diff options
author | Florian Fainelli <florian@openwrt.org> | 2009-10-08 17:56:31 +0000 |
---|---|---|
committer | Florian Fainelli <florian@openwrt.org> | 2009-10-08 17:56:31 +0000 |
commit | ffc90868e475a57a2711a7ab9b121bc4aa4a80e1 (patch) | |
tree | 7ea72c86e6d3174786da49beef3a686d82f706fe | |
parent | 5f50864a9dfeef864af2b8dd1eb06f136a5b6540 (diff) | |
download | upstream-ffc90868e475a57a2711a7ab9b121bc4aa4a80e1.tar.gz upstream-ffc90868e475a57a2711a7ab9b121bc4aa4a80e1.tar.bz2 upstream-ffc90868e475a57a2711a7ab9b121bc4aa4a80e1.zip |
add support for the dwc_otg USB controller
SVN-Revision: 18006
-rw-r--r-- | package/kernel/modules/usb.mk | 14 | ||||
-rw-r--r-- | target/linux/octeon/Makefile | 2 | ||||
-rw-r--r-- | target/linux/octeon/config-default | 1 | ||||
-rw-r--r-- | target/linux/octeon/patches/017-platform_devices.patch | 371 | ||||
-rw-r--r-- | target/linux/octeon/patches/018-dwc_otg.patch | 17496 |
5 files changed, 17883 insertions, 1 deletions
diff --git a/package/kernel/modules/usb.mk b/package/kernel/modules/usb.mk index 8ce61f0f92..8ec76f0d36 100644 --- a/package/kernel/modules/usb.mk +++ b/package/kernel/modules/usb.mk @@ -149,6 +149,20 @@ endef $(eval $(call KernelPackage,usb-etrax)) +define KernelPackage/usb-octeon + $(call usbdep,@TARGET_octeon) + TITLE:=Support for the Octeon USB OTG controller + KCONFIG:=CONFIG_USB_DWC_OTG + FILES:=$(LINUX_DIR)/drivers/usb/host/dwc_otg/dwc_otg.$(LINUX_KMOD_SUFFIX) + AUTOLOAD:=$(call AutoLoad,50,dwc_otg) +endef + +define KernelPackage/usb-octeon/description + Kernel support for the Octeon USB host controller +endef + +$(eval $(call KernelPackage,usb-octeon)) + define KernelPackage/usb2 $(call usbdep,) diff --git a/target/linux/octeon/Makefile b/target/linux/octeon/Makefile index df97819bc3..74d7a1764f 100644 --- a/target/linux/octeon/Makefile +++ b/target/linux/octeon/Makefile @@ -9,7 +9,7 @@ include $(TOPDIR)/rules.mk ARCH:=mips BOARD:=octeon BOARDNAME:=Cavium Networks Octeon -FEATURES:=squashfs jffs2 pci +FEATURES:=squashfs jffs2 pci usb CFLAGS:=-Os -pipe -mtune=octeon -funit-at-a-time LINUX_VERSION:=2.6.30.8 diff --git a/target/linux/octeon/config-default b/target/linux/octeon/config-default index 90389f83ae..88960d400a 100644 --- a/target/linux/octeon/config-default +++ b/target/linux/octeon/config-default @@ -264,6 +264,7 @@ CONFIG_SYS_SUPPORTS_SMP=y # CONFIG_TIMER_STATS is not set CONFIG_TRACING_SUPPORT=y CONFIG_UNEVICTABLE_LRU=y +CONFIG_USB_SUPPORT=y CONFIG_USER_SCHED=y CONFIG_USE_GENERIC_SMP_HELPERS=y # CONFIG_VLAN_8021Q is not set diff --git a/target/linux/octeon/patches/017-platform_devices.patch b/target/linux/octeon/patches/017-platform_devices.patch new file mode 100644 index 0000000000..12c2ef181f --- /dev/null +++ b/target/linux/octeon/patches/017-platform_devices.patch @@ -0,0 +1,371 @@ +From: David Daney <ddaney@caviumnetworks.com> +Date: Wed, 16 Sep 2009 21:54:18 +0000 (-0700) +Subject: MIPS: Octeon: Move some platform device registration to its own file. +X-Git-Tag: linux-2.6.32-rc1~29 +X-Git-Url: http://www.linux-mips.org/git?p=linux.git;a=commitdiff_plain;h=936c111e;hp=e1302af3482d3955f5a6100160e595e792d5f1e4 + +MIPS: Octeon: Move some platform device registration to its own file. + +There is a bunch of platform device registration in +arch/mips/cavium-octeon/setup.c. We move it to its own file in +preparation for adding more platform devices. + +Signed-off-by: David Daney <ddaney@caviumnetworks.com> +Signed-off-by: Ralf Baechle <ralf@linux-mips.org> +--- + +diff --git a/arch/mips/cavium-octeon/Makefile b/arch/mips/cavium-octeon/Makefile +index d6903c3..1394362 100644 +--- a/arch/mips/cavium-octeon/Makefile ++++ b/arch/mips/cavium-octeon/Makefile +@@ -6,10 +6,10 @@ + # License. See the file "COPYING" in the main directory of this archive + # for more details. + # +-# Copyright (C) 2005-2008 Cavium Networks ++# Copyright (C) 2005-2009 Cavium Networks + # + +-obj-y := setup.o serial.o octeon-irq.o csrc-octeon.o ++obj-y := setup.o serial.o octeon-platform.o octeon-irq.o csrc-octeon.o + obj-y += dma-octeon.o flash_setup.o + obj-y += octeon-memcpy.o + +diff --git a/arch/mips/cavium-octeon/octeon-platform.c b/arch/mips/cavium-octeon/octeon-platform.c +new file mode 100644 +index 0000000..be711dd +--- /dev/null ++++ b/arch/mips/cavium-octeon/octeon-platform.c +@@ -0,0 +1,164 @@ ++/* ++ * This file is subject to the terms and conditions of the GNU General Public ++ * License. See the file "COPYING" in the main directory of this archive ++ * for more details. ++ * ++ * Copyright (C) 2004-2009 Cavium Networks ++ * Copyright (C) 2008 Wind River Systems ++ */ ++ ++#include <linux/init.h> ++#include <linux/irq.h> ++#include <linux/module.h> ++#include <linux/platform_device.h> ++ ++#include <asm/octeon/octeon.h> ++#include <asm/octeon/cvmx-rnm-defs.h> ++ ++static struct octeon_cf_data octeon_cf_data; ++ ++static int __init octeon_cf_device_init(void) ++{ ++ union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; ++ unsigned long base_ptr, region_base, region_size; ++ struct platform_device *pd; ++ struct resource cf_resources[3]; ++ unsigned int num_resources; ++ int i; ++ int ret = 0; ++ ++ /* Setup octeon-cf platform device if present. */ ++ base_ptr = 0; ++ if (octeon_bootinfo->major_version == 1 ++ && octeon_bootinfo->minor_version >= 1) { ++ if (octeon_bootinfo->compact_flash_common_base_addr) ++ base_ptr = ++ octeon_bootinfo->compact_flash_common_base_addr; ++ } else { ++ base_ptr = 0x1d000800; ++ } ++ ++ if (!base_ptr) ++ return ret; ++ ++ /* Find CS0 region. */ ++ for (i = 0; i < 8; i++) { ++ mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(i)); ++ region_base = mio_boot_reg_cfg.s.base << 16; ++ region_size = (mio_boot_reg_cfg.s.size + 1) << 16; ++ if (mio_boot_reg_cfg.s.en && base_ptr >= region_base ++ && base_ptr < region_base + region_size) ++ break; ++ } ++ if (i >= 7) { ++ /* i and i + 1 are CS0 and CS1, both must be less than 8. */ ++ goto out; ++ } ++ octeon_cf_data.base_region = i; ++ octeon_cf_data.is16bit = mio_boot_reg_cfg.s.width; ++ octeon_cf_data.base_region_bias = base_ptr - region_base; ++ memset(cf_resources, 0, sizeof(cf_resources)); ++ num_resources = 0; ++ cf_resources[num_resources].flags = IORESOURCE_MEM; ++ cf_resources[num_resources].start = region_base; ++ cf_resources[num_resources].end = region_base + region_size - 1; ++ num_resources++; ++ ++ ++ if (!