++ * have been converging on command sets which including JEDEC ID.
++ */
++const struct spi_device_id spi_nor_ids[] = {
++ /* Atmel -- some are (confusingly) marketed as "DataFlash" */
++ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
++ { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
++
++ { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
++ { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
++ { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
++
++ { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
++ { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
++ { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
++ { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
++
++ { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
++
++ /* EON -- en25xxx */
++ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
++ { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
++ { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
++ { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
++ { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
++ { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
++ { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
++
++ /* ESMT */
++ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
++
++ /* Everspin */
++ { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
++ { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
++
++ /* GigaDevice */
++ { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
++ { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
++
++ /* Intel/Numonyx -- xxxs33b */
++ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
++ { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
++ { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
++
++ /* Macronix */
++ { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
++ { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
++ { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
++ { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
++ { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
++ { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
++ { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
++ { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
++ { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
++ { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
++ { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
++ { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
++ { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
++
++ /* Micron */
++ { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
++ { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
++ { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
++ { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
++ { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
++ { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
++ { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
++
++ /* PMC */
++ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
++ { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
++ { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
++
++ /* Spansion -- single (large) sector size only, at least
++ * for the chips listed here (without boot sectors).
++ */
++ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
++ { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
++ { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
++ { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
++ { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
++ { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
++ { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
++ { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
++ { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
++ { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
++ { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
++ { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
++ { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
++ { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
++ { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
++ { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
++ { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
++ { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
++
++ /* SST -- large erase sizes are "overlays", "sectors" are 4K */
++ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
++ { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
++ { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
++ { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
++ { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
++ { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
++ { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
++ { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
++ { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
++
++ /* ST Microelectronics -- newer production may have feature updates */
++ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
++ { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
++ { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
++ { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
++ { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
++ { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
++ { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
++ { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
++ { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
++ { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
++
++ { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
++ { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
++ { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
++ { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
++ { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
++ { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
++ { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
++ { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
++ { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
++
++ { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
++ { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
++ { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
++
++ { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
++ { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
++ { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
++
++ { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
++ { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
++ { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
++ { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
++ { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
++
++ /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
++ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
++ { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
++ { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
++ { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
++ { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
++ { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
++ { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
++ { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
++ { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
++ { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
++ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
++ { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
++ { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
++ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
++ { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
++
++ /* Catalyst / On Semiconductor -- non-JEDEC */
++ { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
++ { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
++ { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
++ { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
++ { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
++ { },
++};
++EXPORT_SYMBOL_GPL(spi_nor_ids);
++
++static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
++{
++ int tmp;
++ u8 id[5];
++ u32 jedec;
++ u16 ext_jedec;
++ struct flash_info *info;
++
++ tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
++ if (tmp < 0) {
++ dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
++ return ERR_PTR(tmp);
++ }
++ jedec = id[0];
++ jedec = jedec << 8;
++ jedec |= id[1];
++ jedec = jedec << 8;
++ jedec |= id[2];
++
++ ext_jedec = id[3] << 8 | id[4];
++
++ for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
++ info = (void *)spi_nor_ids[tmp].driver_data;
++ if (info->jedec_id == jedec) {
++ if (info->ext_id == 0 || info->ext_id == ext_jedec)
++ return &spi_nor_ids[tmp];
++ }
++ }
++ dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
++ return ERR_PTR(-ENODEV);
++}
++
++static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
++{
++ return nor->read_id(nor);
++}
++
++static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
++ size_t *retlen, u_char *buf)
++{
++ struct spi_nor *nor = mtd_to_spi_nor(mtd);
++ int ret;
++
++ dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
++
++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
++ if (ret)
++ return ret;
++
++ ret = nor->read(nor, from, len, retlen, buf);
++
++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
++ return ret;
++}
++
++static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
++ size_t *retlen, const u_char *buf)
++{
++ struct spi_nor *nor = mtd_to_spi_nor(mtd);
++ size_t actual;
++ int ret;
++
++ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
++
++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
++ if (ret)
++ return ret;
++
++ /* Wait until finished previous write command. */
++ ret = wait_till_ready(nor);
++ if (ret)
++ goto time_out;
++
++ write_enable(nor);
++
++ nor->sst_write_second = false;
++
++ actual = to % 2;
++ /* Start write from odd address. */
++ if (actual) {
++ nor->program_opcode = SPINOR_OP_BP;
++
++ /* write one byte. */
++ nor->write(nor, to, 1, retlen, buf);
++ ret = wait_till_ready(nor);
++ if (ret)
++ goto time_out;
++ }
++ to += actual;
++
++ /* Write out most of the data here. */
++ for (; actual < len - 1; actual += 2) {
++ nor->program_opcode = SPINOR_OP_AAI_WP;
++
++ /* write two bytes. */
++ nor->write(nor, to, 2, retlen, buf + actual);
++ ret = wait_till_ready(nor);
++ if (ret)
++ goto time_out;
++ to += 2;
++ nor->sst_write_second = true;
++ }
++ nor->sst_write_second = false;
++
++ write_disable(nor);
++ ret = wait_till_ready(nor);
++ if (ret)
++ goto time_out;
++
++ /* Write out trailing byte if it exists. */
++ if (actual != len) {
++ write_enable(nor);
++
++ nor->program_opcode = SPINOR_OP_BP;
++ nor->write(nor, to, 1, retlen, buf + actual);
++
++ ret = wait_till_ready(nor);
++ if (ret)
++ goto time_out;
++ write_disable(nor);
++ }
++time_out:
++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
++ return ret;
++}
++
++/*
++ * Write an address range to the nor chip. Data must be written in
++ * FLASH_PAGESIZE chunks. The address range may be any size provided
++ * it is within the physical boundaries.
