diff options
author | Hauke Mehrtens <hauke@openwrt.org> | 2014-08-19 20:12:36 +0000 |
---|---|---|
committer | Hauke Mehrtens <hauke@openwrt.org> | 2014-08-19 20:12:36 +0000 |
commit | ee464c33a28aead45563a54e4f88986621b65532 (patch) | |
tree | d5638bdb0f992c660ae4843e3070e3c261f1f1ba /target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch | |
parent | 3ba033ed1b74e693d29491e3ecb432a3461c3245 (diff) | |
download | upstream-ee464c33a28aead45563a54e4f88986621b65532.tar.gz upstream-ee464c33a28aead45563a54e4f88986621b65532.tar.bz2 upstream-ee464c33a28aead45563a54e4f88986621b65532.zip |
bcm53xx: backport spi nor code form kernel v3.17-rc1.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@42222 3c298f89-4303-0410-b956-a3cf2f4a3e73
Diffstat (limited to 'target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch')
-rw-r--r-- | target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch | 2443 |
1 files changed, 2443 insertions, 0 deletions
diff --git a/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch b/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch new file mode 100644 index 0000000000..fb916caf1f --- /dev/null +++ b/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch @@ -0,0 +1,2443 @@ +This patches adds the SPI-NOR device support code form kernel 3.17-rc1. +This patch does not contain any further code not in this mainline kernel. + +--- a/drivers/mtd/Kconfig ++++ b/drivers/mtd/Kconfig +@@ -394,6 +394,8 @@ source "drivers/mtd/onenand/Kconfig" + + source "drivers/mtd/lpddr/Kconfig" + ++source "drivers/mtd/spi-nor/Kconfig" ++ + source "drivers/mtd/ubi/Kconfig" + + endif # MTD +--- a/drivers/mtd/Makefile ++++ b/drivers/mtd/Makefile +@@ -39,4 +39,5 @@ inftl-objs := inftlcore.o inftlmount.o + + obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/ + ++obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/ + obj-$(CONFIG_MTD_UBI) += ubi/ +--- /dev/null ++++ b/drivers/mtd/spi-nor/fsl-quadspi.c +@@ -0,0 +1,1009 @@ ++/* ++ * Freescale QuadSPI driver. ++ * ++ * Copyright (C) 2013 Freescale Semiconductor, Inc. ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/interrupt.h> ++#include <linux/errno.h> ++#include <linux/platform_device.h> ++#include <linux/sched.h> ++#include <linux/delay.h> ++#include <linux/io.h> ++#include <linux/clk.h> ++#include <linux/err.h> ++#include <linux/of.h> ++#include <linux/of_device.h> ++#include <linux/timer.h> ++#include <linux/jiffies.h> ++#include <linux/completion.h> ++#include <linux/mtd/mtd.h> ++#include <linux/mtd/partitions.h> ++#include <linux/mtd/spi-nor.h> ++ ++/* The registers */ ++#define QUADSPI_MCR 0x00 ++#define QUADSPI_MCR_RESERVED_SHIFT 16 ++#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT) ++#define QUADSPI_MCR_MDIS_SHIFT 14 ++#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT) ++#define QUADSPI_MCR_CLR_TXF_SHIFT 11 ++#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT) ++#define QUADSPI_MCR_CLR_RXF_SHIFT 10 ++#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT) ++#define QUADSPI_MCR_DDR_EN_SHIFT 7 ++#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT) ++#define QUADSPI_MCR_END_CFG_SHIFT 2 ++#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT) ++#define QUADSPI_MCR_SWRSTHD_SHIFT 1 ++#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT) ++#define QUADSPI_MCR_SWRSTSD_SHIFT 0 ++#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT) ++ ++#define QUADSPI_IPCR 0x08 ++#define QUADSPI_IPCR_SEQID_SHIFT 24 ++#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT) ++ ++#define QUADSPI_BUF0CR 0x10 ++#define QUADSPI_BUF1CR 0x14 ++#define QUADSPI_BUF2CR 0x18 ++#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe ++ ++#define QUADSPI_BUF3CR 0x1c ++#define QUADSPI_BUF3CR_ALLMST_SHIFT 31 ++#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT) ++ ++#define QUADSPI_BFGENCR 0x20 ++#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16 ++#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT)) ++#define QUADSPI_BFGENCR_SEQID_SHIFT 12 ++#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT) ++ ++#define QUADSPI_BUF0IND 0x30 ++#define QUADSPI_BUF1IND 0x34 ++#define QUADSPI_BUF2IND 0x38 ++#define QUADSPI_SFAR 0x100 ++ ++#define QUADSPI_SMPR 0x108 ++#define QUADSPI_SMPR_DDRSMP_SHIFT 16 ++#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT) ++#define QUADSPI_SMPR_FSDLY_SHIFT 6 ++#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT) ++#define QUADSPI_SMPR_FSPHS_SHIFT 5 ++#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT) ++#define QUADSPI_SMPR_HSENA_SHIFT 0 ++#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT) ++ ++#define QUADSPI_RBSR 0x10c ++#define QUADSPI_RBSR_RDBFL_SHIFT 8 ++#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT) ++ ++#define QUADSPI_RBCT 0x110 ++#define QUADSPI_RBCT_WMRK_MASK 0x1F ++#define QUADSPI_RBCT_RXBRD_SHIFT 8 ++#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT) ++ ++#define QUADSPI_TBSR 0x150 ++#define QUADSPI_TBDR 0x154 ++#define QUADSPI_SR 0x15c ++#define QUADSPI_SR_IP_ACC_SHIFT 1 ++#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT) ++#define QUADSPI_SR_AHB_ACC_SHIFT 2 ++#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT) ++ ++#define QUADSPI_FR 0x160 ++#define QUADSPI_FR_TFF_MASK 0x1 ++ ++#define QUADSPI_SFA1AD 0x180 ++#define QUADSPI_SFA2AD 0x184 ++#define QUADSPI_SFB1AD 0x188 ++#define QUADSPI_SFB2AD 0x18c ++#define QUADSPI_RBDR 0x200 ++ ++#define QUADSPI_LUTKEY 0x300 ++#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 ++ ++#define QUADSPI_LCKCR 0x304 ++#define QUADSPI_LCKER_LOCK 0x1 ++#define QUADSPI_LCKER_UNLOCK 0x2 ++ ++#define QUADSPI_RSER 0x164 ++#define QUADSPI_RSER_TFIE (0x1 << 0) ++ ++#define QUADSPI_LUT_BASE 0x310 ++ ++/* ++ * The definition of the LUT register shows below: ++ * ++ * --------------------------------------------------- ++ * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | ++ * --------------------------------------------------- ++ */ ++#define OPRND0_SHIFT 0 ++#define PAD0_SHIFT 8 ++#define INSTR0_SHIFT 10 ++#define OPRND1_SHIFT 16 ++ ++/* Instruction set for the LUT register. */ ++#define LUT_STOP 0 ++#define LUT_CMD 1 ++#define LUT_ADDR 2 ++#define LUT_DUMMY 3 ++#define LUT_MODE 4 ++#define LUT_MODE2 5 ++#define LUT_MODE4 6 ++#define LUT_READ 7 ++#define LUT_WRITE 8 ++#define LUT_JMP_ON_CS 9 ++#define LUT_ADDR_DDR 10 ++#define LUT_MODE_DDR 11 ++#define LUT_MODE2_DDR 12 ++#define LUT_MODE4_DDR 13 ++#define LUT_READ_DDR 14 ++#define LUT_WRITE_DDR 15 ++#define LUT_DATA_LEARN 16 ++ ++/* ++ * The PAD definitions for LUT register. ++ * ++ * The pad stands for the lines number of IO[0:3]. ++ * For example, the Quad read need four IO lines, so you should ++ * set LUT_PAD4 which means we use four IO lines. ++ */ ++#define LUT_PAD1 0 ++#define LUT_PAD2 1 ++#define LUT_PAD4 2 ++ ++/* Oprands for the LUT register. */ ++#define ADDR24BIT 0x18 ++#define ADDR32BIT 0x20 ++ ++/* Macros for constructing the LUT register. */ ++#define LUT0(ins, pad, opr) \ ++ (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \ ++ ((LUT_##ins) << INSTR0_SHIFT)) ++ ++#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT) ++ ++/* other macros for LUT register. */ ++#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4) ++#define QUADSPI_LUT_NUM 64 ++ ++/* SEQID -- we can have 16 seqids at most. */ ++#define SEQID_QUAD_READ 0 ++#define SEQID_WREN 1 ++#define SEQID_WRDI 2 ++#define SEQID_RDSR 3 ++#define SEQID_SE 4 ++#define SEQID_CHIP_ERASE 5 ++#define SEQID_PP 6 ++#define SEQID_RDID 7 ++#define SEQID_WRSR 8 ++#define SEQID_RDCR 9 ++#define SEQID_EN4B 10 ++#define SEQID_BRWR 11 ++ ++enum fsl_qspi_devtype { ++ FSL_QUADSPI_VYBRID, ++ FSL_QUADSPI_IMX6SX, ++}; ++ ++struct fsl_qspi_devtype_data { ++ enum fsl_qspi_devtype devtype; ++ int rxfifo; ++ int txfifo; ++}; ++ ++static struct fsl_qspi_devtype_data vybrid_data = { ++ .devtype = FSL_QUADSPI_VYBRID, ++ .rxfifo = 128, ++ .txfifo = 64 ++}; ++ ++static struct fsl_qspi_devtype_data imx6sx_data = { ++ .devtype = FSL_QUADSPI_IMX6SX, ++ .rxfifo = 128, ++ .txfifo = 512 ++}; ++ ++#define FSL_QSPI_MAX_CHIP 4 ++struct fsl_qspi { ++ struct mtd_info mtd[FSL_QSPI_MAX_CHIP]; ++ struct spi_nor nor[FSL_QSPI_MAX_CHIP]; ++ void __iomem *iobase; ++ void __iomem *ahb_base; /* Used when read from AHB bus */ ++ u32 memmap_phy; ++ struct clk *clk, *clk_en; ++ struct device *dev; ++ struct completion c; ++ struct fsl_qspi_devtype_data *devtype_data; ++ u32 nor_size; ++ u32 nor_num; ++ u32 clk_rate; ++ unsigned int chip_base_addr; /* We may support two chips. */ ++}; ++ ++static inline int is_vybrid_qspi(struct fsl_qspi *q) ++{ ++ return q->devtype_data->devtype == FSL_QUADSPI_VYBRID; ++} ++ ++static inline int is_imx6sx_qspi(struct fsl_qspi *q) ++{ ++ return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX; ++} ++ ++/* ++ * An IC bug makes us to re-arrange the 32-bit data. ++ * The following