(base_ptr & 0xfffful)) { ++ /* ++ * Boot loader signals availability of DMA (true_ide ++ * mode) by setting low order bits of base_ptr to ++ * zero. ++ */ ++ ++ /* Asume that CS1 immediately follows. */ ++ mio_boot_reg_cfg.u64 = ++ cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(i + 1)); ++ region_base = mio_boot_reg_cfg.s.base << 16; ++ region_size = (mio_boot_reg_cfg.s.size + 1) << 16; ++ if (!mio_boot_reg_cfg.s.en) ++ goto out; ++ ++ cf_resources[num_resources].flags = IORESOURCE_MEM; ++ cf_resources[num_resources].start = region_base; ++ cf_resources[num_resources].end = region_base + region_size - 1; ++ num_resources++; ++ ++ octeon_cf_data.dma_engine = 0; ++ cf_resources[num_resources].flags = IORESOURCE_IRQ; ++ cf_resources[num_resources].start = OCTEON_IRQ_BOOTDMA; ++ cf_resources[num_resources].end = OCTEON_IRQ_BOOTDMA; ++ num_resources++; ++ } else { ++ octeon_cf_data.dma_engine = -1; ++ } ++ ++ pd = platform_device_alloc("pata_octeon_cf", -1); ++ if (!pd) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ pd->dev.platform_data = &octeon_cf_data; ++ ++ ret = platform_device_add_resources(pd, cf_resources, num_resources); ++ if (ret) ++ goto fail; ++ ++ ret = platform_device_add(pd); ++ if (ret) ++ goto fail; ++ ++ return ret; ++fail: ++ platform_device_put(pd); ++out: ++ return ret; ++} ++device_initcall(octeon_cf_device_init); ++ ++/* Octeon Random Number Generator. */ ++static int __init octeon_rng_device_init(void) ++{ ++ struct platform_device *pd; ++ int ret = 0; ++ ++ struct resource rng_resources[] = { ++ { ++ .flags = IORESOURCE_MEM, ++ .start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS), ++ .end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf ++ }, { ++ .flags = IORESOURCE_MEM, ++ .start = cvmx_build_io_address(8, 0), ++ .end = cvmx_build_io_address(8, 0) + 0x7 ++ } ++ }; ++ ++ pd = platform_device_alloc("octeon_rng", -1); ++ if (!pd) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ ++ ret = platform_device_add_resources(pd, rng_resources, ++ ARRAY_SIZE(rng_resources)); ++ if (ret) ++ goto fail; ++ ++ ret = platform_device_add(pd); ++ if (ret) ++ goto fail; ++ ++ return ret; ++fail: ++ platform_device_put(pd); ++ ++out: ++ return ret; ++} ++device_initcall(octeon_rng_device_init); ++ ++MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); ++MODULE_LICENSE("GPL"); ++MODULE_DESCRIPTION("Platform driver for Octeon SOC"); +diff --git a/arch/mips/cavium-octeon/setup.c b/arch/mips/cavium-octeon/setup.c +index 468a120..b321d3b 100644 +--- a/arch/mips/cavium-octeon/setup.c ++++ b/arch/mips/cavium-octeon/setup.c +@@ -11,7 +11,6 @@ + #include <linux/delay.h> + #include <linux/interrupt.h> + #include <linux/io.h> +-#include <linux/irq.h> + #include <linux/serial.h> + #include <linux/smp.h> + #include <linux/types.h> +@@ -33,7 +32,6 @@ + #include <asm/time.h> + + #include <asm/octeon/octeon.h> +-#include <asm/octeon/cvmx-rnm-defs.h> + + #ifdef CONFIG_CAVIUM_DECODE_RSL + extern void cvmx_interrupt_rsl_decode(void); +@@ -825,147 +823,3 @@ void prom_free_prom_memory(void) + CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB option is set */ + octeon_hal_setup_reserved32(); + } +- +-static struct octeon_cf_data octeon_cf_data; +- +-static int __init octeon_cf_device_init(void) +-{ +- union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; +- unsigned long base_ptr, region_base, region_size; +- struct platform_device *pd; +- struct resource cf_resources[3]; +- unsigned int num_resources; +- int i; +- int ret = 0; +- +- /* Setup octeon-cf platform device if present. */ +- base_ptr = 0; +- if (octeon_bootinfo->major_version == 1 +- && octeon_bootinfo->minor_version >= 1) { +- if (octeon_bootinfo->compact_flash_common_base_addr) +- base_ptr = +- octeon_bootinfo->compact_flash_common_base_addr; +- } else { +- base_ptr = 0x1d000800; +- } +- +- if (!base_ptr) +- return ret; +- +- /* Find CS0 region. */ +- for (i = 0; i < 8; i++) { +- mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(i)); +- region_base = mio_boot_reg_cfg.s.base << 16; +- region_size = (mio_boot_reg_cfg.s.size + 1) << 16; +- if (mio_boot_reg_cfg.s.en && base_ptr >= region_base +- && base_ptr < region_base + region_size) +- break; +- } +- if (i >= 7) { +- /* i and i + 1 are CS0 and CS1, both must be less than 8. */ +- goto out; +- } +- octeon_cf_data.base_region = i; +- octeon_cf_data.is16bit = mio_boot_reg_cfg.s.width; +- octeon_cf_data.base_region_bias = base_ptr - region_base; +- memset(cf_resources, 0, sizeof(cf_resources)); +- num_resources = 0; +- cf_resources[num_resources].flags = IORESOURCE_MEM; +- cf_resources[num_resources].start = region_base; +- cf_resources[num_resources].end = region_base + region_size - 1; +- num_resources++; +- +- +- if (!(base_ptr & 0xfffful)) { +- /* +- * Boot loader signals availability of DMA (true_ide +- * mode) by setting low order bits of base_ptr to +- * zero. +- */ +- +- /* Asume that CS1 immediately follows. */ +- mio_boot_reg_cfg.u64 = +- cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(i + 1)); +- region_base = mio_boot_reg_cfg.s.base << 16; +- region_size = (mio_boot_reg_cfg.s.size + 1) << 16; +- if (!mio_boot_reg_cfg.s.en) +- goto out; +- +- cf_resources[num_resources].flags = IORESOURCE_MEM; +- cf_resources[num_resources].start = region_base; +- cf_resources[num_resources].end = region_base + region_size - 1; +- num_resources++; +- +- octeon_cf_data.dma_engine = 0; +- cf_resources[num_resources].flags = IORESOURCE_IRQ; +- cf_resources[num_resources].start = OCTEON_IRQ_BOOTDMA; +- cf_resources[num_resources].end = OCTEON_IRQ_BOOTDMA; +- num_resources++; +- } else { +- octeon_cf_data.dma_engine = -1; +- } +- +- pd = platform_device_alloc("pata_octeon_cf", -1); +- if (!pd) { +- ret = -ENOMEM; +- goto out; +- } +- pd->dev.platform_data = &octeon_cf_data; +- +- ret = platform_device_add_resources(pd, cf_resources, num_resources); +- if (ret) +- goto fail; +- +- ret = platform_device_add(pd); +- if (ret) +- goto fail; +- +- return ret; +-fail: +- platform_device_put(pd); +-out: +- return ret; +-} +-device_initcall(octeon_cf_device_init); +- +-/* Octeon Random Number Generator. */ +-static int __init octeon_rng_device_init(void) +-{ +- struct platform_device *pd; +- int ret = 0; +- +- struct resource rng_resources[] = { +- { +- .flags = IORESOURCE_MEM, +- .start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS), +- .end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf +- }, { +- .flags = IORESOURCE_MEM, +- .start = cvmx_build_io_address(8, 0), +- .end = cvmx_build_io_address(8, 0) + 0x7 +- } +- }; +- +- pd = platform_device_alloc("octeon_rng", -1); +- if (!pd) { +- ret = -ENOMEM; +- goto out; +- } +- +- ret = platform_device_add_resources(pd, rng_resources, +- ARRAY_SIZE(rng_resources)); +- if (ret) +- goto fail; +- +- ret = platform_device_add(pd); +- if (ret) +- goto fail; +- +- return ret; +-fail: +- platform_device_put(pd); +- +-out: +- return ret; +-} +-device_initcall(octeon_rng_device_init); diff --git a/target/linux/octeon/patches/018-dwc_otg.patch b/target/linux/octeon/patches/018-dwc_otg.patch new file mode 100644 index 0000000000..6f4a4d68ba --- /dev/null +++ b/target/linux/octeon/patches/018-dwc_otg.patch @@ -0,0 +1,17496 @@ +Signed-off-by: David Daney <ddaney@caviumnetworks.com> +--- + arch/mips/cavium-octeon/octeon-platform.c | 105 ++ + arch/mips/include/asm/octeon/cvmx-usbcx-defs.h | 1199 ++++++++++++++++++++++++ + arch/mips/include/asm/octeon/cvmx-usbnx-defs.h | 760 +++++++++++++++ + 3 files changed, 2064 insertions(+), 0 deletions(-) + create mode 100644 arch/mips/include/asm/octeon/cvmx-usbcx-defs.h + create mode 100644 arch/mips/include/asm/octeon/cvmx-usbnx-defs.h + +diff --git a/arch/mips/cavium-octeon/octeon-platform.c b/arch/mips/cavium-octeon/octeon-platform.c +index cfdb4c2..20698a6 100644 +--- a/arch/mips/cavium-octeon/octeon-platform.c ++++ b/arch/mips/cavium-octeon/octeon-platform.c +@@ -7,13 +7,19 @@ + * Copyright (C) 2008 Wind River Systems + */ + ++#include <linux/delay.h> + #include <linux/init.h> + #include <linux/irq.h> ++#include <linux/kernel.h> + #include <linux/module.h> + #include <linux/platform_device.h> + ++#include <asm/time.h> ++ + #include <asm/octeon/octeon.h> + #include <asm/octeon/cvmx-rnm-defs.h> ++#include <asm/octeon/cvmx-usbnx-defs.h> ++#include <asm/octeon/cvmx-usbcx-defs.h> + + static struct octeon_cf_data octeon_cf_data; + +@@ -247,6 +253,105 @@ out: + } + device_initcall(octeon_mgmt_device_init); + ++/* Octeon USB. */ ++static int __init octeon_usb_device_init(void) ++{ ++ int p_rtype_ref_clk = 2; ++ int number_usb_ports; ++ int usb_port; ++ int ret = 0; ++ ++ if (OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)) { ++ number_usb_ports = 0; ++ } else if (OCTEON_IS_MODEL(OCTEON_CN52XX)) { ++ number_usb_ports = 2; ++ /* CN52XX encodes this field differently */ ++ p_rtype_ref_clk = 1; ++ } else { ++ number_usb_ports = 1; ++ } ++ ++ for (usb_port = 0; usb_port < number_usb_ports; usb_port++) { ++ int divisor; ++ union cvmx_usbnx_clk_ctl usbn_clk_ctl; ++ struct platform_device *pdev; ++ struct resource usb_resource[2]; ++ ++ /* ++ * Divide the core clock down such that USB is as ++ * close as possible to 125Mhz. ++ */ ++ divisor = DIV_ROUND_UP(mips_hpt_frequency, 125000000); ++ /* Lower than 4 doesn't seem to work properly */ ++ if (divisor < 4) ++ divisor = 4; ++ ++ /* Fetch the value of the Register, and de-assert POR */ ++ usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb_port)); ++ usbn_clk_ctl.s.por = 0; ++ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) { ++ usbn_clk_ctl.cn31xx.p_rclk = 1; ++ usbn_clk_ctl.cn31xx.p_xenbn = 0; ++ } else { ++ if (cvmx_sysinfo_get()->board_type != ++ CVMX_BOARD_TYPE_BBGW_REF) ++ usbn_clk_ctl.cn56xx.p_rtype = p_rtype_ref_clk; ++ else ++ usbn_clk_ctl.cn56xx.p_rtype = 0; ++ } ++ usbn_clk_ctl.s.divide = divisor; ++ usbn_clk_ctl.s.divide2 = 0; ++ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64); ++ ++ /* Wait for POR */ ++ udelay(850); ++ ++ usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb_port)); ++ usbn_clk_ctl.s.por = 0; ++ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) { ++ usbn_clk_ctl.cn31xx.p_rclk = 1; ++ usbn_clk_ctl.cn31xx.p_xenbn = 0; ++ } else { ++ if (cvmx_sysinfo_get()->board_type != ++ CVMX_BOARD_TYPE_BBGW_REF) ++ usbn_clk_ctl.cn56xx.p_rtype = p_rtype_ref_clk; ++ else ++ usbn_clk_ctl.cn56xx.p_rtype = 0; ++ } ++ usbn_clk_ctl.s.prst = 1; ++ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64); ++ ++ udelay(1); ++ ++ usbn_clk_ctl.s.hrst = 1; ++ cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64); ++ udelay(1); ++ ++ memset(usb_resource, 0, sizeof(usb_resource)); ++ usb_resource[0].start = ++ XKPHYS_TO_PHYS(CVMX_USBCX_GOTGCTL(usb_port)); ++ usb_resource[0].end = usb_resource[0].start + 0x10000; ++ usb_resource[0].flags = IORESOURCE_MEM; ++ ++ usb_resource[1].start = (usb_port == 0) ? ++ OCTEON_IRQ_USB0 : OCTEON_IRQ_USB1; ++ usb_resource[1].end = usb_resource[1].start; ++ usb_resource[1].flags = IORESOURCE_IRQ; ++ ++ pdev = platform_device_register_simple("dwc_otg", ++ usb_port, ++ usb_resource, 2); ++ if (!pdev) { ++ pr_err("dwc_otg: Failed to allocate platform device " ++ "for USB%d\n", usb_port); ++ ret = -ENOMEM; ++ } ++ } ++ ++ return ret; ++} ++device_initcall(octeon_usb_device_init); ++ + MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); + MODULE_LICENSE("GPL"); + MODULE_DESCRIPTION("Platform driver for Octeon SOC"); +diff --git a/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h b/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h +new file mode 100644 +index 0000000..c1e078e +--- /dev/null ++++ b/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h +@@ -0,0 +1,1199 @@ ++/***********************license start*************** ++ * Author: Cavium Networks ++ * ++ * Contact: support@caviumnetworks.com ++ * This file is part of the OCTEON SDK ++ * ++ * Copyright (c) 2003-2008 Cavium Networks ++ * ++ * This file is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License, Version 2, as ++ * published by the Free Software Foundation. ++ * ++ * This file is distributed in the hope that it will be useful, but ++ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty ++ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or ++ * NONINFRINGEMENT. See the GNU General Public License for more ++ * details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this file; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ++ * or visit http://www.gnu.org/licenses/. ++ * ++ * This file may also be available under a different license from Cavium. ++ * Contact Cavium Networks for more information ++ ***********************license end**************************************/ ++ ++#ifndef __CVMX_USBCX_DEFS_H__ ++#define __CVMX_USBCX_DEFS_H__ ++ ++#define