++ */
++static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
++ size_t *retlen, const u_char *buf)
++{
++ struct spi_nor *nor = mtd_to_spi_nor(mtd);
++ u32 page_offset, page_size, i;
++ int ret;
++
++ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
++
++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
++ if (ret)
++ return ret;
++
++ /* Wait until finished previous write command. */
++ ret = wait_till_ready(nor);
++ if (ret)
++ goto write_err;
++
++ write_enable(nor);
++
++ page_offset = to & (nor->page_size - 1);
++
++ /* do all the bytes fit onto one page? */
++ if (page_offset + len <= nor->page_size) {
++ nor->write(nor, to, len, retlen, buf);
++ } else {
++ /* the size of data remaining on the first page */
++ page_size = nor->page_size - page_offset;
++ nor->write(nor, to, page_size, retlen, buf);
++
++ /* write everything in nor->page_size chunks */
++ for (i = page_size; i < len; i += page_size) {
++ page_size = len - i;
++ if (page_size > nor->page_size)
++ page_size = nor->page_size;
++
++ wait_till_ready(nor);
++ write_enable(nor);
++
++ nor->write(nor, to + i, page_size, retlen, buf + i);
++ }
++ }
++
++write_err:
++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
++ return 0;
++}
++
++static int macronix_quad_enable(struct spi_nor *nor)
++{
++ int ret, val;
++
++ val = read_sr(nor);
++ write_enable(nor);
++
++ nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
++ nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
++
++ if (wait_till_ready(nor))
++ return 1;
++
++ ret = read_sr(nor);
++ if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
++ dev_err(nor->dev, "Macronix Quad bit not set\n");
++ return -EINVAL;
++ }
++
++ return 0;
++}
++
++/*
++ * Write status Register and configuration register with 2 bytes
++ * The first byte will be written to the status register, while the
++ * second byte will be written to the configuration register.
++ * Return negative if error occured.
++ */
++static int write_sr_cr(struct spi_nor *nor, u16 val)
++{
++ nor->cmd_buf[0] = val & 0xff;
++ nor->cmd_buf[1] = (val >> 8);
++
++ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
++}
++
++static int spansion_quad_enable(struct spi_nor *nor)
++{
++ int ret;
++ int quad_en = CR_QUAD_EN_SPAN << 8;
++
++ write_enable(nor);
++
++ ret = write_sr_cr(nor, quad_en);
++ if (ret < 0) {
++ dev_err(nor->dev,
++ "error while writing configuration register\n");
++ return -EINVAL;
++ }
++
++ /* read back and check it */
++ ret = read_cr(nor);
++ if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
++ dev_err(nor->dev, "Spansion Quad bit not set\n");
++ return -EINVAL;
++ }
++
++ return 0;
++}
++
++static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
++{
++ int status;
++
++ switch (JEDEC_MFR(jedec_id)) {
++ case CFI_MFR_MACRONIX:
++ status = macronix_quad_enable(nor);
++ if (status) {
++ dev_err(nor->dev, "Macronix quad-read not enabled\n");
++ return -EINVAL;
++ }
++ return status;
++ default:
++ status = spansion_quad_enable(nor);
++ if (status) {
++ dev_err(nor->dev, "Spansion quad-read not enabled\n");
++ return -EINVAL;
++ }
++ return status;
++ }
++}
++
++static int spi_nor_check(struct spi_nor *nor)
++{
++ if (!nor->dev || !nor->read || !nor->write ||
++ !nor->read_reg || !nor->write_reg || !nor->erase) {
++ pr_err("spi-nor: please fill all the necessary fields!\n");
++ return -EINVAL;
++ }
++
++ if (!nor->read_id)
++ nor->read_id = spi_nor_read_id;
++ if (!nor->wait_till_ready)
++ nor->wait_till_ready = spi_nor_wait_till_ready;
++
++ return 0;
++}
++
++int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
++ enum read_mode mode)
++{
++ struct flash_info *info;
++ struct flash_platform_data *data;
++ struct device *dev = nor->dev;
++ struct mtd_info *mtd = nor->mtd;
++ struct device_node *np = dev->of_node;
++ int ret;
++ int i;
++
++ ret = spi_nor_check(nor);
++ if (ret)
++ return ret;
++
++ /* Platform data helps sort out which chip type we have, as
++ * well as how this board partitions it. If we don't have
++ * a chip ID, try the JEDEC id commands; they'll work for most
++ * newer chips, even if we don't recognize the particular chip.