chips, such as IMX6SLX, have fixed this bug. ++ */ ++static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) ++{ ++ return is_vybrid_qspi(q) ? __swab32(a) : a; ++} ++ ++static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q) ++{ ++ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); ++ writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); ++} ++ ++static inline void fsl_qspi_lock_lut(struct fsl_qspi *q) ++{ ++ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); ++ writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); ++} ++ ++static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) ++{ ++ struct fsl_qspi *q = dev_id; ++ u32 reg; ++ ++ /* clear interrupt */ ++ reg = readl(q->iobase + QUADSPI_FR); ++ writel(reg, q->iobase + QUADSPI_FR); ++ ++ if (reg & QUADSPI_FR_TFF_MASK) ++ complete(&q->c); ++ ++ dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg); ++ return IRQ_HANDLED; ++} ++ ++static void fsl_qspi_init_lut(struct fsl_qspi *q) ++{ ++ void __iomem *base = q->iobase; ++ int rxfifo = q->devtype_data->rxfifo; ++ u32 lut_base; ++ u8 cmd, addrlen, dummy; ++ int i; ++ ++ fsl_qspi_unlock_lut(q); ++ ++ /* Clear all the LUT table */ ++ for (i = 0; i < QUADSPI_LUT_NUM; i++) ++ writel(0, base + QUADSPI_LUT_BASE + i * 4); ++ ++ /* Quad Read */ ++ lut_base = SEQID_QUAD_READ * 4; ++ ++ if (q->nor_size <= SZ_16M) { ++ cmd = SPINOR_OP_READ_1_1_4; ++ addrlen = ADDR24BIT; ++ dummy = 8; ++ } else { ++ /* use the 4-byte address */ ++ cmd = SPINOR_OP_READ_1_1_4; ++ addrlen = ADDR32BIT; ++ dummy = 8; ++ } ++ ++ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), ++ base + QUADSPI_LUT(lut_base)); ++ writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo), ++ base + QUADSPI_LUT(lut_base + 1)); ++ ++ /* Write enable */ ++ lut_base = SEQID_WREN * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base)); ++ ++ /* Page Program */ ++ lut_base = SEQID_PP * 4; ++ ++ if (q->nor_size <= SZ_16M) { ++ cmd = SPINOR_OP_PP; ++ addrlen = ADDR24BIT; ++ } else { ++ /* use the 4-byte address */ ++ cmd = SPINOR_OP_PP; ++ addrlen = ADDR32BIT; ++ } ++ ++ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), ++ base + QUADSPI_LUT(lut_base)); ++ writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1)); ++ ++ /* Read Status */ ++ lut_base = SEQID_RDSR * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1), ++ base + QUADSPI_LUT(lut_base)); ++ ++ /* Erase a sector */ ++ lut_base = SEQID_SE * 4; ++ ++ if (q->nor_size <= SZ_16M) { ++ cmd = SPINOR_OP_SE; ++ addrlen = ADDR24BIT; ++ } else { ++ /* use the 4-byte address */ ++ cmd = SPINOR_OP_SE; ++ addrlen = ADDR32BIT; ++ } ++ ++ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), ++ base + QUADSPI_LUT(lut_base)); ++ ++ /* Erase the whole chip */ ++ lut_base = SEQID_CHIP_ERASE * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE), ++ base + QUADSPI_LUT(lut_base)); ++ ++ /* READ ID */ ++ lut_base = SEQID_RDID * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8), ++ base + QUADSPI_LUT(lut_base)); ++ ++ /* Write Register */ ++ lut_base = SEQID_WRSR * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2), ++ base + QUADSPI_LUT(lut_base)); ++ ++ /* Read Configuration Register */ ++ lut_base = SEQID_RDCR * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1), ++ base + QUADSPI_LUT(lut_base)); ++ ++ /* Write disable */ ++ lut_base = SEQID_WRDI * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base)); ++ ++ /* Enter 4 Byte Mode (Micron) */ ++ lut_base = SEQID_EN4B * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base)); ++ ++ /* Enter 4 Byte Mode (Spansion) */ ++ lut_base = SEQID_BRWR * 4; ++ writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base)); ++ ++ fsl_qspi_lock_lut(q); ++} ++ ++/* Get the SEQID for the command */ ++static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd) ++{ ++ switch (cmd) { ++ case SPINOR_OP_READ_1_1_4: ++ return SEQID_QUAD_READ; ++ case SPINOR_OP_WREN: ++ return SEQID_WREN; ++ case SPINOR_OP_WRDI: ++ return SEQID_WRDI; ++ case SPINOR_OP_RDSR: ++ return SEQID_RDSR; ++ case SPINOR_OP_SE: ++ return SEQID_SE; ++ case SPINOR_OP_CHIP_ERASE: ++ return SEQID_CHIP_ERASE; ++ case SPINOR_OP_PP: ++ return SEQID_PP; ++ case SPINOR_OP_RDID: ++ return SEQID_RDID; ++ case SPINOR_OP_WRSR: ++ return SEQID_WRSR; ++ case SPINOR_OP_RDCR: ++ return SEQID_RDCR; ++ case SPINOR_OP_EN4B: ++ return SEQID_EN4B; ++ case SPINOR_OP_BRWR: ++ return SEQID_BRWR; ++ default: ++ dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd); ++ break; ++ } ++ return -EINVAL; ++} ++ ++static int ++fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len) ++{ ++ void __iomem *base = q->iobase; ++ int seqid; ++ u32 reg, reg2; ++ int err; ++ ++ init_completion(&q->c); ++ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n", ++ q->chip_base_addr, addr, len, cmd); ++ ++ /* save the reg */ ++ reg = readl(base + QUADSPI_MCR); ++ ++ writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR); ++ writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, ++ base + QUADSPI_RBCT); ++ writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR); ++ ++ do { ++ reg2 = readl(base + QUADSPI_SR); ++ if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) { ++ udelay(1); ++ dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2); ++ continue; ++ } ++ break; ++ } while (1); ++ ++ /* trigger the LUT now */ ++ seqid = fsl_qspi_get_seqid(q, cmd); ++ writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR); ++ ++ /* Wait for the interrupt. */ ++ err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)); ++ if (!err) { ++ dev_err(q->dev, ++ "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n", ++ cmd, addr, readl(base + QUADSPI_FR), ++ readl(base + QUADSPI_SR)); ++ err = -ETIMEDOUT; ++ } else { ++ err = 0; ++ } ++ ++ /* restore the MCR */ ++ writel(reg, base + QUADSPI_MCR); ++ ++ return err; ++} ++ ++/* Read out the data from the QUADSPI_RBDR buffer registers. */ ++static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf) ++{ ++ u32 tmp; ++ int i = 0; ++ ++ while (len > 0) { ++ tmp = readl(q->iobase + QUADSPI_RBDR + i * 4); ++ tmp = fsl_qspi_endian_xchg(q, tmp); ++ dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n", ++ q->chip_base_addr, tmp); ++ ++ if (len >= 4) { ++ *((u32 *)rxbuf) = tmp; ++ rxbuf += 4; ++ } else { ++ memcpy(rxbuf, &tmp, len); ++ break; ++ } ++ ++ len -= 4; ++ i++; ++ } ++} ++ ++/* ++ * If we have changed the content of the flash by writing or erasing, ++ * we need to invalidate the AHB buffer. If we do not do so, we may read out ++ * the wrong data. The spec tells us reset the AHB domain and Serial Flash ++ * domain at the same time. ++ */ ++static inline void fsl_qspi_invalid(struct fsl_qspi *q) ++{ ++ u32 reg; ++ ++ reg = readl(q->iobase + QUADSPI_MCR); ++ reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; ++ writel(reg, q->iobase + QUADSPI_MCR); ++ ++ /* ++ * The minimum delay : 1 AHB + 2 SFCK clocks. ++ * Delay 1 us is enough. ++ */ ++ udelay(1); ++ ++ reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); ++ writel(reg, q->iobase + QUADSPI_MCR); ++} ++ ++static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, ++ u8 opcode, unsigned int to, u32 *txbuf, ++ unsigned count, size_t *retlen) ++{ ++ int ret, i, j; ++ u32 tmp; ++ ++ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n", ++ q->chip_base_addr, to, count); ++ ++ /* clear the TX FIFO. */ ++ tmp = readl(q->iobase + QUADSPI_MCR); ++ writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR); ++ ++ /* fill the TX data to the FIFO */ ++ for (j = 0, i = ((count + 3) / 4); j < i; j++) { ++ tmp = fsl_qspi_endian_xchg(q, *txbuf); ++ writel(tmp, q->iobase + QUADSPI_TBDR); ++ txbuf++; ++ } ++ ++ /* Trigger it */ ++ ret = fsl_qspi_runcmd(q, opcode, to, count); ++ ++ if (ret == 0 && retlen) ++ *retlen += count; ++ ++ return ret; ++} ++ ++static void fsl_qspi_set_map_addr(struct fsl_qspi *q) ++{ ++ int nor_size = q->nor_size; ++ void __iomem *base = q->iobase; ++ ++ writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD); ++ writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD); ++ writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD); ++ writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD); ++} ++ ++/* ++ * There are two different ways to read out the data from the flash: ++ * the "IP Command Read" and the "AHB Command Read". ++ * ++ * The IC guy suggests we use the "AHB Command Read" which is faster ++ * then the "IP Command Read". (What's more is that there is a bug in ++ * the "IP Command Read" in the Vybrid.) ++ * ++ * After we set up the registers for the "AHB Command Read", we can use ++ * the memcpy to read the data directly. A "missed" access to the buffer ++ * causes the controller to clear the buffer, and use the sequence pointed ++ * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. ++ */ ++static void fsl_qspi_init_abh_read(struct fsl_qspi *q) ++{ ++ void __iomem *base = q->iobase; ++ int seqid; ++ ++ /* AHB configuration for access buffer 0/1/2 .