diff options
author | Hauke Mehrtens <hauke@hauke-m.de> | 2015-06-25 22:00:36 +0000 |
---|---|---|
committer | Hauke Mehrtens <hauke@hauke-m.de> | 2015-06-25 22:00:36 +0000 |
commit | 52e042ea550dfd9d9c21c77b60dadc7f5b0c9a1b (patch) | |
tree | abc1a31174b9b3273bd965ca36d9816f02d02b9c | |
parent | 164e82099da1c0626514710ad119e401cd369a0d (diff) | |
download | upstream-52e042ea550dfd9d9c21c77b60dadc7f5b0c9a1b.tar.gz upstream-52e042ea550dfd9d9c21c77b60dadc7f5b0c9a1b.tar.bz2 upstream-52e042ea550dfd9d9c21c77b60dadc7f5b0c9a1b.zip |
bcm53xx: add upstream nand driver
This adds the upstream Broadcom nand driver and makes use of it.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
SVN-Revision: 46131
8 files changed, 3064 insertions, 1647 deletions
diff --git a/target/linux/bcm53xx/config-4.1 b/target/linux/bcm53xx/config-4.1 index 49cdb2173f..234a7b8a0a 100644 --- a/target/linux/bcm53xx/config-4.1 +++ b/target/linux/bcm53xx/config-4.1 @@ -209,7 +209,7 @@ CONFIG_MIGHT_HAVE_PCI=y CONFIG_MODULES_USE_ELF_REL=y CONFIG_MTD_BCM47XX_PARTS=y CONFIG_MTD_NAND=y -CONFIG_MTD_NAND_BCM=y +CONFIG_MTD_NAND_BRCMNAND=y CONFIG_MTD_NAND_ECC=y # CONFIG_MTD_PHYSMAP_OF is not set CONFIG_MTD_SPI_BCM53XXSPIFLASH=y diff --git a/target/linux/bcm53xx/patches-4.1/090-mtd-nand-add-common-DT-init-code.patch b/target/linux/bcm53xx/patches-4.1/090-mtd-nand-add-common-DT-init-code.patch new file mode 100644 index 0000000000..cb2141a4b9 --- /dev/null +++ b/target/linux/bcm53xx/patches-4.1/090-mtd-nand-add-common-DT-init-code.patch @@ -0,0 +1,111 @@ +From 5844feeaa4154d1c46d3462c7a4653d22356d8b4 Mon Sep 17 00:00:00 2001 +From: Brian Norris <computersforpeace@gmail.com> +Date: Fri, 23 Jan 2015 00:22:27 -0800 +Subject: [PATCH 20/32] mtd: nand: add common DT init code + +These are already-documented common bindings for NAND chips. Let's +handle them in nand_base. + +If NAND controller drivers need to act on this data before bringing up +the NAND chip (e.g., fill out ECC callback functions, change HW modes, +etc.), then they can do so between calling nand_scan_ident() and +nand_scan_tail(). + +Signed-off-by: Brian Norris <computersforpeace@gmail.com> +--- + drivers/mtd/nand/nand_base.c | 41 +++++++++++++++++++++++++++++++++++++++++ + include/linux/mtd/nand.h | 5 +++++ + 2 files changed, 46 insertions(+) + +--- a/drivers/mtd/nand/nand_base.c ++++ b/drivers/mtd/nand/nand_base.c +@@ -48,6 +48,7 @@ + #include <linux/leds.h> + #include <linux/io.h> + #include <linux/mtd/partitions.h> ++#include <linux/of_mtd.h> + + /* Define default oob placement schemes for large and small page devices */ + static struct nand_ecclayout nand_oob_8 = { +@@ -3798,6 +3799,39 @@ ident_done: + return type; + } + ++static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, ++ struct device_node *dn) ++{ ++ int ecc_mode, ecc_strength, ecc_step; ++ ++ if (of_get_nand_bus_width(dn) == 16) ++ chip->options |= NAND_BUSWIDTH_16; ++ ++ if (of_get_nand_on_flash_bbt(dn)) ++ chip->bbt_options |= NAND_BBT_USE_FLASH; ++ ++ ecc_mode = of_get_nand_ecc_mode(dn); ++ ecc_strength = of_get_nand_ecc_strength(dn); ++ ecc_step = of_get_nand_ecc_step_size(dn); ++ ++ if ((ecc_step >= 0 && !(ecc_strength >= 0)) || ++ (!(ecc_step >= 0) && ecc_strength >= 0)) { ++ pr_err("must set both strength and step size in DT\n"); ++ return -EINVAL; ++ } ++ ++ if (ecc_mode >= 0) ++ chip->ecc.mode = ecc_mode; ++ ++ if (ecc_strength >= 0) ++ chip->ecc.strength = ecc_strength; ++ ++ if (ecc_step > 0) ++ chip->ecc.size = ecc_step; ++ ++ return 0; ++} ++ + /** + * nand_scan_ident - [NAND Interface] Scan for the NAND device + * @mtd: MTD device structure +@@ -3815,6 +3849,13 @@ int nand_scan_ident(struct mtd_info *mtd + int i, nand_maf_id, nand_dev_id; + struct nand_chip *chip = mtd->priv; + struct nand_flash_dev *type; ++ int ret; ++ ++ if (chip->dn) { ++ ret = nand_dt_init(mtd, chip, chip->dn); ++ if (ret) ++ return ret; ++ } + + /* Set the default functions */ + nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16); +--- a/include/linux/mtd/nand.h ++++ b/include/linux/mtd/nand.h +@@ -26,6 +26,8 @@ + + struct mtd_info; + struct nand_flash_dev; ++struct device_node; ++ + /* Scan and identify a NAND device */ + extern int nand_scan(struct mtd_info *mtd, int max_chips); + /* +@@ -542,6 +544,7 @@ struct nand_buffers { + * flash device + * @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the + * flash device. ++ * @dn: [BOARDSPECIFIC] device node describing this instance + * @read_byte: [REPLACEABLE] read one byte from the chip + * @read_word: [REPLACEABLE] read one word from the chip + * @write_byte: [REPLACEABLE] write a single byte to the chip on the +@@ -644,6 +647,8 @@ struct nand_chip { + void __iomem *IO_ADDR_R; + void __iomem *IO_ADDR_W; + ++ struct device_node *dn; ++ + uint8_t (*read_byte)(struct mtd_info *mtd); + u16 (*read_word)(struct mtd_info *mtd); + void (*write_byte)(struct mtd_info *mtd, uint8_t byte); diff --git a/target/linux/bcm53xx/patches-4.1/092-Add-Broadcom-STB-NAND.patch b/target/linux/bcm53xx/patches-4.1/092-Add-Broadcom-STB-NAND.patch new file mode 100644 index 0000000000..a6cf2118c5 --- /dev/null +++ b/target/linux/bcm53xx/patches-4.1/092-Add-Broadcom-STB-NAND.patch @@ -0,0 +1,2765 @@ +This contains the following commits: + +commit bcb83a19d3ac95fe3c0e79e942fb628120738853 +Author: Hauke Mehrtens <hauke@hauke-m.de> +Date: Sun May 17 17:41:01 2015 +0200 + + mtd: brcmnand: do not make local variable static + + Remove static in front of ctrl. This variable should not be shared + between different instances of brcmnand_probe(), it should be local to + this function and stored on the stack. + + Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> + Signed-off-by: Brian Norris <computersforpeace@gmail.com> + +commit 802041247a0abbeaf1dddb8a8d56f491762ae357 +Author: Hauke Mehrtens <hauke@hauke-m.de> +Date: Sun May 17 17:41:00 2015 +0200 + + mtd: brcmnand: remove double new line from print + + The caller already adds a new line and in the other cases there is no + new line added. + + Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> + Signed-off-by: Brian Norris <computersforpeace@gmail.com> + +commit f628ece6636c2f0354a52566cafdea6d2f963b3d +Author: Brian Norris <computersforpeace@gmail.com> +Date: Tue May 12 12:13:14 2015 -0700 + + mtd: brcmnand: add BCM63138 support + + Signed-off-by: Brian Norris <computersforpeace@gmail.com> + Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> + Tested-by: Florian Fainelli <f.fainelli@gmail.com> + +commit ca22f040dd145fc4d8069ce174f6eb0bc3ebd19f +Author: Brian Norris <computersforpeace@gmail.com> +Date: Tue May 12 12:12:02 2015 -0700 + + mtd: brcmnand: add support for Broadcom's IPROC family + + Signed-off-by: Brian Norris <computersforpeace@gmail.com> + + +commit c26211d37f11d5913d9803fdede6d053f918ba7b +Author: Brian Norris <computersforpeace@gmail.com> +Date: Tue May 12 12:09:28 2015 -0700 + + mtd: brcmnand: add extra SoC support to library + + There are a few small hooks required for chips like BCM63138 and the + iProc family. Let's introduce those now. + + Signed-off-by: Brian Norris <computersforpeace@gmail.com> + Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> + Tested-by: Florian Fainelli <f.fainelli@gmail.com> + +commit 303b4420ff1896b444017b5b0eb8252ce197797d +Author: Brian Norris <computersforpeace@gmail.com> +Date: Tue May 12 17:00:57 2015 -0700 + + mtd: brcmnand: add support for STB chips + + BCM7xxx chips are supported entirely by the library code, since they use + generic irqchip interfaces and don't need any extra SoC-specific + configuration. + + Signed-off-by: Brian Norris <computersforpeace@gmail.com> + +commit 27c5b17cd1b10564fa36f8f51e4b4b41436ecc32 +Author: Brian Norris <computersforpeace@gmail.com> +Date: Fri Mar 6 11:38:08 2015 -0800 + + mtd: nand: add NAND driver "library" for Broadcom STB NAND controller + + This core originated in Set-Top Box chips (BCM7xxx) but is used in a + variety of other Broadcom chips, including some BCM63xxx, BCM33xx, and + iProc/Cygnus. It's been used only on ARM and MIPS SoCs, so restrict it + to those architectures. + + There are multiple revisions of this core throughout the years, and + almost every version broke register compatibility in some small way, but + with some effort, this driver is able to support v4.0, v5.0, v6.x, v7.0, + and v7.1. It's been tested on v5.0, v6.0, v6.1, v7.0, and v7.1 recently, + so there hopefully are no more lurking inconsistencies. + + This patch adds just some library support, on which platform drivers can + be built. + + Signed-off-by: Brian Norris <computersforpeace@gmail.com> + Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> + Tested-by: Florian Fainelli <f.fainelli@gmail.com> + +--- a/drivers/mtd/nand/Kconfig ++++ b/drivers/mtd/nand/Kconfig +@@ -394,6 +394,14 @@ config MTD_NAND_GPMI_NAND + block, such as SD card. So pay attention to it when you enable + the GPMI. + ++config MTD_NAND_BRCMNAND ++ tristate "Broadcom STB NAND controller" ++ depends on ARM || MIPS ++ help ++ Enables the Broadcom NAND controller driver. The controller was ++ originally designed for Set-Top Box but is used on various BCM7xxx, ++ BCM3xxx, BCM63xxx, iProc/Cygnus and more. ++ + config MTD_NAND_BCM47XXNFLASH + tristate "Support for NAND flash on BCM4706 BCMA bus" + depends on BCMA_NFLASH +--- a/drivers/mtd/nand/Makefile ++++ b/drivers/mtd/nand/Makefile +@@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nan + obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ + obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o + obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o ++obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ + + nand-objs := nand_base.o nand_bbt.o nand_timings.o +--- /dev/null ++++ b/drivers/mtd/nand/brcmnand/Makefile +@@ -0,0 +1,6 @@ ++# link order matters; don't link the more generic brcmstb_nand.o before the ++# more specific iproc_nand.o, for instance ++obj-$(CONFIG_MTD_NAND_BRCMNAND) += iproc_nand.o ++obj-$(CONFIG_MTD_NAND_BRCMNAND) += bcm63138_nand.o ++obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmstb_nand.o ++obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand.o +--- /dev/null ++++ b/drivers/mtd/nand/brcmnand/bcm63138_nand.c +@@ -0,0 +1,109 @@ ++/* ++ * Copyright © 2015 Broadcom Corporation ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ */ ++ ++#include <linux/device.h> ++#include <linux/io.h> ++#include <linux/ioport.h> ++#include <linux/module.h> ++#include <linux/of.h> ++#include <linux/of_address.h> ++#include <linux/platform_device.h> ++#include <linux/slab.h> ++ ++#include "brcmnand.h" ++ ++struct bcm63138_nand_soc { ++ struct brcmnand_soc soc; ++ void __iomem *base; ++}; ++ ++#define BCM63138_NAND_INT_STATUS 0x00 ++#define BCM63138_NAND_INT_EN 0x04 ++ ++enum { ++ BCM63138_CTLRDY = BIT(4), ++}; ++ ++static bool bcm63138_nand_intc_ack(struct brcmnand_soc *soc) ++{ ++ struct bcm63138_nand_soc *priv = ++ container_of(soc, struct bcm63138_nand_soc, soc); ++ void __iomem *mmio = priv->base + BCM63138_NAND_INT_STATUS; ++ u32 val = brcmnand_readl(mmio); ++ ++ if (val & BCM63138_CTLRDY) { ++ brcmnand_writel(val & ~BCM63138_CTLRDY, mmio); ++ return true; ++ } ++ ++ return false; ++} ++ ++static void bcm63138_nand_intc_set(struct brcmnand_soc *soc, bool en) ++{ ++ struct bcm63138_nand_soc *priv = ++ container_of(soc, struct bcm63138_nand_soc, soc); ++ void __iomem *mmio = priv->base + BCM63138_NAND_INT_EN; ++ u32 val = brcmnand_readl(mmio); ++ ++ if (en) ++ val |= BCM63138_CTLRDY; ++ else ++ val &= ~BCM63138_CTLRDY; ++ ++ brcmnand_writel(val, mmio); ++} ++ ++static int bcm63138_nand_probe(struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ struct bcm63138_nand_soc *priv; ++ struct brcmnand_soc *soc; ++ struct resource *res; ++ ++ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); ++ if (!priv) ++ return -ENOMEM; ++ soc = &priv->soc; ++ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-int-base"); ++ priv->base = devm_ioremap_resource(dev, res); ++ if (IS_ERR(priv->base)) ++ return PTR_ERR(priv->base); ++ ++ soc->ctlrdy_ack = bcm63138_nand_intc_ack; ++ soc->ctlrdy_set_enabled = bcm63138_nand_intc_set; ++ ++ return brcmnand_probe(pdev, soc); ++} ++ ++static const struct of_device_id bcm63138_nand_of_match[] = { ++ { .compatible = "brcm,nand-bcm63138" }, ++ {}, ++}; ++MODULE_DEVICE_TABLE(of, bcm63138_nand_of_match); ++ ++static struct platform_driver bcm63138_nand_driver = { ++ .probe = bcm63138_nand_probe, ++ .remove = brcmnand_remove, ++ .driver = { ++ .name = "bcm63138_nand", ++ .pm = &brcmnand_pm_ops, ++ .of_match_table = bcm63138_nand_of_match, ++ } ++}; ++module_platform_driver(bcm63138_nand_driver); ++ ++MODULE_LICENSE("GPL v2"); ++MODULE_AUTHOR("Brian Norris"); ++MODULE_DESCRIPTION("NAND driver for BCM63138"); +--- /dev/null ++++ b/drivers/mtd/nand/brcmnand/brcmnand.c +@@ -0,0 +1,2246 @@ ++/* ++ * Copyright © 2010-2015 Broadcom Corporation ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ */ ++ ++#include <linux/version.h> ++#include <linux/module.h> ++#include <linux/init.h> ++#include <linux/delay.h> ++#include <linux/device.h> ++#include <linux/platform_device.h> ++#include <linux/err.h> ++#include <linux/completion.h> ++#include <linux/interrupt.h> ++#include <linux/spinlock.h> ++#include <linux/dma-mapping.h> ++#include <linux/ioport.h> ++#include <linux/bug.h> ++#include <linux/kernel.h> ++#include <linux/bitops.h> ++#include <linux/mm.h> ++#include <linux/mtd/mtd.h> ++#include <linux/mtd/nand.h> ++#include <linux/mtd/partitions.h> ++#include <linux/of.h> ++#include <linux/of_mtd.h> ++#include <linux/of_platform.h> ++#include <linux/slab.h> ++#include <linux/list.h> ++#include <linux/log2.h> ++ ++#include "brcmnand.h" ++ ++/* ++ * This flag controls if WP stays on between erase/write commands to mitigate ++ * flash corruption due to power glitches. Values: ++ * 0: NAND_WP is not used or not available ++ * 1: NAND_WP is set by default, cleared for erase/write operations ++ * 2: NAND_WP is always cleared ++ */ ++static int wp_on = 1; ++module_param(wp_on, int, 0444); ++ ++/*********************************************************************** ++ * Definitions ++ ***********************************************************************/ ++ ++#define DRV_NAME "brcmnand" ++ ++#define CMD_NULL 0x00 ++#define CMD_PAGE_READ 0x01 ++#define CMD_SPARE_AREA_READ 0x02 ++#define CMD_STATUS_READ 0x03 ++#define CMD_PROGRAM_PAGE 0x04 ++#define CMD_PROGRAM_SPARE_AREA 0x05 ++#define CMD_COPY_BACK 0x06 ++#define CMD_DEVICE_ID_READ 0x07 ++#define CMD_BLOCK_ERASE 0x08 ++#define CMD_FLASH_RESET 0x09 ++#define CMD_BLOCKS_LOCK 0x0a ++#define CMD_BLOCKS_LOCK_DOWN 0x0b ++#define CMD_BLOCKS_UNLOCK 0x0c ++#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d ++#define CMD_PARAMETER_READ 0x0e ++#define CMD_PARAMETER_CHANGE_COL 0x0f ++#define CMD_LOW_LEVEL_OP 0x10 ++ ++struct brcm_nand_dma_desc { ++ u32 next_desc; ++ u32 next_desc_ext; ++ u32 cmd_irq; ++ u32 dram_addr; ++ u32 dram_addr_ext; ++ u32 tfr_len; ++ u32 total_len; ++ u32 flash_addr; ++ u32 flash_addr_ext; ++ u32 cs; ++ u32 pad2[5]; ++ u32 status_valid; ++} __packed; ++ ++/* Bitfields for brcm_nand_dma_desc::status_valid */ ++#define FLASH_DMA_ECC_ERROR (1 << 8) ++#define FLASH_DMA_CORR_ERROR (1 << 9) ++ ++/* 512B flash cache in the NAND controller HW */ ++#define FC_SHIFT 9U ++#define FC_BYTES 512U ++#define FC_WORDS (FC_BYTES >> 2) ++ ++#define BRCMNAND_MIN_PAGESIZE 512 ++#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024) ++#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024) ++ ++/* Controller feature flags */ ++enum { ++ BRCMNAND_HAS_1K_SECTORS = BIT(0), ++ BRCMNAND_HAS_PREFETCH = BIT(1), ++ BRCMNAND_HAS_CACHE_MODE = BIT(2), ++ BRCMNAND_HAS_WP = BIT(3), ++}; ++ ++struct brcmnand_controller { ++ struct device *dev; ++ struct nand_hw_control controller; ++ void __iomem *nand_base; ++ void __iomem *nand_fc; /* flash cache */ ++ void __iomem *flash_dma_base; ++ unsigned int irq; ++ unsigned int dma_irq; ++ int nand_version; ++ ++ /* Some SoCs provide custom interrupt status register(s) */ ++ struct brcmnand_soc *soc; ++ ++ int cmd_pending; ++ bool dma_pending; ++ struct completion done; ++ struct completion dma_done; ++ ++ /* List of NAND hosts (one for each chip-select) */ ++ struct list_head host_list; ++ ++ struct brcm_nand_dma_desc *dma_desc; ++ dma_addr_t dma_pa; ++ ++ /* in-memory cache of the FLASH_CACHE, used only for some commands */ ++ u32 flash_cache[FC_WORDS]; ++ ++ /* Controller revision details */ ++ const u16 *reg_offsets; ++ unsigned int reg_spacing; /* between CS1, CS2, ... regs */ ++ const u8 *cs_offsets; /* within each chip-select */ ++ const u8 *cs0_offsets; /* within CS0, if different */ ++ unsigned int max_block_size; ++ const unsigned int *block_sizes; ++ unsigned int max_page_size; ++ const unsigned int *page_sizes; ++ unsigned int max_oob; ++ u32 features; ++ ++ /* for low-power standby/resume only */ ++ u32 nand_cs_nand_select; ++ u32 nand_cs_nand_xor; ++ u32 corr_stat_threshold; ++ u32 flash_dma_mode; ++}; ++ ++struct brcmnand_cfg { ++ u64 device_size; ++ unsigned int block_size; ++ unsigned int page_size; ++ unsigned int spare_area_size; ++ unsigned int device_width; ++ unsigned int col_adr_bytes; ++ unsigned int blk_adr_bytes; ++ unsigned int ful_adr_bytes; ++ unsigned int sector_size_1k; ++ unsigned int ecc_level; ++ /* use for low-power standby/resume only */ ++ u32 acc_control; ++ u32 config; ++ u32 config_ext; ++ u32 timing_1; ++ u32 timing_2; ++}; ++ ++struct brcmnand_host { ++ struct list_head node; ++ struct device_node *of_node; ++ ++ struct nand_chip chip; ++ struct mtd_info mtd; ++ struct platform_device *pdev; ++ int cs; ++ ++ unsigned int last_cmd; ++ unsigned int last_byte; ++ u64 last_addr; ++ struct brcmnand_cfg hwcfg; ++ struct brcmnand_controller *ctrl; ++}; ++ ++enum brcmnand_reg { ++ BRCMNAND_CMD_START = 0, ++ BRCMNAND_CMD_EXT_ADDRESS, ++ BRCMNAND_CMD_ADDRESS, ++ BRCMNAND_INTFC_STATUS, ++ BRCMNAND_CS_SELECT, ++ BRCMNAND_CS_XOR, ++ BRCMNAND_LL_OP, ++ BRCMNAND_CS0_BASE, ++ BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */ ++ BRCMNAND_CORR_THRESHOLD, ++ BRCMNAND_CORR_THRESHOLD_EXT, ++ BRCMNAND_UNCORR_COUNT, ++ BRCMNAND_CORR_COUNT, ++ BRCMNAND_CORR_EXT_ADDR, ++ BRCMNAND_CORR_ADDR, ++ BRCMNAND_UNCORR_EXT_ADDR, ++ BRCMNAND_UNCORR_ADDR, ++ BRCMNAND_SEMAPHORE, ++ BRCMNAND_ID, ++ BRCMNAND_ID_EXT, ++ BRCMNAND_LL_RDATA, ++ BRCMNAND_OOB_READ_BASE, ++ BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */ ++ BRCMNAND_OOB_WRITE_BASE, ++ BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */ ++ BRCMNAND_FC_BASE, ++}; ++ ++/* BRCMNAND v4.0 */ ++static const u16 brcmnand_regs_v40[] = { ++ [BRCMNAND_CMD_START] = 0x04, ++ [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, ++ [BRCMNAND_CMD_ADDRESS] = 0x0c, ++ [BRCMNAND_INTFC_STATUS] = 0x6c, ++ [BRCMNAND_CS_SELECT] = 0x14, ++ [BRCMNAND_CS_XOR] = 0x18, ++ [BRCMNAND_LL_OP] = 0x178, ++ [BRCMNAND_CS0_BASE] = 0x40, ++ [BRCMNAND_CS1_BASE] = 0xd0, ++ [BRCMNAND_CORR_THRESHOLD] = 0x84, ++ [BRCMNAND_CORR_THRESHOLD_EXT] = 0, ++ [BRCMNAND_UNCORR_COUNT] = 0, ++ [BRCMNAND_CORR_COUNT] = 0, ++ [BRCMNAND_CORR_EXT_ADDR] = 0x70, ++ [BRCMNAND_CORR_ADDR] = 0x74, ++ [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, ++ [BRCMNAND_UNCORR_ADDR] = 0x7c, ++ [BRCMNAND_SEMAPHORE] = 0x58, ++ [BRCMNAND_ID] = 0x60, ++ [BRCMNAND_ID_EXT] = 0x64, ++ [BRCMNAND_LL_RDATA] = 0x17c, ++ [BRCMNAND_OOB_READ_BASE] = 0x20, ++ [BRCMNAND_OOB_READ_10_BASE] = 0x130, ++ [BRCMNAND_OOB_WRITE_BASE] = 0x30, ++ [BRCMNAND_OOB_WRITE_10_BASE] = 0, ++ [BRCMNAND_FC_BASE] = 0x200, ++}; ++ ++/* BRCMNAND v5.0 */ ++static const u16 brcmnand_regs_v50[] = { ++ [BRCMNAND_CMD_START] = 0x04, ++ [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, ++ [BRCMNAND_CMD_ADDRESS] = 0x0c, ++ [BRCMNAND_INTFC_STATUS] = 0x6c, ++ [BRCMNAND_CS_SELECT] = 0x14, ++ [BRCMNAND_CS_XOR] = 0x18, ++ [BRCMNAND_LL_OP] = 0x178, ++ [BRCMNAND_CS0_BASE] = 0x40, ++ [BRCMNAND_CS1_BASE] = 0xd0, ++ [BRCMNAND_CORR_THRESHOLD] = 0x84, ++ [BRCMNAND_CORR_THRESHOLD_EXT] = 0, ++ [BRCMNAND_UNCORR_COUNT] = 0, ++ [BRCMNAND_CORR_COUNT] = 0, ++ [BRCMNAND_CORR_EXT_ADDR] = 0x70, ++ [BRCMNAND_CORR_ADDR] = 0x74, ++ [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, ++ [BRCMNAND_UNCORR_ADDR] = 0x7c, ++ [BRCMNAND_SEMAPHORE] = 0x58, ++ [BRCMNAND_ID] = 0x60, ++ [BRCMNAND_ID_EXT] = 0x64, ++ [BRCMNAND_LL_RDATA] = 0x17c, ++ [BRCMNAND_OOB_READ_BASE] = 0x20, ++ [BRCMNAND_OOB_READ_10_BASE] = 0x130, ++ [BRCMNAND_OOB_WRITE_BASE] = 0x30, ++ [BRCMNAND_OOB_WRITE_10_BASE] = 0x140, ++ [BRCMNAND_FC_BASE] = 0x200, ++}; ++ ++/* BRCMNAND v6.0 - v7.1 */ ++static const u16 brcmnand_regs_v60[] = { ++ [BRCMNAND_CMD_START] = 0x04, ++ [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, ++ [BRCMNAND_CMD_ADDRESS] = 0x0c, ++ [BRCMNAND_INTFC_STATUS] = 0x14, ++ [BRCMNAND_CS_SELECT] = 0x18, ++ [BRCMNAND_CS_XOR] = 0x1c, ++ [BRCMNAND_LL_OP] = 0x20, ++ [BRCMNAND_CS0_BASE] = 0x50, ++ [BRCMNAND_CS1_BASE] = 0, ++ [BRCMNAND_CORR_THRESHOLD] = 0xc0, ++ [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4, ++ [BRCMNAND_UNCORR_COUNT] = 0xfc, ++ [BRCMNAND_CORR_COUNT] = 0x100, ++ [BRCMNAND_CORR_EXT_ADDR] = 0x10c, ++ [BRCMNAND_CORR_ADDR] = 0x110, ++ [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, ++ [BRCMNAND_UNCORR_ADDR] = 0x118, ++ [BRCMNAND_SEMAPHORE] = 0x150, ++ [BRCMNAND_ID] = 0x194, ++ [BRCMNAND_ID_EXT] = 0x198, ++ [BRCMNAND_LL_RDATA] = 0x19c, ++ [BRCMNAND_OOB_READ_BASE] = 0x200, ++ [BRCMNAND_OOB_READ_10_BASE] = 0, ++ [BRCMNAND_OOB_WRITE_BASE] = 0x280, ++ [BRCMNAND_OOB_WRITE_10_BASE] = 0, ++ [BRCMNAND_FC_BASE] = 0x400, ++}; ++ ++enum brcmnand_cs_reg { ++ BRCMNAND_CS_CFG_EXT = 0, ++ BRCMNAND_CS_CFG, ++ BRCMNAND_CS_ACC_CONTROL, ++ BRCMNAND_CS_TIMING1, ++ BRCMNAND_CS_TIMING2, ++}; ++ ++/* Per chip-select offsets for v7.1 */ ++static const u8 brcmnand_cs_offsets_v71[] = { ++ [BRCMNAND_CS_ACC_CONTROL] = 0x00, ++ [BRCMNAND_CS_CFG_EXT] = 0x04, ++ [BRCMNAND_CS_CFG] = 0x08, ++ [BRCMNAND_CS_TIMING1] = 0x0c, ++ [BRCMNAND_CS_TIMING2] = 0x10, ++}; ++ ++/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */ ++static const u8 brcmnand_cs_offsets[] = { ++ [BRCMNAND_CS_ACC_CONTROL] = 0x00, ++ [BRCMNAND_CS_CFG_EXT] = 0x04, ++ [BRCMNAND_CS_CFG] = 0x04, ++ [BRCMNAND_CS_TIMING1] = 0x08, ++ [BRCMNAND_CS_TIMING2] = 0x0c, ++}; ++ ++/* Per chip-select offset for <= v5.0 on CS0 only */ ++static const u8 brcmnand_cs_offsets_cs0[] = { ++ [BRCMNAND_CS_ACC_CONTROL] = 0x00, ++ [BRCMNAND_CS_CFG_EXT] = 0x08, ++ [BRCMNAND_CS_CFG] = 0x08, ++ [BRCMNAND_CS_TIMING1] = 0x10, ++ [BRCMNAND_CS_TIMING2] = 0x14, ++}; ++ ++/* BRCMNAND_INTFC_STATUS */ ++enum { ++ INTFC_FLASH_STATUS = GENMASK(7, 0), ++ ++ INTFC_ERASED = BIT(27), ++ INTFC_OOB_VALID = BIT(28), ++ INTFC_CACHE_VALID = BIT(29), ++ INTFC_FLASH_READY = BIT(30), ++ INTFC_CTLR_READY = BIT(31), ++}; ++ ++static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs) ++{ ++ return brcmnand_readl(ctrl->nand_base + offs); ++} ++ ++static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs, ++ u32 val) ++{ ++ brcmnand_writel(val, ctrl->nand_base + offs); ++} ++ ++static int brcmnand_revision_init(struct brcmnand_controller *ctrl) ++{ ++ static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 }; ++ static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 }; ++ static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 }; ++ ++ ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff; ++ ++ /* Only support v4.0+? */ ++ if (ctrl->nand_version < 0x0400) { ++ dev_err(ctrl->dev, "version %#x not supported\n", ++ ctrl->nand_version); ++ return -ENODEV; ++ } ++ ++ /* Register offsets */ ++ if (ctrl->nand_version >= 0x0600) ++ ctrl->reg_offsets = brcmnand_regs_v60; ++ else if (ctrl->nand_version >= 0x0500) ++ ctrl->reg_offsets = brcmnand_regs_v50; ++ else if (ctrl->nand_version >= 0x0400) ++ ctrl->reg_offsets = brcmnand_regs_v40; ++ ++ /* Chip-select stride */ ++ if (ctrl->nand_version >= 0x0701) ++ ctrl->reg_spacing = 0x14; ++ else ++ ctrl->reg_spacing = 0x10; ++ ++ /* Per chip-select registers */ ++ if (ctrl->nand_version >= 0x0701) { ++ ctrl->cs_offsets = brcmnand_cs_offsets_v71; ++ } else { ++ ctrl->cs_offsets = brcmnand_cs_offsets; ++ ++ /* v5.0 and earlier has a different CS0 offset layout */ ++ if (ctrl->nand_version <= 0x0500) ++ ctrl->cs0_offsets = brcmnand_cs_offsets_cs0; ++ } ++ ++ /* Page / block sizes */ ++ if (ctrl->nand_version >= 0x0701) { ++ /* >= v7.1 use nice power-of-2 values! */ ++ ctrl->max_page_size = 16 * 1024; ++ ctrl->max_block_size = 2 * 1024 * 1024; ++ } else { ++ ctrl->page_sizes = page_sizes; ++ if (ctrl->nand_version >= 0x0600) ++ ctrl->block_sizes = block_sizes_v6; ++ else ++ ctrl->block_sizes = block_sizes_v4; ++ ++ if (ctrl->nand_version < 0x0400) { ++ ctrl->max_page_size = 4096; ++ ctrl->max_block_size = 512 * 1024; ++ } ++ } ++ ++ /* Maximum spare area sector size (per 512B) */ ++ if (ctrl->nand_version >= 0x0600) ++ ctrl->max_oob = 64; ++ else if (ctrl->nand_version >= 0x0500) ++ ctrl->max_oob = 32; ++ else ++ ctrl->max_oob = 16; ++ ++ /* v6.0 and newer (except v6.1) have prefetch support */ ++ if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601) ++ ctrl->features |= BRCMNAND_HAS_PREFETCH; ++ ++ /* ++ * v6.x has cache mode, but it's implemented differently. Ignore it for ++ * now. ++ */ ++ if (ctrl->nand_version >= 0x0700) ++ ctrl->features |= BRCMNAND_HAS_CACHE_MODE; ++ ++ if (ctrl->nand_version >= 0x0500) ++ ctrl->features |= BRCMNAND_HAS_1K_SECTORS; ++ ++ if (ctrl->nand_version >= 0x0700) ++ ctrl->features |= BRCMNAND_HAS_WP; ++ else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp")) ++ ctrl->features |= BRCMNAND_HAS_WP; ++ ++ return 0; ++} ++ ++static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl, ++ enum brcmnand_reg reg) ++{ ++ u16 offs = ctrl->reg_offsets[reg]; ++ ++ if (offs) ++ return nand_readreg(ctrl, offs); ++ else ++ return 0; ++} ++ ++static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl, ++ enum brcmnand_reg reg, u32 val) ++{ ++ u16 offs = ctrl->reg_offsets[reg]; ++ ++ if (offs) ++ nand_writereg(ctrl, offs, val); ++} ++ ++static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl, ++ enum brcmnand_reg reg, u32 mask, unsigned ++ int shift, u32 val) ++{ ++ u32 tmp = brcmnand_read_reg(ctrl, reg); ++ ++ tmp &= ~mask; ++ tmp |= val << shift; ++ brcmnand_write_reg(ctrl, reg, tmp); ++} ++ ++static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word) ++{ ++ return __raw_readl(ctrl->nand_fc + word * 4); ++} ++ ++static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl, ++ int word, u32 val) ++{ ++ __raw_writel(val, ctrl->nand_fc + word * 4); ++} ++ ++static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs, ++ enum brcmnand_cs_reg reg) ++{ ++ u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE]; ++ u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE]; ++ u8 cs_offs; ++ ++ if (cs == 0 && ctrl->cs0_offsets) ++ cs_offs = ctrl->cs0_offsets[reg]; ++ else ++ cs_offs = ctrl->cs_offsets[reg]; ++ ++ if (cs && offs_cs1) ++ return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs; ++ ++ return offs_cs0 + cs * ctrl->reg_spacing + cs_offs; ++} ++ ++static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl) ++{ ++ if (ctrl->nand_version < 0x0600) ++ return 1; ++ return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT); ++} ++ ++static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ unsigned int shift = 0, bits; ++ enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD; ++ int cs = host->cs; ++ ++ if (ctrl->nand_version >= 0x0600) ++ bits = 6; ++ else if (ctrl->nand_version >= 0x0500) ++ bits = 5; ++ else ++ bits = 4; ++ ++ if (ctrl->nand_version >= 0x0600) { ++ if (cs >= 5) ++ reg = BRCMNAND_CORR_THRESHOLD_EXT; ++ shift = (cs % 5) * bits; ++ } ++ brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val); ++} ++ ++static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl) ++{ ++ if (ctrl->nand_version < 0x0700) ++ return 24; ++ return 0; ++} ++ ++/*********************************************************************** ++ * NAND ACC CONTROL bitfield ++ * ++ * Some bits have remained constant throughout hardware revision, while ++ * others have shifted around. ++ ***********************************************************************/ ++ ++/* Constant for all versions (where supported) */ ++enum { ++ /* See BRCMNAND_HAS_CACHE_MODE */ ++ ACC_CONTROL_CACHE_MODE = BIT(22), ++ ++ /* See BRCMNAND_HAS_PREFETCH */ ++ ACC_CONTROL_PREFETCH = BIT(23), ++ ++ ACC_CONTROL_PAGE_HIT = BIT(24), ++ ACC_CONTROL_WR_PREEMPT = BIT(25), ++ ACC_CONTROL_PARTIAL_PAGE = BIT(26), ++ ACC_CONTROL_RD_ERASED = BIT(27), ++ ACC_CONTROL_FAST_PGM_RDIN = BIT(28), ++ ACC_CONTROL_WR_ECC = BIT(30), ++ ACC_CONTROL_RD_ECC = BIT(31), ++}; ++ ++static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl) ++{ ++ if (ctrl->nand_version >= 0x0600) ++ return GENMASK(6, 0); ++ else ++ return GENMASK(5, 0); ++} ++ ++#define NAND_ACC_CONTROL_ECC_SHIFT 16 ++ ++static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl) ++{ ++ u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f; ++ ++ return mask << NAND_ACC_CONTROL_ECC_SHIFT; ++} ++ ++static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); ++ u32 acc_control = nand_readreg(ctrl, offs); ++ u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC; ++ ++ if (en) { ++ acc_control |= ecc_flags; /* enable RD/WR ECC */ ++ acc_control |= host->hwcfg.ecc_level ++ << NAND_ACC_CONTROL_ECC_SHIFT; ++ } else { ++ acc_control &= ~ecc_flags; /* disable RD/WR ECC */ ++ acc_control &= ~brcmnand_ecc_level_mask(ctrl); ++ } ++ ++ nand_writereg(ctrl, offs, acc_control); ++} ++ ++static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl) ++{ ++ if (ctrl->nand_version >= 0x0600) ++ return 7; ++ else if (ctrl->nand_version >= 0x0500) ++ return 6; ++ else ++ return -1; ++} ++ ++static int brcmnand_get_sector_size_1k(struct brcmnand_host *host) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ int shift = brcmnand_sector_1k_shift(ctrl); ++ u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, ++ BRCMNAND_CS_ACC_CONTROL); ++ ++ if (shift < 0) ++ return 0; ++ ++ return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1; ++} ++ ++static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ int shift = brcmnand_sector_1k_shift(ctrl); ++ u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, ++ BRCMNAND_CS_ACC_CONTROL); ++ u32 tmp; ++ ++ if (shift < 0) ++ return; ++ ++ tmp = nand_readreg(ctrl, acc_control_offs); ++ tmp &= ~(1 << shift); ++ tmp |= (!!val) << shift; ++ nand_writereg(ctrl, acc_control_offs, tmp); ++} ++ ++/*********************************************************************** ++ * CS_NAND_SELECT ++ ***********************************************************************/ ++ ++enum { ++ CS_SELECT_NAND_WP = BIT(29), ++ CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30), ++}; ++ ++static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en) ++{ ++ u32 val = en ? CS_SELECT_NAND_WP : 0; ++ ++ brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val); ++} ++ ++/*********************************************************************** ++ * Flash DMA ++ ***********************************************************************/ ++ ++enum flash_dma_reg { ++ FLASH_DMA_REVISION = 0x00, ++ FLASH_DMA_FIRST_DESC = 0x04, ++ FLASH_DMA_FIRST_DESC_EXT = 0x08, ++ FLASH_DMA_CTRL = 0x0c, ++ FLASH_DMA_MODE = 0x10, ++ FLASH_DMA_STATUS = 0x14, ++ FLASH_DMA_INTERRUPT_DESC = 0x18, ++ FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c, ++ FLASH_DMA_ERROR_STATUS = 0x20, ++ FLASH_DMA_CURRENT_DESC = 0x24, ++ FLASH_DMA_CURRENT_DESC_EXT = 0x28, ++}; ++ ++static inline bool has_flash_dma(struct brcmnand_controller *ctrl) ++{ ++ return ctrl->flash_dma_base; ++} ++ ++static inline bool flash_dma_buf_ok(const void *buf) ++{ ++ return buf && !is_vmalloc_addr(buf) && ++ likely(IS_ALIGNED((uintptr_t)buf, 4)); ++} ++ ++static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs, ++ u32 val) ++{ ++ brcmnand_writel(val, ctrl->flash_dma_base + offs); ++} ++ ++static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs) ++{ ++ return brcmnand_readl(ctrl->flash_dma_base + offs); ++} ++ ++/* Low-level operation types: command, address, write, or read */ ++enum brcmnand_llop_type { ++ LL_OP_CMD, ++ LL_OP_ADDR, ++ LL_OP_WR, ++ LL_OP_RD, ++}; ++ ++/*********************************************************************** ++ * Internal support functions ++ ***********************************************************************/ ++ ++static inline bool is_hamming_ecc(struct brcmnand_cfg *cfg) ++{ ++ return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && ++ cfg->ecc_level == 15; ++} ++ ++/* ++ * Returns a nand_ecclayout strucutre for the given layout/configuration. ++ * Returns NULL on failure. ++ */ ++static struct nand_ecclayout *brcmnand_create_layout(int ecc_level, ++ struct brcmnand_host *host) ++{ ++ struct brcmnand_cfg *cfg = &host->hwcfg; ++ int i, j; ++ struct nand_ecclayout *layout; ++ int req; ++ int sectors; ++ int sas; ++ int idx1, idx2; ++ ++ layout = devm_kzalloc(&host->pdev->dev, sizeof(*layout), GFP_KERNEL); ++ if (!layout) ++ return NULL; ++ ++ sectors = cfg->page_size / (512 << cfg->sector_size_1k); ++ sas = cfg->spare_area_size << cfg->sector_size_1k; ++ ++ /* Hamming */ ++ if (is_hamming_ecc(cfg)) { ++ for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) { ++ /* First sector of each page may have BBI */ ++ if (i == 0) { ++ layout->oobfree[idx2].offset = i * sas + 1; ++ /* Small-page NAND use byte 6 for BBI */ ++ if (cfg->page_size == 512) ++ layout->oobfree[idx2].offset--; ++ layout->oobfree[idx2].length = 5; ++ } else { ++ layout->oobfree[idx2].offset = i * sas; ++ layout->oobfree[idx2].length = 6; ++ } ++ idx2++; ++ layout->eccpos[idx1++] = i * sas + 6; ++ layout->eccpos[idx1++] = i * sas + 7; ++ layout->eccpos[idx1++] = i * sas + 8; ++ layout->oobfree[idx2].offset = i * sas + 9; ++ layout->oobfree[idx2].length = 7; ++ idx2++; ++ /* Leave zero-terminated entry for OOBFREE */ ++ if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE || ++ idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1) ++ break; ++ } ++ goto out; ++ } ++ ++ /* ++ * CONTROLLER_VERSION: ++ * < v5.0: ECC_REQ = ceil(BCH_T * 13/8) ++ * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8) ++ * But we will just be conservative. ++ */ ++ req = DIV_ROUND_UP(ecc_level * 14, 8); ++ if (req >= sas) { ++ dev_err(&host->pdev->dev, ++ "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n", ++ req, sas); ++ return NULL; ++ } ++ ++ layout->eccbytes = req * sectors; ++ for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) { ++ for (j = sas - req; j < sas && idx1 < ++ MTD_MAX_ECCPOS_ENTRIES_LARGE; j++, idx1++) ++ layout->eccpos[idx1] = i * sas + j; ++ ++ /* First sector of each page may have BBI */ ++ if (i == 0) { ++ if (cfg->page_size == 512 && (sas - req >= 6)) { ++ /* Small-page NAND use byte 6 for BBI */ ++ layout->oobfree[idx2].offset = 0; ++ layout->oobfree[idx2].length = 5; ++ idx2++; ++ if (sas - req > 6) { ++ layout->oobfree[idx2].offset = 6; ++ layout->oobfree[idx2].length = ++ sas - req - 6; ++ idx2++; ++ } ++ } else if (sas > req + 1) { ++ layout->oobfree[idx2].offset = i * sas + 1; ++ layout->oobfree[idx2].length = sas - req - 1; ++ idx2++; ++ } ++ } else if (sas > req) { ++ layout->oobfree[idx2].offset = i * sas; ++ layout->oobfree[idx2].length = sas - req; ++ idx2++; ++ } ++ /* Leave zero-terminated entry for OOBFREE */ ++ if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE || ++ idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1) ++ break; ++ } ++out: ++ /* Sum available OOB */ ++ for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE; i++) ++ layout->oobavail += layout->oobfree[i].length; ++ return layout; ++} ++ ++static struct nand_ecclayout *brcmstb_choose_ecc_layout( ++ struct brcmnand_host *host) ++{ ++ struct nand_ecclayout *layout; ++ struct brcmnand_cfg *p = &host->hwcfg; ++ unsigned int ecc_level = p->ecc_level; ++ ++ if (p->sector_size_1k) ++ ecc_level <<= 1; ++ ++ layout = brcmnand_create_layout(ecc_level, host); ++ if (!layout) { ++ dev_err(&host->pdev->dev, ++ "no proper ecc_layout for this NAND cfg\n"); ++ return NULL; ++ } ++ ++ return layout; ++} ++ ++static void brcmnand_wp(struct mtd_info *mtd, int wp) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct brcmnand_host *host = chip->priv; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ ++ if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) { ++ static int old_wp = -1; ++ ++ if (old_wp != wp) { ++ dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off"); ++ old_wp = wp; ++ } ++ brcmnand_set_wp(ctrl, wp); ++ } ++} ++ ++/* Helper functions for reading and writing OOB registers */ ++static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs) ++{ ++ u16 offset0, offset10, reg_offs; ++ ++ offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE]; ++ offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE]; ++ ++ if (offs >= ctrl->max_oob) ++ return 0x77; ++ ++ if (offs >= 16 && offset10) ++ reg_offs = offset10 + ((offs - 0x10) & ~0x03); ++ else ++ reg_offs = offset0 + (offs & ~0x03); ++ ++ return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3)); ++} ++ ++static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs, ++ u32 data) ++{ ++ u16 offset0, offset10, reg_offs; ++ ++ offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE]; ++ offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE]; ++ ++ if (offs >= ctrl->max_oob) ++ return; ++ ++ if (offs >= 16 && offset10) ++ reg_offs = offset10 + ((offs - 0x10) & ~0x03); ++ else ++ reg_offs = offset0 + (offs & ~0x03); ++ ++ nand_writereg(ctrl, reg_offs, data); ++} ++ ++/* ++ * read_oob_from_regs - read data from OOB registers ++ * @ctrl: NAND controller ++ * @i: sub-page sector index ++ * @oob: buffer to read to ++ * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) ++ * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal ++ */ ++static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob, ++ int sas, int sector_1k) ++{ ++ int tbytes = sas << sector_1k; ++ int j; ++ ++ /* Adjust OOB values for 1K sector size */ ++ if (sector_1k && (i & 0x01)) ++ tbytes = max(0, tbytes - (int)ctrl->max_oob); ++ tbytes = min_t(int, tbytes, ctrl->max_oob); ++ ++ for (j = 0; j < tbytes; j++) ++ oob[j] = oob_reg_read(ctrl, j); ++ return tbytes; ++} ++ ++/* ++ * write_oob_to_regs - write data to OOB registers ++ * @i: sub-page sector index ++ * @oob: buffer to write from ++ * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) ++ * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal ++ */ ++static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i, ++ const u8 *oob, int sas, int sector_1k) ++{ ++ int tbytes = sas << sector_1k; ++ int j; ++ ++ /* Adjust OOB values for 1K sector size */ ++ if (sector_1k && (i & 0x01)) ++ tbytes = max(0, tbytes - (int)ctrl->max_oob); ++ tbytes = min_t(int, tbytes, ctrl->max_oob); ++ ++ for (j = 0; j < tbytes; j += 4) ++ oob_reg_write(ctrl, j, ++ (oob[j + 0] << 24) | ++ (oob[j + 1] << 16) | ++ (oob[j + 2] << 8) | ++ (oob[j + 3] << 0)); ++ return tbytes; ++} ++ ++static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data) ++{ ++ struct brcmnand_controller *ctrl = data; ++ ++ /* Discard all NAND_CTLRDY interrupts during DMA */ ++ if (ctrl->dma_pending) ++ return IRQ_HANDLED; ++ ++ complete(&ctrl->done); ++ return IRQ_HANDLED; ++} ++ ++/* Handle SoC-specific interrupt hardware */ ++static irqreturn_t brcmnand_irq(int irq, void *data) ++{ ++ struct brcmnand_controller *ctrl = data; ++ ++ if (ctrl->soc->ctlrdy_ack(ctrl->soc)) ++ return brcmnand_ctlrdy_irq(irq, data); ++ ++ return IRQ_NONE; ++} ++ ++static irqreturn_t brcmnand_dma_irq(int irq, void *data) ++{ ++ struct brcmnand_controller *ctrl = data; ++ ++ complete(&ctrl->dma_done); ++ ++ return IRQ_HANDLED; ++} ++ ++static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ u32 intfc; ++ ++ dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd, ++ brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS)); ++ BUG_ON(ctrl->cmd_pending != 0); ++ ctrl->cmd_pending = cmd; ++ ++ intfc = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); ++ BUG_ON(!(intfc & INTFC_CTLR_READY)); ++ ++ mb(); /* flush previous writes */ ++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_START, ++ cmd << brcmnand_cmd_shift(ctrl)); ++} ++ ++/*********************************************************************** ++ * NAND MTD API: read/program/erase ++ ***********************************************************************/ ++ ++static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat, ++ unsigned int ctrl) ++{ ++ /* intentionally left blank */ ++} ++ ++static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct brcmnand_host *host = chip->priv; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ unsigned long timeo = msecs_to_jiffies(100); ++ ++ dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending); ++ if (ctrl->cmd_pending && ++ wait_for_completion_timeout(&ctrl->done, timeo) <= 0) { ++ u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START) ++ >> brcmnand_cmd_shift(ctrl); ++ ++ dev_err_ratelimited(ctrl->dev, ++ "timeout waiting for command %#02x\n", cmd); ++ dev_err_ratelimited(ctrl->dev, "intfc status %08x\n", ++ brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS)); ++ } ++ ctrl->cmd_pending = 0; ++ return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & ++ INTFC_FLASH_STATUS; ++} ++ ++enum { ++ LLOP_RE = BIT(16), ++ LLOP_WE = BIT(17), ++ LLOP_ALE = BIT(18), ++ LLOP_CLE = BIT(19), ++ LLOP_RETURN_IDLE = BIT(31), ++ ++ LLOP_DATA_MASK = GENMASK(15, 0), ++}; ++ ++static int brcmnand_low_level_op(struct brcmnand_host *host, ++ enum brcmnand_llop_type type, u32 data, ++ bool last_op) ++{ ++ struct mtd_info *mtd = &host->mtd; ++ struct nand_chip *chip = &host->chip; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ u32 tmp; ++ ++ tmp = data & LLOP_DATA_MASK; ++ switch (type) { ++ case LL_OP_CMD: ++ tmp |= LLOP_WE | LLOP_CLE; ++ break; ++ case LL_OP_ADDR: ++ /* WE | ALE */ ++ tmp |= LLOP_WE | LLOP_ALE; ++ break; ++ case LL_OP_WR: ++ /* WE */ ++ tmp |= LLOP_WE; ++ break; ++ case LL_OP_RD: ++ /* RE */ ++ tmp |= LLOP_RE; ++ break; ++ } ++ if (last_op) ++ /* RETURN_IDLE */ ++ tmp |= LLOP_RETURN_IDLE; ++ ++ dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp); ++ ++ brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp); ++ (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP); ++ ++ brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP); ++ return brcmnand_waitfunc(mtd, chip); ++} ++ ++static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command, ++ int column, int page_addr) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct brcmnand_host *host = chip->priv; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ u64 addr = (u64)page_addr << chip->page_shift; ++ int native_cmd = 0; ++ ++ if (command == NAND_CMD_READID || command == NAND_CMD_PARAM || ++ command == NAND_CMD_RNDOUT) ++ addr = (u64)column; ++ /* Avoid propagating a negative, don't-care address */ ++ else if (page_addr < 0) ++ addr = 0; ++ ++ dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command, ++ (unsigned long long)addr); ++ ++ host->last_cmd = command; ++ host->last_byte = 0; ++ host->last_addr = addr; ++ ++ switch (command) { ++ case NAND_CMD_RESET: ++ native_cmd = CMD_FLASH_RESET; ++ break; ++ case NAND_CMD_STATUS: ++ native_cmd = CMD_STATUS_READ; ++ break; ++ case NAND_CMD_READID: ++ native_cmd = CMD_DEVICE_ID_READ; ++ break; ++ case NAND_CMD_READOOB: ++ native_cmd = CMD_SPARE_AREA_READ; ++ break; ++ case NAND_CMD_ERASE1: ++ native_cmd = CMD_BLOCK_ERASE; ++ brcmnand_wp(mtd, 0); ++ break; ++ case NAND_CMD_PARAM: ++ native_cmd = CMD_PARAMETER_READ; ++ break; ++ case NAND_CMD_SET_FEATURES: ++ case NAND_CMD_GET_FEATURES: ++ brcmnand_low_level_op(host, LL_OP_CMD, command, false); ++ brcmnand_low_level_op(host, LL_OP_ADDR, column, false); ++ break; ++ case NAND_CMD_RNDOUT: ++ native_cmd = CMD_PARAMETER_CHANGE_COL; ++ addr &= ~((u64)(FC_BYTES - 1)); ++ /* ++ * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0 ++ * NB: hwcfg.sector_size_1k may not be initialized yet ++ */ ++ if (brcmnand_get_sector_size_1k(host)) { ++ host->hwcfg.sector_size_1k = ++ brcmnand_get_sector_size_1k(host); ++ brcmnand_set_sector_size_1k(host, 0); ++ } ++ break; ++ } ++ ++ if (!native_cmd) ++ return; ++ ++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, ++ (host->cs << 16) | ((addr >> 32) & 0xffff)); ++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); ++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr)); ++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); ++ ++ brcmnand_send_cmd(host, native_cmd); ++ brcmnand_waitfunc(mtd, chip); ++ ++ if (native_cmd == CMD_PARAMETER_READ || ++ native_cmd == CMD_PARAMETER_CHANGE_COL) { ++ int i; ++ ++ brcmnand_soc_data_bus_prepare(ctrl->soc); ++ ++ /* ++ * Must cache the FLASH_CACHE now, since changes in ++ * SECTOR_SIZE_1K may invalidate it ++ */ ++ for (i = 0; i < FC_WORDS; i++) ++ ctrl->flash_cache[i] = brcmnand_read_fc(ctrl, i); ++ ++ brcmnand_soc_data_bus_unprepare(ctrl->soc); ++ ++ /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */ ++ if (host->hwcfg.sector_size_1k) ++ brcmnand_set_sector_size_1k(host, ++ host->hwcfg.sector_size_1k); ++ } ++ ++ /* Re-enable protection is necessary only after erase */ ++ if (command == NAND_CMD_ERASE1) ++ brcmnand_wp(mtd, 1); ++} ++ ++static uint8_t brcmnand_read_byte(struct mtd_info *mtd) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct brcmnand_host *host = chip->priv; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ uint8_t ret = 0; ++ int addr, offs; ++ ++ switch (host->last_cmd) { ++ case NAND_CMD_READID: ++ if (host->last_byte < 4) ++ ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >> ++ (24 - (host->last_byte << 3)); ++ else if (host->last_byte < 8) ++ ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >> ++ (56 - (host->last_byte << 3)); ++ break; ++ ++ case NAND_CMD_READOOB: ++ ret = oob_reg_read(ctrl, host->last_byte); ++ break; ++ ++ case NAND_CMD_STATUS: ++ ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & ++ INTFC_FLASH_STATUS; ++ if (wp_on) /* hide WP status */ ++ ret |= NAND_STATUS_WP; ++ break; ++ ++ case NAND_CMD_PARAM: ++ case NAND_CMD_RNDOUT: ++ addr = host->last_addr + host->last_byte; ++ offs = addr & (FC_BYTES - 1); ++ ++ /* At FC_BYTES boundary, switch to next column */ ++ if (host->last_byte > 0 && offs == 0) ++ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, addr, -1); ++ ++ ret = ctrl->flash_cache[offs >> 2] >> ++ (24 - ((offs & 0x03) << 3)); ++ break; ++ case NAND_CMD_GET_FEATURES: ++ if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) { ++ ret = 0; ++ } else { ++ bool last = host->last_byte == ++ ONFI_SUBFEATURE_PARAM_LEN - 1; ++ brcmnand_low_level_op(host, LL_OP_RD, 0, last); ++ ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff; ++ } ++ } ++ ++ dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret); ++ host->last_byte++; ++ ++ return ret; ++} ++ ++static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) ++{ ++ int i; ++ ++ for (i = 0; i < len; i++, buf++) ++ *buf = brcmnand_read_byte(mtd); ++} ++ ++static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf, ++ int len) ++{ ++ int i; ++ struct nand_chip *chip = mtd->priv; ++ struct brcmnand_host *host = chip->priv; ++ ++ switch (host->last_cmd) { ++ case NAND_CMD_SET_FEATURES: ++ for (i = 0; i < len; i++) ++ brcmnand_low_level_op(host, LL_OP_WR, buf[i], ++ (i + 1) == len); ++ break; ++ default: ++ BUG(); ++ break; ++ } ++} ++ ++/** ++ * Construct a FLASH_DMA descriptor as part of a linked list. You must know the ++ * following ahead of time: ++ * - Is this descriptor the beginning or end of a linked list? ++ * - What is the (DMA) address of the next descriptor in the linked list? ++ */ ++static int brcmnand_fill_dma_desc(struct brcmnand_host *host, ++ struct brcm_nand_dma_desc *desc, u64 addr, ++ dma_addr_t buf, u32 len, u8 dma_cmd, ++ bool begin, bool end, ++ dma_addr_t next_desc) ++{ ++ memset(desc, 0, sizeof(*desc)); ++ /* Descriptors are written in native byte order (wordwise) */ ++ desc->next_desc = lower_32_bits(next_desc); ++ desc->next_desc_ext = upper_32_bits(next_desc); ++ desc->cmd_irq = (dma_cmd << 24) | ++ (end ? (0x03 << 8) : 0) | /* IRQ | STOP */ ++ (!!begin) | ((!!end) << 1); /* head, tail */ ++#ifdef CONFIG_CPU_BIG_ENDIAN ++ desc->cmd_irq |= 0x01 << 12; ++#endif ++ desc->dram_addr = lower_32_bits(buf); ++ desc->dram_addr_ext = upper_32_bits(buf); ++ desc->tfr_len = len; ++ desc->total_len = len; ++ desc->flash_addr = lower_32_bits(addr); ++ desc->flash_addr_ext = upper_32_bits(addr); ++ desc->cs = host->cs; ++ desc->status_valid = 0x01; ++ return 0; ++} ++ ++/** ++ * Kick the FLASH_DMA engine, with a given DMA descriptor ++ */ ++static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ unsigned long timeo = msecs_to_jiffies(100); ++ ++ flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc)); ++ (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC); ++ flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc)); ++ (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); ++ ++ /* Start FLASH_DMA engine */ ++ ctrl->dma_pending = true; ++ mb(); /* flush previous writes */ ++ flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */ ++ ++ if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) { ++ dev_err(ctrl->dev, ++ "timeout waiting for DMA; status %#x, error status %#x\n", ++ flash_dma_readl(ctrl, FLASH_DMA_STATUS), ++ flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS)); ++ } ++ ctrl->dma_pending = false; ++ flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */ ++} ++ ++static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf, ++ u32 len, u8 dma_cmd) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ dma_addr_t buf_pa; ++ int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; ++ ++ buf_pa = dma_map_single(ctrl->dev, buf, len, dir); ++ if (dma_mapping_error(ctrl->dev, buf_pa)) { ++ dev_err(ctrl->dev, "unable to map buffer for DMA\n"); ++ return -ENOMEM; ++ } ++ ++ brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len, ++ dma_cmd, true, true, 0); ++ ++ brcmnand_dma_run(host, ctrl->dma_pa); ++ ++ dma_unmap_single(ctrl->dev, buf_pa, len, dir); ++ ++ if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR) ++ return -EBADMSG; ++ else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR) ++ return -EUCLEAN; ++ ++ return 0; ++} ++ ++/* ++ * Assumes proper CS is already set ++ */ ++static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip, ++ u64 addr, unsigned int trans, u32 *buf, ++ u8 *oob, u64 *err_addr) ++{ ++ struct brcmnand_host *host = chip->priv; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ int i, j, ret = 0; ++ ++ /* Clear error addresses */ ++ brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0); ++ brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0); ++ ++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, ++ (host->cs << 16) | ((addr >> 32) & 0xffff)); ++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); ++ ++ for (i = 0; i < trans; i++, addr += FC_BYTES) { ++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, ++ lower_32_bits(addr)); ++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); ++ /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */ ++ brcmnand_send_cmd(host, CMD_PAGE_READ); ++ brcmnand_waitfunc(mtd, chip); ++ ++ if (likely(buf)) { ++ brcmnand_soc_data_bus_prepare(ctrl->soc); ++ ++ for (j = 0; j < FC_WORDS; j++, buf++) ++ *buf = brcmnand_read_fc(ctrl, j); ++ ++ brcmnand_soc_data_bus_unprepare(ctrl->soc); ++ } ++ ++ if (oob) ++ oob += read_oob_from_regs(ctrl, i, oob, ++ mtd->oobsize / trans, ++ host->hwcfg.sector_size_1k); ++ ++ if (!ret) { ++ *err_addr = brcmnand_read_reg(ctrl, ++ BRCMNAND_UNCORR_ADDR) | ++ ((u64)(brcmnand_read_reg(ctrl, ++ BRCMNAND_UNCORR_EXT_ADDR) ++ & 0xffff) << 32); ++ if (*err_addr) ++ ret = -EBADMSG; ++ } ++ ++ if (!ret) { ++ *err_addr = brcmnand_read_reg(ctrl, ++ BRCMNAND_CORR_ADDR) | ++ ((u64)(brcmnand_read_reg(ctrl, ++ BRCMNAND_CORR_EXT_ADDR) ++ & 0xffff) << 32); ++ if (*err_addr) ++ ret = -EUCLEAN; ++ } ++ } ++ ++ return ret; ++} ++ ++static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, ++ u64 addr, unsigned int trans, u32 *buf, u8 *oob) ++{ ++ struct brcmnand_host *host = chip->priv; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ u64 err_addr = 0; ++ int err; ++ ++ dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf); ++ ++ brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0); ++ ++ if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) { ++ err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES, ++ CMD_PAGE_READ); ++ if (err) { ++ if (mtd_is_bitflip_or_eccerr(err)) ++ err_addr = addr; ++ else ++ return -EIO; ++ } ++ } else { ++ if (oob) ++ memset(oob, 0x99, mtd->oobsize); ++ ++ err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, ++ oob, &err_addr); ++ } ++ ++ if (mtd_is_eccerr(err)) { ++ dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n", ++ (unsigned long long)err_addr); ++ mtd->ecc_stats.failed++; ++ /* NAND layer expects zero on ECC errors */ ++ return 0; ++ } ++ ++ if (mtd_is_bitflip(err)) { ++ unsigned int corrected = brcmnand_count_corrected(ctrl); ++ ++ dev_dbg(ctrl->dev, "corrected error at 0x%llx\n", ++ (unsigned long long)err_addr); ++ mtd->ecc_stats.corrected += corrected; ++ /* Always exceed the software-imposed threshold */ ++ return max(mtd->bitflip_threshold, corrected); ++ } ++ ++ return 0; ++} ++ ++static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip, ++ uint8_t *buf, int oob_required, int page) ++{ ++ struct brcmnand_host *host = chip->priv; ++ u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; ++ ++ return brcmnand_read(mtd, chip, host->last_addr, ++ mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); ++} ++ ++static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, ++ uint8_t *buf, int oob_required, int page) ++{ ++ struct brcmnand_host *host = chip->priv; ++ u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; ++ int ret; ++ ++ brcmnand_set_ecc_enabled(host, 0); ++ ret = brcmnand_read(mtd, chip, host->last_addr, ++ mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); ++ brcmnand_set_ecc_enabled(host, 1); ++ return ret; ++} ++ ++static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, ++ int page) ++{ ++ return brcmnand_read(mtd, chip, (u64)page << chip->page_shift, ++ mtd->writesize >> FC_SHIFT, ++ NULL, (u8 *)chip->oob_poi); ++} ++ ++static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, ++ int page) ++{ ++ struct brcmnand_host *host = chip->priv; ++ ++ brcmnand_set_ecc_enabled(host, 0); ++ brcmnand_read(mtd, chip, (u64)page << chip->page_shift, ++ mtd->writesize >> FC_SHIFT, ++ NULL, (u8 *)chip->oob_poi); ++ brcmnand_set_ecc_enabled(host, 1); ++ return 0; ++} ++ ++static int brcmnand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, ++ uint32_t data_offs, uint32_t readlen, ++ uint8_t *bufpoi, int page) ++{ ++ struct brcmnand_host *host = chip->priv; ++ ++ return brcmnand_read(mtd, chip, host->last_addr + data_offs, ++ readlen >> FC_SHIFT, (u32 *)bufpoi, NULL); ++} ++ ++static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip, ++ u64 addr, const u32 *buf, u8 *oob) ++{ ++ struct brcmnand_host *host = chip->priv; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ unsigned int i, j, trans = mtd->writesize >> FC_SHIFT; ++ int status, ret = 0; ++ ++ dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf); ++ ++ if (unlikely((u32)buf & 0x03)) { ++ dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf); ++ buf = (u32 *)((u32)buf & ~0x03); ++ } ++ ++ brcmnand_wp(mtd, 0); ++ ++ for (i = 0; i < ctrl->max_oob; i += 4) ++ oob_reg_write(ctrl, i, 0xffffffff); ++ ++ if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) { ++ if (brcmnand_dma_trans(host, addr, (u32 *)buf, ++ mtd->writesize, CMD_PROGRAM_PAGE)) ++ ret = -EIO; ++ goto out; ++ } ++ ++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, ++ (host->cs << 16) | ((addr >> 32) & 0xffff)); ++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); ++ ++ for (i = 0; i < trans; i++, addr += FC_BYTES) { ++ /* full address MUST be set before populating FC */ ++ brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, ++ lower_32_bits(addr)); ++ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); ++ ++ if (buf) { ++ brcmnand_soc_data_bus_prepare(ctrl->soc); ++ ++ for (j = 0; j < FC_WORDS; j++, buf++) ++ brcmnand_write_fc(ctrl, j, *buf); ++ ++ brcmnand_soc_data_bus_unprepare(ctrl->soc); ++ } else if (oob) { ++ for (j = 0; j < FC_WORDS; j++) ++ brcmnand_write_fc(ctrl, j, 0xffffffff); ++ } ++ ++ if (oob) { ++ oob += write_oob_to_regs(ctrl, i, oob, ++ mtd->oobsize / trans, ++ host->hwcfg.sector_size_1k); ++ } ++ ++ /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */ ++ brcmnand_send_cmd(host, CMD_PROGRAM_PAGE); ++ status = brcmnand_waitfunc(mtd, chip); ++ ++ if (status & NAND_STATUS_FAIL) { ++ dev_info(ctrl->dev, "program failed at %llx\n", ++ (unsigned long long)addr); ++ ret = -EIO; ++ goto out; ++ } ++ } ++out: ++ brcmnand_wp(mtd, 1); ++ return ret; ++} ++ ++static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip, ++ const uint8_t *buf, int oob_required) ++{ ++ struct brcmnand_host *host = chip->priv; ++ void *oob = oob_required ? chip->oob_poi : NULL; ++ ++ brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); ++ return 0; ++} ++ ++static int brcmnand_write_page_raw(struct mtd_info *mtd, ++ struct nand_chip *chip, const uint8_t *buf, ++ int oob_required) ++{ ++ struct brcmnand_host *host = chip->priv; ++ void *oob = oob_required ? chip->oob_poi : NULL; ++ ++ brcmnand_set_ecc_enabled(host, 0); ++ brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); ++ brcmnand_set_ecc_enabled(host, 1); ++ return 0; ++} ++ ++static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, ++ int page) ++{ ++ return brcmnand_write(mtd, chip, (u64)page << chip->page_shift, ++ NULL, chip->oob_poi); ++} ++ ++static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, ++ int page) ++{ ++ struct brcmnand_host *host = chip->priv; ++ int ret; ++ ++ brcmnand_set_ecc_enabled(host, 0); ++ ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL, ++ (u8 *)chip->oob_poi); ++ brcmnand_set_ecc_enabled(host, 1); ++ ++ return ret; ++} ++ ++/*********************************************************************** ++ * Per-CS setup (1 NAND device) ++ ***********************************************************************/ ++ ++static int brcmnand_set_cfg(struct brcmnand_host *host, ++ struct brcmnand_cfg *cfg) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ struct nand_chip *chip = &host->chip; ++ u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); ++ u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, ++ BRCMNAND_CS_CFG_EXT); ++ u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, ++ BRCMNAND_CS_ACC_CONTROL); ++ u8 block_size = 0, page_size = 0, device_size = 0; ++ u32 tmp; ++ ++ if (ctrl->block_sizes) { ++ int i, found; ++ ++ for (i = 0, found = 0; ctrl->block_sizes[i]; i++) ++ if (ctrl->block_sizes[i] * 1024 == cfg->block_size) { ++ block_size = i; ++ found = 1; ++ } ++ if (!found) { ++ dev_warn(ctrl->dev, "invalid block size %u\n", ++ cfg->block_size); ++ return -EINVAL; ++ } ++ } else { ++ block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE); ++ } ++ ++ if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size && ++ cfg->block_size > ctrl->max_block_size)) { ++ dev_warn(ctrl->dev, "invalid block size %u\n", ++ cfg->block_size); ++ block_size = 0; ++ } ++ ++ if (ctrl->page_sizes) { ++ int i, found; ++ ++ for (i = 0, found = 0; ctrl->page_sizes[i]; i++) ++ if (ctrl->page_sizes[i] == cfg->page_size) { ++ page_size = i; ++ found = 1; ++ } ++ if (!found) { ++ dev_warn(ctrl->dev, "invalid page size %u\n", ++ cfg->page_size); ++ return -EINVAL; ++ } ++ } else { ++ page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE); ++ } ++ ++ if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size && ++ cfg->page_size > ctrl->max_page_size)) { ++ dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size); ++ return -EINVAL; ++ } ++ ++ if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) { ++ dev_warn(ctrl->dev, "invalid device size 0x%llx\n", ++ (unsigned long long)cfg->device_size); ++ return -EINVAL; ++ } ++ device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE); ++ ++ tmp = (cfg->blk_adr_bytes << 8) | ++ (cfg->col_adr_bytes << 12) | ++ (cfg->ful_adr_bytes << 16) | ++ (!!(cfg->device_width == 16) << 23) | ++ (device_size << 24); ++ if (cfg_offs == cfg_ext_offs) { ++ tmp |= (page_size << 20) | (block_size << 28); ++ nand_writereg(ctrl, cfg_offs, tmp); ++ } else { ++ nand_writereg(ctrl, cfg_offs, tmp); ++ tmp = page_size | (block_size << 4); ++ nand_writereg(ctrl, cfg_ext_offs, tmp); ++ } ++ ++ tmp = nand_readreg(ctrl, acc_control_offs); ++ tmp &= ~brcmnand_ecc_level_mask(ctrl); ++ tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT; ++ tmp &= ~brcmnand_spare_area_mask(ctrl); ++ tmp |= cfg->spare_area_size; ++ nand_writereg(ctrl, acc_control_offs, tmp); ++ ++ brcmnand_set_sector_size_1k(host, cfg->sector_size_1k); ++ ++ /* threshold = ceil(BCH-level * 0.75) */ ++ brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4)); ++ ++ return 0; ++} ++ ++static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg) ++{ ++ buf += sprintf(buf, ++ "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit", ++ (unsigned long long)cfg->device_size >> 20, ++ cfg->block_size >> 10, ++ cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size, ++ cfg->page_size >= 1024 ? "KiB" : "B", ++ cfg->spare_area_size, cfg->device_width); ++ ++ /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */ ++ if (is_hamming_ecc(cfg)) ++ sprintf(buf, ", Hamming ECC"); ++ else if (cfg->sector_size_1k) ++ sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1); ++ else ++ sprintf(buf, ", BCH-%u", cfg->ecc_level); ++} ++ ++/* ++ * Minimum number of bytes to address a page. Calculated as: ++ * roundup(log2(size / page-size) / 8) ++ * ++ * NB: the following does not "round up" for non-power-of-2 'size'; but this is ++ * OK because many other things will break if 'size' is irregular... ++ */ ++static inline int get_blk_adr_bytes(u64 size, u32 writesize) ++{ ++ return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3; ++} ++ ++static int brcmnand_setup_dev(struct brcmnand_host *host) ++{ ++ struct mtd_info *mtd = &host->mtd; ++ struct nand_chip *chip = &host->chip; ++ struct brcmnand_controller *ctrl = host->ctrl; ++ struct brcmnand_cfg *cfg = &host->hwcfg; ++ char msg[128]; ++ u32 offs, tmp, oob_sector; ++ int ret; ++ ++ memset(cfg, 0, sizeof(*cfg)); ++ ++ ret = of_property_read_u32(chip->dn, "brcm,nand-oob-sector-size", ++ &oob_sector); ++ if (ret) { ++ /* Use detected size */ ++ cfg->spare_area_size = mtd->oobsize / ++ (mtd->writesize >> FC_SHIFT); ++ } else { ++ cfg->spare_area_size = oob_sector; ++ } ++ if (cfg->spare_area_size > ctrl->max_oob) ++ cfg->spare_area_size = ctrl->max_oob; ++ /* ++ * Set oobsize to be consistent with controller's spare_area_size, as ++ * the rest is inaccessible. ++ */ ++ mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT); ++ ++ cfg->device_size = mtd->size; ++ cfg->block_size = mtd->erasesize; ++ cfg->page_size = mtd->writesize; ++ cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8; ++ cfg->col_adr_bytes = 2; ++ cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize); ++ ++ switch (chip->ecc.size) { ++ case 512: ++ if (chip->ecc.strength == 1) /* Hamming */ ++ cfg->ecc_level = 15; ++ else ++ cfg->ecc_level = chip->ecc.strength; ++ cfg->sector_size_1k = 0; ++ break; ++ case 1024: ++ if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) { ++ dev_err(ctrl->dev, "1KB sectors not supported\n"); ++ return -EINVAL; ++ } ++ if (chip->ecc.strength & 0x1) { ++ dev_err(ctrl->dev, ++ "odd ECC not supported with 1KB sectors\n"); ++ return -EINVAL; ++ } ++ ++ cfg->ecc_level = chip->ecc.strength >> 1; ++ cfg->sector_size_1k = 1; ++ break; ++ default: ++ dev_err(ctrl->dev, "unsupported ECC size: %d\n", ++ chip->ecc.size); ++ return -EINVAL; ++ } ++ ++ cfg->ful_adr_bytes = cfg->blk_adr_bytes; ++ if (mtd->writesize > 512) ++ cfg->ful_adr_bytes += cfg->col_adr_bytes; ++ else ++ cfg->ful_adr_bytes += 1; ++ ++ ret = brcmnand_set_cfg(host, cfg); ++ if (ret) ++ return ret; ++ ++ brcmnand_set_ecc_enabled(host, 1); ++ ++ brcmnand_print_cfg(msg, cfg); ++ dev_info(ctrl->dev, "detected %s\n", msg); ++ ++ /* Configure ACC_CONTROL */ ++ offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); ++ tmp = nand_readreg(ctrl, offs); ++ tmp &= ~ACC_CONTROL_PARTIAL_PAGE; ++ tmp &= ~ACC_CONTROL_RD_ERASED; ++ tmp &= ~ACC_CONTROL_FAST_PGM_RDIN; ++ if (ctrl->features & BRCMNAND_HAS_PREFETCH) { ++ /* ++ * FIXME: Flash DMA + prefetch may see spurious erased-page ECC ++ * errors ++ */ ++ if (has_flash_dma(ctrl)) ++ tmp &= ~ACC_CONTROL_PREFETCH; ++ else ++ tmp |= ACC_CONTROL_PREFETCH; ++ } ++ nand_writereg(ctrl, offs, tmp); ++ ++ return 0; ++} ++ ++static int brcmnand_init_cs(struct brcmnand_host *host) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ struct device_node *dn = host->of_node; ++ struct platform_device *pdev = host->pdev; ++ struct mtd_info *mtd; ++ struct nand_chip *chip; ++ int ret = 0; ++ struct mtd_part_parser_data ppdata = { .of_node = dn }; ++ ++ ret = of_property_read_u32(dn, "reg", &host->cs); ++ if (ret) { ++ dev_err(&pdev->dev, "can't get chip-select\n"); ++ return -ENXIO; ++ } ++ ++ mtd = &host->mtd; ++ chip = &host->chip; ++ ++ chip->dn = dn; ++ chip->priv = host; ++ mtd->priv = chip; ++ mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d", ++ host->cs); ++ mtd->owner = THIS_MODULE; ++ mtd->dev.parent = &pdev->dev; ++ ++ chip->IO_ADDR_R = (void __iomem *)0xdeadbeef; ++ chip->IO_ADDR_W = (void __iomem *)0xdeadbeef; ++ ++ chip->cmd_ctrl = brcmnand_cmd_ctrl; ++ chip->cmdfunc = brcmnand_cmdfunc; ++ chip->waitfunc = brcmnand_waitfunc; ++ chip->read_byte = brcmnand_read_byte; ++ chip->read_buf = brcmnand_read_buf; ++ chip->write_buf = brcmnand_write_buf; ++ ++ chip->ecc.mode = NAND_ECC_HW; ++ chip->ecc.read_page = brcmnand_read_page; ++ chip->ecc.read_subpage = brcmnand_read_subpage; ++ chip->ecc.write_page = brcmnand_write_page; ++ chip->ecc.read_page_raw = brcmnand_read_page_raw; ++ chip->ecc.write_page_raw = brcmnand_write_page_raw; ++ chip->ecc.write_oob_raw = brcmnand_write_oob_raw; ++ chip->ecc.read_oob_raw = brcmnand_read_oob_raw; ++ chip->ecc.read_oob = brcmnand_read_oob; ++ chip->ecc.write_oob = brcmnand_write_oob; ++ ++ chip->controller = &ctrl->controller; ++ ++ if (nand_scan_ident(mtd, 1, NULL)) ++ return -ENXIO; ++ ++ chip->options |= NAND_NO_SUBPAGE_WRITE; ++ /* ++ * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA ++ * to/from, and have nand_base pass us a bounce buffer instead, as ++ * needed. ++ */ ++ chip->options |= NAND_USE_BOUNCE_BUFFER; ++ ++ if (of_get_nand_on_flash_bbt(dn)) ++ chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; ++ ++ if (brcmnand_setup_dev(host)) ++ return -ENXIO; ++ ++ chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512; ++ /* only use our internal HW threshold */ ++ mtd->bitflip_threshold = 1; ++ ++ chip->ecc.layout = brcmstb_choose_ecc_layout(host); ++ if (!chip->ecc.layout) ++ return -ENXIO; ++ ++ if (nand_scan_tail(mtd)) ++ return -ENXIO; ++ ++ return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); ++} ++ ++static void brcmnand_save_restore_cs_config(struct brcmnand_host *host, ++ int restore) ++{ ++ struct brcmnand_controller *ctrl = host->ctrl; ++ u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); ++ u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, ++ BRCMNAND_CS_CFG_EXT); ++ u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, ++ BRCMNAND_CS_ACC_CONTROL); ++ u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1); ++ u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2); ++ ++ if (restore) { ++ nand_writereg(ctrl, cfg_offs, host->hwcfg.config); ++ if (cfg_offs != cfg_ext_offs) ++ nand_writereg(ctrl, cfg_ext_offs, ++ host->hwcfg.config_ext); ++ nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control); ++ nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1); ++ nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2); ++ } else { ++ host->hwcfg.config = nand_readreg(ctrl, cfg_offs); ++ if (cfg_offs != cfg_ext_offs) ++ host->hwcfg.config_ext = ++ nand_readreg(ctrl, cfg_ext_offs); ++ host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs); ++ host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs); ++ host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs); ++ } ++} ++ ++static int brcmnand_suspend(struct device *dev) ++{ ++ struct brcmnand_controller *ctrl = dev_get_drvdata(dev); ++ struct brcmnand_host *host; ++ ++ list_for_each_entry(host, &ctrl->host_list, node) ++ brcmnand_save_restore_cs_config(host, 0); ++ ++ ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT); ++ ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR); ++ ctrl->corr_stat_threshold = ++ brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD); ++ ++ if (has_flash_dma(ctrl)) ++ ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE); ++ ++ return 0; ++} ++ ++static int brcmnand_resume(struct device *dev) ++{ ++ struct brcmnand_controller *ctrl = dev_get_drvdata(dev); ++ struct brcmnand_host *host; ++ ++ if (has_flash_dma(ctrl)) { ++ flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode); ++ flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); ++ } ++ ++ brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select); ++ brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor); ++ brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD, ++ ctrl->corr_stat_threshold); ++ if (ctrl->soc) { ++ /* Clear/re-enable interrupt */ ++ ctrl->soc->ctlrdy_ack(ctrl->soc); ++ ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); ++ } ++ ++ list_for_each_entry(host, &ctrl->host_list, node) { ++ struct mtd_info *mtd = &host->mtd; ++ struct nand_chip *chip = mtd->priv; ++ ++ brcmnand_save_restore_cs_config(host, 1); ++ ++ /* Reset the chip, required by some chips after power-up */ ++ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); ++ } ++ ++ return 0; ++} ++ ++const struct dev_pm_ops brcmnand_pm_ops = { ++ .suspend = brcmnand_suspend, ++ .resume = brcmnand_resume, ++}; ++EXPORT_SYMBOL_GPL(brcmnand_pm_ops); ++ ++static const struct of_device_id brcmnand_of_match[] = { ++ { .compatible = "brcm,brcmnand-v4.0" }, ++ { .compatible = "brcm,brcmnand-v5.0" }, ++ { .compatible = "brcm,brcmnand-v6.0" }, ++ { .compatible = "brcm,brcmnand-v6.1" }, ++ { .compatible = "brcm,brcmnand-v7.0" }, ++ { .compatible = "brcm,brcmnand-v7.1" }, ++ {}, ++}; ++MODULE_DEVICE_TABLE(of, brcmnand_of_match); ++ ++/*********************************************************************** ++ * Platform driver setup (per controller) ++ ***********************************************************************/ ++ ++int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc) ++{ ++ struct device *dev = &pdev->dev; ++ struct device_node *dn = dev->of_node, *child; ++ struct brcmnand_controller *ctrl; ++ struct resource *res; ++ int ret; ++ ++ /* We only support device-tree instantiation */ ++ if (!dn) ++ return -ENODEV; ++ ++ if (!of_match_node(brcmnand_of_match, dn)) ++ return -ENODEV; ++ ++ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); ++ if (!ctrl) ++ return -ENOMEM; ++ ++ dev_set_drvdata(dev, ctrl); ++ ctrl->dev = dev; ++ ++ init_completion(&ctrl->done); ++ init_completion(&ctrl->dma_done); ++ spin_lock_init(&ctrl->controller.lock); ++ init_waitqueue_head(&ctrl->controller.wq); ++ INIT_LIST_HEAD(&ctrl->host_list); ++ ++ /* NAND register range */ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ ctrl->nand_base = devm_ioremap_resource(dev, res); ++ if (IS_ERR(ctrl->nand_base)) ++ return PTR_ERR(ctrl->nand_base); ++ ++ /* Initialize NAND revision */ ++ ret = brcmnand_revision_init(ctrl); ++ if (ret) ++ return ret; ++ ++ /* ++ * Most chips have this cache at a fixed offset within 'nand' block. ++ * Some must specify this region separately. ++ */ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache"); ++ if (res) { ++ ctrl->nand_fc = devm_ioremap_resource(dev, res); ++ if (IS_ERR(ctrl->nand_fc)) ++ return PTR_ERR(ctrl->nand_fc); ++ } else { ++ ctrl->nand_fc = ctrl->nand_base + ++ ctrl->reg_offsets[BRCMNAND_FC_BASE]; ++ } ++ ++ /* FLASH_DMA */ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma"); ++ if (res) { ++ ctrl->flash_dma_base = devm_ioremap_resource(dev, res); ++ if (IS_ERR(ctrl->flash_dma_base)) ++ return PTR_ERR(ctrl->flash_dma_base); ++ ++ flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */ ++ flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); ++ ++ /* Allocate descriptor(s) */ ++ ctrl->dma_desc = dmam_alloc_coherent(dev, ++ sizeof(*ctrl->dma_desc), ++ &ctrl->dma_pa, GFP_KERNEL); ++ if (!ctrl->dma_desc) ++ return -ENOMEM; ++ ++ ctrl->dma_irq = platform_get_irq(pdev, 1); ++ if ((int)ctrl->dma_irq < 0) { ++ dev_err(dev, "missing FLASH_DMA IRQ\n"); ++ return -ENODEV; ++ } ++ ++ ret = devm_request_irq(dev, ctrl->dma_irq, ++ brcmnand_dma_irq, 0, DRV_NAME, ++ ctrl); ++ if (ret < 0) { ++ dev_err(dev, "can't allocate IRQ %d: error %d\n", ++ ctrl->dma_irq, ret); ++ return ret; ++ } ++ ++ dev_info(dev, "enabling FLASH_DMA\n"); ++ } ++ ++ /* Disable automatic device ID config, direct addressing */ ++ brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, ++ CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0); ++ /* Disable XOR addressing */ ++ brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0); ++ ++ if (ctrl->features & BRCMNAND_HAS_WP) { ++ /* Permanently disable write protection */ ++ if (wp_on == 2) ++ brcmnand_set_wp(ctrl, false); ++ } else { ++ wp_on = 0; ++ } ++ ++ /* IRQ */ ++ ctrl->irq = platform_get_irq(pdev, 0); ++ if ((int)ctrl->irq < 0) { ++ dev_err(dev, "no IRQ defined\n"); ++ return -ENODEV; ++ } ++ ++ /* ++ * Some SoCs integrate this controller (e.g., its interrupt bits) in ++ * interesting ways ++ */ ++ if (soc) { ++ ctrl->soc = soc; ++ ++ ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0, ++ DRV_NAME, ctrl); ++ ++ /* Enable interrupt */ ++ ctrl->soc->ctlrdy_ack(ctrl->soc); ++ ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); ++ } else { ++ /* Use standard interrupt infrastructure */ ++ ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0, ++ DRV_NAME, ctrl); ++ } ++ if (ret < 0) { ++ dev_err(dev, "can't allocate IRQ %d: error %d\n", ++ ctrl->irq, ret); ++ return ret; ++ } ++ ++ for_each_available_child_of_node(dn, child) { ++ if (of_device_is_compatible(child, "brcm,nandcs")) { ++ struct brcmnand_host *host; ++ ++ host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); ++ if (!host) ++ return -ENOMEM; ++ host->pdev = pdev; ++ host->ctrl = ctrl; ++ host->of_node = child; ++ ++ ret = brcmnand_init_cs(host); ++ if (ret) ++ continue; /* Try all chip-selects */ ++ ++ list_add_tail(&host->node, &ctrl->host_list); ++ } ++ } ++ ++ /* No chip-selects could initialize properly */ ++ if (list_empty(&ctrl->host_list)) ++ return -ENODEV; ++ ++ return 0; ++} ++EXPORT_SYMBOL_GPL(brcmnand_probe); ++ ++int brcmnand_remove(struct platform_device *pdev) ++{ ++ struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); ++ struct brcmnand_host *host; ++ ++ list_for_each_entry(host, &ctrl->host_list, node) ++ nand_release(&host->mtd); ++ ++ dev_set_drvdata(&pdev->dev, NULL); ++ ++ return 0; ++} ++EXPORT_SYMBOL_GPL(brcmnand_remove); ++ ++MODULE_LICENSE("GPL v2"); ++MODULE_AUTHOR("Kevin Cernekee"); ++MODULE_AUTHOR("Brian Norris"); ++MODULE_DESCRIPTION("NAND driver for Broadcom chips"); ++MODULE_ALIAS("platform:brcmnand"); +--- /dev/null ++++ b/drivers/mtd/nand/brcmnand/brcmnand.h +@@ -0,0 +1,71 @@ ++/* ++ * Copyright © 2015 Broadcom Corporation ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ */ ++ ++#ifndef __BRCMNAND_H__ ++#define __BRCMNAND_H__ ++ ++#include <linux/types.h> ++#include <linux/io.h> ++ ++struct platform_device; ++struct dev_pm_ops; ++ ++struct brcmnand_soc { ++ bool (*ctlrdy_ack)(struct brcmnand_soc *soc); ++ void (*ctlrdy_set_enabled)(struct brcmnand_soc *soc, bool en); ++ void (*prepare_data_bus)(struct brcmnand_soc *soc, bool prepare); ++}; ++ ++static inline void brcmnand_soc_data_bus_prepare(struct brcmnand_soc *soc) ++{ ++ if (soc && soc->prepare_data_bus) ++ soc->prepare_data_bus(soc, true); ++} ++ ++static inline void brcmnand_soc_data_bus_unprepare(struct brcmnand_soc *soc) ++{ ++ if (soc && soc->prepare_data_bus) ++ soc->prepare_data_bus(soc, false); ++} ++ ++static inline u32 brcmnand_readl(void __iomem *addr) ++{ ++ /* ++ * MIPS endianness is configured by boot strap, which also reverses all ++ * bus endianness (i.e., big-endian CPU + big endian bus ==> native ++ * endian I/O). ++ * ++ * Other architectures (e.g., ARM) either do not support big endian, or ++ * else leave I/O in little endian mode. ++ */ ++ if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(__BIG_ENDIAN)) ++ return __raw_readl(addr); ++ else ++ return readl_relaxed(addr); ++} ++ ++static inline void brcmnand_writel(u32 val, void __iomem *addr) ++{ ++ /* See brcmnand_readl() comments */ ++ if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(__BIG_ENDIAN)) ++ __raw_writel(val, addr); ++ else ++ writel_relaxed(val, addr); ++} ++ ++int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc); ++int brcmnand_remove(struct platform_device *pdev); ++ ++extern const struct dev_pm_ops brcmnand_pm_ops; ++ ++#endif /* __BRCMNAND_H__ */ +--- /dev/null ++++ b/drivers/mtd/nand/brcmnand/brcmstb_nand.c +@@ -0,0 +1,44 @@ ++/* ++ * Copyright © 2015 Broadcom Corporation ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ */ ++ ++#include <linux/device.h> ++#include <linux/module.h> ++#include <linux/platform_device.h> ++ ++#include "brcmnand.h" ++ ++static const struct of_device_id brcmstb_nand_of_match[] = { ++ { .compatible = "brcm,brcmnand" }, ++ {}, ++}; ++MODULE_DEVICE_TABLE(of, brcmstb_nand_of_match); ++ ++static int brcmstb_nand_probe(struct platform_device *pdev) ++{ ++ return brcmnand_probe(pdev, NULL); ++} ++ ++static struct platform_driver brcmstb_nand_driver = { ++ .probe = brcmstb_nand_probe, ++ .remove = brcmnand_remove, ++ .driver = { ++ .name = "brcmstb_nand", ++ .pm = &brcmnand_pm_ops, ++ .of_match_table = brcmstb_nand_of_match, ++ } ++}; ++module_platform_driver(brcmstb_nand_driver); ++ ++MODULE_LICENSE("GPL v2"); ++MODULE_AUTHOR("Brian Norris"); ++MODULE_DESCRIPTION("NAND driver for Broadcom STB chips"); +--- /dev/null ++++ b/drivers/mtd/nand/brcmnand/iproc_nand.c +@@ -0,0 +1,150 @@ ++/* ++ * Copyright © 2015 Broadcom Corporation ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ */ ++ ++#include <linux/device.h> ++#include <linux/io.h> ++#include <linux/ioport.h> ++#include <linux/module.h> ++#include <linux/of.h> ++#include <linux/of_address.h> ++#include <linux/platform_device.h> ++#include <linux/slab.h> ++ ++#include "brcmnand.h" ++ ++struct iproc_nand_soc { ++ struct brcmnand_soc soc; ++ ++ void __iomem *idm_base; ++ void __iomem *ext_base; ++ spinlock_t idm_lock; ++}; ++ ++#define IPROC_NAND_CTLR_READY_OFFSET 0x10 ++#define IPROC_NAND_CTLR_READY BIT(0) ++ ++#define IPROC_NAND_IO_CTRL_OFFSET 0x00 ++#define IPROC_NAND_APB_LE_MODE BIT(24) ++#define IPROC_NAND_INT_CTRL_READ_ENABLE BIT(6) ++ ++static bool iproc_nand_intc_ack(struct brcmnand_soc *soc) ++{ ++ struct iproc_nand_soc *priv = ++ container_of(soc, struct iproc_nand_soc, soc); ++ void __iomem *mmio = priv->ext_base + IPROC_NAND_CTLR_READY_OFFSET; ++ u32 val = brcmnand_readl(mmio); ++ ++ if (val & IPROC_NAND_CTLR_READY) { ++ brcmnand_writel(IPROC_NAND_CTLR_READY, mmio); ++ return true; ++ } ++ ++ return false; ++} ++ ++static void iproc_nand_intc_set(struct brcmnand_soc *soc, bool en) ++{ ++ struct iproc_nand_soc *priv = ++ container_of(soc, struct iproc_nand_soc, soc); ++ void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET; ++ u32 val; ++ unsigned long flags; ++ ++ spin_lock_irqsave(&priv->idm_lock, flags); ++ ++ val = brcmnand_readl(mmio); ++ ++ if (en) ++ val |= IPROC_NAND_INT_CTRL_READ_ENABLE; ++ else ++ val &= ~IPROC_NAND_INT_CTRL_READ_ENABLE; ++ ++ brcmnand_writel(val, mmio); ++ ++ spin_unlock_irqrestore(&priv->idm_lock, flags); ++} ++ ++static void iproc_nand_apb_access(struct brcmnand_soc *soc, bool prepare) ++{ ++ struct iproc_nand_soc *priv = ++ container_of(soc, struct iproc_nand_soc, soc); ++ void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET; ++ u32 val; ++ unsigned long flags; ++ ++ spin_lock_irqsave(&priv->idm_lock, flags); ++ ++ val = brcmnand_readl(mmio); ++ ++ if (prepare) ++ val |= IPROC_NAND_APB_LE_MODE; ++ else ++ val &= ~IPROC_NAND_APB_LE_MODE; ++ ++ brcmnand_writel(val, mmio); ++ ++ spin_unlock_irqrestore(&priv->idm_lock, flags); ++} ++ ++static int iproc_nand_probe(struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ struct iproc_nand_soc *priv; ++ struct brcmnand_soc *soc; ++ struct resource *res; ++ ++ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); ++ if (!priv) ++ return -ENOMEM; ++ soc = &priv->soc; ++ ++ spin_lock_init(&priv->idm_lock); ++ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-idm"); ++ priv->idm_base = devm_ioremap_resource(dev, res); ++ if (IS_ERR(priv->idm_base)) ++ return PTR_ERR(priv->idm_base); ++ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-ext"); ++ priv->ext_base = devm_ioremap_resource(dev, res); ++ if (IS_ERR(priv->ext_base)) ++ return PTR_ERR(priv->ext_base); ++ ++ soc->ctlrdy_ack = iproc_nand_intc_ack; ++ soc->ctlrdy_set_enabled = iproc_nand_intc_set; ++ soc->prepare_data_bus = iproc_nand_apb_access; ++ ++ return brcmnand_probe(pdev, soc); ++} ++ ++static const struct of_device_id iproc_nand_of_match[] = { ++ { .compatible = "brcm,nand-iproc" }, ++ {}, ++}; ++MODULE_DEVICE_TABLE(of, iproc_nand_of_match); ++ ++static struct platform_driver iproc_nand_driver = { ++ .probe = iproc_nand_probe, ++ .remove = brcmnand_remove, ++ .driver = { ++ .name = "iproc_nand", ++ .pm = &brcmnand_pm_ops, ++ .of_match_table = iproc_nand_of_match, ++ } ++}; ++module_platform_driver(iproc_nand_driver); ++ ++MODULE_LICENSE("GPL v2"); ++MODULE_AUTHOR("Brian Norris"); ++MODULE_AUTHOR("Ray Jui"); ++MODULE_DESCRIPTION("NAND driver for Broadcom IPROC-based SoCs"); diff --git a/target/linux/bcm53xx/patches-4.1/095-mtd-part-add-generic-parsing-of-linux-part-probe.patch b/target/linux/bcm53xx/patches-4.1/095-mtd-part-add-generic-parsing-of-linux-part-probe.patch new file mode 100644 index 0000000000..686696e61e --- /dev/null +++ b/target/linux/bcm53xx/patches-4.1/095-mtd-part-add-generic-parsing-of-linux-part-probe.patch @@ -0,0 +1,175 @@ +From 173b0add0cff6558f950c0cb1eacfb729d482711 Mon Sep 17 00:00:00 2001 +From: Hauke Mehrtens <hauke@hauke-m.de> +Date: Sun, 17 May 2015 18:48:38 +0200 +Subject: [PATCH 4/8] mtd: part: add generic parsing of linux,part-probe + +This moves the linux,part-probe device tree parsing code from +physmap_of.c to mtdpart.c. Now all drivers can use this feature by just +providing a reference to their device tree node in struct +mtd_part_parser_data. + +Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> +--- + Documentation/devicetree/bindings/mtd/nand.txt | 16 ++++++++++ + drivers/mtd/maps/physmap_of.c | 40 +----------------------- + drivers/mtd/mtdpart.c | 43 ++++++++++++++++++++++++++ + 3 files changed, 60 insertions(+), 39 deletions(-) + +--- a/Documentation/devicetree/bindings/mtd/nand.txt ++++ b/Documentation/devicetree/bindings/mtd/nand.txt +@@ -12,6 +12,22 @@ + - nand-ecc-step-size: integer representing the number of data bytes + that are covered by a single ECC step. + ++- linux,part-probe: list of name as strings of the partition parser ++ which should be used to parse the partition table. ++ They will be tried in the specified ordering and ++ the next one will be used if the previous one ++ failed. ++ ++ Example: linux,part-probe = "cmdlinepart", "ofpart"; ++ ++ This is also the default value, which will be used ++ if this attribute is not specified. It could be ++ that the flash driver in use overwrote the default ++ value and uses some other default. ++ ++ Possible values are: bcm47xxpart, afs, ar7part, ++ ofoldpart, ofpart, bcm63xxpart, RedBoot, cmdlinepart ++ + The ECC strength and ECC step size properties define the correction capability + of a controller. Together, they say a controller can correct "{strength} bit + errors per {size} bytes". +--- a/drivers/mtd/maps/physmap_of.c ++++ b/drivers/mtd/maps/physmap_of.c +@@ -112,45 +112,9 @@ static struct mtd_info *obsolete_probe(s + static const char * const part_probe_types_def[] = { + "cmdlinepart", "RedBoot", "ofpart", "ofoldpart", NULL }; + +-static const char * const *of_get_probes(struct device_node *dp) +-{ +- const char *cp; +- int cplen; +- unsigned int l; +- unsigned int count; +- const char **res; +- +- cp = of_get_property(dp, "linux,part-probe", &cplen); +- if (cp == NULL) +- return part_probe_types_def; +- +- count = 0; +- for (l = 0; l != cplen; l++) +- if (cp[l] == 0) +- count++; +- +- res = kzalloc((count + 1)*sizeof(*res), GFP_KERNEL); +- count = 0; +- while (cplen > 0) { +- res[count] = cp; +- l = strlen(cp) + 1; +- cp += l; +- cplen -= l; +- count++; +- } +- return res; +-} +- +-static void of_free_probes(const char * const *probes) +-{ +- if (probes != part_probe_types_def) +- kfree(probes); +-} +- + static struct of_device_id of_flash_match[]; + static int of_flash_probe(struct platform_device *dev) + { +- const char * const *part_probe_types; + const struct of_device_id *match; + struct device_node *dp = dev->dev.of_node; + struct resource res; +@@ -310,10 +274,8 @@ static int of_flash_probe(struct platfor + goto err_out; + + ppdata.of_node = dp; +- part_probe_types = of_get_probes(dp); +- mtd_device_parse_register(info->cmtd, part_probe_types, &ppdata, ++ mtd_device_parse_register(info->cmtd, part_probe_types_def, &ppdata, + NULL, 0); +- of_free_probes(part_probe_types); + + kfree(mtd_list); + +--- a/drivers/mtd/mtdpart.c ++++ b/drivers/mtd/mtdpart.c +@@ -29,6 +29,7 @@ + #include <linux/kmod.h> + #include <linux/mtd/mtd.h> + #include <linux/mtd/partitions.h> ++#include <linux/of.h> + #include <linux/magic.h> + #include <linux/err.h> + #include <linux/kconfig.h> +@@ -992,6 +993,40 @@ void deregister_mtd_parser(struct mtd_pa + EXPORT_SYMBOL_GPL(deregister_mtd_parser); + + /* ++ * Parses the linux,part-probe device tree property. ++ * When a non null value is returned it has to be freed with kfree() by ++ * the caller. ++ */ ++static const char * const *of_get_probes(struct device_node *dp) ++{ ++ const char *cp; ++ int cplen; ++ unsigned int l; ++ unsigned int count; ++ const char **res; ++ ++ cp = of_get_property(dp, "linux,part-probe", &cplen); ++ if (cp == NULL) ++ return NULL; ++ ++ count = 0; ++ for (l = 0; l != cplen; l++) ++ if (cp[l] == 0) ++ count++; ++ ++ res = kzalloc((count + 1) * sizeof(*res), GFP_KERNEL); ++ count = 0; ++ while (cplen > 0) { ++ res[count] = cp; ++ l = strlen(cp) + 1; ++ cp += l; ++ cplen -= l; ++ count++; ++ } ++ return res; ++} ++ ++/* + * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you + * are changing this array! + */ +@@ -1027,6 +1062,13 @@ int parse_mtd_partitions(struct mtd_info + { + struct mtd_part_parser *parser; + int ret = 0; ++ const char *const *types_of = NULL; ++ ++ if (data && data->of_node) { ++ types_of = of_get_probes(data->of_node); ++ if (types_of != NULL) ++ types = types_of; ++ } + + if (!types) + types = default_mtd_part_types; +@@ -1045,6 +1087,7 @@ int parse_mtd_partitions(struct mtd_info + break; + } + } ++ kfree(types_of); + return ret; + } + diff --git a/target/linux/bcm53xx/patches-4.1/101-use-part-parser.patch b/target/linux/bcm53xx/patches-4.1/101-use-part-parser.patch new file mode 100644 index 0000000000..8d48673c6d --- /dev/null +++ b/target/linux/bcm53xx/patches-4.1/101-use-part-parser.patch @@ -0,0 +1,11 @@ +--- a/arch/arm/boot/dts/bcm5301x-nand-cs0-bch8.dtsi ++++ b/arch/arm/boot/dts/bcm5301x-nand-cs0-bch8.dtsi +@@ -19,6 +19,8 @@ + + nand-ecc-strength = <8>; + nand-ecc-step-size = <512>; ++ ++ linux,part-probe = "ofpart", "bcm47xxpart"; + }; + }; + }; diff --git a/target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch b/target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch index ca6462e3c7..c8171fffc4 100644 --- a/target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch +++ b/target/linux/bcm53xx/patches-4.1/301-ARM-BCM5301X-Add-SPROM.patch @@ -13,7 +13,7 @@ Signed-off-by: Rafał Miłecki <zajec5@gmail.com> --- a/arch/arm/boot/dts/bcm5301x.dtsi +++ b/arch/arm/boot/dts/bcm5301x.dtsi -@@ -95,6 +95,10 @@ +@@ -98,6 +98,10 @@ }; }; diff --git a/target/linux/bcm53xx/patches-4.1/352-ARM-BCM5301X-Add-back-Luxul-XWC-1000-NAND-flash-layo.patch b/target/linux/bcm53xx/patches-4.1/352-ARM-BCM5301X-Add-back-Luxul-XWC-1000-NAND-flash-layo.patch deleted file mode 100644 index df65e0d03d..0000000000 --- a/target/linux/bcm53xx/patches-4.1/352-ARM-BCM5301X-Add-back-Luxul-XWC-1000-NAND-flash-layo.patch +++ /dev/null @@ -1,37 +0,0 @@ -From b97e582cd05f6ba80bdb63d9f677a3395edc7ff1 Mon Sep 17 00:00:00 2001 -From: =?UTF-8?q?Rafa=C5=82=20Mi=C5=82ecki?