++ */
++ data = dev_get_platdata(dev);
++ if (data && data->type) {
++ const struct spi_device_id *plat_id;
++
++ for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
++ plat_id = &spi_nor_ids[i];
++ if (strcmp(data->type, plat_id->name))
++ continue;
++ break;
++ }
++
++ if (i < ARRAY_SIZE(spi_nor_ids) - 1)
++ id = plat_id;
++ else
++ dev_warn(dev, "unrecognized id %s\n", data->type);
++ }
++
++ info = (void *)id->driver_data;
++
++ if (info->jedec_id) {
++ const struct spi_device_id *jid;
++
++ jid = jedec_probe(nor);
++ if (IS_ERR(jid)) {
++ return PTR_ERR(jid);
++ } else if (jid != id) {
++ /*
++ * JEDEC knows better, so overwrite platform ID. We
++ * can't trust partitions any longer, but we'll let
++ * mtd apply them anyway, since some partitions may be
++ * marked read-only, and we don't want to lose that
++ * information, even if it's not 100% accurate.
++ */
++ dev_warn(dev, "found %s, expected %s\n",
++ jid->name, id->name);
++ id = jid;
++ info = (void *)jid->driver_data;
++ }
++ }
++
++ mutex_init(&nor->lock);
++
++ /*
++ * Atmel, SST and Intel/Numonyx serial nor tend to power
++ * up with the software protection bits set
++ */
++
++ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
++ JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
++ JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
++ write_enable(nor);
++ write_sr(nor, 0);
++ }
++
++ if (data && data->name)
++ mtd->name = data->name;
++ else
++ mtd->name = dev_name(dev);
++
++ mtd->type = MTD_NORFLASH;
++ mtd->writesize = 1;
++ mtd->flags = MTD_CAP_NORFLASH;
++ mtd->size = info->sector_size * info->n_sectors;
++ mtd->_erase = spi_nor_erase;
++ mtd->_read = spi_nor_read;
++
++ /* nor protection support for STmicro chips */
++ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
++ mtd->_lock = spi_nor_lock;
++ mtd->_unlock = spi_nor_unlock;
++ }
++
++ /* sst nor chips use AAI word program */
++ if (info->flags & SST_WRITE)
++ mtd->_write = sst_write;
++ else
++ mtd->_write = spi_nor_write;
++
++ if ((info->flags & USE_FSR) &&
++ nor->wait_till_ready == spi_nor_wait_till_ready)
++ nor->wait_till_ready = spi_nor_wait_till_fsr_ready;
++
++ /* prefer "small sector" erase if possible */
++ if (info->flags & SECT_4K) {
++ nor->erase_opcode = SPINOR_OP_BE_4K;
++ mtd->erasesize = 4096;
++ } else if (info->flags & SECT_4K_PMC) {
++ nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
++ mtd->erasesize = 4096;
++ } else {
++ nor->erase_opcode = SPINOR_OP_SE;
++ mtd->erasesize = info->sector_size;
++ }
++
++ if (info->flags & SPI_NOR_NO_ERASE)
++ mtd->flags |= MTD_NO_ERASE;
++
++ mtd->dev.parent = dev;
++ nor->page_size = info->page_size;
++ mtd->writebufsize = nor->page_size;
++
++ if (np) {
++ /* If we were instantiated by DT, use it */
++ if (of_property_read_bool(np, "m25p,fast-read"))
++ nor->flash_read = SPI_NOR_FAST;
++ else
++ nor->flash_read = SPI_NOR_NORMAL;
++ } else {
++ /* If we weren't instantiated by DT, default to fast-read */
++ nor->flash_read = SPI_NOR_FAST;
++ }
++
++ /* Some devices cannot do fast-read, no matter what DT tells us */
++ if (info->flags & SPI_NOR_NO_FR)