CVMX_USBCX_DAINT(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000818ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DAINTMSK(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F001000081Cull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DCFG(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000800ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DCTL(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000804ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DIEPCTLX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000900ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DIEPINTX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000908ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DIEPMSK(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000810ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DIEPTSIZX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000910ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DOEPCTLX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000B00ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DOEPINTX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000B08ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DOEPMSK(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000814ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DOEPTSIZX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000B10ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DPTXFSIZX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000100ull + (((offset) & 7) * 4) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DSTS(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000808ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DTKNQR1(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000820ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DTKNQR2(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000824ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DTKNQR3(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000830ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_DTKNQR4(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000834ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GAHBCFG(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000008ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GHWCFG1(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000044ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GHWCFG2(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000048ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GHWCFG3(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F001000004Cull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GHWCFG4(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000050ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GINTMSK(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000018ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GINTSTS(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000014ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GNPTXFSIZ(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000028ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GNPTXSTS(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F001000002Cull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GOTGCTL(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000000ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GOTGINT(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000004ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GRSTCTL(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000010ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GRXFSIZ(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000024ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GRXSTSPD(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010040020ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GRXSTSPH(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000020ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GRXSTSRD(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F001004001Cull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GRXSTSRH(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F001000001Cull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GSNPSID(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000040ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_GUSBCFG(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F001000000Cull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HAINT(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000414ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HAINTMSK(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000418ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HCCHARX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000500ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HCFG(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000400ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HCINTMSKX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F001000050Cull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HCINTX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000508ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HCSPLTX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000504ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HCTSIZX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000510ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HFIR(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000404ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HFNUM(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000408ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HPRT(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000440ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HPTXFSIZ(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000100ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_HPTXSTS(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000410ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_NPTXDFIFOX(offset, block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010001000ull + (((offset) & 7) * 4096) + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBCX_PCGCCTL(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0010000E00ull + (((block_id) & 1) * 0x100000000000ull)) ++ ++union cvmx_usbcx_daint { ++ uint32_t u32; ++ struct cvmx_usbcx_daint_s { ++ uint32_t outepint:16; ++ uint32_t inepint:16; ++ } s; ++ struct cvmx_usbcx_daint_s cn30xx; ++ struct cvmx_usbcx_daint_s cn31xx; ++ struct cvmx_usbcx_daint_s cn50xx; ++ struct cvmx_usbcx_daint_s cn52xx; ++ struct cvmx_usbcx_daint_s cn52xxp1; ++ struct cvmx_usbcx_daint_s cn56xx; ++ struct cvmx_usbcx_daint_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_daintmsk { ++ uint32_t u32; ++ struct cvmx_usbcx_daintmsk_s { ++ uint32_t outepmsk:16; ++ uint32_t inepmsk:16; ++ } s; ++ struct cvmx_usbcx_daintmsk_s cn30xx; ++ struct cvmx_usbcx_daintmsk_s cn31xx; ++ struct cvmx_usbcx_daintmsk_s cn50xx; ++ struct cvmx_usbcx_daintmsk_s cn52xx; ++ struct cvmx_usbcx_daintmsk_s cn52xxp1; ++ struct cvmx_usbcx_daintmsk_s cn56xx; ++ struct cvmx_usbcx_daintmsk_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dcfg { ++ uint32_t u32; ++ struct cvmx_usbcx_dcfg_s { ++ uint32_t reserved_23_31:9; ++ uint32_t epmiscnt:5; ++ uint32_t reserved_13_17:5; ++ uint32_t perfrint:2; ++ uint32_t devaddr:7; ++ uint32_t reserved_3_3:1; ++ uint32_t nzstsouthshk:1; ++ uint32_t devspd:2; ++ } s; ++ struct cvmx_usbcx_dcfg_s cn30xx; ++ struct cvmx_usbcx_dcfg_s cn31xx; ++ struct cvmx_usbcx_dcfg_s cn50xx; ++ struct cvmx_usbcx_dcfg_s cn52xx; ++ struct cvmx_usbcx_dcfg_s cn52xxp1; ++ struct cvmx_usbcx_dcfg_s cn56xx; ++ struct cvmx_usbcx_dcfg_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dctl { ++ uint32_t u32; ++ struct cvmx_usbcx_dctl_s { ++ uint32_t reserved_12_31:20; ++ uint32_t pwronprgdone:1; ++ uint32_t cgoutnak:1; ++ uint32_t sgoutnak:1; ++ uint32_t cgnpinnak:1; ++ uint32_t sgnpinnak:1; ++ uint32_t tstctl:3; ++ uint32_t goutnaksts:1; ++ uint32_t gnpinnaksts:1; ++ uint32_t sftdiscon:1; ++ uint32_t rmtwkupsig:1; ++ } s; ++ struct cvmx_usbcx_dctl_s cn30xx; ++ struct cvmx_usbcx_dctl_s cn31xx; ++ struct cvmx_usbcx_dctl_s cn50xx; ++ struct cvmx_usbcx_dctl_s cn52xx; ++ struct cvmx_usbcx_dctl_s cn52xxp1; ++ struct cvmx_usbcx_dctl_s cn56xx; ++ struct cvmx_usbcx_dctl_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_diepctlx { ++ uint32_t u32; ++ struct cvmx_usbcx_diepctlx_s { ++ uint32_t epena:1; ++ uint32_t epdis:1; ++ uint32_t setd1pid:1; ++ uint32_t setd0pid:1; ++ uint32_t snak:1; ++ uint32_t cnak:1; ++ uint32_t txfnum:4; ++ uint32_t stall:1; ++ uint32_t reserved_20_20:1; ++ uint32_t eptype:2; ++ uint32_t naksts:1; ++ uint32_t dpid:1; ++ uint32_t usbactep:1; ++ uint32_t nextep:4; ++ uint32_t mps:11; ++ } s; ++ struct cvmx_usbcx_diepctlx_s cn30xx; ++ struct cvmx_usbcx_diepctlx_s cn31xx; ++ struct cvmx_usbcx_diepctlx_s cn50xx; ++ struct cvmx_usbcx_diepctlx_s cn52xx; ++ struct cvmx_usbcx_diepctlx_s cn52xxp1; ++ struct cvmx_usbcx_diepctlx_s cn56xx; ++ struct cvmx_usbcx_diepctlx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_diepintx { ++ uint32_t u32; ++ struct cvmx_usbcx_diepintx_s { ++ uint32_t reserved_7_31:25; ++ uint32_t inepnakeff:1; ++ uint32_t intknepmis:1; ++ uint32_t intkntxfemp:1; ++ uint32_t timeout:1; ++ uint32_t ahberr:1; ++ uint32_t epdisbld:1; ++ uint32_t xfercompl:1; ++ } s; ++ struct cvmx_usbcx_diepintx_s cn30xx; ++ struct cvmx_usbcx_diepintx_s cn31xx; ++ struct cvmx_usbcx_diepintx_s cn50xx; ++ struct cvmx_usbcx_diepintx_s cn52xx; ++ struct cvmx_usbcx_diepintx_s cn52xxp1; ++ struct cvmx_usbcx_diepintx_s cn56xx; ++ struct cvmx_usbcx_diepintx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_diepmsk { ++ uint32_t u32; ++ struct cvmx_usbcx_diepmsk_s { ++ uint32_t reserved_7_31:25; ++ uint32_t inepnakeffmsk:1; ++ uint32_t intknepmismsk:1; ++ uint32_t intkntxfempmsk:1; ++ uint32_t timeoutmsk:1; ++ uint32_t ahberrmsk:1; ++ uint32_t epdisbldmsk:1; ++ uint32_t xfercomplmsk:1; ++ } s; ++ struct cvmx_usbcx_diepmsk_s cn30xx; ++ struct cvmx_usbcx_diepmsk_s cn31xx; ++ struct cvmx_usbcx_diepmsk_s cn50xx; ++ struct cvmx_usbcx_diepmsk_s cn52xx; ++ struct cvmx_usbcx_diepmsk_s cn52xxp1; ++ struct cvmx_usbcx_diepmsk_s cn56xx; ++ struct cvmx_usbcx_diepmsk_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dieptsizx { ++ uint32_t u32; ++ struct cvmx_usbcx_dieptsizx_s { ++ uint32_t reserved_31_31:1; ++ uint32_t mc:2; ++ uint32_t pktcnt:10; ++ uint32_t xfersize:19; ++ } s; ++ struct cvmx_usbcx_dieptsizx_s cn30xx; ++ struct cvmx_usbcx_dieptsizx_s cn31xx; ++ struct cvmx_usbcx_dieptsizx_s cn50xx; ++ struct cvmx_usbcx_dieptsizx_s cn52xx; ++ struct cvmx_usbcx_dieptsizx_s cn52xxp1; ++ struct cvmx_usbcx_dieptsizx_s cn56xx; ++ struct cvmx_usbcx_dieptsizx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_doepctlx { ++ uint32_t u32; ++ struct cvmx_usbcx_doepctlx_s { ++ uint32_t epena:1; ++ uint32_t epdis:1; ++ uint32_t setd1pid:1; ++ uint32_t setd0pid:1; ++ uint32_t snak:1; ++ uint32_t cnak:1; ++ uint32_t reserved_22_25:4; ++ uint32_t stall:1; ++ uint32_t snp:1; ++ uint32_t eptype:2; ++ uint32_t naksts:1; ++ uint32_t dpid:1; ++ uint32_t usbactep:1; ++ uint32_t reserved_11_14:4; ++ uint32_t mps:11; ++ } s; ++ struct cvmx_usbcx_doepctlx_s cn30xx; ++ struct cvmx_usbcx_doepctlx_s cn31xx; ++ struct cvmx_usbcx_doepctlx_s cn50xx; ++ struct cvmx_usbcx_doepctlx_s cn52xx; ++ struct cvmx_usbcx_doepctlx_s cn52xxp1; ++ struct cvmx_usbcx_doepctlx_s cn56xx; ++ struct cvmx_usbcx_doepctlx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_doepintx { ++ uint32_t u32; ++ struct cvmx_usbcx_doepintx_s { ++ uint32_t reserved_5_31:27; ++ uint32_t outtknepdis:1; ++ uint32_t setup:1; ++ uint32_t ahberr:1; ++ uint32_t epdisbld:1; ++ uint32_t xfercompl:1; ++ } s; ++ struct cvmx_usbcx_doepintx_s cn30xx; ++ struct cvmx_usbcx_doepintx_s cn31xx; ++ struct cvmx_usbcx_doepintx_s cn50xx; ++ struct cvmx_usbcx_doepintx_s cn52xx; ++ struct cvmx_usbcx_doepintx_s cn52xxp1; ++ struct cvmx_usbcx_doepintx_s cn56xx; ++ struct cvmx_usbcx_doepintx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_doepmsk { ++ uint32_t u32; ++ struct cvmx_usbcx_doepmsk_s { ++ uint32_t reserved_5_31:27; ++ uint32_t outtknepdismsk:1; ++ uint32_t setupmsk:1; ++ uint32_t ahberrmsk:1; ++ uint32_t epdisbldmsk:1; ++ uint32_t xfercomplmsk:1; ++ } s; ++ struct cvmx_usbcx_doepmsk_s cn30xx; ++ struct cvmx_usbcx_doepmsk_s cn31xx; ++ struct cvmx_usbcx_doepmsk_s cn50xx; ++ struct cvmx_usbcx_doepmsk_s cn52xx; ++ struct cvmx_usbcx_doepmsk_s cn52xxp1; ++ struct cvmx_usbcx_doepmsk_s cn56xx; ++ struct cvmx_usbcx_doepmsk_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_doeptsizx { ++ uint32_t u32; ++ struct cvmx_usbcx_doeptsizx_s { ++ uint32_t reserved_31_31:1; ++ uint32_t mc:2; ++ uint32_t pktcnt:10; ++ uint32_t xfersize:19; ++ } s; ++ struct cvmx_usbcx_doeptsizx_s cn30xx; ++ struct cvmx_usbcx_doeptsizx_s cn31xx; ++ struct cvmx_usbcx_doeptsizx_s cn50xx; ++ struct cvmx_usbcx_doeptsizx_s cn52xx; ++ struct cvmx_usbcx_doeptsizx_s cn52xxp1; ++ struct cvmx_usbcx_doeptsizx_s cn56xx; ++ struct cvmx_usbcx_doeptsizx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dptxfsizx { ++ uint32_t u32; ++ struct cvmx_usbcx_dptxfsizx_s { ++ uint32_t dptxfsize:16; ++ uint32_t dptxfstaddr:16; ++ } s; ++ struct cvmx_usbcx_dptxfsizx_s cn30xx; ++ struct cvmx_usbcx_dptxfsizx_s cn31xx; ++ struct cvmx_usbcx_dptxfsizx_s cn50xx; ++ struct cvmx_usbcx_dptxfsizx_s cn52xx; ++ struct cvmx_usbcx_dptxfsizx_s cn52xxp1; ++ struct cvmx_usbcx_dptxfsizx_s cn56xx; ++ struct