= <zajec5@gmail.com> -Date: Sun, 7 Jun 2015 15:37:43 +0200 -Subject: [PATCH] ARM: BCM5301X: Add back Luxul XWC-1000 NAND flash layout -MIME-Version: 1.0 -Content-Type: text/plain; charset=UTF-8 -Content-Transfer-Encoding: 8bit - -In OpenWrt we still use old NAND driver instead of "brcm,nandcs", so -we need to add this DT entry back. - -Signed-off-by: Rafał Miłecki <zajec5@gmail.com> ---- - arch/arm/boot/dts/bcm4708-luxul-xwc-1000.dts | 12 ++++++++++++ - 1 file changed, 12 insertions(+) - ---- a/arch/arm/boot/dts/bcm4708-luxul-xwc-1000.dts -+++ b/arch/arm/boot/dts/bcm4708-luxul-xwc-1000.dts -@@ -34,6 +34,18 @@ - }; - }; - -+ axi@18000000 { -+ nand@28000 { -+ reg = <0x00028000 0x1000>; -+ #address-cells = <1>; -+ #size-cells = <1>; -+ partition@0 { -+ label = "ubi"; -+ reg = <0x00000000 0x08000000>; -+ }; -+ }; -+ }; -+ - nand: nand@18028000 { - nandcs@0 { - partition@0 { diff --git a/target/linux/bcm53xx/patches-4.1/420-mtd-bcm5301x_nand.patch b/target/linux/bcm53xx/patches-4.1/420-mtd-bcm5301x_nand.patch deleted file mode 100644 index 07cde2114a..0000000000 --- a/target/linux/bcm53xx/patches-4.1/420-mtd-bcm5301x_nand.patch +++ /dev/null @@ -1,1608 +0,0 @@ ---- a/drivers/mtd/nand/Kconfig -+++ b/drivers/mtd/nand/Kconfig -@@ -530,4 +530,10 @@ config MTD_NAND_HISI504 - help - Enables support for NAND controller on Hisilicon SoC Hip04. - -+config MTD_NAND_BCM -+ tristate "Support for NAND on some Broadcom SoC" -+ help -+ This driver is currently used for the NAND flash controller on the -+ Broadcom BCM5301X (NorthStar) SoCs. -+ - endif # MTD_NAND ---- a/drivers/mtd/nand/Makefile -+++ b/drivers/mtd/nand/Makefile -@@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nan - obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ - obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o - obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o -+obj-$(CONFIG_MTD_NAND_BCM) += bcm_nand.o - - nand-objs := nand_base.o nand_bbt.o nand_timings.o ---- /dev/null -+++ b/drivers/mtd/nand/bcm_nand.c -@@ -0,0 +1,1583 @@ -+/* -+ * Nortstar NAND controller driver -+ * -+ * (c) Broadcom, Inc. 2012 All Rights Reserved. -+ * Copyright 2014 Hauke Mehrtens <hauke@hauke-m.de> -+ * -+ * Licensed under the GNU/GPL. See COPYING for details. -+ * -+ * This module interfaces the NAND controller and hardware ECC capabilities -+ * tp the generic NAND chip support in the NAND library. -+ * -+ * Notes: -+ * This driver depends on generic NAND driver, but works at the -+ * page level for operations. -+ * -+ * When a page is written, the ECC calculated also protects the OOB -+ * bytes not taken by ECC, and so the OOB must be combined with any -+ * OOB data that preceded the page-write operation in order for the -+ * ECC to be calculated correctly. -+ * Also, when the page is erased, but OOB data is not, HW ECC will -+ * indicate an error, because it checks OOB too, which calls for some -+ * help from the software in this driver. -+ * -+ * TBD: -+ * Block locking/unlocking support, OTP support -+ */ -+ -+ -+#include <linux/kernel.h> -+#include <linux/module.h> -+#include <linux/io.h> -+#include <linux/ioport.h> -+#include <linux/interrupt.h> -+#include <linux/delay.h> -+#include <linux/err.h> -+#include <linux/slab.h> -+#include <linux/bcma/bcma.h> -+#include <linux/of_irq.h> -+ -+#include <linux/mtd/mtd.h> -+#include <linux/mtd/nand.h> -+#include <linux/mtd/partitions.h> -+ -+#define NANDC_MAX_CHIPS 2 /* Only 2 CSn supported in NorthStar */ -+ -+/* -+ * Driver private control structure -+ */ -+struct bcmnand_ctrl { -+ struct mtd_info mtd; -+ struct nand_chip nand; -+ struct bcma_device *core; -+ -+ struct completion op_completion; -+ -+ struct nand_ecclayout ecclayout; -+ int cmd_ret; /* saved error code */ -+ unsigned char oob_index; -+ unsigned char id_byte_index; -+ unsigned char chip_num; -+ unsigned char last_cmd; -+ unsigned char ecc_level; -+ unsigned char sector_size_shift; -+ unsigned char sec_per_page_shift; -+}; -+ -+ -+/* -+ * IRQ numbers - offset from first irq in nandc_irq resource -+ */ -+#define NANDC_IRQ_RD_MISS 0 -+#define NANDC_IRQ_ERASE_COMPLETE 1 -+#define NANDC_IRQ_COPYBACK_COMPLETE 2 -+#define NANDC_IRQ_PROGRAM_COMPLETE 3 -+#define NANDC_IRQ_CONTROLLER_RDY 4 -+#define NANDC_IRQ_RDBSY_RDY 5 -+#define NANDC_IRQ_ECC_UNCORRECTABLE 6 -+#define NANDC_IRQ_ECC_CORRECTABLE 7 -+#define NANDC_IRQ_NUM 8 -+ -+struct bcmnand_reg_field { -+ unsigned int reg; -+ unsigned int pos; -+ unsigned int width; -+}; -+ -+/* -+ * REGISTERS -+ * -+ * Individual bit-fields aof registers are specificed here -+ * for clarity, and the rest of the code will access each field -+ * as if it was its own register. -+ * -+ * Following registers are off <reg_base>: -+ */ -+#define REG_BIT_FIELD(r, p, w) ((struct bcmnand_reg_field){(r), (p), (w)}) -+ -+#define NANDC_8KB_PAGE_SUPPORT REG_BIT_FIELD(0x0, 31, 1) -+#define NANDC_REV_MAJOR REG_BIT_FIELD(0x0, 8, 8) -+#define NANDC_REV_MINOR REG_BIT_FIELD(0x0, 0, 8) -+ -+#define NANDC_CMD_START_OPCODE REG_BIT_FIELD(0x4, 24, 5) -+ -+#define NANDC_CMD_CS_SEL REG_BIT_FIELD(0x8, 16, 3) -+#define NANDC_CMD_EXT_ADDR REG_BIT_FIELD(0x8, 0, 16) -+ -+#define NANDC_CMD_ADDRESS REG_BIT_FIELD(0xc, 0, 32) -+#define NANDC_CMD_END_ADDRESS REG_BIT_FIELD(0x10, 0, 32) -+ -+#define NANDC_INT_STATUS REG_BIT_FIELD(0x14, 0, 32) -+#define NANDC_INT_STAT_CTLR_RDY REG_BIT_FIELD(0x14, 31, 1) -+#define NANDC_INT_STAT_FLASH_RDY REG_BIT_FIELD(0x14, 30, 1) -+#define NANDC_INT_STAT_CACHE_VALID REG_BIT_FIELD(0x14, 29, 1) -+#define NANDC_INT_STAT_SPARE_VALID REG_BIT_FIELD(0x14, 28, 1) -+#define NANDC_INT_STAT_ERASED REG_BIT_FIELD(0x14, 27, 1) -+#define NANDC_INT_STAT_PLANE_RDY REG_BIT_FIELD(0x14, 26, 1) -+#define NANDC_INT_STAT_FLASH_STATUS REG_BIT_FIELD(0x14, 0, 8) -+ -+#define NANDC_CS_LOCK REG_BIT_FIELD(0x18, 31, 1) -+#define NANDC_CS_AUTO_CONFIG REG_BIT_FIELD(0x18, 30, 1) -+#define NANDC_CS_NAND_WP REG_BIT_FIELD(0x18, 29, 1) -+#define NANDC_CS_BLK0_WP REG_BIT_FIELD(0x18, 28, 1) -+#define NANDC_CS_SW_USING_CS(n) REG_BIT_FIELD(0x18, 8+(n), 1) -+#define NANDC_CS_MAP_SEL_CS(n) REG_BIT_FIELD(0x18, 0+(n), 1) -+ -+#define NANDC_XOR_ADDR_BLK0_ONLY REG_BIT_FIELD(0x1c, 31, 1) -+#define NANDC_XOR_ADDR_CS(n) REG_BIT_FIELD(0x1c, 0+(n), 1) -+ -+#define NANDC_LL_OP_RET_IDLE REG_BIT_FIELD(0x20, 31, 1) -+#define NANDC_LL_OP_CLE REG_BIT_FIELD(0x20, 19, 1) -+#define NANDC_LL_OP_ALE REG_BIT_FIELD(0x20, 18, 1) -+#define NANDC_LL_OP_WE REG_BIT_FIELD(0x20, 17, 1) -+#define NANDC_LL_OP_RE REG_BIT_FIELD(0x20, 16, 1) -+#define NANDC_LL_OP_DATA REG_BIT_FIELD(0x20, 0, 16) -+ -+#define NANDC_MPLANE_ADDR_EXT REG_BIT_FIELD(0x24, 0, 16) -+#define NANDC_MPLANE_ADDR REG_BIT_FIELD(0x28, 0, 32) -+ -+#define NANDC_ACC_CTRL_CS(n) REG_BIT_FIELD(0x50+((n)<<4), 0, 32) -+#define NANDC_ACC_CTRL_RD_ECC(n) REG_BIT_FIELD(0x50+((n)<<4), 31, 1) -+#define NANDC_ACC_CTRL_WR_ECC(n) REG_BIT_FIELD(0x50+((n)<<4), 30, 1) -+#define NANDC_ACC_CTRL_CE_CARE(n) REG_BIT_FIELD(0x50+((n)<<4), 29, 1) -+#define NANDC_ACC_CTRL_PGM_RDIN(n) REG_BIT_FIELD(0x50+((n)<<4), 28, 1) -+#define NANDC_ACC_CTRL_ERA_ECC_ERR(n) REG_BIT_FIELD(0x50+((n)<<4), 27, 1) -+#define NANDC_ACC_CTRL_PGM_PARTIAL(n) REG_BIT_FIELD(0x50+((n)<<4), 26, 1) -+#define NANDC_ACC_CTRL_WR_PREEMPT(n) REG_BIT_FIELD(0x50+((n)<<4), 25, 1) -+#define NANDC_ACC_CTRL_PG_HIT(n) REG_BIT_FIELD(0x50+((n)<<4), 24, 1) -+#define NANDC_ACC_CTRL_PREFETCH(n) REG_BIT_FIELD(0x50+((n)<<4), 23, 1) -+#define NANDC_ACC_CTRL_CACHE_MODE(n) REG_BIT_FIELD(0x50+((n)<<4), 22, 1) -+#define NANDC_ACC_CTRL_CACHE_LASTPG(n) REG_BIT_FIELD(0x50+((n)<<4), 21, 1) -+#define NANDC_ACC_CTRL_ECC_LEVEL(n) REG_BIT_FIELD(0x50+((n)<<4), 16, 5) -+#define NANDC_ACC_CTRL_SECTOR_1K(n) REG_BIT_FIELD(0x50+((n)<<4), 7, 1) -+#define NANDC_ACC_CTRL_SPARE_SIZE(n) REG_BIT_FIELD(0x50+((n)<<4), 0, 7) -+ -+#define NANDC_CONFIG_CS(n) REG_BIT_FIELD(0x54+((n)<<4), 0, 32) -+#define NANDC_CONFIG_LOCK(n) REG_BIT_FIELD(0x54+((n)<<4), 31, 1) -+#define NANDC_CONFIG_BLK_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 28, 3) -+#define NANDC_CONFIG_CHIP_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 24, 4) -+#define NANDC_CONFIG_CHIP_WIDTH(n) REG_BIT_FIELD(0x54+((n)<<4), 23, 1) -+#define NANDC_CONFIG_PAGE_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 20, 2) -+#define NANDC_CONFIG_FUL_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 16, 3) -+#define NANDC_CONFIG_COL_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 12, 3) -+#define NANDC_CONFIG_BLK_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 8, 3) -+ -+#define NANDC_TIMING_1_CS(n) REG_BIT_FIELD(0x58+((n)<<4), 0, 32) -+#define NANDC_TIMING_2_CS(n) REG_BIT_FIELD(0x5c+((n)<<4), 0, 32) -+ /* Individual bits for Timing registers - TBD */ -+ -+#define NANDC_CORR_STAT_THRESH_CS(n) REG_BIT_FIELD(0xc0, 6*(n), 6) -+ -+#define NANDC_BLK_WP_END_ADDR REG_BIT_FIELD(0xc8, 0, 32) -+ -+#define NANDC_MPLANE_ERASE_CYC2_OPCODE REG_BIT_FIELD(0xcc, 24, 8) -+#define NANDC_MPLANE_READ_STAT_OPCODE REG_BIT_FIELD(0xcc, 16, 8) -+#define NANDC_MPLANE_PROG_ODD_OPCODE REG_BIT_FIELD(0xcc, 8, 8) -+#define NANDC_MPLANE_PROG_TRL_OPCODE REG_BIT_FIELD(0xcc, 0, 8) -+ -+#define NANDC_MPLANE_PGCACHE_TRL_OPCODE REG_BIT_FIELD(0xd0, 24, 8) -+#define NANDC_MPLANE_READ_STAT2_OPCODE REG_BIT_FIELD(0xd0, 16, 8) -+#define NANDC_MPLANE_READ_EVEN_OPCODE REG_BIT_FIELD(0xd0, 8, 8) -+#define NANDC_MPLANE_READ_ODD__OPCODE REG_BIT_FIELD(0xd0, 0, 8) -+ -+#define NANDC_MPLANE_CTRL_ERASE_CYC2_EN REG_BIT_FIELD(0xd4, 31, 1) -+#define NANDC_MPLANE_CTRL_RD_ADDR_SIZE REG_BIT_FIELD(0xd4, 30, 1) -+#define NANDC_MPLANE_CTRL_RD_CYC_ADDR REG_BIT_FIELD(0xd4, 29, 1) -+#define NANDC_MPLANE_CTRL_RD_COL_ADDR REG_BIT_FIELD(0xd4, 28, 1) -+ -+#define NANDC_UNCORR_ERR_COUNT REG_BIT_FIELD(0xfc, 0, 32) -+ -+#define NANDC_CORR_ERR_COUNT REG_BIT_FIELD(0x100, 0, 32) -+ -+#define NANDC_READ_CORR_BIT_COUNT REG_BIT_FIELD(0x104, 0, 32) -+ -+#define NANDC_BLOCK_LOCK_STATUS REG_BIT_FIELD(0x108, 0, 8) -+ -+#define NANDC_ECC_CORR_ADDR_CS REG_BIT_FIELD(0x10c, 16, 3) -+#define NANDC_ECC_CORR_ADDR_EXT REG_BIT_FIELD(0x10c, 0, 16) -+ -+#define NANDC_ECC_CORR_ADDR REG_BIT_FIELD(0x110, 0, 32) -+ -+#define NANDC_ECC_UNC_ADDR_CS REG_BIT_FIELD(0x114, 16, 3) -+#define NANDC_ECC_UNC_ADDR_EXT REG_BIT_FIELD(0x114, 0, 16) -+ -+#define NANDC_ECC_UNC_ADDR REG_BIT_FIELD(0x118, 0, 32) -+ -+#define NANDC_READ_ADDR_CS REG_BIT_FIELD(0x11c, 16, 3) -+#define NANDC_READ_ADDR_EXT REG_BIT_FIELD(0x11c, 0, 16) -+#define NANDC_READ_ADDR REG_BIT_FIELD(0x120, 0, 32) -+ -+#define NANDC_PROG_ADDR_CS REG_BIT_FIELD(0x124, 16, 3) -+#define NANDC_PROG_ADDR_EXT REG_BIT_FIELD(0x124, 0, 16) -+#define NANDC_PROG_ADDR REG_BIT_FIELD(0x128, 0, 32) -+ -+#define NANDC_CPYBK_ADDR_CS REG_BIT_FIELD(0x12c, 16, 3) -+#define NANDC_CPYBK_ADDR_EXT REG_BIT_FIELD(0x12c, 0, 16) -+#define NANDC_CPYBK_ADDR REG_BIT_FIELD(0x130, 0, 32) -+ -+#define NANDC_ERASE_ADDR_CS REG_BIT_FIELD(0x134, 16, 3) -+#define NANDC_ERASE_ADDR_EXT REG_BIT_FIELD(0x134, 0, 16) -+#define NANDC_ERASE_ADDR REG_BIT_FIELD(0x138, 0, 32) -+ -+#define NANDC_INV_READ_ADDR_CS REG_BIT_FIELD(0x13c, 16, 3) -+#define NANDC_INV_READ_ADDR_EXT REG_BIT_FIELD(0x13c, 0, 16) -+#define NANDC_INV_READ_ADDR REG_BIT_FIELD(0x140, 0, 32) -+ -+#define NANDC_INIT_STAT REG_BIT_FIELD(0x144, 0, 32) -+#define NANDC_INIT_ONFI_DONE REG_BIT_FIELD(0x144, 31, 1) -+#define NANDC_INIT_DEVID_DONE REG_BIT_FIELD(0x144, 30, 1) -+#define NANDC_INIT_SUCCESS REG_BIT_FIELD(0x144, 29, 1) -+#define NANDC_INIT_FAIL REG_BIT_FIELD(0x144, 28, 1) -+#define NANDC_INIT_BLANK REG_BIT_FIELD(0x144, 27, 1) -+#define NANDC_INIT_TIMEOUT REG_BIT_FIELD(0x144, 26, 1) -+#define NANDC_INIT_UNC_ERROR REG_BIT_FIELD(0x144, 25, 1) -+#define NANDC_INIT_CORR_ERROR REG_BIT_FIELD(0x144, 24, 1) -+#define NANDC_INIT_PARAM_RDY REG_BIT_FIELD(0x144, 23, 1) -+#define NANDC_INIT_AUTH_FAIL REG_BIT_FIELD(0x144, 22, 1) -+ -+#define NANDC_ONFI_STAT REG_BIT_FIELD(0x148, 0, 32) -+#define NANDC_ONFI_DEBUG REG_BIT_FIELD(0x148, 28, 4) -+#define NANDC_ONFI_PRESENT REG_BIT_FIELD(0x148, 27, 1) -+#define NANDC_ONFI_BADID_PG2 REG_BIT_FIELD(0x148, 5, 1) -+#define NANDC_ONFI_BADID_PG1 REG_BIT_FIELD(0x148, 4, 1) -+#define NANDC_ONFI_BADID_PG0 REG_BIT_FIELD(0x148, 3, 1) -+#define NANDC_ONFI_BADCRC_PG2 REG_BIT_FIELD(0x148, 2, 1) -+#define NANDC_ONFI_BADCRC_PG1 REG_BIT_FIELD(0x148, 1, 1) -+#define NANDC_ONFI_BADCRC_PG0 REG_BIT_FIELD(0x148, 0, 1) -+ -+#define NANDC_ONFI_DEBUG_DATA REG_BIT_FIELD(0x14c, 0, 32) -+ -+#define NANDC_SEMAPHORE REG_BIT_FIELD(0x150, 0, 8) -+ -+#define NANDC_DEVID_BYTE(b) REG_BIT_FIELD(0x194+((b)&0x4), \ -+ 24-(((b)&3)<<3), 8) -+ -+#define NANDC_LL_RDDATA REG_BIT_FIELD(0x19c, 0, 16) -+ -+#define NANDC_INT_N_REG(n) REG_BIT_FIELD(0xf00|((n)<<2), 0, 1) -+#define NANDC_INT_DIREC_READ_MISS REG_BIT_FIELD(0xf00, 0, 1) -+#define NANDC_INT_ERASE_DONE REG_BIT_FIELD(0xf04, 0, 1) -+#define NANDC_INT_CPYBK_DONE REG_BIT_FIELD(0xf08, 0, 1) -+#define NANDC_INT_PROGRAM_DONE REG_BIT_FIELD(0xf0c, 0, 1) -+#define NANDC_INT_CONTROLLER_RDY REG_BIT_FIELD(0xf10, 0, 1) -+#define NANDC_INT_RDBSY_RDY REG_BIT_FIELD(0xf14, 0, 1) -+#define NANDC_INT_ECC_UNCORRECTABLE REG_BIT_FIELD(0xf18, 0, 1) -+#define NANDC_INT_ECC_CORRECTABLE REG_BIT_FIELD(0xf1c, 0, 1) -+ -+/* -+ * Following registers are treated as contigous IO memory, offset is from -+ * <reg_base>, and the data is in big-endian byte order -+ */ -+#define NANDC_SPARE_AREA_READ_OFF 0x200 -+#define NANDC_SPARE_AREA_WRITE_OFF 0x280 -+#define NANDC_CACHE_OFF 0x400 -+#define NANDC_CACHE_SIZE (128*4) -+ -+struct bcmnand_areg_field { -+ unsigned int reg; -+ unsigned int pos; -+ unsigned int width; -+}; -+ -+/* -+ * Following are IDM (a.k.a. Slave Wrapper) registers are off <idm_base>: -+ */ -+#define IDMREG_BIT_FIELD(r, p, w) ((struct bcmnand_areg_field){(r), (p), (w)}) -+ -+#define NANDC_IDM_AXI_BIG_ENDIAN IDMREG_BIT_FIELD(0x408, 28, 1) -+#define NANDC_IDM_APB_LITTLE_ENDIAN IDMREG_BIT_FIELD(0x408, 24, 1) -+#define NANDC_IDM_TM IDMREG_BIT_FIELD(0x408, 16, 5) -+#define NANDC_IDM_IRQ_CORRECABLE_EN IDMREG_BIT_FIELD(0x408, 9, 1) -+#define NANDC_IDM_IRQ_UNCORRECABLE_EN IDMREG_BIT_FIELD(0x408, 8, 1) -+#define NANDC_IDM_IRQ_RDYBSY_RDY_EN IDMREG_BIT_FIELD(0x408, 7, 1) -+#define NANDC_IDM_IRQ_CONTROLLER_RDY_EN IDMREG_BIT_FIELD(0x408, 6, 1) -+#define NANDC_IDM_IRQ_PRPOGRAM_COMP_EN IDMREG_BIT_FIELD(0x408, 5, 1) -+#define NANDC_IDM_IRQ_COPYBK_COMP_EN IDMREG_BIT_FIELD(0x408, 4, 1) -+#define NANDC_IDM_IRQ_ERASE_COMP_EN IDMREG_BIT_FIELD(0x408, 3, 1) -+#define NANDC_IDM_IRQ_READ_MISS_EN IDMREG_BIT_FIELD(0x408, 2, 1) -+#define NANDC_IDM_IRQ_N_EN(n) IDMREG_BIT_FIELD(0x408, 2+(n), 1) -+ -+#define NANDC_IDM_CLOCK_EN IDMREG_BIT_FIELD(0x408, 0, 1) -+ -+#define NANDC_IDM_IO_ECC_CORR IDMREG_BIT_FIELD(0x500, 3, 1) -+#define NANDC_IDM_IO_ECC_UNCORR IDMREG_BIT_FIELD(0x500, 2, 1) -+#define NANDC_IDM_IO_RDYBSY IDMREG_BIT_FIELD(0x500, 1, 1) -+#define NANDC_IDM_IO_CTRL_RDY IDMREG_BIT_FIELD(0x500, 0, 1) -+ -+#define NANDC_IDM_RESET IDMREG_BIT_FIELD(0x800, 0, 1) -+ /* Remaining IDM registers do not seem to be useful, skipped */ -+ -+/* -+ * NAND Controller has its own command opcodes -+ * different from opcodes sent to the actual flash chip -+ */ -+#define NANDC_CMD_OPCODE_NULL 0 -+#define NANDC_CMD_OPCODE_PAGE_READ 1 -+#define NANDC_CMD_OPCODE_SPARE_READ 2 -+#define NANDC_CMD_OPCODE_STATUS_READ 