++ nor->flash_read = SPI_NOR_NORMAL;
++
++ /* Quad/Dual-read mode takes precedence over fast/normal */
++ if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
++ ret = set_quad_mode(nor, info->jedec_id);
++ if (ret) {
++ dev_err(dev, "quad mode not supported\n");
++ return ret;
++ }
++ nor->flash_read = SPI_NOR_QUAD;
++ } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
++ nor->flash_read = SPI_NOR_DUAL;
++ }
++
++ /* Default commands */
++ switch (nor->flash_read) {
++ case SPI_NOR_QUAD:
++ nor->read_opcode = SPINOR_OP_READ_1_1_4;
++ break;
++ case SPI_NOR_DUAL:
++ nor->read_opcode = SPINOR_OP_READ_1_1_2;
++ break;
++ case SPI_NOR_FAST:
++ nor->read_opcode = SPINOR_OP_READ_FAST;
++ break;
++ case SPI_NOR_NORMAL:
++ nor->read_opcode = SPINOR_OP_READ;
++ break;
++ default:
++ dev_err(dev, "No Read opcode defined\n");
++ return -EINVAL;
++ }
++
++ nor->program_opcode = SPINOR_OP_PP;
++
++ if (info->addr_width)
++ nor->addr_width = info->addr_width;
++ else if (mtd->size > 0x1000000) {
++ /* enable 4-byte addressing if the device exceeds 16MiB */
++ nor->addr_width = 4;
++ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
++ /* Dedicated 4-byte command set */
++ switch (nor->flash_read) {
++ case SPI_NOR_QUAD:
++ nor->read_opcode = SPINOR_OP_READ4_1_1_4;
++ break;
++ case SPI_NOR_DUAL:
++ nor->read_opcode = SPINOR_OP_READ4_1_1_2;
++ break;
++ case SPI_NOR_FAST:
++ nor->read_opcode = SPINOR_OP_READ4_FAST;
++ break;
++ case SPI_NOR_NORMAL:
++ nor->read_opcode = SPINOR_OP_READ4;
++ break;
++ }
++ nor->program_opcode = SPINOR_OP_PP_4B;
++ /* No small sector erase for 4-byte command set */
++ nor->erase_opcode = SPINOR_OP_SE_4B;
++ mtd->erasesize = info->sector_size;
++ } else
++ set_4byte(nor, info->jedec_id, 1);
++ } else {
++ nor->addr_width = 3;
++ }
++
++ nor->read_dummy = spi_nor_read_dummy_cycles(nor);
++
++ dev_info(dev, "%s (%lld Kbytes)\n", id->name,
++ (long long)mtd->size >> 10);
++
++ dev_dbg(dev,
++ "mtd .name = %s, .size = 0x%llx (%lldMiB), "
++ ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
++ mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
++ mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
++
++ if (mtd->numeraseregions)
++ for (i = 0; i < mtd->numeraseregions; i++)
++ dev_dbg(dev,
++ "mtd.eraseregions[%d] = { .offset = 0x%llx, "
++ ".erasesize = 0x%.8x (%uKiB), "
++ ".numblocks = %d }\n",
++ i, (long long)mtd->eraseregions[i].offset,
++ mtd->eraseregions[i].erasesize,
++ mtd->eraseregions[i].erasesize / 1024,
++ mtd->eraseregions[i].numblocks);
++ return 0;
++}
++EXPORT_SYMBOL_GPL(spi_nor_scan);
++
++const struct spi_device_id *spi_nor_match_id(char *name)
++{
++ const struct spi_device_id *id = spi_nor_ids;
++
++ while (id->name[0]) {
++ if (!strcmp(name, id->name))
++ return id;
++ id++;
++ }
++ return NULL;
++}
++EXPORT_SYMBOL_GPL(spi_nor_match_id);
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
++MODULE_AUTHOR("Mike Lavender");
++MODULE_DESCRIPTION("framework for SPI NOR");
+--- /dev/null
++++ b/include/linux/mtd/spi-nor.h
+@@ -0,0 +1,218 @@
++/*
++ * Copyright (C) 2014 Freescale Semiconductor, Inc.