*/ ++ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR); ++ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR); ++ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR); ++ writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR); ++ ++ /* We only use the buffer3 */ ++ writel(0, base + QUADSPI_BUF0IND); ++ writel(0, base + QUADSPI_BUF1IND); ++ writel(0, base + QUADSPI_BUF2IND); ++ ++ /* Set the default lut sequence for AHB Read. */ ++ seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode); ++ writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT, ++ q->iobase + QUADSPI_BFGENCR); ++} ++ ++/* We use this function to do some basic init for spi_nor_scan(). */ ++static int fsl_qspi_nor_setup(struct fsl_qspi *q) ++{ ++ void __iomem *base = q->iobase; ++ u32 reg; ++ int ret; ++ ++ /* the default frequency, we will change it in the future.*/ ++ ret = clk_set_rate(q->clk, 66000000); ++ if (ret) ++ return ret; ++ ++ /* Init the LUT table. */ ++ fsl_qspi_init_lut(q); ++ ++ /* Disable the module */ ++ writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, ++ base + QUADSPI_MCR); ++ ++ reg = readl(base + QUADSPI_SMPR); ++ writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK ++ | QUADSPI_SMPR_FSPHS_MASK ++ | QUADSPI_SMPR_HSENA_MASK ++ | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); ++ ++ /* Enable the module */ ++ writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, ++ base + QUADSPI_MCR); ++ ++ /* enable the interrupt */ ++ writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); ++ ++ return 0; ++} ++ ++static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) ++{ ++ unsigned long rate = q->clk_rate; ++ int ret; ++ ++ if (is_imx6sx_qspi(q)) ++ rate *= 4; ++ ++ ret = clk_set_rate(q->clk, rate); ++ if (ret) ++ return ret; ++ ++ /* Init the LUT table again. */ ++ fsl_qspi_init_lut(q); ++ ++ /* Init for AHB read */ ++ fsl_qspi_init_abh_read(q); ++ ++ return 0; ++} ++ ++static struct of_device_id fsl_qspi_dt_ids[] = { ++ { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, }, ++ { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, }, ++ { /* sentinel */ } ++}; ++MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); ++ ++static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor) ++{ ++ q->chip_base_addr = q->nor_size * (nor - q->nor); ++} ++ ++static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) ++{ ++ int ret; ++ struct fsl_qspi *q = nor->priv; ++ ++ ret = fsl_qspi_runcmd(q, opcode, 0, len); ++ if (ret) ++ return ret; ++ ++ fsl_qspi_read_data(q, len, buf); ++ return 0; ++} ++ ++static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len, ++ int write_enable) ++{ ++ struct fsl_qspi *q = nor->priv; ++ int ret; ++ ++ if (!buf) { ++ ret = fsl_qspi_runcmd(q, opcode, 0, 1); ++ if (ret) ++ return ret; ++ ++ if (opcode == SPINOR_OP_CHIP_ERASE) ++ fsl_qspi_invalid(q); ++ ++ } else if (len > 0) { ++ ret = fsl_qspi_nor_write(q, nor, opcode, 0, ++ (u32 *)buf, len, NULL); ++ } else { ++ dev_err(q->dev, "invalid cmd %d\n", opcode); ++ ret = -EINVAL; ++ } ++ ++ return ret; ++} ++ ++static void fsl_qspi_write(struct spi_nor *nor, loff_t to, ++ size_t len, size_t *retlen, const u_char *buf) ++{ ++ struct fsl_qspi *q = nor->priv; ++ ++ fsl_qspi_nor_write(q, nor, nor->program_opcode, to, ++ (u32 *)buf, len, retlen); ++ ++ /* invalid the data in the AHB buffer. */ ++ fsl_qspi_invalid(q); ++} ++ ++static int fsl_qspi_read(struct spi_nor *nor, loff_t from, ++ size_t len, size_t *retlen, u_char *buf) ++{ ++ struct fsl_qspi *q = nor->priv; ++ u8 cmd = nor->read_opcode; ++ int ret; ++ ++ dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n", ++ cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len); ++ ++ /* Wait until the previous command is finished. */ ++ ret = nor->wait_till_ready(nor); ++ if (ret) ++ return ret; ++ ++ /* Read out the data directly from the AHB buffer.*/ ++ memcpy(buf, q->ahb_base + q->chip_base_addr + from, len); ++ ++ *retlen += len; ++ return 0; ++} ++ ++static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs) ++{ ++ struct fsl_qspi *q = nor->priv; ++ int ret; ++ ++ dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n", ++ nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs); ++ ++ /* Wait until finished previous write command. */ ++ ret = nor->wait_till_ready(nor); ++ if (ret) ++ return ret; ++ ++ /* Send write enable, then erase commands. */ ++ ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); ++ if (ret) ++ return ret; ++ ++ ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0); ++ if (ret) ++ return ret; ++ ++ fsl_qspi_invalid(q); ++ return 0; ++} ++ ++static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) ++{ ++ struct fsl_qspi *q = nor->priv; ++ int ret; ++ ++ ret = clk_enable(q->clk_en); ++ if (ret) ++ return ret; ++ ++ ret = clk_enable(q->clk); ++ if (ret) { ++ clk_disable(q->clk_en); ++ return ret; ++ } ++ ++ fsl_qspi_set_base_addr(q, nor); ++ return 0; ++} ++ ++static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) ++{ ++ struct fsl_qspi *q = nor->priv; ++ ++ clk_disable(q->clk); ++ clk_disable(q->clk_en); ++} ++ ++static int fsl_qspi_probe(struct platform_device *pdev) ++{ ++ struct device_node *np = pdev->dev.of_node; ++ struct mtd_part_parser_data ppdata; ++ struct device *dev = &pdev->dev; ++ struct fsl_qspi *q; ++ struct resource *res; ++ struct spi_nor *nor; ++ struct mtd_info *mtd; ++ int ret, i = 0; ++ bool has_second_chip = false; ++ const struct of_device_id *of_id = ++ of_match_device(fsl_qspi_dt_ids, &pdev->dev); ++ ++ q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL); ++ if (!q) ++ return -ENOMEM; ++ ++ q->nor_num = of_get_child_count(dev->of_node); ++ if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP) ++ return -ENODEV; ++ ++ /* find the resources */ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); ++ q->iobase = devm_ioremap_resource(dev, res); ++ if (IS_ERR(q->iobase)) { ++ ret = PTR_ERR(q->iobase); ++ goto map_failed; ++ } ++ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, ++ "QuadSPI-memory"); ++ q->ahb_base = devm_ioremap_resource(dev, res); ++ if (IS_ERR(q->ahb_base)) { ++ ret = PTR_ERR(q->ahb_base); ++ goto map_failed; ++ } ++ q->memmap_phy = res->start; ++ ++ /* find the clocks */ ++ q->clk_en = devm_clk_get(dev, "qspi_en"); ++ if (IS_ERR(q->clk_en)) { ++ ret = PTR_ERR(q->clk_en); ++ goto map_failed; ++ } ++ ++ q->clk = devm_clk_get(dev, "qspi"); ++ if (IS_ERR(q->clk)) { ++ ret = PTR_ERR(q->clk); ++ goto map_failed; ++ } ++ ++ ret = clk_prepare_enable(q->clk_en); ++ if (ret) { ++ dev_err(dev, "can not enable the qspi_en clock\n"); ++ goto map_failed; ++ } ++ ++ ret = clk_prepare_enable(q->clk); ++ if (ret) { ++ clk_disable_unprepare(q->clk_en); ++ dev_err(dev, "can not enable the qspi clock\n"); ++ goto map_failed; ++ } ++ ++ /* find the irq */ ++ ret = platform_get_irq(pdev, 0); ++ if (ret < 0) { ++ dev_err(dev, "failed to get the irq\n"); ++ goto irq_failed; ++ } ++ ++ ret = devm_request_irq(dev, ret, ++ fsl_qspi_irq_handler, 0, pdev->name, q); ++ if (ret) { ++ dev_err(dev, "failed to request irq.\n"); ++ goto irq_failed; ++ } ++ ++ q->dev = dev; ++ q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data; ++ platform_set_drvdata(pdev, q); ++ ++ ret = fsl_qspi_nor_setup(q); ++ if (ret) ++ goto irq_failed; ++ ++ if (of_get_property(np, "fsl,qspi-has-second-chip", NULL)) ++ has_second_chip = true; ++ ++ /* iterate the subnodes. */ ++ for_each_available_child_of_node(dev->of_node, np) { ++ const struct spi_device_id *id; ++ char modalias[40]; ++ ++ /* skip the holes */ ++ if (!has_second_chip) ++ i *= 2; ++ ++ nor = &q->nor[i]; ++ mtd = &q->mtd[i]; ++ ++ nor->mtd = mtd; ++ nor->dev = dev; ++ nor->priv = q; ++ mtd->priv = nor; ++ ++ /* fill the hooks */ ++ nor->read_reg = fsl_qspi_read_reg; ++ nor->write_reg = fsl_qspi_write_reg; ++ nor->read = fsl_qspi_read; ++ nor->write = fsl_qspi_write; ++ nor->erase = fsl_qspi_erase; ++ ++ nor->prepare = fsl_qspi_prep; ++ nor->unprepare = fsl_qspi_unprep; ++ ++ if (of_modalias_node(np, modalias, sizeof(modalias)) < 0) ++ goto map_failed; ++ ++ id = spi_nor_match_id(modalias); ++ if (!id) ++ goto map_failed; ++ ++ ret = of_property_read_u32(np, "spi-max-frequency", ++ &q->clk_rate); ++ if (ret < 0) ++ goto map_failed; ++ ++ /* set the chip address for READID */ ++ fsl_qspi_set_base_addr(q, nor); ++ ++ ret = spi_nor_scan(nor, id, SPI_NOR_QUAD); ++ if (ret) ++ goto map_failed; ++ ++ ppdata.of_node = np; ++ ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); ++ if (ret) ++ goto map_failed; ++ ++ /* Set the correct NOR size now. */ ++ if (q->nor_size == 0) { ++ q->nor_size = mtd->size; ++ ++ /* Map the SPI NOR to accessiable address */ ++ fsl_qspi_set_map_addr(q); ++ } ++ ++ /* ++ * The TX FIFO is 64 bytes in the Vybrid, but the Page Program ++ * may writes 265 bytes per time. The write is working in the ++ * unit of the TX FIFO, not in the unit of the SPI NOR's page ++ * size. ++ * ++ * So shrink the spi_nor->page_size if it is larger then the ++ * TX FIFO. ++ */ ++ if (nor->page_size > q->devtype_data->txfifo) ++ nor->page_size = q->devtype_data->txfifo; ++ ++ i++; ++ } ++ ++ /* finish the rest init. */ ++ ret = fsl_qspi_nor_setup_last(q); ++ if (ret) ++ goto last_init_failed; ++ ++ clk_disable(q->clk); ++ clk_disable(q->clk_en); ++ dev_info(dev, "QuadSPI SPI NOR flash driver\n"); ++ return 0; ++ ++last_init_failed: ++ for (i = 0; i < q->nor_num; i++) ++ mtd_device_unregister(&q->mtd[i]); ++ ++irq_failed: ++ clk_disable_unprepare(q->clk); ++ clk_disable_unprepare(q->clk_en); ++map_failed: ++ dev_err(dev, "Freescale QuadSPI probe failed\n"); ++ return ret; ++} ++ ++static int fsl_qspi_remove(struct platform_device *pdev) ++{ ++ struct fsl_qspi *q = platform_get_drvdata(pdev); ++ int i; ++ ++ for (i = 0; i < q->nor_num; i++) ++ mtd_device_unregister(&q->mtd[i]); ++ ++ /* disable the hardware */ ++ writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); ++ writel(0x0, q->iobase + QUADSPI_RSER); ++ ++ clk_unprepare(q->clk); ++ clk_unprepare(q->clk_en); ++ return 0; ++} ++ ++static struct platform_driver fsl_qspi_driver = { ++ .driver = { ++ .name = "fsl-quadspi", ++ .bus = &platform_bus_type, ++ .owner = THIS_MODULE, ++ .of_match_table = fsl_qspi_dt_ids, ++ }, ++ .probe = fsl_qspi_probe, ++ .remove = fsl_qspi_remove, ++}; ++module_platform_driver(fsl_qspi_driver); ++ ++MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); ++MODULE_AUTHOR("Freescale Semiconductor Inc."); ++MODULE_LICENSE("GPL v2"); +--- /dev/null ++++ b/drivers/mtd/spi-nor/Kconfig +@@ -0,0 +1,17 @@ ++menuconfig MTD_SPI_NOR ++ tristate "SPI-NOR device support" ++ depends on MTD ++ help ++ This is the framework for the SPI NOR which can be used by the SPI ++ device drivers and the SPI-NOR device driver. ++ ++if MTD_SPI_NOR ++ ++config SPI_FSL_QUADSPI ++ tristate "Freescale Quad SPI controller" ++ depends on ARCH_MXC ++ help ++ This enables support for the Quad SPI controller in master mode. ++ We only connect the NOR to this controller now. ++ ++endif # MTD_SPI_NOR +--- /dev/null ++++ b/drivers/mtd/spi-nor/Makefile +@@ -0,0 +1,2 @@ ++obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o ++obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o +--- /dev/null ++++ b/drivers/mtd/spi-nor/spi-nor.c +@@ -0,0 +1,1160 @@ ++/* ++ * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with ++ * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c ++ * ++ * Copyright (C) 2005, Intec Automation Inc. ++ * Copyright (C) 2014, Freescale Semiconductor, Inc. ++ * ++ * This code is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ */ ++ ++#include <linux/err.h> ++#include <linux/errno.h> ++#include <linux/module.h> ++#include <linux/device.h> ++#include <linux/mutex.h> ++#include <linux/math64.h> ++ ++#include <linux/mtd/cfi.h> ++#include <linux/mtd/mtd.h> ++#include <linux/of_platform.h> ++#include <linux/spi/flash.h> ++#include <linux/mtd/spi-nor.h> ++ ++/* Define max times to check status register before we give up. */ ++#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ ++ ++#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16) ++ ++/* ++ * Read the status register, returning its value in the location ++ * Return the status register value. ++ * Returns negative if error occurred. ++ */ ++static int read_sr(struct spi_nor *nor) ++{ ++ int ret; ++ u8 val; ++ ++ ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); ++ if (ret < 0) { ++ pr_err("error %d reading SR\n", (int) ret); ++ return ret; ++ } ++ ++ return val; ++} ++ ++/* ++ * Read the flag status register, returning its value in the location ++ * Return the status register value. ++ * Returns negative if error occurred. ++ */ ++static int read_fsr(struct spi_nor *nor) ++{ ++ int ret; ++ u8 val; ++ ++ ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); ++ if (ret < 0) { ++ pr_err("error %d reading FSR\n", ret); ++ return ret; ++ } ++ ++ return val; ++} ++ ++/* ++ * Read configuration register, returning its value in the ++ * location. Return the configuration register value. ++ * Returns negative if error occured. ++ */ ++static int read_cr(struct spi_nor *nor) ++{ ++ int ret; ++ u8 val; ++ ++ ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); ++ if (ret < 0) { ++ dev_err(nor->dev, "error %d reading CR\n", ret); ++ return ret; ++ } ++ ++ return val; ++} ++ ++/* ++ * Dummy Cycle calculation for different type of read. ++ * It can be used to support more commands with ++ * different dummy cycle requirements. ++ */ ++static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor) ++{ ++ switch (nor->flash_read) { ++ case SPI_NOR_FAST: ++ case SPI_NOR_DUAL: ++ case SPI_NOR_QUAD: ++ return 1; ++ case SPI_NOR_NORMAL: ++ return 0; ++ } ++ return 0; ++} ++ ++/* ++ * Write status register 1 byte ++ * Returns negative if error occurred. ++ */ ++static inline int write_sr(struct spi_nor *nor, u8 val) ++{ ++ nor->cmd_buf[0] = val; ++ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); ++} ++ ++/* ++ * Set write enable latch with Write Enable command. ++ * Returns negative if error occurred. ++ */ ++static inline int write_enable(struct spi_nor *nor) ++{ ++ return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); ++} ++ ++/* ++ * Send write disble instruction to the chip. ++ */ ++static inline int write_disable(struct spi_nor *nor) ++{ ++ return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0); ++} ++ ++static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) ++{ ++ return mtd->priv; ++} ++ ++/* Enable/disable 4-byte addressing mode. */ ++static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable) ++{ ++ int status; ++ bool need_wren = false; ++ u8 cmd; ++ ++ switch (JEDEC_MFR(jedec_id)) { ++ case CFI_MFR_ST: /* Micron, actually */ ++ /* Some Micron need WREN command; all will accept it */ ++ need_wren = true; ++ case CFI_MFR_MACRONIX: ++ case 0xEF /* winbond */: ++ if (need_wren) ++ write_enable(nor); ++ ++ cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; ++ status = nor->write_reg(nor, cmd, NULL, 0, 0); ++ if (need_wren) ++ write_disable(nor); ++ ++ return status; ++ default: ++ /* Spansion style */ ++ nor->cmd_buf[0] = enable << 7; ++ return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0); ++ } ++} ++ ++static int spi_nor_wait_till_ready(struct spi_nor *nor) ++{ ++ unsigned long deadline; ++ int sr; ++ ++ deadline = jiffies + MAX_READY_WAIT_JIFFIES; ++ ++ do { ++ cond_resched(); ++ ++ sr = read_sr(nor); ++ if (sr < 0) ++ break; ++ else if (!(sr & SR_WIP)) ++ return 0; ++ } while (!time_after_eq(jiffies, deadline)); ++ ++ return -ETIMEDOUT; ++} ++ ++static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor) ++{ ++ unsigned long deadline; ++ int sr; ++ int fsr; ++ ++ deadline = jiffies + MAX_READY_WAIT_JIFFIES; ++ ++ do { ++ cond_resched(); ++ ++ sr = read_sr(nor); ++ if (sr < 0) { ++ break; ++ } else if (!(sr & SR_WIP)) { ++ fsr = read_fsr(nor); ++ if (fsr < 0) ++ break; ++ if (fsr & FSR_READY) ++ return 0; ++ } ++ } while (!time_after_eq(jiffies, deadline)); ++ ++ return -ETIMEDOUT; ++} ++ ++/* ++ * Service routine to read status register until ready, or timeout occurs. ++ * Returns non-zero if error. ++ */ ++static int wait_till_ready(struct spi_nor *nor) ++{ ++ return nor->wait_till_ready(nor); ++} ++ ++/* ++ * Erase the whole flash memory ++ * ++ * Returns 0 if successful, non-zero otherwise. ++ */ ++static int erase_chip(struct spi_nor *nor) ++{ ++ int ret; ++ ++ dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10)); ++ ++ /* Wait until finished previous write command. */ ++ ret = wait_till_ready(nor); ++ if (ret) ++ return ret; ++ ++ /* Send write enable, then erase commands. */ ++ write_enable(nor); ++ ++ return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0); ++} ++ ++static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) ++{ ++ int ret = 0; ++ ++ mutex_lock(&nor->lock); ++ ++ if (nor->prepare) { ++ ret = nor->prepare(nor, ops); ++ if (ret) { ++ dev_err(nor->dev, "failed in the preparation.