3 -+#define NANDC_CMD_OPCODE_PAGE_PROG 4 -+#define NANDC_CMD_OPCODE_SPARE_PROG 5 -+#define NANDC_CMD_OPCODE_DEVID_READ 7 -+#define NANDC_CMD_OPCODE_BLOCK_ERASE 8 -+#define NANDC_CMD_OPCODE_FLASH_RESET 9 -+ -+/* -+ * NAND Controller hardware ECC data size -+ * -+ * The following table contains the number of bytes needed for -+ * each of the ECC levels, per "sector", which is either 512 or 1024 bytes. -+ * The actual layout is as follows: -+ * The entire spare area is equally divided into as many sections as there -+ * are sectors per page, and the ECC data is located at the end of each -+ * of these sections. -+ * For example, given a 2K per page and 64 bytes spare device, configured for -+ * sector size 1k and ECC level of 4, the spare area will be divided into 2 -+ * sections 32 bytes each, and the last 14 bytes of 32 in each section will -+ * be filled with ECC data. -+ * Note: the name of the algorythm and the number of error bits it can correct -+ * is of no consequence to this driver, therefore omitted. -+ */ -+struct bcmnand_ecc_size_s { -+ unsigned char sector_size_shift; -+ unsigned char ecc_level; -+ unsigned char ecc_bytes_per_sec; -+ unsigned char reserved; -+}; -+ -+static const struct bcmnand_ecc_size_s bcmnand_ecc_sizes[] = { -+ { 9, 0, 0 }, -+ { 10, 0, 0 }, -+ { 9, 1, 2 }, -+ { 10, 1, 4 }, -+ { 9, 2, 4 }, -+ { 10, 2, 7 }, -+ { 9, 3, 6 }, -+ { 10, 3, 11 }, -+ { 9, 4, 7 }, -+ { 10, 4, 14 }, -+ { 9, 5, 9 }, -+ { 10, 5, 18 }, -+ { 9, 6, 11 }, -+ { 10, 6, 21 }, -+ { 9, 7, 13 }, -+ { 10, 7, 25 }, -+ { 9, 8, 14 }, -+ { 10, 8, 28 }, -+ -+ { 9, 9, 16 }, -+ { 9, 10, 18 }, -+ { 9, 11, 20 }, -+ { 9, 12, 21 }, -+ -+ { 10, 9, 32 }, -+ { 10, 10, 35 }, -+ { 10, 11, 39 }, -+ { 10, 12, 42 }, -+}; -+ -+/* -+ * Populate the various fields that depend on how -+ * the hardware ECC data is located in the spare area -+ * -+ * For this controiller, it is easier to fill-in these -+ * structures at run time. -+ * -+ * The bad-block marker is assumed to occupy one byte -+ * at chip->badblockpos, which must be in the first -+ * sector of the spare area, namely it is either -+ * at offset 0 or 5. -+ * Some chips use both for manufacturer's bad block -+ * markers, but we ingore that issue here, and assume only -+ * one byte is used as bad-block marker always. -+ */ -+static int bcmnand_hw_ecc_layout(struct bcmnand_ctrl *ctrl) -+{ -+ struct nand_ecclayout *layout; -+ struct device *dev = &ctrl->core->dev; -+ unsigned int i, j, k; -+ unsigned int ecc_per_sec, oob_per_sec; -+ unsigned int bbm_pos = ctrl->nand.badblockpos; -+ -+ /* Caclculate spare area per sector size */ -+ oob_per_sec = ctrl->mtd.oobsize >> ctrl->sec_per_page_shift; -+ -+ /* Try to calculate the amount of ECC bytes per sector with a formula */ -+ if (ctrl->sector_size_shift == 9) -+ ecc_per_sec = ((ctrl->ecc_level * 14) + 7) >> 3; -+ else if (ctrl->sector_size_shift == 10) -+ ecc_per_sec = ((ctrl->ecc_level * 14) + 3) >> 2; -+ else -+ ecc_per_sec = oob_per_sec + 1; /* cause an error if not in table */ -+ -+ /* Now find out the answer according to the table */ -+ for (i = 0; i < ARRAY_SIZE(bcmnand_ecc_sizes); i++) { -+ if (bcmnand_ecc_sizes[i].ecc_level == ctrl->ecc_level && -+ bcmnand_ecc_sizes[i].sector_size_shift == -+ ctrl->sector_size_shift) { -+ break; -+ } -+ } -+ -+ /* Table match overrides formula */ -+ if (bcmnand_ecc_sizes[i].ecc_level == ctrl->ecc_level && -+ bcmnand_ecc_sizes[i].sector_size_shift == ctrl->sector_size_shift) -+ ecc_per_sec = bcmnand_ecc_sizes[i].ecc_bytes_per_sec; -+ -+ /* Return an error if calculated ECC leaves no room for OOB */ -+ if ((ctrl->sec_per_page_shift != 0 && ecc_per_sec >= oob_per_sec) || -+ (ctrl->sec_per_page_shift == 0 && ecc_per_sec >= (oob_per_sec - 1))) { -+ dev_err(dev, "ECC level %d too high, leaves no room for OOB data\n", -+ ctrl->ecc_level); -+ return -EINVAL; -+ } -+ -+ /* Fill in the needed fields */ -+ ctrl->nand.ecc.size = ctrl->mtd.writesize >> ctrl->sec_per_page_shift; -+ ctrl->nand.ecc.bytes = ecc_per_sec; -+ ctrl->nand.ecc.steps = 1 << ctrl->sec_per_page_shift; -+ ctrl->nand.ecc.total = ecc_per_sec << ctrl->sec_per_page_shift; -+ ctrl->nand.ecc.strength = ctrl->ecc_level; -+ -+ /* Build an ecc layout data structure */ -+ layout = &ctrl->ecclayout; -+ memset(layout, 0, sizeof(*layout)); -+ -+ /* Total number of bytes used by HW ECC */ -+ layout->eccbytes = ecc_per_sec << ctrl->sec_per_page_shift; -+ -+ /* Location for each of the HW ECC bytes */ -+ for (i = j = 0, k = 1; -+ i < ARRAY_SIZE(layout->eccpos) && i < layout->eccbytes; -+ i++, j++) { -+ /* switch sector # */ -+ if (j == ecc_per_sec) { -+ j = 0; -+ k++; -+ } -+ /* save position of each HW-generated ECC byte */ -+ layout->eccpos[i] = (oob_per_sec * k) - ecc_per_sec + j; -+ -+ /* Check that HW ECC does not overlap bad-block marker */ -+ if (bbm_pos == layout->eccpos[i]) { -+ dev_err(dev, "ECC level %d too high, HW ECC collides with bad-block marker position\n", -+ ctrl->ecc_level); -+ return -EINVAL; -+ } -+ } -+ -+ /* Location of all user-available OOB byte-ranges */ -+ for (i = 0; i < ARRAY_SIZE(layout->oobfree); i++) { -+ struct nand_oobfree *oobfree = &layout->oobfree[i]; -+ -+ if (i >= (1 << ctrl->sec_per_page_shift)) -+ break; -+ oobfree->offset = oob_per_sec * i; -+ oobfree->length = oob_per_sec - ecc_per_sec; -+ -+ /* Bad-block marker must be in the first sector spare area */ -+ if (WARN_ON(bbm_pos >= (oobfree->offset + oobfree->length))) -+ return -EINVAL; -+ -+ if (i != 0) -+ continue; -+ -+ /* Remove bad-block marker from available byte range */ -+ if (bbm_pos == oobfree->offset) { -+ oobfree->offset += 1; -+ oobfree->length -= 1; -+ } else if (bbm_pos == (oobfree->offset + oobfree->length - 1)) { -+ oobfree->length -= 1; -+ } else { -+ layout->oobfree[i + 1].offset = bbm_pos + 1; -+ layout->oobfree[i + 1].length = -+ oobfree->length - bbm_pos - 1; -+ oobfree->length = bbm_pos; -+ i++; -+ } -+ } -+ -+ layout->oobavail = ((oob_per_sec - ecc_per_sec) -+ << ctrl->sec_per_page_shift) - 1; -+ -+ ctrl->mtd.oobavail = layout->oobavail; -+ ctrl->nand.ecc.layout = layout; -+ -+ /* Output layout for debugging */ -+ dev_dbg(dev, "Spare area=%d eccbytes %d, ecc bytes located at:\n", -+ ctrl->mtd.oobsize, layout->eccbytes); -+ for (i = j = 0; -+ i < ARRAY_SIZE(layout->eccpos) && i < layout->eccbytes; i++) -+ pr_debug(" %d", layout->eccpos[i]); -+ pr_debug("\n"); -+ -+ dev_dbg(dev, "Available %d bytes at (off,len):\n", layout->oobavail); -+ for (i = 0; i < ARRAY_SIZE(layout->oobfree); i++) -+ pr_debug("(%d,%d) ", layout->oobfree[i].offset, -+ layout->oobfree[i].length); -+ pr_debug("\n"); -+ -+ return 0; -+} -+ -+/* -+ * Register bit-field manipulation routines -+ */ -+ -+static inline unsigned int bcmnand_reg_read(struct bcmnand_ctrl *ctrl, -+ struct bcmnand_reg_field rbf) -+{ -+ u32 val; -+ -+ val = bcma_read32(ctrl->core, rbf.reg); -+ val >>= rbf.pos; -+ val &= (1 << rbf.width) - 1; -+ -+ return val; -+} -+ -+static inline void bcmnand_reg_write(struct bcmnand_ctrl *ctrl, -+ struct bcmnand_reg_field rbf, -+ unsigned newval) -+{ -+ u32 val, msk; -+ -+ msk = (1 << rbf.width) - 1; -+ msk <<= rbf.pos; -+ newval <<= rbf.pos; -+ newval &= msk; -+ -+ val = bcma_read32(ctrl->core, rbf.reg); -+ val &= ~msk; -+ val |= newval; -+ bcma_write32(ctrl->core, rbf.reg, val); -+} -+ -+static inline unsigned int bcmnand_reg_aread(struct bcmnand_ctrl *ctrl, -+ struct bcmnand_areg_field rbf) -+{ -+ u32 val; -+ -+ val = bcma_aread32(ctrl->core, rbf.reg); -+ val >>= rbf.pos; -+ val &= (1 << rbf.width) - 1; -+ -+ return val; -+} -+ -+static inline void bcmnand_reg_awrite(struct bcmnand_ctrl *ctrl, -+ struct bcmnand_areg_field rbf, -+ unsigned int newval) -+{ -+ u32 val, msk; -+ -+ msk = (1 << rbf.width) - 1; -+ msk <<= rbf.pos; -+ newval <<= rbf.pos; -+ newval &= msk; -+ -+ val = bcma_aread32(ctrl->core, rbf.reg); -+ val &= ~msk; -+ val |= newval; -+ bcma_awrite32(ctrl->core, rbf.reg, val); -+} -+ -+/* -+ * NAND Interface - dev_ready -+ * -+ * Return 1 iff device is ready, 0 otherwise -+ */ -+static int bcmnand_dev_ready(struct mtd_info *mtd) -+{ -+ struct nand_chip *chip = mtd->priv; -+ struct bcmnand_ctrl *ctrl = chip->priv; -+ -+ return bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY); -+} -+ -+/* -+ * Interrupt service routines -+ */ -+static irqreturn_t bcmnand_isr(int irq, void *dev_id) -+{ -+ struct bcmnand_ctrl *ctrl = dev_id; -+ int irq_off; -+ -+ irq_off = irq - ctrl->core->irq; -+ WARN_ON(irq_off < 0 || irq_off >= NANDC_IRQ_NUM); -+ -+ if (!bcmnand_reg_read(ctrl, NANDC_INT_N_REG(irq_off))) -+ return IRQ_NONE; -+ -+ /* Acknowledge interrupt */ -+ bcmnand_reg_write(ctrl, NANDC_INT_N_REG(irq_off), 1); -+ -+ /* Wake up task */ -+ complete(&ctrl->op_completion); -+ -+ return IRQ_HANDLED; -+} -+ -+static int bcmnand_wait_interrupt(struct bcmnand_ctrl *ctrl, -+ unsigned int irq_off, -+ unsigned int timeout_usec) -+{ -+ long timeout_jiffies; -+ int ret = 0; -+ -+ reinit_completion(&ctrl->op_completion); -+ -+ /* Acknowledge interrupt */ -+ bcmnand_reg_write(ctrl, NANDC_INT_N_REG(irq_off), 1); -+ -+ /* Enable IRQ to wait on */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 1); -+ -+ timeout_jiffies = 1 + usecs_to_jiffies(timeout_usec); -+ -+ if (irq_off != NANDC_IRQ_CONTROLLER_RDY || -+ 0 == bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY)) { -+ -+ timeout_jiffies = wait_for_completion_timeout( -+ &ctrl->op_completion, timeout_jiffies); -+ -+ if (timeout_jiffies < 0) -+ ret = timeout_jiffies; -+ if (timeout_jiffies == 0) -+ ret = -ETIME; -+ } -+ -+ /* Disable IRQ, we're done waiting */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 0); -+ -+ if (bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY)) -+ ret = 0; -+ -+ return ret; -+} -+ -+/* -+ * wait for command completion -+ */ -+static int bcmnand_wait_cmd(struct bcmnand_ctrl *ctrl, unsigned int timeout_usec) -+{ -+ unsigned int retries; -+ -+ if (bcmnand_reg_read(ctrl, NANDC_INT_STAT_CTLR_RDY)) -+ return 0; -+ -+ /* If the timeout is long, wait for interrupt */ -+ if (timeout_usec >= jiffies_to_usecs(1) >> 4) -+ return bcmnand_wait_interrupt( -+ ctrl, NANDC_IRQ_CONTROLLER_RDY, timeout_usec); -+ -+ /* Wait for completion of the prior command */ -+ retries = (timeout_usec >> 3) + 1; -+ -+ while (retries-- && -+ 0 == bcmnand_reg_read(ctrl, NANDC_INT_STAT_CTLR_RDY)) { -+ cpu_relax(); -+ udelay(6); -+ } -+ -+ if (retries == 0) -+ return -ETIME; -+ -+ return 0; -+} -+ -+ -+/* -+ * NAND Interface - waitfunc -+ */ -+static int bcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) -+{ -+ struct bcmnand_ctrl *ctrl = chip->priv; -+ unsigned int to; -+ int ret; -+ -+ /* figure out timeout based on what command is on */ -+ switch (ctrl->last_cmd) { -+ default: -+ case NAND_CMD_ERASE1: -+ case NAND_CMD_ERASE2: -+ to = 1 << 16; -+ break; -+ case NAND_CMD_STATUS: -+ case NAND_CMD_RESET: -+ to = 256; -+ break; -+ case NAND_CMD_READID: -+ to = 1024; -+ break; -+ case NAND_CMD_READ1: -+ case NAND_CMD_READ0: -+ to = 2048; -+ break; -+ case NAND_CMD_PAGEPROG: -+ to = 4096; -+ break; -+ case NAND_CMD_READOOB: -+ to = 512; -+ break; -+ } -+ -+ /* deliver deferred error code if any */ -+ ret = ctrl->cmd_ret; -+ if (ret < 0) -+ ctrl->cmd_ret = 0; -+ else -+ ret = bcmnand_wait_cmd(ctrl, to); -+ -+ /* Timeout */ -+ if (ret < 0) -+ return NAND_STATUS_FAIL; -+ -+ ret = bcmnand_reg_read(ctrl, NANDC_INT_STAT_FLASH_STATUS); -+ -+ return ret; -+} -+ -+/* -+ * NAND Interface - read_oob -+ */ -+static int bcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, -+ int page) -+{ -+ struct bcmnand_ctrl *ctrl = chip->priv; -+ unsigned int n = ctrl->chip_num; -+ void __iomem *ctrl_spare; -+ unsigned int spare_per_sec, sector; -+ u64 nand_addr; -+ -+ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_READ_OFF; -+ -+ /* Set the page address for the following commands */ -+ nand_addr = ((u64)page << chip->page_shift); -+ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32); -+ -+ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift; -+ -+ /* Disable ECC validation for spare area reads */ -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_RD_ECC(n), 0); -+ -+ /* Loop all sectors in page */ -+ for (sector = 0; sector < (1<<ctrl->sec_per_page_shift); sector++) { -+ unsigned int col; -+ -+ col = (sector << ctrl->sector_size_shift); -+ -+ /* Issue command to read partial page */ -+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr + col); -+ -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_SPARE_READ); -+ -+ /* Wait for the command to complete */ -+ if (bcmnand_wait_cmd(ctrl, (sector == 0) ? 10000 : 100)) -+ return -EIO; -+ -+ if (!bcmnand_reg_read(ctrl, NANDC_INT_STAT_SPARE_VALID)) -+ return -EIO; -+ -+ /* Set controller to Little Endian mode for copying */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1); -+ -+ memcpy(chip->oob_poi + sector * spare_per_sec, -+ ctrl_spare, spare_per_sec); -+ -+ /* Return to Big Endian mode for commands etc */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0); -+ } -+ -+ return 0; -+} -+ -+/* -+ * NAND Interface - write_oob -+ */ -+static int bcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, -+ int page) -+{ -+ struct bcmnand_ctrl *ctrl = chip->priv; -+ unsigned int n = ctrl->chip_num; -+ void __iomem *ctrl_spare; -+ unsigned int spare_per_sec, sector, num_sec; -+ u64 nand_addr; -+ int to, status = 0; -+ -+ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_WRITE_OFF; -+ -+ /* Disable ECC generation for spare area writes */ -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_WR_ECC(n), 0); -+ -+ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift; -+ -+ /* Set the page address for the following commands */ -+ nand_addr = ((u64)page << chip->page_shift); -+ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32); -+ -+ /* Must allow partial programming to change spare area only */ -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PGM_PARTIAL(n), 1); -+ -+ num_sec = 1 << ctrl->sec_per_page_shift; -+ /* Loop all sectors in page */ -+ for (sector = 0; sector < num_sec; sector++) { -+ unsigned int col; -+ -+ /* Spare area accessed by the data sector offset */ -+ col = (sector << ctrl->sector_size_shift); -+ -+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr + col); -+ -+ /* Set controller to Little Endian mode for copying */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1); -+ -+ memcpy(ctrl_spare, chip->oob_poi + sector * spare_per_sec, -+ spare_per_sec); -+ -+ /* Return to Big Endian mode for commands etc */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0); -+ -+ /* Push spare bytes into internal buffer, last goes to flash */ -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_SPARE_PROG); -+ -+ if (sector == (num_sec - 1)) -+ to = 1 << 16; -+ else -+ to = 1 << 10; -+ -+ if (bcmnand_wait_cmd(ctrl, to)) -+ return -EIO; -+ } -+ -+ /* Restore partial programming inhibition */ -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PGM_PARTIAL(n), 0); -+ -+ status = bcmnand_waitfunc(mtd, chip); -+ return status & NAND_STATUS_FAIL ? -EIO : 0; -+} -+ -+/* -+ * verify that a buffer is all erased -+ */ -+static bool bcmnand_buf_erased(const void *buf, unsigned int len) -+{ -+ unsigned int i; -+ const u32 *p = buf; -+ -+ for (i = 0; i < (len >> 2); i++) { -+ if (p[i] != 0xffffffff) -+ return false; -+ } -+ return true; -+} -+ -+/* -+ * read a page, with or without ECC checking -+ */ -+static int bcmnand_read_page_do(struct mtd_info *mtd, struct nand_chip *chip, -+ uint8_t *buf, int page, bool ecc) -+{ -+ struct bcmnand_ctrl *ctrl = chip->priv; -+ unsigned int n = ctrl->chip_num; -+ void __iomem *ctrl_cache; -+ void __iomem *ctrl_spare; -+ unsigned int data_bytes; -+ unsigned int spare_per_sec; -+ unsigned int sector, to = 1 << 16; -+ u32 err_soft_reg, err_hard_reg; -+ unsigned int hard_err_count = 0; -+ int ret; -+ u64 nand_addr; -+ -+ ctrl_cache = ctrl->core->io_addr + NANDC_CACHE_OFF; -+ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_READ_OFF; -+ -+ /* Reset ECC error stats */ -+ err_hard_reg = bcmnand_reg_read(ctrl, NANDC_UNCORR_ERR_COUNT); -+ err_soft_reg = bcmnand_reg_read(ctrl, NANDC_READ_CORR_BIT_COUNT); -+ -+ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift; -+ -+ /* Set the page address for the following commands */ -+ nand_addr = ((u64)page << chip->page_shift); -+ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32); -+ -+ /* Enable ECC validation for ecc page reads */ -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_RD_ECC(n), ecc); -+ -+ /* Loop all sectors in page */ -+ for (sector = 0; sector < (1 << ctrl->sec_per_page_shift); sector++) { -+ data_bytes = 0; -+ -+ /* Copy partial sectors sized by cache reg */ -+ while (data_bytes < (1<<ctrl->sector_size_shift)) { -+ unsigned int col; -+ -+ col = data_bytes + (sector << ctrl->sector_size_shift); -+ -+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, -+ nand_addr + col); -+ -+ /* Issue command to read partial page */ -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_PAGE_READ); -+ -+ /* Wait for the command to complete */ -+ ret = bcmnand_wait_cmd(ctrl, to); -+ if (ret < 0) -+ return ret; -+ -+ /* Set controller to Little Endian mode for copying */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1); -+ -+ if (data_bytes == 0) { -+ memcpy(chip->oob_poi + sector * spare_per_sec, -+ ctrl_spare, spare_per_sec); -+ } -+ -+ memcpy(buf + col, ctrl_cache, NANDC_CACHE_SIZE); -+ data_bytes += NANDC_CACHE_SIZE; -+ -+ /* Return