cvmx_usbcx_dptxfsizx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dsts { ++ uint32_t u32; ++ struct cvmx_usbcx_dsts_s { ++ uint32_t reserved_22_31:10; ++ uint32_t soffn:14; ++ uint32_t reserved_4_7:4; ++ uint32_t errticerr:1; ++ uint32_t enumspd:2; ++ uint32_t suspsts:1; ++ } s; ++ struct cvmx_usbcx_dsts_s cn30xx; ++ struct cvmx_usbcx_dsts_s cn31xx; ++ struct cvmx_usbcx_dsts_s cn50xx; ++ struct cvmx_usbcx_dsts_s cn52xx; ++ struct cvmx_usbcx_dsts_s cn52xxp1; ++ struct cvmx_usbcx_dsts_s cn56xx; ++ struct cvmx_usbcx_dsts_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dtknqr1 { ++ uint32_t u32; ++ struct cvmx_usbcx_dtknqr1_s { ++ uint32_t eptkn:24; ++ uint32_t wrapbit:1; ++ uint32_t reserved_5_6:2; ++ uint32_t intknwptr:5; ++ } s; ++ struct cvmx_usbcx_dtknqr1_s cn30xx; ++ struct cvmx_usbcx_dtknqr1_s cn31xx; ++ struct cvmx_usbcx_dtknqr1_s cn50xx; ++ struct cvmx_usbcx_dtknqr1_s cn52xx; ++ struct cvmx_usbcx_dtknqr1_s cn52xxp1; ++ struct cvmx_usbcx_dtknqr1_s cn56xx; ++ struct cvmx_usbcx_dtknqr1_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dtknqr2 { ++ uint32_t u32; ++ struct cvmx_usbcx_dtknqr2_s { ++ uint32_t eptkn:32; ++ } s; ++ struct cvmx_usbcx_dtknqr2_s cn30xx; ++ struct cvmx_usbcx_dtknqr2_s cn31xx; ++ struct cvmx_usbcx_dtknqr2_s cn50xx; ++ struct cvmx_usbcx_dtknqr2_s cn52xx; ++ struct cvmx_usbcx_dtknqr2_s cn52xxp1; ++ struct cvmx_usbcx_dtknqr2_s cn56xx; ++ struct cvmx_usbcx_dtknqr2_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dtknqr3 { ++ uint32_t u32; ++ struct cvmx_usbcx_dtknqr3_s { ++ uint32_t eptkn:32; ++ } s; ++ struct cvmx_usbcx_dtknqr3_s cn30xx; ++ struct cvmx_usbcx_dtknqr3_s cn31xx; ++ struct cvmx_usbcx_dtknqr3_s cn50xx; ++ struct cvmx_usbcx_dtknqr3_s cn52xx; ++ struct cvmx_usbcx_dtknqr3_s cn52xxp1; ++ struct cvmx_usbcx_dtknqr3_s cn56xx; ++ struct cvmx_usbcx_dtknqr3_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_dtknqr4 { ++ uint32_t u32; ++ struct cvmx_usbcx_dtknqr4_s { ++ uint32_t eptkn:32; ++ } s; ++ struct cvmx_usbcx_dtknqr4_s cn30xx; ++ struct cvmx_usbcx_dtknqr4_s cn31xx; ++ struct cvmx_usbcx_dtknqr4_s cn50xx; ++ struct cvmx_usbcx_dtknqr4_s cn52xx; ++ struct cvmx_usbcx_dtknqr4_s cn52xxp1; ++ struct cvmx_usbcx_dtknqr4_s cn56xx; ++ struct cvmx_usbcx_dtknqr4_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gahbcfg { ++ uint32_t u32; ++ struct cvmx_usbcx_gahbcfg_s { ++ uint32_t reserved_9_31:23; ++ uint32_t ptxfemplvl:1; ++ uint32_t nptxfemplvl:1; ++ uint32_t reserved_6_6:1; ++ uint32_t dmaen:1; ++ uint32_t hbstlen:4; ++ uint32_t glblintrmsk:1; ++ } s; ++ struct cvmx_usbcx_gahbcfg_s cn30xx; ++ struct cvmx_usbcx_gahbcfg_s cn31xx; ++ struct cvmx_usbcx_gahbcfg_s cn50xx; ++ struct cvmx_usbcx_gahbcfg_s cn52xx; ++ struct cvmx_usbcx_gahbcfg_s cn52xxp1; ++ struct cvmx_usbcx_gahbcfg_s cn56xx; ++ struct cvmx_usbcx_gahbcfg_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_ghwcfg1 { ++ uint32_t u32; ++ struct cvmx_usbcx_ghwcfg1_s { ++ uint32_t epdir:32; ++ } s; ++ struct cvmx_usbcx_ghwcfg1_s cn30xx; ++ struct cvmx_usbcx_ghwcfg1_s cn31xx; ++ struct cvmx_usbcx_ghwcfg1_s cn50xx; ++ struct cvmx_usbcx_ghwcfg1_s cn52xx; ++ struct cvmx_usbcx_ghwcfg1_s cn52xxp1; ++ struct cvmx_usbcx_ghwcfg1_s cn56xx; ++ struct cvmx_usbcx_ghwcfg1_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_ghwcfg2 { ++ uint32_t u32; ++ struct cvmx_usbcx_ghwcfg2_s { ++ uint32_t reserved_31_31:1; ++ uint32_t tknqdepth:5; ++ uint32_t ptxqdepth:2; ++ uint32_t nptxqdepth:2; ++ uint32_t reserved_20_21:2; ++ uint32_t dynfifosizing:1; ++ uint32_t periosupport:1; ++ uint32_t numhstchnl:4; ++ uint32_t numdeveps:4; ++ uint32_t fsphytype:2; ++ uint32_t hsphytype:2; ++ uint32_t singpnt:1; ++ uint32_t otgarch:2; ++ uint32_t otgmode:3; ++ } s; ++ struct cvmx_usbcx_ghwcfg2_s cn30xx; ++ struct cvmx_usbcx_ghwcfg2_s cn31xx; ++ struct cvmx_usbcx_ghwcfg2_s cn50xx; ++ struct cvmx_usbcx_ghwcfg2_s cn52xx; ++ struct cvmx_usbcx_ghwcfg2_s cn52xxp1; ++ struct cvmx_usbcx_ghwcfg2_s cn56xx; ++ struct cvmx_usbcx_ghwcfg2_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_ghwcfg3 { ++ uint32_t u32; ++ struct cvmx_usbcx_ghwcfg3_s { ++ uint32_t dfifodepth:16; ++ uint32_t reserved_13_15:3; ++ uint32_t ahbphysync:1; ++ uint32_t rsttype:1; ++ uint32_t optfeature:1; ++ uint32_t vendor_control_interface_support:1; ++ uint32_t i2c_selection:1; ++ uint32_t otgen:1; ++ uint32_t pktsizewidth:3; ++ uint32_t xfersizewidth:4; ++ } s; ++ struct cvmx_usbcx_ghwcfg3_s cn30xx; ++ struct cvmx_usbcx_ghwcfg3_s cn31xx; ++ struct cvmx_usbcx_ghwcfg3_s cn50xx; ++ struct cvmx_usbcx_ghwcfg3_s cn52xx; ++ struct cvmx_usbcx_ghwcfg3_s cn52xxp1; ++ struct cvmx_usbcx_ghwcfg3_s cn56xx; ++ struct cvmx_usbcx_ghwcfg3_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_ghwcfg4 { ++ uint32_t u32; ++ struct cvmx_usbcx_ghwcfg4_s { ++ uint32_t reserved_30_31:2; ++ uint32_t numdevmodinend:4; ++ uint32_t endedtrfifo:1; ++ uint32_t sessendfltr:1; ++ uint32_t bvalidfltr:1; ++ uint32_t avalidfltr:1; ++ uint32_t vbusvalidfltr:1; ++ uint32_t iddgfltr:1; ++ uint32_t numctleps:4; ++ uint32_t phydatawidth:2; ++ uint32_t reserved_6_13:8; ++ uint32_t ahbfreq:1; ++ uint32_t enablepwropt:1; ++ uint32_t numdevperioeps:4; ++ } s; ++ struct cvmx_usbcx_ghwcfg4_cn30xx { ++ uint32_t reserved_25_31:7; ++ uint32_t sessendfltr:1; ++ uint32_t bvalidfltr:1; ++ uint32_t avalidfltr:1; ++ uint32_t vbusvalidfltr:1; ++ uint32_t iddgfltr:1; ++ uint32_t numctleps:4; ++ uint32_t phydatawidth:2; ++ uint32_t reserved_6_13:8; ++ uint32_t ahbfreq:1; ++ uint32_t enablepwropt:1; ++ uint32_t numdevperioeps:4; ++ } cn30xx; ++ struct cvmx_usbcx_ghwcfg4_cn30xx cn31xx; ++ struct cvmx_usbcx_ghwcfg4_s cn50xx; ++ struct cvmx_usbcx_ghwcfg4_s cn52xx; ++ struct cvmx_usbcx_ghwcfg4_s cn52xxp1; ++ struct cvmx_usbcx_ghwcfg4_s cn56xx; ++ struct cvmx_usbcx_ghwcfg4_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gintmsk { ++ uint32_t u32; ++ struct cvmx_usbcx_gintmsk_s { ++ uint32_t wkupintmsk:1; ++ uint32_t sessreqintmsk:1; ++ uint32_t disconnintmsk:1; ++ uint32_t conidstschngmsk:1; ++ uint32_t reserved_27_27:1; ++ uint32_t ptxfempmsk:1; ++ uint32_t hchintmsk:1; ++ uint32_t prtintmsk:1; ++ uint32_t reserved_23_23:1; ++ uint32_t fetsuspmsk:1; ++ uint32_t incomplpmsk:1; ++ uint32_t incompisoinmsk:1; ++ uint32_t oepintmsk:1; ++ uint32_t inepintmsk:1; ++ uint32_t epmismsk:1; ++ uint32_t reserved_16_16:1; ++ uint32_t eopfmsk:1; ++ uint32_t isooutdropmsk:1; ++ uint32_t enumdonemsk:1; ++ uint32_t usbrstmsk:1; ++ uint32_t usbsuspmsk:1; ++ uint32_t erlysuspmsk:1; ++ uint32_t i2cint:1; ++ uint32_t ulpickintmsk:1; ++ uint32_t goutnakeffmsk:1; ++ uint32_t