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ */
++
++#ifndef __LINUX_MTD_SPI_NOR_H
++#define __LINUX_MTD_SPI_NOR_H
++
++/*
++ * Note on opcode nomenclature: some opcodes have a format like
++ * SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number
++ * of I/O lines used for the opcode, address, and data (respectively). The
++ * FUNCTION has an optional suffix of '4', to represent an opcode which
++ * requires a 4-byte (32-bit) address.
++ */
++
++/* Flash opcodes. */
++#define SPINOR_OP_WREN 0x06 /* Write enable */
++#define SPINOR_OP_RDSR 0x05 /* Read status register */
++#define SPINOR_OP_WRSR 0x01 /* Write status register 1 byte */
++#define SPINOR_OP_READ 0x03 /* Read data bytes (low frequency) */
++#define SPINOR_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */
++#define SPINOR_OP_READ_1_1_2 0x3b /* Read data bytes (Dual SPI) */
++#define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad SPI) */
++#define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */
++#define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */
++#define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
++#define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */
++#define SPINOR_OP_CHIP_ERASE 0xc7 /* Erase whole flash chip */
++#define SPINOR_OP_SE 0xd8 /* Sector erase (usually 64KiB) */
++#define SPINOR_OP_RDID 0x9f /* Read JEDEC ID */
++#define SPINOR_OP_RDCR 0x35 /* Read configuration register */
++#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
++
++/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
++#define SPINOR_OP_READ4 0x13 /* Read data bytes (low frequency) */
++#define SPINOR_OP_READ4_FAST 0x0c /* Read data bytes (high frequency) */
++#define SPINOR_OP_READ4_1_1_2 0x3c /* Read data bytes (Dual SPI) */
++#define SPINOR_OP_READ4_1_1_4 0x6c /* Read data bytes (Quad SPI) */
++#define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */
++#define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */
++
++/* Used for SST flashes only. */
++#define SPINOR_OP_BP 0x02 /* Byte program */
++#define SPINOR_OP_WRDI 0x04 /* Write disable */
++#define SPINOR_OP_AAI_WP 0xad /* Auto address increment word program */
++
++/* Used for Macronix and Winbond flashes. */
++#define SPINOR_OP_EN4B 0xb7 /* Enter 4-byte mode */
++#define SPINOR_OP_EX4B 0xe9 /* Exit 4-byte mode */
++
++/* Used for Spansion flashes only. */
++#define SPINOR_OP_BRWR 0x17 /* Bank register write */
++
++/* Status Register bits. */
++#define SR_WIP 1 /* Write in progress */
++#define SR_WEL 2 /* Write enable latch */
++/* meaning of other SR_* bits may differ between vendors */
++#define SR_BP0 4 /* Block protect 0 */
++#define SR_BP1 8 /* Block protect 1 */
++#define SR_BP2 0x10 /* Block protect 2 */
++#define SR_SRWD 0x80 /* SR write protect */
++
++#define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */
++
++/* Flag Status Register bits */
++#define FSR_READY 0x80
++
++/* Configuration Register bits. */
++#define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */
++
++enum read_mode {
++ SPI_NOR_NORMAL = 0,
++ SPI_NOR_FAST,
++ SPI_NOR_DUAL,
++ SPI_NOR_QUAD,
++};
++
++/**
++ * struct spi_nor_xfer_cfg - Structure for defining a Serial Flash transfer
++ * @wren: command for "Write Enable", or 0x00 for not required
++ * @cmd: command for operation
++ * @cmd_pins: number of pins to send @cmd (1, 2, 4)
++ * @addr: address for operation
++ * @addr_pins: number of pins to send @addr (1, 2, 4)
++ * @addr_width: number of address bytes
++ * (3,4, or 0 for address not required)
++ * @mode: mode data
++ * @mode_pins: number of pins to send @mode (1, 2, 4)
++ * @mode_cycles: number of mode cycles (0 for mode not required)
++ * @dummy_cycles: number of dummy cycles (0 for dummy not required)
++ */
++struct spi_nor_xfer_cfg {
++ u8 wren;
++ u8 cmd;
++ u8 cmd_pins;
++ u32 addr;
++ u8 addr_pins;
++ u8 addr_width;
++ u8 mode;
++ u8 mode_pins;
++ u8 mode_cycles;
++ u8 dummy_cycles;
++};
++
++#define SPI_NOR_MAX_CMD_SIZE 8
++enum spi_nor_ops {
++ SPI_NOR_OPS_READ = 0,
++ SPI_NOR_OPS_WRITE,
++ SPI_NOR_OPS_ERASE,
++ SPI_NOR_OPS_LOCK,
++ SPI_NOR_OPS_UNLOCK,
++};
++
++/**
++ * struct spi_nor - Structure for defining a the SPI NOR layer
++ * @mtd: point to a mtd_info structure
++ * @lock: the lock for the read/write/erase/lock/unlock operations
++ * @dev: point to a spi device, or a spi nor controller device.