to Big Endian mode for commands etc */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0); -+ -+ /* Next iterations should go fast */ -+ to = 1 << 10; -+ -+ /* capture hard errors for each partial */ -+ if (err_hard_reg != bcmnand_reg_read(ctrl, NANDC_UNCORR_ERR_COUNT)) { -+ int era = bcmnand_reg_read(ctrl, NANDC_INT_STAT_ERASED); -+ -+ if (!era && -+ !bcmnand_buf_erased(buf + col, NANDC_CACHE_SIZE)) -+ hard_err_count++; -+ -+ err_hard_reg = bcmnand_reg_read(ctrl, -+ NANDC_UNCORR_ERR_COUNT); -+ } -+ } -+ } -+ -+ if (!ecc) -+ return 0; -+ -+ /* Report hard ECC errors */ -+ if (hard_err_count) -+ mtd->ecc_stats.failed++; -+ -+ /* Get ECC soft error stats */ -+ mtd->ecc_stats.corrected += err_soft_reg - -+ bcmnand_reg_read(ctrl, NANDC_READ_CORR_BIT_COUNT); -+ -+ return 0; -+} -+ -+/* -+ * NAND Interface - read_page_ecc -+ */ -+static int bcmnand_read_page_ecc(struct mtd_info *mtd, struct nand_chip *chip, -+ uint8_t *buf, int oob_required, int page) -+{ -+ return bcmnand_read_page_do(mtd, chip, buf, page, true); -+} -+ -+/* -+ * NAND Interface - read_page_raw -+ */ -+static int bcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, -+ uint8_t *buf, int oob_required, int page) -+{ -+ return bcmnand_read_page_do(mtd, chip, buf, page, true); -+} -+ -+/* -+ * do page write, with or without ECC generation enabled -+ */ -+static int bcmnand_write_page_do(struct mtd_info *mtd, struct nand_chip *chip, -+ const uint8_t *buf, bool ecc) -+{ -+ struct bcmnand_ctrl *ctrl = chip->priv; -+ unsigned int n = ctrl->chip_num; -+ void __iomem *ctrl_cache; -+ void __iomem *ctrl_spare; -+ unsigned int spare_per_sec, sector, num_sec; -+ unsigned int data_bytes, spare_bytes; -+ int i, to; -+ uint8_t *tmp_poi; -+ u32 nand_addr; -+ -+ ctrl_cache = ctrl->core->io_addr + NANDC_CACHE_OFF; -+ ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_WRITE_OFF; -+ -+ /* Get start-of-page address */ -+ nand_addr = bcmnand_reg_read(ctrl, NANDC_CMD_ADDRESS); -+ -+ tmp_poi = kmalloc(mtd->oobsize, GFP_KERNEL); -+ if (!tmp_poi) -+ return -ENOMEM; -+ -+ /* Retreive pre-existing OOB values */ -+ memcpy(tmp_poi, chip->oob_poi, mtd->oobsize); -+ ctrl->cmd_ret = bcmnand_read_oob(mtd, chip, -+ nand_addr >> chip->page_shift); -+ if (ctrl->cmd_ret < 0) { -+ kfree(tmp_poi); -+ return ctrl->cmd_ret; -+ } -+ -+ /* Apply new OOB data bytes just like they would end up on the chip */ -+ for (i = 0; i < mtd->oobsize; i++) -+ chip->oob_poi[i] &= tmp_poi[i]; -+ kfree(tmp_poi); -+ -+ spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift; -+ -+ /* Enable ECC generation for ecc page write, if requested */ -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_WR_ECC(n), ecc); -+ -+ spare_bytes = 0; -+ num_sec = 1 << ctrl->sec_per_page_shift; -+ -+ /* Loop all sectors in page */ -+ for (sector = 0; sector < num_sec; sector++) { -+ data_bytes = 0; -+ -+ /* Copy partial sectors sized by cache reg */ -+ while (data_bytes < (1<<ctrl->sector_size_shift)) { -+ unsigned int col; -+ -+ col = data_bytes + -+ (sector << ctrl->sector_size_shift); -+ -+ /* Set address of 512-byte sub-page */ -+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, -+ nand_addr + col); -+ -+ /* Set controller to Little Endian mode for copying */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, -+ 1); -+ -+ /* Set spare area is written at each sector start */ -+ if (data_bytes == 0) { -+ memcpy(ctrl_spare, -+ chip->oob_poi + spare_bytes, -+ spare_per_sec); -+ spare_bytes += spare_per_sec; -+ } -+ -+ /* Copy sub-page data */ -+ memcpy(ctrl_cache, buf + col, NANDC_CACHE_SIZE); -+ data_bytes += NANDC_CACHE_SIZE; -+ -+ /* Return to Big Endian mode for commands etc */ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0); -+ -+ /* Push data into internal cache */ -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_PAGE_PROG); -+ -+ /* Wait for the command to complete */ -+ if (sector == (num_sec - 1)) -+ to = 1 << 16; -+ else -+ to = 1 << 10; -+ ctrl->cmd_ret = bcmnand_wait_cmd(ctrl, to); -+ if (ctrl->cmd_ret < 0) -+ return ctrl->cmd_ret; -+ } -+ } -+ return 0; -+} -+ -+/* -+ * NAND Interface = write_page_ecc -+ */ -+static int bcmnand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip, -+ const uint8_t *buf, int oob_required) -+{ -+ return bcmnand_write_page_do(mtd, chip, buf, true); -+} -+ -+/* -+ * NAND Interface = write_page_raw -+ */ -+static int bcmnand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, -+ const uint8_t *buf, int oob_required) -+{ -+ return bcmnand_write_page_do(mtd, chip, buf, false); -+} -+ -+/* -+ * MTD Interface - read_byte -+ * -+ * This function emulates simple controllers behavior -+ * for just a few relevant commands -+ */ -+static uint8_t bcmnand_read_byte(struct mtd_info *mtd) -+{ -+ struct nand_chip *nand = mtd->priv; -+ struct bcmnand_ctrl *ctrl = nand->priv; -+ struct device *dev = &ctrl->core->dev; -+ uint8_t b = ~0; -+ -+ switch (ctrl->last_cmd) { -+ case NAND_CMD_READID: -+ if (ctrl->id_byte_index < 8) { -+ b = bcmnand_reg_read(ctrl, NANDC_DEVID_BYTE( -+ ctrl->id_byte_index)); -+ ctrl->id_byte_index++; -+ } -+ break; -+ case NAND_CMD_READOOB: -+ if (ctrl->oob_index < mtd->oobsize) -+ b = nand->oob_poi[ctrl->oob_index++]; -+ break; -+ case NAND_CMD_STATUS: -+ b = bcmnand_reg_read(ctrl, NANDC_INT_STAT_FLASH_STATUS); -+ break; -+ default: -+ dev_err(dev, "got unkown command: 0x%x in read_byte\n", -+ ctrl->last_cmd); -+ } -+ return b; -+} -+ -+/* -+ * MTD Interface - read_word -+ * -+ * Can not be tested without x16 chip, but the SoC does not support x16 i/f. -+ */ -+static u16 bcmnand_read_word(struct mtd_info *mtd) -+{ -+ u16 w = ~0; -+ -+ w = bcmnand_read_byte(mtd); -+ barrier(); -+ w |= bcmnand_read_byte(mtd) << 8; -+ -+ return w; -+} -+ -+/* -+ * MTD Interface - select a chip from an array -+ */ -+static void bcmnand_select_chip(struct mtd_info *mtd, int chip) -+{ -+ struct nand_chip *nand = mtd->priv; -+ struct bcmnand_ctrl *ctrl = nand->priv; -+ -+ ctrl->chip_num = chip; -+ bcmnand_reg_write(ctrl, NANDC_CMD_CS_SEL, chip); -+} -+ -+/* -+ * NAND Interface - emulate low-level NAND commands -+ * -+ * Only a few low-level commands are really needed by generic NAND, -+ * and they do not call for CMD_LL operations the controller can support. -+ */ -+static void bcmnand_cmdfunc(struct mtd_info *mtd, unsigned int command, -+ int column, int page_addr) -+{ -+ struct nand_chip *nand = mtd->priv; -+ struct bcmnand_ctrl *ctrl = nand->priv; -+ struct device *dev = &ctrl->core->dev; -+ u64 nand_addr; -+ unsigned int to = 1; -+ -+ ctrl->last_cmd = command; -+ -+ /* Set address for some commands */ -+ switch (command) { -+ case NAND_CMD_ERASE1: -+ column = 0; -+ /*FALLTHROUGH*/ -+ case NAND_CMD_SEQIN: -+ case NAND_CMD_READ0: -+ case NAND_CMD_READ1: -+ WARN_ON(column >= mtd->writesize); -+ nand_addr = (u64) column | -+ ((u64)page_addr << nand->page_shift); -+ bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32); -+ bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr); -+ break; -+ case NAND_CMD_ERASE2: -+ case NAND_CMD_RESET: -+ case NAND_CMD_READID: -+ case NAND_CMD_READOOB: -+ case NAND_CMD_PAGEPROG: -+ default: -+ /* Do nothing, address not used */ -+ break; -+ } -+ -+ /* Issue appropriate command to controller */ -+ switch (command) { -+ case NAND_CMD_SEQIN: -+ /* Only need to load command address, done */ -+ return; -+ -+ case NAND_CMD_RESET: -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_FLASH_RESET); -+ to = 1 << 8; -+ break; -+ -+ case NAND_CMD_READID: -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_DEVID_READ); -+ ctrl->id_byte_index = 0; -+ to = 1 << 8; -+ break; -+ -+ case NAND_CMD_READ0: -+ case NAND_CMD_READ1: -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_PAGE_READ); -+ to = 1 << 15; -+ break; -+ case NAND_CMD_STATUS: -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_STATUS_READ); -+ to = 1 << 8; -+ break; -+ case NAND_CMD_ERASE1: -+ return; -+ -+ case NAND_CMD_ERASE2: -+ bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE, -+ NANDC_CMD_OPCODE_BLOCK_ERASE); -+ to = 1 << 18; -+ break; -+ -+ case NAND_CMD_PAGEPROG: -+ /* Cmd already set from write_page */ -+ return; -+ -+ case NAND_CMD_READOOB: -+ /* Emulate simple interface */ -+ bcmnand_read_oob(mtd, nand, page_addr); -+ ctrl->oob_index = 0; -+ return; -+ -+ default: -+ dev_err(dev, "got unkown command: 0x%x in cmdfunc\n", -+ ctrl->last_cmd); -+ } -+ -+ /* Wait for command to complete */ -+ ctrl->cmd_ret = bcmnand_wait_cmd(ctrl, to); -+ -+} -+ -+static int bcmnand_scan(struct mtd_info *mtd) -+{ -+ struct nand_chip *nand = mtd->priv; -+ struct bcmnand_ctrl *ctrl = nand->priv; -+ struct device *dev = &ctrl->core->dev; -+ bool sector_1k = false; -+ unsigned int chip_num = 0; -+ int ecc_level = 0; -+ int ret; -+ -+ ret = nand_scan_ident(mtd, NANDC_MAX_CHIPS, NULL); -+ if (ret) -+ return ret; -+ -+ /* Get configuration from first chip */ -+ sector_1k = bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_SECTOR_1K(0)); -+ ecc_level = bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(0)); -+ mtd->writesize_shift = nand->page_shift; -+ -+ ctrl->ecc_level = ecc_level; -+ ctrl->sector_size_shift = sector_1k ? 10 : 9; -+ -+ /* Configure spare area, tweak as needed */ -+ do { -+ ctrl->sec_per_page_shift = -+ mtd->writesize_shift - ctrl->sector_size_shift; -+ -+ /* will return -EINVAL if OOB space exhausted */ -+ ret = bcmnand_hw_ecc_layout(ctrl); -+ -+ /* First try to bump sector size to 1k, then decrease level */ -+ if (ret && nand->page_shift > 9 && ctrl->sector_size_shift < 10) -+ ctrl->sector_size_shift = 10; -+ else if (ret) -+ ctrl->ecc_level--; -+ -+ } while (ret && ctrl->ecc_level > 0); -+ -+ if (WARN_ON(ctrl->ecc_level == 0)) -+ return -ENOENT; -+ -+ if ((ctrl->sector_size_shift > 9) != (sector_1k == 1)) { -+ dev_info(dev, "sector size adjusted to 1k\n"); -+ sector_1k = 1; -+ } -+ -+ if (ecc_level != ctrl->ecc_level) { -+ dev_info(dev, "ECC level adjusted from %u to %u\n", -+ ecc_level, ctrl->ecc_level); -+ ecc_level = ctrl->ecc_level; -+ } -+ -+ /* handle the hardware chip config registers */ -+ for (chip_num = 0; chip_num < nand->numchips; chip_num++) { -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_SECTOR_1K(chip_num), -+ sector_1k); -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(chip_num), -+ ecc_level); -+ -+ /* Large pages: no partial page programming */ -+ if (mtd->writesize > 512) { -+ bcmnand_reg_write(ctrl, -+ NANDC_ACC_CTRL_PGM_RDIN(chip_num), 0); -+ bcmnand_reg_write(ctrl, -+ NANDC_ACC_CTRL_PGM_PARTIAL(chip_num), 0); -+ } -+ -+ /* Do not raise ECC error when reading erased pages */ -+ /* This bit has only partial effect, driver needs to help */ -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_ERA_ECC_ERR(chip_num), -+ 0); -+ -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PG_HIT(chip_num), 0); -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PREFETCH(chip_num), 0); -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_CACHE_MODE(chip_num), 0); -+ bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_CACHE_LASTPG(chip_num), -+ 0); -+ -+ /* TBD: consolidate or at least verify the s/w and h/w geometries agree */ -+ } -+ -+ /* Allow writing on device */ -+ if (!(nand->options & NAND_ROM)) -+ bcmnand_reg_write(ctrl, NANDC_CS_NAND_WP, 0); -+ -+ dev_dbg(dev, "layout.oobavail=%d\n", nand->ecc.layout->oobavail); -+ -+ ret = nand_scan_tail(mtd); -+ -+ if (nand->badblockbits == 0) -+ nand->badblockbits = 8; -+ if (WARN_ON((1 << nand->page_shift) != mtd->writesize)) -+ return -EIO; -+ -+ /* Spit out some key chip parameters as detected by nand_base */ -+ dev_dbg(dev, "erasesize=%d writesize=%d oobsize=%d page_shift=%d badblockpos=%d badblockbits=%d\n", -+ mtd->erasesize, mtd->writesize, mtd->oobsize, -+ nand->page_shift, nand->badblockpos, nand->badblockbits); -+ -+ return ret; -+} -+ -+/* -+ * main intiailization function -+ */ -+static int bcmnand_ctrl_init(struct bcmnand_ctrl *ctrl) -+{ -+ unsigned int chip; -+ struct nand_chip *nand; -+ struct mtd_info *mtd; -+ struct device *dev = &ctrl->core->dev; -+ int ret; -+ -+ /* Software variables init */ -+ nand = &ctrl->nand; -+ mtd = &ctrl->mtd; -+ -+ init_completion(&ctrl->op_completion); -+ -+ mtd->priv = nand; -+ mtd->owner = THIS_MODULE; -+ mtd->name = KBUILD_MODNAME; -+ -+ nand->priv = ctrl; -+ -+ nand->chip_delay = 5; /* not used */ -+ nand->IO_ADDR_R = nand->IO_ADDR_W = (void *)~0L; -+ -+ if (bcmnand_reg_read(ctrl, NANDC_CONFIG_CHIP_WIDTH(0))) -+ nand->options |= NAND_BUSWIDTH_16; -+ nand->options |= NAND_SKIP_BBTSCAN; /* Dont need BBTs */ -+ -+ nand->options |= NAND_NO_SUBPAGE_WRITE; /* Subpages unsupported */ -+ -+ nand->dev_ready = bcmnand_dev_ready; -+ nand->read_byte = bcmnand_read_byte; -+ nand->read_word = bcmnand_read_word; -+ nand->select_chip = bcmnand_select_chip; -+ nand->cmdfunc = bcmnand_cmdfunc; -+ nand->waitfunc = bcmnand_waitfunc; -+ -+ nand->ecc.mode = NAND_ECC_HW; -+ nand->ecc.read_page_raw = bcmnand_read_page_raw; -+ nand->ecc.write_page_raw = bcmnand_write_page_raw; -+ nand->ecc.read_page = bcmnand_read_page_ecc; -+ nand->ecc.write_page = bcmnand_write_page_ecc; -+ nand->ecc.read_oob = bcmnand_read_oob; -+ nand->ecc.write_oob = bcmnand_write_oob; -+ -+ /* Set AUTO_CNFIG bit - try to auto-detect chips */ -+ bcmnand_reg_write(ctrl, NANDC_CS_AUTO_CONFIG, 1); -+ -+ usleep_range(1000, 1500); -+ -+ /* Print out current chip config */ -+ for (chip = 0; chip < NANDC_MAX_CHIPS; chip++) { -+ dev_dbg(dev, "chip[%d]: size=%#x block=%#x page=%#x ecc_level=%#x\n", -+ chip, -+ bcmnand_reg_read(ctrl, NANDC_CONFIG_CHIP_SIZE(chip)), -+ bcmnand_reg_read(ctrl, NANDC_CONFIG_BLK_SIZE(chip)), -+ bcmnand_reg_read(ctrl, NANDC_CONFIG_PAGE_SIZE(chip)), -+ bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(chip))); -+ } -+ -+ dev_dbg(dev, "Nand controller is reads=%d\n", -+ bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY)); -+ -+ ret = bcmnand_scan(mtd); -+ if (ret) { -+ dev_err(dev, "scanning the nand flash chip failed with %i\n", -+ ret); -+ return ret; -+ } -+ -+ return 0; -+} -+ -+static int bcmnand_idm_init(struct bcmnand_ctrl *ctrl) -+{ -+ int irq_off; -+ unsigned int retries = 0x1000; -+ struct device *dev = &ctrl->core->dev; -+ -+ if (bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) -+ dev_info(dev, "stuck in reset\n"); -+ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_RESET, 1); -+ if (!bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) { -+ dev_err(dev, "reset of failed\n"); -+ return -EIO; -+ } -+ -+ while (bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) { -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_RESET, 0); -+ cpu_relax(); -+ usleep_range(100, 150); -+ if (!(retries--)) { -+ dev_err(dev, "did not came back from reset\n"); -+ return -ETIMEDOUT; -+ } -+ } -+ -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_CLOCK_EN, 1); -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0); -+ udelay(10); -+ -+ dev_info(dev, "NAND Controller rev %d.%02d\n", -+ bcmnand_reg_read(ctrl, NANDC_REV_MAJOR), -+ bcmnand_reg_read(ctrl, NANDC_REV_MINOR)); -+ -+ usleep_range(250, 350); -+ -+ /* Disable all IRQs */ -+ for (irq_off = 0; irq_off < NANDC_IRQ_NUM; irq_off++) -+ bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 0); -+ -+ return 0; -+} -+ -+static const char * const part_probes[] = { "ofpart", "bcm47xxpart", NULL }; -+ -+/* -+ * Top-level init function -+ */ -+static int bcmnand_probe(struct bcma_device *core) -+{ -+ struct mtd_part_parser_data parser_data; -+ struct device *dev = &core->dev; -+ struct bcmnand_ctrl *ctrl; -+ int res, i, irq; -+ -+ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); -+ if (!ctrl) -+ return -ENOMEM; -+ -+ bcma_set_drvdata(core, ctrl); -+ -+ ctrl->mtd.dev.parent = &core->dev; -+ ctrl->core = core; -+ -+ /* Acquire all interrupt lines */ -+ for (i = 0; i < NANDC_IRQ_NUM; i++) { -+ irq = bcma_core_irq(core, i); -+ if (!irq) { -+ dev_err(dev, "IRQ idx %i not available\n", i); -+ return -ENOENT; -+ } -+ res = devm_request_irq(dev, irq, bcmnand_isr, 0, -+ KBUILD_MODNAME, ctrl); -+ if (res < 0) { -+ dev_err(dev, "problem requesting irq: %i (idx: %i)\n", -+ irq, i); -+ return res; -+ } -+ } -+ -+ res = bcmnand_idm_init(ctrl); -+ if (res) -+ return res; -+ -+ res = bcmnand_ctrl_init(ctrl); -+ if (res) -+ return res; -+ -+ parser_data.of_node = dev->of_node; -+ res = mtd_device_parse_register(&ctrl->mtd, part_probes, &parser_data, NULL, 0); -+ if (res) { -+ dev_err(dev, "Failed to register MTD device: %d\n", res); -+ return res; -+ } -+ return 0; -+} -+ -+static void bcmnand_remove(struct bcma_device *core) -+{ -+ struct bcmnand_ctrl *ctrl = bcma_get_drvdata(core); -+ -+ mtd_device_unregister(&ctrl->mtd); -+} -+ -+static const struct bcma_device_id bcmnand_bcma_tbl[] = { -+ BCMA_CORE(BCMA_MANUF_BCM, BCMA_CORE_NS_NAND, BCMA_ANY_REV, BCMA_ANY_CLASS), -+ {}, -+}; -+MODULE_DEVICE_TABLE(bcma, bgmac_bcma_tbl); -+ -+static struct bcma_driver bcmnand_bcma_driver = { -+ .name = KBUILD_MODNAME, -+ .id_table = bcmnand_bcma_tbl, -+ .probe = bcmnand_probe, -+ .remove = bcmnand_remove, -+}; -+ -+static int __init bcmnand_init(void) -+{ -+ return bcma_driver_register(&bcmnand_bcma_driver); -+} -+ -+static void __exit bcmnand_exit(void) -+{ -+ bcma_driver_unregister(&bcmnand_bcma_driver); -+} -+ -+module_init(bcmnand_init) -+module_exit(bcmnand_exit) -+ -+MODULE_LICENSE("GPL"); -+MODULE_AUTHOR("Hauke Mehrtens"); -+MODULE_DESCRIPTION("Northstar on-chip NAND Flash Controller driver"); |