ginnakeffmsk:1; ++ uint32_t nptxfempmsk:1; ++ uint32_t rxflvlmsk:1; ++ uint32_t sofmsk:1; ++ uint32_t otgintmsk:1; ++ uint32_t modemismsk:1; ++ uint32_t reserved_0_0:1; ++ } s; ++ struct cvmx_usbcx_gintmsk_s cn30xx; ++ struct cvmx_usbcx_gintmsk_s cn31xx; ++ struct cvmx_usbcx_gintmsk_s cn50xx; ++ struct cvmx_usbcx_gintmsk_s cn52xx; ++ struct cvmx_usbcx_gintmsk_s cn52xxp1; ++ struct cvmx_usbcx_gintmsk_s cn56xx; ++ struct cvmx_usbcx_gintmsk_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gintsts { ++ uint32_t u32; ++ struct cvmx_usbcx_gintsts_s { ++ uint32_t wkupint:1; ++ uint32_t sessreqint:1; ++ uint32_t disconnint:1; ++ uint32_t conidstschng:1; ++ uint32_t reserved_27_27:1; ++ uint32_t ptxfemp:1; ++ uint32_t hchint:1; ++ uint32_t prtint:1; ++ uint32_t reserved_23_23:1; ++ uint32_t fetsusp:1; ++ uint32_t incomplp:1; ++ uint32_t incompisoin:1; ++ uint32_t oepint:1; ++ uint32_t iepint:1; ++ uint32_t epmis:1; ++ uint32_t reserved_16_16:1; ++ uint32_t eopf:1; ++ uint32_t isooutdrop:1; ++ uint32_t enumdone:1; ++ uint32_t usbrst:1; ++ uint32_t usbsusp:1; ++ uint32_t erlysusp:1; ++ uint32_t i2cint:1; ++ uint32_t ulpickint:1; ++ uint32_t goutnakeff:1; ++ uint32_t ginnakeff:1; ++ uint32_t nptxfemp:1; ++ uint32_t rxflvl:1; ++ uint32_t sof:1; ++ uint32_t otgint:1; ++ uint32_t modemis:1; ++ uint32_t curmod:1; ++ } s; ++ struct cvmx_usbcx_gintsts_s cn30xx; ++ struct cvmx_usbcx_gintsts_s cn31xx; ++ struct cvmx_usbcx_gintsts_s cn50xx; ++ struct cvmx_usbcx_gintsts_s cn52xx; ++ struct cvmx_usbcx_gintsts_s cn52xxp1; ++ struct cvmx_usbcx_gintsts_s cn56xx; ++ struct cvmx_usbcx_gintsts_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gnptxfsiz { ++ uint32_t u32; ++ struct cvmx_usbcx_gnptxfsiz_s { ++ uint32_t nptxfdep:16; ++ uint32_t nptxfstaddr:16; ++ } s; ++ struct cvmx_usbcx_gnptxfsiz_s cn30xx; ++ struct cvmx_usbcx_gnptxfsiz_s cn31xx; ++ struct cvmx_usbcx_gnptxfsiz_s cn50xx; ++ struct cvmx_usbcx_gnptxfsiz_s cn52xx; ++ struct cvmx_usbcx_gnptxfsiz_s cn52xxp1; ++ struct cvmx_usbcx_gnptxfsiz_s cn56xx; ++ struct cvmx_usbcx_gnptxfsiz_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gnptxsts { ++ uint32_t u32; ++ struct cvmx_usbcx_gnptxsts_s { ++ uint32_t reserved_31_31:1; ++ uint32_t nptxqtop:7; ++ uint32_t nptxqspcavail:8; ++ uint32_t nptxfspcavail:16; ++ } s; ++ struct cvmx_usbcx_gnptxsts_s cn30xx; ++ struct cvmx_usbcx_gnptxsts_s cn31xx; ++ struct cvmx_usbcx_gnptxsts_s cn50xx; ++ struct cvmx_usbcx_gnptxsts_s cn52xx; ++ struct cvmx_usbcx_gnptxsts_s cn52xxp1; ++ struct cvmx_usbcx_gnptxsts_s cn56xx; ++ struct cvmx_usbcx_gnptxsts_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gotgctl { ++ uint32_t u32; ++ struct cvmx_usbcx_gotgctl_s { ++ uint32_t reserved_20_31:12; ++ uint32_t bsesvld:1; ++ uint32_t asesvld:1; ++ uint32_t dbnctime:1; ++ uint32_t conidsts:1; ++ uint32_t reserved_12_15:4; ++ uint32_t devhnpen:1; ++ uint32_t hstsethnpen:1; ++ uint32_t hnpreq:1; ++ uint32_t hstnegscs:1; ++ uint32_t reserved_2_7:6; ++ uint32_t sesreq:1; ++ uint32_t sesreqscs:1; ++ } s; ++ struct cvmx_usbcx_gotgctl_s cn30xx; ++ struct cvmx_usbcx_gotgctl_s cn31xx; ++ struct cvmx_usbcx_gotgctl_s cn50xx; ++ struct cvmx_usbcx_gotgctl_s cn52xx; ++ struct cvmx_usbcx_gotgctl_s cn52xxp1; ++ struct cvmx_usbcx_gotgctl_s cn56xx; ++ struct cvmx_usbcx_gotgctl_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gotgint { ++ uint32_t u32; ++ struct cvmx_usbcx_gotgint_s { ++ uint32_t reserved_20_31:12; ++ uint32_t dbncedone:1; ++ uint32_t adevtoutchg:1; ++ uint32_t hstnegdet:1; ++ uint32_t reserved_10_16:7; ++ uint32_t hstnegsucstschng:1; ++ uint32_t sesreqsucstschng:1; ++ uint32_t reserved_3_7:5; ++ uint32_t sesenddet:1; ++ uint32_t reserved_0_1:2; ++ } s; ++ struct cvmx_usbcx_gotgint_s cn30xx; ++ struct cvmx_usbcx_gotgint_s cn31xx; ++ struct cvmx_usbcx_gotgint_s cn50xx; ++ struct cvmx_usbcx_gotgint_s cn52xx; ++ struct cvmx_usbcx_gotgint_s cn52xxp1; ++ struct cvmx_usbcx_gotgint_s cn56xx; ++ struct cvmx_usbcx_gotgint_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_grstctl { ++ uint32_t u32; ++ struct cvmx_usbcx_grstctl_s { ++ uint32_t ahbidle:1; ++ uint32_t dmareq:1; ++ uint32_t reserved_11_29:19; ++ uint32_t txfnum:5; ++ uint32_t txfflsh:1; ++ uint32_t rxfflsh:1; ++ uint32_t intknqflsh:1; ++ uint32_t frmcntrrst:1; ++ uint32_t hsftrst:1; ++ uint32_t csftrst:1; ++ } s; ++ struct cvmx_usbcx_grstctl_s cn30xx; ++ struct cvmx_usbcx_grstctl_s cn31xx; ++ struct cvmx_usbcx_grstctl_s cn50xx; ++ struct cvmx_usbcx_grstctl_s cn52xx; ++ struct cvmx_usbcx_grstctl_s cn52xxp1; ++ struct cvmx_usbcx_grstctl_s cn56xx; ++ struct cvmx_usbcx_grstctl_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_grxfsiz { ++ uint32_t u32; ++ struct cvmx_usbcx_grxfsiz_s { ++ uint32_t reserved_16_31:16; ++ uint32_t rxfdep:16; ++ } s; ++ struct cvmx_usbcx_grxfsiz_s cn30xx; ++ struct cvmx_usbcx_grxfsiz_s cn31xx; ++ struct cvmx_usbcx_grxfsiz_s cn50xx; ++ struct cvmx_usbcx_grxfsiz_s cn52xx; ++ struct cvmx_usbcx_grxfsiz_s cn52xxp1; ++ struct cvmx_usbcx_grxfsiz_s cn56xx; ++ struct cvmx_usbcx_grxfsiz_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_grxstspd { ++ uint32_t u32; ++ struct cvmx_usbcx_grxstspd_s { ++ uint32_t reserved_25_31:7; ++ uint32_t fn:4; ++ uint32_t pktsts:4; ++ uint32_t dpid:2; ++ uint32_t bcnt:11; ++ uint32_t epnum:4; ++ } s; ++ struct cvmx_usbcx_grxstspd_s cn30xx; ++ struct cvmx_usbcx_grxstspd_s cn31xx; ++ struct cvmx_usbcx_grxstspd_s cn50xx; ++ struct cvmx_usbcx_grxstspd_s cn52xx; ++ struct cvmx_usbcx_grxstspd_s cn52xxp1; ++ struct cvmx_usbcx_grxstspd_s cn56xx; ++ struct cvmx_usbcx_grxstspd_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_grxstsph { ++ uint32_t u32; ++ struct cvmx_usbcx_grxstsph_s { ++ uint32_t reserved_21_31:11; ++ uint32_t pktsts:4; ++ uint32_t dpid:2; ++ uint32_t bcnt:11; ++ uint32_t chnum:4; ++ } s; ++ struct cvmx_usbcx_grxstsph_s cn30xx; ++ struct cvmx_usbcx_grxstsph_s cn31xx; ++ struct cvmx_usbcx_grxstsph_s cn50xx; ++ struct cvmx_usbcx_grxstsph_s cn52xx; ++ struct cvmx_usbcx_grxstsph_s cn52xxp1; ++ struct cvmx_usbcx_grxstsph_s cn56xx; ++ struct cvmx_usbcx_grxstsph_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_grxstsrd { ++ uint32_t u32; ++ struct cvmx_usbcx_grxstsrd_s { ++ uint32_t reserved_25_31:7; ++ uint32_t fn:4; ++ uint32_t pktsts:4; ++ uint32_t dpid:2; ++ uint32_t bcnt:11; ++ uint32_t epnum:4; ++ } s; ++ struct cvmx_usbcx_grxstsrd_s cn30xx; ++ struct cvmx_usbcx_grxstsrd_s cn31xx; ++ struct cvmx_usbcx_grxstsrd_s cn50xx; ++ struct cvmx_usbcx_grxstsrd_s cn52xx; ++ struct cvmx_usbcx_grxstsrd_s cn52xxp1; ++ struct cvmx_usbcx_grxstsrd_s cn56xx; ++ struct