\n"); ++ mutex_unlock(&nor->lock); ++ return ret; ++ } ++ } ++ return ret; ++} ++ ++static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) ++{ ++ if (nor->unprepare) ++ nor->unprepare(nor, ops); ++ mutex_unlock(&nor->lock); ++} ++ ++/* ++ * Erase an address range on the nor chip. The address range may extend ++ * one or more erase sectors. Return an error is there is a problem erasing. ++ */ ++static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) ++{ ++ struct spi_nor *nor = mtd_to_spi_nor(mtd); ++ u32 addr, len; ++ uint32_t rem; ++ int ret; ++ ++ dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, ++ (long long)instr->len); ++ ++ div_u64_rem(instr->len, mtd->erasesize, &rem); ++ if (rem) ++ return -EINVAL; ++ ++ addr = instr->addr; ++ len = instr->len; ++ ++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); ++ if (ret) ++ return ret; ++ ++ /* whole-chip erase? */ ++ if (len == mtd->size) { ++ if (erase_chip(nor)) { ++ ret = -EIO; ++ goto erase_err; ++ } ++ ++ /* REVISIT in some cases we could speed up erasing large regions ++ * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up ++ * to use "small sector erase", but that's not always optimal. ++ */ ++ ++ /* "sector"-at-a-time erase */ ++ } else { ++ while (len) { ++ if (nor->erase(nor, addr)) { ++ ret = -EIO; ++ goto erase_err; ++ } ++ ++ addr += mtd->erasesize; ++ len -= mtd->erasesize; ++ } ++ } ++ ++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); ++ ++ instr->state = MTD_ERASE_DONE; ++ mtd_erase_callback(instr); ++ ++ return ret; ++ ++erase_err: ++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); ++ instr->state = MTD_ERASE_FAILED; ++ return ret; ++} ++ ++static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) ++{ ++ struct spi_nor *nor = mtd_to_spi_nor(mtd); ++ uint32_t offset = ofs; ++ uint8_t status_old, status_new; ++ int ret = 0; ++ ++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); ++ if (ret) ++ return ret; ++ ++ /* Wait until finished previous command */ ++ ret = wait_till_ready(nor); ++ if (ret) ++ goto err; ++ ++ status_old = read_sr(nor); ++ ++ if (offset < mtd->size - (mtd->size / 2)) ++ status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0; ++ else if (offset < mtd->size - (mtd->size / 4)) ++ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; ++ else if (offset < mtd->size - (mtd->size / 8)) ++ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; ++ else if (offset < mtd->size - (mtd->size / 16)) ++ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; ++ else if (offset < mtd->size - (mtd->size / 32)) ++ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; ++ else if (offset < mtd->size - (mtd->size / 64)) ++ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; ++ else ++ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; ++ ++ /* Only modify protection if it will not unlock other areas */ ++ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) > ++ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { ++ write_enable(nor); ++ ret = write_sr(nor, status_new); ++ if (ret) ++ goto err; ++ } ++ ++err: ++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); ++ return ret; ++} ++ ++static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) ++{ ++ struct spi_nor *nor = mtd_to_spi_nor(mtd); ++ uint32_t offset = ofs; ++ uint8_t status_old, status_new; ++ int ret = 0; ++ ++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); ++ if (ret) ++ return ret; ++ ++ /* Wait until finished previous command */ ++ ret = wait_till_ready(nor); ++ if (ret) ++ goto err; ++ ++ status_old = read_sr(nor); ++ ++ if (offset+len > mtd->size - (mtd->size / 64)) ++ status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0); ++ else if (offset+len > mtd->size - (mtd->size / 32)) ++ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; ++ else if (offset+len > mtd->size - (mtd->size / 16)) ++ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; ++ else if (offset+len > mtd->size - (mtd->size / 8)) ++ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; ++ else if (offset+len > mtd->size - (mtd->size / 4)) ++ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; ++ else if (offset+len > mtd->size - (mtd->size / 2)) ++ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; ++ else ++ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; ++ ++ /* Only modify protection if it will not lock other areas */ ++ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) < ++ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { ++ write_enable(nor); ++ ret = write_sr(nor, status_new); ++ if (ret) ++ goto err; ++ } ++ ++err: ++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); ++ return ret; ++} ++ ++struct flash_info { ++ /* JEDEC id zero means "no ID" (most older chips); otherwise it has ++ * a high byte of zero plus three data bytes: the manufacturer id, ++ * then a two byte device id. ++ */ ++ u32 jedec_id; ++ u16 ext_id; ++ ++ /* The size listed here is what works with SPINOR_OP_SE, which isn't ++ * necessarily called a "sector" by the vendor. ++ */ ++ unsigned sector_size; ++ u16 n_sectors; ++ ++ u16 page_size; ++ u16 addr_width; ++ ++ u16 flags; ++#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */ ++#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */ ++#define SST_WRITE 0x04 /* use SST byte programming */ ++#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */ ++#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */ ++#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */ ++#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */ ++#define USE_FSR 0x80 /* use flag status register */ ++}; ++ ++#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ ++ ((kernel_ulong_t)&(struct flash_info) { \ ++ .jedec_id = (_jedec_id), \ ++ .ext_id = (_ext_id), \ ++ .sector_size = (_sector_size), \ ++ .n_sectors = (_n_sectors), \ ++ .page_size = 256, \ ++ .flags = (_flags), \ ++ }) ++ ++#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ ++ ((kernel_ulong_t)&(struct flash_info) { \ ++ .sector_size = (_sector_size), \ ++ .n_sectors = (_n_sectors), \ ++ .page_size = (_page_size), \ ++ .addr_width = (_addr_width), \ ++ .flags = (_flags), \ ++ }) ++ ++/* NOTE: double check command sets and memory organization when you add ++ * more nor chips. This current list focusses on newer chips, which ++ * have been converging on command sets which including JEDEC ID. ++ */ ++const struct spi_device_id spi_nor_ids[] = { ++ /* Atmel -- some are (confusingly) marketed as "DataFlash" */ ++ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, ++ { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, ++ ++ { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, ++ { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, ++ { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, ++ ++ { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, ++ { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, ++ { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, ++ { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, ++ ++ { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, ++ ++ /* EON -- en25xxx */ ++ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, ++ { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, ++ { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, ++ { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, ++ { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, ++ { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, ++ { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, ++ ++ /* ESMT */ ++ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) }, ++ ++ /* Everspin */ ++ { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, ++ { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, ++ ++ /* GigaDevice */ ++ { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) }, ++ { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) }, ++ ++ /* Intel/Numonyx -- xxxs33b */ ++ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, ++ { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, ++ { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, ++ ++ /* Macronix */ ++ { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, ++ { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, ++ { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, ++ { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, ++ { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, ++ { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, ++ { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, ++ { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, ++ { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, ++ { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, ++ { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, ++ { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) }, ++ { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, ++ ++ /* Micron */ ++ { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) }, ++ { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) }, ++ { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) }, ++ { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) }, ++ { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) }, ++ { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) }, ++ { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) }, ++ ++ /* PMC */ ++ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, ++ { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, ++ { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, ++ ++ /* Spansion -- single (large) sector size only, at least ++ * for the chips listed here (without boot sectors). ++ */ ++ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, ++ { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) }, ++ { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, ++ { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, ++ { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, ++ { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, ++ { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, ++ { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, ++ { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, ++ { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, ++ { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, ++ { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, ++ { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, ++ { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, ++ { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, ++ { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, ++ { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, ++ { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, ++ ++ /* SST -- large erase sizes are "overlays", "sectors" are 4K */ ++ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, ++ { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, ++ { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, ++ { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, ++ { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, ++ { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, ++ { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, ++ { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, ++ { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, ++ ++ /* ST Microelectronics -- newer production may have feature updates */ ++ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, ++ { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, ++ { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, ++ { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, ++ { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, ++ { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, ++ { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, ++ { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, ++ { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, ++ { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) }, ++ ++ { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, ++ { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, ++ { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, ++ { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, ++ { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, ++ { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, ++ { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, ++ { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, ++ { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, ++ ++ { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, ++ { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, ++ { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, ++ ++ { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, ++ { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, ++ { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, ++ ++ { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, ++ { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, ++ { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, ++ { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, ++ { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, ++ ++ /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ ++ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, ++ { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, ++ { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, ++ { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, ++ { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, ++ { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, ++ { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, ++ { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, ++ { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, ++ { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, ++ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, ++ { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, ++ { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, ++ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, ++ { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) }, ++ ++ /* Catalyst / On Semiconductor -- non-JEDEC */ ++ { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, ++ { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, ++ { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, ++ { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, ++ { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, ++ { }, ++}; ++EXPORT_SYMBOL_GPL(spi_nor_ids); ++ ++static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor) ++{ ++ int tmp; ++ u8 id[5]; ++ u32 jedec; ++ u16 ext_jedec; ++ struct flash_info *info; ++ ++ tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5); ++ if (tmp < 0) { ++ dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp); ++ return ERR_PTR(tmp); ++ } ++ jedec = id[0]; ++ jedec = jedec << 8; ++ jedec |= id[1]; ++ jedec = jedec << 8; ++ jedec |= id[2]; ++ ++ ext_jedec = id[3] << 8 | id[4]; ++ ++ for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { ++ info = (void *)spi_nor_ids[tmp].driver_data; ++ if (info->jedec_id == jedec) { ++ if (info->ext_id == 0 || info->ext_id == ext_jedec) ++ return &spi_nor_ids[tmp]; ++ } ++ } ++ dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec); ++ return ERR_PTR(-ENODEV); ++} ++ ++static const struct spi_device_id *jedec_probe(struct spi_nor *nor) ++{ ++ return nor->read_id(nor); ++} ++ ++static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, ++ size_t *retlen, u_char *buf) ++{ ++ struct spi_nor *nor = mtd_to_spi_nor(mtd); ++ int ret; ++ ++ dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); ++ ++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); ++ if (ret) ++ return ret; ++ ++ ret = nor->read(nor, from, len, retlen, buf); ++ ++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); ++ return ret; ++} ++ ++static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, ++ size_t *retlen, const u_char *buf) ++{ ++ struct spi_nor *nor = mtd_to_spi_nor(mtd); ++ size_t actual; ++ int ret; ++ ++ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); ++ ++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); ++ if (ret) ++ return ret; ++ ++ /* Wait until finished previous write command. */ ++ ret = wait_till_ready(nor); ++ if (ret) ++ goto time_out; ++ ++ write_enable(nor); ++ ++ nor->sst_write_second = false; ++ ++ actual = to % 2; ++ /* Start write from odd address. */ ++ if (actual) { ++ nor->program_opcode = SPINOR_OP_BP; ++ ++ /* write one byte. */ ++ nor->write(nor, to, 1, retlen, buf); ++ ret = wait_till_ready(nor); ++ if (ret) ++ goto time_out; ++ } ++ to += actual; ++ ++ /* Write out most of the data here. */ ++ for (; actual < len - 1; actual += 2) { ++ nor->program_opcode = SPINOR_OP_AAI_WP; ++ ++ /* write two bytes. */ ++ nor->write(nor, to, 2, retlen, buf + actual); ++ ret = wait_till_ready(nor); ++ if (ret) ++ goto time_out; ++ to += 2; ++ nor->sst_write_second = true; ++ } ++ nor->sst_write_second = false; ++ ++ write_disable(nor); ++ ret = wait_till_ready(nor); ++ if (ret) ++ goto time_out; ++ ++ /* Write out trailing byte if it exists. */ ++ if (actual != len) { ++ write_enable(nor); ++ ++ nor->program_opcode = SPINOR_OP_BP; ++ nor->write(nor, to, 1, retlen, buf + actual); ++ ++ ret = wait_till_ready(nor); ++ if (ret) ++ goto time_out; ++ write_disable(nor); ++ } ++time_out: ++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); ++ return ret; ++} ++ ++/* ++ * Write an address range to the nor chip. Data must be written in ++ * FLASH_PAGESIZE chunks. The address range may be any size provided ++ * it is within the physical boundaries. ++ */ ++static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, ++ size_t *retlen, const u_char *buf) ++{ ++ struct spi_nor *nor = mtd_to_spi_nor(mtd); ++ u32 page_offset, page_size, i; ++ int ret; ++ ++ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); ++ ++ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); ++ if (ret) ++ return ret; ++ ++ /* Wait until finished previous write command. */ ++ ret = wait_till_ready(nor); ++ if (ret) ++ goto write_err; ++ ++ write_enable(nor); ++ ++ page_offset = to & (nor->page_size - 1); ++ ++ /* do all the bytes fit onto one page? */ ++ if (page_offset + len <= nor->page_size) { ++ nor->write(nor, to, len, retlen, buf); ++ } else { ++ /* the size of data remaining on the first page */ ++ page_size = nor->page_size - page_offset; ++ nor->write(nor, to, page_size, retlen, buf); ++ ++ /* write everything in nor->page_size chunks */ ++ for (i = page_size; i < len; i += page_size) { ++ page_size = len - i; ++ if (page_size > nor->page_size) ++ page_size = nor->page_size; ++ ++ wait_till_ready(nor); ++ write_enable(nor); ++ ++ nor->write(nor, to + i, page_size, retlen, buf + i); ++ } ++ } ++ ++write_err: ++ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); ++ return 0; ++} ++ ++static int macronix_quad_enable(struct spi_nor *nor) ++{ ++ int ret, val; ++ ++ val = read_sr(nor); ++ write_enable(nor); ++ ++ nor->cmd_buf[0] = val | SR_QUAD_EN_MX; ++ nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); ++ ++ if (wait_till_ready(nor)) ++ return 1; ++ ++ ret = read_sr(nor); ++ if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { ++ dev_err(nor->dev, "Macronix Quad bit not set\n"); ++ return -EINVAL; ++ } ++ ++ return 0; ++} ++ ++/* ++ * Write status Register and configuration register with 2 bytes ++ * The first byte will be written to the status register, while the ++ * second byte will be written to the configuration register. ++ * Return negative if error occured. ++ */ ++static int write_sr_cr(struct spi_nor *nor, u16 val) ++{ ++ nor->cmd_buf[0] = val & 0xff; ++ nor->cmd_buf[1] = (val >> 8); ++ ++ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0); ++} ++ ++static int spansion_quad_enable(struct spi_nor *nor) ++{ ++ int ret; ++ int quad_en = CR_QUAD_EN_SPAN << 8; ++ ++ write_enable(nor); ++ ++ ret = write_sr_cr(nor, quad_en); ++ if (ret < 0) { ++ dev_err(nor->dev, ++ "error while writing configuration register\n"); ++ return -EINVAL; ++ } ++ ++ /* read back and check it */ ++ ret = read_cr(nor); ++ if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { ++ dev_err(nor->dev, "Spansion Quad bit not set\n"); ++ return -EINVAL; ++ } ++ ++ return 0; ++} ++ ++static int set_quad_mode(struct spi_nor *nor, u32 jedec_id) ++{ ++ int status; ++ ++ switch (JEDEC_MFR(jedec_id)) { ++ case CFI_MFR_MACRONIX: ++ status = macronix_quad_enable(nor); ++ if (status) { ++ dev_err(nor->dev, "Macronix quad-read not enabled\n"); ++ return -EINVAL; ++ } ++ return status; ++ default: ++ status = spansion_quad_enable(nor); ++ if (status) { ++ dev_err(nor->dev, "Spansion quad-read not enabled\n"); ++ return -EINVAL; ++ } ++ return status; ++ } ++} ++ ++static int spi_nor_check(struct spi_nor *nor) ++{ ++ if (!nor->dev || !nor->read || !nor->write || ++ !nor->read_reg || !nor->write_reg || !nor->erase) { ++ pr_err("spi-nor: please fill all the necessary fields!\n"); ++ return -EINVAL; ++ } ++ ++ if (!nor->read_id) ++ nor->read_id = spi_nor_read_id; ++ if (!nor->wait_till_ready) ++ nor->wait_till_ready = spi_nor_wait_till_ready; ++ ++ return 0; ++} ++ ++int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id, ++ enum read_mode mode) ++{ ++ struct flash_info *info; ++ struct flash_platform_data *data; ++ struct device *dev = nor->dev; ++ struct mtd_info *mtd = nor->mtd; ++ struct device_node *np = dev->of_node; ++ int ret; ++ int i; ++ ++ ret = spi_nor_check(nor); ++ if (ret) ++ return ret; ++ ++ /* Platform data helps sort out which chip type we have, as ++ * well as how this board partitions it. If we don't have ++ * a chip ID, try the JEDEC id commands; they'll work for most ++ * newer chips, even if we don't recognize the particular chip. ++ */ ++ data = dev_get_platdata(dev); ++ if (data && data->type) { ++ const struct spi_device_id *plat_id; ++ ++ for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) { ++ plat_id = &spi_nor_ids[i]; ++ if (strcmp(data->type, plat_id->name)) ++ continue; ++ break; ++ } ++ ++ if (i < ARRAY_SIZE(spi_nor_ids) - 1) ++ id = plat_id; ++ else ++ dev_warn(dev, "unrecognized id %s\n", data->type); ++ } ++ ++ info = (void *)id->driver_data; ++ ++ if (info->jedec_id) { ++ const struct spi_device_id *jid; ++ ++ jid = jedec_probe(nor); ++ if (IS_ERR(jid)) { ++ return PTR_ERR(jid); ++ } else if (jid != id) { ++ /* ++ * JEDEC knows better, so overwrite platform ID. We ++ * can't trust partitions any longer, but we'll let ++ * mtd apply them anyway, since some partitions may be ++ * marked read-only, and we don't want to lose that ++ * information, even if it's not 100% accurate. ++ */ ++ dev_warn(dev, "found %s, expected %s\n", ++ jid->name, id->name); ++ id = jid; ++ info = (void *)jid->driver_data; ++ } ++ } ++ ++ mutex_init(&nor->lock); ++ ++ /* ++ * Atmel, SST and Intel/Numonyx serial nor tend to power ++ * up with the software protection bits set ++ */ ++ ++ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL || ++ JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL || ++ JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) { ++ write_enable(nor); ++ write_sr(nor, 0); ++ } ++ ++ if (data && data->name) ++ mtd->name = data->name; ++ else ++ mtd->name = dev_name(dev); ++ ++ mtd->type = MTD_NORFLASH; ++ mtd->writesize = 1; ++ mtd->flags = MTD_CAP_NORFLASH; ++ mtd->size = info->sector_size * info->n_sectors; ++ mtd->_erase = spi_nor_erase; ++ mtd->_read = spi_nor_read; ++ ++ /* nor protection support for STmicro chips */ ++ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) { ++ mtd->_lock = spi_nor_lock; ++ mtd->_unlock = spi_nor_unlock; ++ } ++ ++ /* sst nor chips use AAI word program */ ++ if (info->flags & SST_WRITE) ++ mtd->_write = sst_write; ++ else ++ mtd->_write = spi_nor_write; ++ ++ if ((info->flags & USE_FSR) && ++ nor->wait_till_ready == spi_nor_wait_till_ready) ++ nor->wait_till_ready = spi_nor_wait_till_fsr_ready; ++ ++ /* prefer "small sector" erase if possible */ ++ if (info->flags & SECT_4K) { ++ nor->erase_opcode = SPINOR_OP_BE_4K; ++ mtd->erasesize = 4096; ++ } else if (info->flags & SECT_4K_PMC) { ++ nor->erase_opcode = SPINOR_OP_BE_4K_PMC; ++ mtd->erasesize = 4096; ++ } else { ++ nor->erase_opcode = SPINOR_OP_SE; ++ mtd->erasesize = info->sector_size; ++ } ++ ++ if (info->flags & SPI_NOR_NO_ERASE) ++ mtd->flags |= MTD_NO_ERASE; ++ ++ mtd->dev.parent = dev; ++ nor->page_size = info->page_size; ++ mtd->writebufsize = nor->page_size; ++ ++ if (np) { ++ /* If we were instantiated by DT, use it */ ++ if (of_property_read_bool(np, "m25p,fast-read")) ++ nor->flash_read = SPI_NOR_FAST; ++ else ++ nor->flash_read = SPI_NOR_NORMAL; ++ } else { ++ /* If we weren't instantiated by DT, default to fast-read */ ++ nor->flash_read = SPI_NOR_FAST; ++ } ++ ++ /* Some devices cannot do fast-read, no matter what DT tells us */ ++ if (info->flags & SPI_NOR_NO_FR) ++ nor->flash_read = SPI_NOR_NORMAL; ++ ++ /* Quad/Dual-read mode takes precedence over fast/normal */ ++ if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) { ++ ret = set_quad_mode(nor, info->jedec_id); ++ if (ret) { ++ dev_err(dev, "quad mode not supported\n"); ++ return ret; ++ } ++ nor->flash_read = SPI_NOR_QUAD; ++ } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) { ++ nor->flash_read = SPI_NOR_DUAL; ++ } ++ ++ /* Default commands */ ++ switch (nor->flash_read) { ++ case SPI_NOR_QUAD: ++ nor->read_opcode = SPINOR_OP_READ_1_1_4; ++ break; ++ case SPI_NOR_DUAL: ++ nor->read_opcode = SPINOR_OP_READ_1_1_2; ++ break; ++ case SPI_NOR_FAST: ++ nor->read_opcode = SPINOR_OP_READ_FAST; ++ break; ++ case SPI_NOR_NORMAL: ++ nor->read_opcode = SPINOR_OP_READ; ++ break; ++ default: ++ dev_err(dev, "No Read opcode defined\n"); ++ return -EINVAL; ++ } ++ ++ nor->program_opcode = SPINOR_OP_PP; ++ ++ if (info->addr_width) ++ nor->addr_width = info->addr_width; ++ else if (mtd->size > 0x1000000) { ++ /* enable 4-byte addressing if the device exceeds 16MiB */ ++ nor->addr_width = 4; ++ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) { ++ /* Dedicated 4-byte command set */ ++ switch (nor->flash_read) { ++ case SPI_NOR_QUAD: ++ nor->read_opcode = SPINOR_OP_READ4_1_1_4; ++ break; ++ case SPI_NOR_DUAL: ++ nor->read_opcode = SPINOR_OP_READ4_1_1_2; ++ break; ++ case SPI_NOR_FAST: ++ nor->read_opcode = SPINOR_OP_READ4_FAST; ++ break; ++ case SPI_NOR_NORMAL: ++ nor->read_opcode = SPINOR_OP_READ4; ++ break; ++ } ++ nor->program_opcode = SPINOR_OP_PP_4B; ++ /* No small sector erase for 4-byte command set */ ++ nor->erase_opcode = SPINOR_OP_SE_4B; ++ mtd->erasesize = info->sector_size; ++ } else ++ set_4byte(nor, info->jedec_id, 1); ++ } else { ++ nor->addr_width = 3; ++ } ++ ++ nor->read_dummy = spi_nor_read_dummy_cycles(nor); ++ ++ dev_info(dev, "%s (%lld Kbytes)\n", id->name, ++ (long long)mtd->size >> 10); ++ ++ dev_dbg(dev, ++ "mtd .name = %s, .size = 0x%llx (%lldMiB), " ++ ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", ++ mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), ++ mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); ++ ++ if (mtd->numeraseregions) ++ for (i = 0; i < mtd->numeraseregions; i++) ++ dev_dbg(dev, ++ "mtd.eraseregions[%d] = { .offset = 0x%llx, " ++ ".erasesize = 0x%.8x (%uKiB), " ++ ".numblocks = %d }\n", ++ i, (long long)mtd->eraseregions[i].offset, ++ mtd->eraseregions[i].erasesize, ++ mtd->eraseregions[i].erasesize / 1024, ++ mtd->eraseregions[i].numblocks); ++ return 0; ++} ++EXPORT_SYMBOL_GPL(spi_nor_scan); ++ ++const struct spi_device_id *spi_nor_match_id(char *name) ++{ ++ const struct spi_device_id *id = spi_nor_ids; ++ ++ while (id->name[0]) { ++ if (!strcmp(name, id->name)) ++ return id; ++ id++; ++ } ++ return NULL; ++} ++EXPORT_SYMBOL_GPL(spi_nor_match_id); ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); ++MODULE_AUTHOR("Mike Lavender"); ++MODULE_DESCRIPTION("framework for SPI NOR"); +--- /dev/null ++++ b/include/linux/mtd/spi-nor.h +@@ -0,0 +1,218 @@ ++/* ++ * Copyright (C) 2014 Freescale Semiconductor, Inc. ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ */ ++ ++#ifndef __LINUX_MTD_SPI_NOR_H ++#define __LINUX_MTD_SPI_NOR_H ++ ++/* ++ * Note on opcode nomenclature: some opcodes have a format like ++ * SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number ++ * of I/O lines used for the opcode, address, and data (respectively). The ++ * FUNCTION has an optional suffix of '4', to represent an opcode which ++ * requires a 4-byte (32-bit) address. ++ */ ++ ++/* Flash opcodes. */ ++#define SPINOR_OP_WREN 0x06 /* Write enable */ ++#define SPINOR_OP_RDSR 0x05 /* Read status register */ ++#define SPINOR_OP_WRSR 0x01 /* Write status register 1 byte */ ++#define SPINOR_OP_READ 0x03 /* Read data bytes (low frequency) */ ++#define SPINOR_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */ ++#define SPINOR_OP_READ_1_1_2 0x3b /* Read data bytes (Dual SPI) */ ++#define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad SPI) */ ++#define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */ ++#define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */ ++#define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */ ++#define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */ ++#define SPINOR_OP_CHIP_ERASE 0xc7 /* Erase whole flash chip */ ++#define SPINOR_OP_SE 0xd8 /* Sector erase (usually 64KiB) */ ++#define SPINOR_OP_RDID 0x9f /* Read JEDEC ID */ ++#define SPINOR_OP_RDCR 0x35 /* Read configuration register */ ++#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */ ++ ++/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */ ++#define SPINOR_OP_READ4 0x13 /* Read data bytes (low frequency) */ ++#define SPINOR_OP_READ4_FAST 0x0c /* Read data bytes (high frequency) */ ++#define SPINOR_OP_READ4_1_1_2 0x3c /* Read data bytes (Dual SPI) */ ++#define SPINOR_OP_READ4_1_1_4 0x6c /* Read data bytes (Quad SPI) */ ++#define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */ ++#define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */ ++ ++/* Used for SST flashes only. */ ++#define SPINOR_OP_BP 0x02 /* Byte program */ ++#define SPINOR_OP_WRDI 0x04 /* Write disable */ ++#define SPINOR_OP_AAI_WP 0xad /* Auto address increment word program */ ++ ++/* Used for Macronix and Winbond flashes. */ ++#define SPINOR_OP_EN4B 0xb7 /* Enter 4-byte mode */ ++#define SPINOR_OP_EX4B 0xe9 /* Exit 4-byte mode */ ++ ++/* Used for Spansion flashes only. */ ++#define SPINOR_OP_BRWR 0x17 /* Bank register write */ ++ ++/* Status Register bits. */ ++#define SR_WIP 1 /* Write in progress */ ++#define SR_WEL 2 /* Write enable latch */ ++/* meaning of other SR_* bits may differ between vendors */ ++#define SR_BP0 4 /* Block protect 0 */ ++#define SR_BP1 8 /* Block protect 1 */ ++#define SR_BP2 0x10 /* Block protect 2 */ ++#define SR_SRWD 0x80 /* SR write protect */ ++ ++#define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */ ++ ++/* Flag Status Register bits */ ++#define FSR_READY 0x80 ++ ++/* Configuration Register bits. */ ++#define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */ ++ ++enum read_mode { ++ SPI_NOR_NORMAL = 0, ++ SPI_NOR_FAST, ++ SPI_NOR_DUAL, ++ SPI_NOR_QUAD, ++}; ++ ++/** ++ * struct spi_nor_xfer_cfg - Structure for defining a Serial Flash transfer ++ * @wren: command for "Write Enable", or 0x00 for not required ++ * @cmd: command for operation ++ * @cmd_pins: number of pins to send @cmd (1, 2, 4) ++ * @addr: address for operation ++ * @addr_pins: number of pins to send @addr (1, 2, 4) ++ * @addr_width: number of address bytes ++ * (3,4, or 0 for address not required) ++ * @mode: mode data ++ * @mode_pins: number of pins to send @mode (1, 2, 4) ++ * @mode_cycles: number of mode cycles (0 for mode not required) ++ * @dummy_cycles: number of dummy cycles (0 for dummy not required) ++ */ ++struct spi_nor_xfer_cfg { ++ u8 wren; ++ u8 cmd; ++ u8 cmd_pins; ++ u32 addr; ++ u8 addr_pins; ++ u8 addr_width; ++ u8 mode; ++ u8 mode_pins; ++ u8 mode_cycles; ++ u8 dummy_cycles; ++}; ++ ++#define SPI_NOR_MAX_CMD_SIZE 8 ++enum spi_nor_ops { ++ SPI_NOR_OPS_READ = 0, ++ SPI_NOR_OPS_WRITE, ++ SPI_NOR_OPS_ERASE, ++ SPI_NOR_OPS_LOCK, ++ SPI_NOR_OPS_UNLOCK, ++}; ++ ++/** ++ * struct spi_nor - Structure for defining a the SPI NOR layer ++ * @mtd: point to a mtd_info structure ++ * @lock: the lock for the read/write/erase/lock/unlock operations ++ * @dev: point to a spi device, or a spi nor controller device. ++ * @page_size: the page size of the SPI NOR ++ * @addr_width: number of address bytes ++ * @erase_opcode: the opcode for erasing a sector ++ * @read_opcode: the read opcode ++ * @read_dummy: the dummy needed by the read operation ++ * @program_opcode: the program opcode ++ * @flash_read: the mode of the read ++ * @sst_write_second: used by the SST write operation ++ * @cfg: used by the read_xfer/write_xfer ++ * @cmd_buf: used by the write_reg ++ * @prepare: [OPTIONAL] do some preparations for the ++ * read/write/erase/lock/unlock operations ++ * @unprepare: [OPTIONAL] do some post work after the ++ * read/write/erase/lock/unlock operations ++ * @read_xfer: [OPTIONAL] the read fundamental primitive ++ * @write_xfer: [OPTIONAL] the writefundamental primitive ++ * @read_reg: [DRIVER-SPECIFIC] read out the register ++ * @write_reg: [DRIVER-SPECIFIC] write data to the register ++ * @read_id: [REPLACEABLE] read out the ID data, and find ++ * the proper spi_device_id ++ * @wait_till_ready: [REPLACEABLE] wait till the NOR becomes ready ++ * @read: [DRIVER-SPECIFIC] read data from the SPI NOR ++ * @write: [DRIVER-SPECIFIC] write data to the SPI NOR ++ * @erase: [DRIVER-SPECIFIC] erase a sector of the SPI NOR ++ * at the offset @offs ++ * @priv: the private data ++ */ ++struct spi_nor { ++ struct mtd_info *mtd; ++ struct mutex lock; ++ struct device *dev; ++ u32 page_size; ++ u8 addr_width; ++ u8 erase_opcode; ++ u8 read_opcode; ++ u8 read_dummy; ++ u8 program_opcode; ++ enum read_mode flash_read; ++ bool sst_write_second; ++ struct spi_nor_xfer_cfg cfg; ++ u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE]; ++ ++ int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops); ++ void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops); ++ int (*read_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg, ++ u8 *buf, size_t len); ++ int (*write_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg, ++ u8 *buf, size_t len); ++ int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len); ++ int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len, ++ int write_enable); ++ const struct spi_device_id *(*read_id)(struct spi_nor *nor); ++ int (*wait_till_ready)(struct spi_nor *nor); ++ ++ int (*read)(struct spi_nor *nor, loff_t from, ++ size_t len, size_t *retlen, u_char *read_buf); ++ void (*write)(struct spi_nor *nor, loff_t to, ++ size_t len, size_t *retlen, const u_char *write_buf); ++ int (*erase)(struct spi_nor *nor, loff_t offs); ++ ++ void *priv; ++}; ++ ++/** ++ * spi_nor_scan() - scan the SPI NOR ++ * @nor: the spi_nor structure ++ * @id: the spi_device_id provided by the driver ++ * @mode: the read mode supported by the driver ++ * ++ * The drivers can use this fuction to scan the SPI NOR. ++ * In the scanning, it will try to get all the necessary information to ++ * fill the mtd_info{} and the spi_nor{}. ++ * ++ * The board may assigns a spi_device_id with @id which be used to compared with ++ * the spi_device_id detected by the scanning. ++ * ++ * Return: 0 for success, others for failure. ++ */ ++int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id, ++ enum read_mode mode); ++extern const struct spi_device_id spi_nor_ids[]; ++ ++/** ++ * spi_nor_match_id() - find the spi_device_id by the name ++ * @name: the name of the spi_device_id ++ * ++ * The drivers use this function to find the spi_device_id ++ * specified by the @name. ++ * ++ * Return: returns the right spi_device_id pointer on success, ++ * and returns NULL on failure. ++ */ ++const struct spi_device_id *spi_nor_match_id(char *name); ++ ++#endif |