++ * @page_size: the page size of the SPI NOR
++ * @addr_width: number of address bytes
++ * @erase_opcode: the opcode for erasing a sector
++ * @read_opcode: the read opcode
++ * @read_dummy: the dummy needed by the read operation
++ * @program_opcode: the program opcode
++ * @flash_read: the mode of the read
++ * @sst_write_second: used by the SST write operation
++ * @cfg: used by the read_xfer/write_xfer
++ * @cmd_buf: used by the write_reg
++ * @prepare: [OPTIONAL] do some preparations for the
++ * read/write/erase/lock/unlock operations
++ * @unprepare: [OPTIONAL] do some post work after the
++ * read/write/erase/lock/unlock operations
++ * @read_xfer: [OPTIONAL] the read fundamental primitive
++ * @write_xfer: [OPTIONAL] the writefundamental primitive
++ * @read_reg: [DRIVER-SPECIFIC] read out the register
++ * @write_reg: [DRIVER-SPECIFIC] write data to the register
++ * @read_id: [REPLACEABLE] read out the ID data, and find
++ * the proper spi_device_id
++ * @wait_till_ready: [REPLACEABLE] wait till the NOR becomes ready
++ * @read: [DRIVER-SPECIFIC] read data from the SPI NOR
++ * @write: [DRIVER-SPECIFIC] write data to the SPI NOR
++ * @erase: [DRIVER-SPECIFIC] erase a sector of the SPI NOR
++ * at the offset @offs
++ * @priv: the private data
++ */
++struct spi_nor {
++ struct mtd_info *mtd;
++ struct mutex lock;
++ struct device *dev;
++ u32 page_size;
++ u8 addr_width;
++ u8 erase_opcode;
++ u8 read_opcode;
++ u8 read_dummy;
++ u8 program_opcode;
++ enum read_mode flash_read;
++ bool sst_write_second;
++ struct spi_nor_xfer_cfg cfg;
++ u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE];
++
++ int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops);
++ void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops);
++ int (*read_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg,
++ u8 *buf, size_t len);
++ int (*write_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg,
++ u8 *buf, size_t len);
++ int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);
++ int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
++ int write_enable);
++ const struct spi_device_id *(*read_id)(struct spi_nor *nor);
++ int (*wait_till_ready)(struct spi_nor *nor);
++
++ int (*read)(struct spi_nor *nor, loff_t from,
++ size_t len, size_t *retlen, u_char *read_buf);
++ void (*write)(struct spi_nor *nor, loff_t to,
++ size_t len, size_t *retlen, const u_char *write_buf);
++ int (*erase)(struct spi_nor *nor, loff_t offs);
++
++ void *priv;
++};
++
++/**
++ * spi_nor_scan() - scan the SPI NOR
++ * @nor: the spi_nor structure
++ * @id: the spi_device_id provided by the driver
++ * @mode: the read mode supported by the driver
++ *
++ * The drivers can use this fuction to scan the SPI NOR.
++ * In the scanning, it will try to get all the necessary information to
++ * fill the mtd_info{} and the spi_nor{}.
++ *
++ * The board may assigns a spi_device_id with @id which be used to compared with
++ * the spi_device_id detected by the scanning.
++ *
++ * Return: 0 for success, others for failure.
++ */
++int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
++ enum read_mode mode);
++extern const struct spi_device_id spi_nor_ids[];
++
++/**
++ * spi_nor_match_id() - find the spi_device_id by the name
++ * @name: the name of the spi_device_id
++ *
++ * The drivers use this function to find the spi_device_id
++ * specified by the @name.
++ *
++ * Return: returns the right spi_device_id pointer on success,
++ * and returns NULL on failure.
++ */
++const struct spi_device_id *spi_nor_match_id(char *name);
++
++#endif