cvmx_usbcx_grxstsrd_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_grxstsrh { ++ uint32_t u32; ++ struct cvmx_usbcx_grxstsrh_s { ++ uint32_t reserved_21_31:11; ++ uint32_t pktsts:4; ++ uint32_t dpid:2; ++ uint32_t bcnt:11; ++ uint32_t chnum:4; ++ } s; ++ struct cvmx_usbcx_grxstsrh_s cn30xx; ++ struct cvmx_usbcx_grxstsrh_s cn31xx; ++ struct cvmx_usbcx_grxstsrh_s cn50xx; ++ struct cvmx_usbcx_grxstsrh_s cn52xx; ++ struct cvmx_usbcx_grxstsrh_s cn52xxp1; ++ struct cvmx_usbcx_grxstsrh_s cn56xx; ++ struct cvmx_usbcx_grxstsrh_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gsnpsid { ++ uint32_t u32; ++ struct cvmx_usbcx_gsnpsid_s { ++ uint32_t synopsysid:32; ++ } s; ++ struct cvmx_usbcx_gsnpsid_s cn30xx; ++ struct cvmx_usbcx_gsnpsid_s cn31xx; ++ struct cvmx_usbcx_gsnpsid_s cn50xx; ++ struct cvmx_usbcx_gsnpsid_s cn52xx; ++ struct cvmx_usbcx_gsnpsid_s cn52xxp1; ++ struct cvmx_usbcx_gsnpsid_s cn56xx; ++ struct cvmx_usbcx_gsnpsid_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_gusbcfg { ++ uint32_t u32; ++ struct cvmx_usbcx_gusbcfg_s { ++ uint32_t reserved_17_31:15; ++ uint32_t otgi2csel:1; ++ uint32_t phylpwrclksel:1; ++ uint32_t reserved_14_14:1; ++ uint32_t usbtrdtim:4; ++ uint32_t hnpcap:1; ++ uint32_t srpcap:1; ++ uint32_t ddrsel:1; ++ uint32_t physel:1; ++ uint32_t fsintf:1; ++ uint32_t ulpi_utmi_sel:1; ++ uint32_t phyif:1; ++ uint32_t toutcal:3; ++ } s; ++ struct cvmx_usbcx_gusbcfg_s cn30xx; ++ struct cvmx_usbcx_gusbcfg_s cn31xx; ++ struct cvmx_usbcx_gusbcfg_s cn50xx; ++ struct cvmx_usbcx_gusbcfg_s cn52xx; ++ struct cvmx_usbcx_gusbcfg_s cn52xxp1; ++ struct cvmx_usbcx_gusbcfg_s cn56xx; ++ struct cvmx_usbcx_gusbcfg_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_haint { ++ uint32_t u32; ++ struct cvmx_usbcx_haint_s { ++ uint32_t reserved_16_31:16; ++ uint32_t haint:16; ++ } s; ++ struct cvmx_usbcx_haint_s cn30xx; ++ struct cvmx_usbcx_haint_s cn31xx; ++ struct cvmx_usbcx_haint_s cn50xx; ++ struct cvmx_usbcx_haint_s cn52xx; ++ struct cvmx_usbcx_haint_s cn52xxp1; ++ struct cvmx_usbcx_haint_s cn56xx; ++ struct cvmx_usbcx_haint_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_haintmsk { ++ uint32_t u32; ++ struct cvmx_usbcx_haintmsk_s { ++ uint32_t reserved_16_31:16; ++ uint32_t haintmsk:16; ++ } s; ++ struct cvmx_usbcx_haintmsk_s cn30xx; ++ struct cvmx_usbcx_haintmsk_s cn31xx; ++ struct cvmx_usbcx_haintmsk_s cn50xx; ++ struct cvmx_usbcx_haintmsk_s cn52xx; ++ struct cvmx_usbcx_haintmsk_s cn52xxp1; ++ struct cvmx_usbcx_haintmsk_s cn56xx; ++ struct cvmx_usbcx_haintmsk_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hccharx { ++ uint32_t u32; ++ struct cvmx_usbcx_hccharx_s { ++ uint32_t chena:1; ++ uint32_t chdis:1; ++ uint32_t oddfrm:1; ++ uint32_t devaddr:7; ++ uint32_t ec:2; ++ uint32_t eptype:2; ++ uint32_t lspddev:1; ++ uint32_t reserved_16_16:1; ++ uint32_t epdir:1; ++ uint32_t epnum:4; ++ uint32_t mps:11; ++ } s; ++ struct cvmx_usbcx_hccharx_s cn30xx; ++ struct cvmx_usbcx_hccharx_s cn31xx; ++ struct cvmx_usbcx_hccharx_s cn50xx; ++ struct cvmx_usbcx_hccharx_s cn52xx; ++ struct cvmx_usbcx_hccharx_s cn52xxp1; ++ struct cvmx_usbcx_hccharx_s cn56xx; ++ struct cvmx_usbcx_hccharx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hcfg { ++ uint32_t u32; ++ struct cvmx_usbcx_hcfg_s { ++ uint32_t reserved_3_31:29; ++ uint32_t fslssupp:1; ++ uint32_t fslspclksel:2; ++ } s; ++ struct cvmx_usbcx_hcfg_s cn30xx; ++ struct cvmx_usbcx_hcfg_s cn31xx; ++ struct cvmx_usbcx_hcfg_s cn50xx; ++ struct cvmx_usbcx_hcfg_s cn52xx; ++ struct cvmx_usbcx_hcfg_s cn52xxp1; ++ struct cvmx_usbcx_hcfg_s cn56xx; ++ struct cvmx_usbcx_hcfg_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hcintx { ++ uint32_t u32; ++ struct cvmx_usbcx_hcintx_s { ++ uint32_t reserved_11_31:21; ++ uint32_t datatglerr:1; ++ uint32_t frmovrun:1; ++ uint32_t bblerr:1; ++ uint32_t xacterr:1; ++ uint32_t nyet:1; ++ uint32_t ack:1; ++ uint32_t nak:1; ++ uint32_t stall:1; ++ uint32_t ahberr:1; ++ uint32_t chhltd:1; ++ uint32_t xfercompl:1; ++ } s; ++ struct cvmx_usbcx_hcintx_s cn30xx; ++ struct cvmx_usbcx_hcintx_s cn31xx; ++ struct cvmx_usbcx_hcintx_s cn50xx; ++ struct cvmx_usbcx_hcintx_s cn52xx; ++ struct cvmx_usbcx_hcintx_s cn52xxp1; ++ struct cvmx_usbcx_hcintx_s cn56xx; ++ struct cvmx_usbcx_hcintx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hcintmskx { ++ uint32_t u32; ++ struct cvmx_usbcx_hcintmskx_s { ++ uint32_t reserved_11_31:21; ++ uint32_t datatglerrmsk:1; ++ uint32_t frmovrunmsk:1; ++ uint32_t bblerrmsk:1; ++ uint32_t xacterrmsk:1; ++ uint32_t nyetmsk:1; ++ uint32_t ackmsk:1; ++ uint32_t nakmsk:1; ++ uint32_t stallmsk:1; ++ uint32_t ahberrmsk:1; ++ uint32_t chhltdmsk:1; ++ uint32_t xfercomplmsk:1; ++ } s; ++ struct cvmx_usbcx_hcintmskx_s cn30xx; ++ struct cvmx_usbcx_hcintmskx_s cn31xx; ++ struct cvmx_usbcx_hcintmskx_s cn50xx; ++ struct cvmx_usbcx_hcintmskx_s cn52xx; ++ struct cvmx_usbcx_hcintmskx_s cn52xxp1; ++ struct cvmx_usbcx_hcintmskx_s cn56xx; ++ struct cvmx_usbcx_hcintmskx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hcspltx { ++ uint32_t u32; ++ struct cvmx_usbcx_hcspltx_s { ++ uint32_t spltena:1; ++ uint32_t reserved_17_30:14; ++ uint32_t compsplt:1; ++ uint32_t xactpos:2; ++ uint32_t hubaddr:7; ++ uint32_t prtaddr:7; ++ } s; ++ struct cvmx_usbcx_hcspltx_s cn30xx; ++ struct cvmx_usbcx_hcspltx_s cn31xx; ++ struct cvmx_usbcx_hcspltx_s cn50xx; ++ struct cvmx_usbcx_hcspltx_s cn52xx; ++ struct cvmx_usbcx_hcspltx_s cn52xxp1; ++ struct cvmx_usbcx_hcspltx_s cn56xx; ++ struct cvmx_usbcx_hcspltx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hctsizx { ++ uint32_t u32; ++ struct cvmx_usbcx_hctsizx_s { ++ uint32_t dopng:1; ++ uint32_t pid:2; ++ uint32_t pktcnt:10; ++ uint32_t xfersize:19; ++ } s; ++ struct cvmx_usbcx_hctsizx_s cn30xx; ++ struct cvmx_usbcx_hctsizx_s cn31xx; ++ struct cvmx_usbcx_hctsizx_s cn50xx; ++ struct cvmx_usbcx_hctsizx_s cn52xx; ++ struct cvmx_usbcx_hctsizx_s cn52xxp1; ++ struct cvmx_usbcx_hctsizx_s cn56xx; ++ struct cvmx_usbcx_hctsizx_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hfir { ++ uint32_t u32; ++ struct cvmx_usbcx_hfir_s { ++ uint32_t reserved_16_31:16; ++ uint32_t frint:16; ++ } s; ++ struct cvmx_usbcx_hfir_s cn30xx; ++ struct cvmx_usbcx_hfir_s cn31xx; ++ struct cvmx_usbcx_hfir_s cn50xx; ++ struct cvmx_usbcx_hfir_s cn52xx; ++ struct cvmx_usbcx_hfir_s cn52xxp1; ++ struct cvmx_usbcx_hfir_s cn56xx; ++ struct cvmx_usbcx_hfir_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hfnum { ++ uint32_t u32; ++ struct cvmx_usbcx_hfnum_s { ++ uint32_t frrem:16; ++ uint32_t frnum:16; ++ } s; ++ struct cvmx_usbcx_hfnum_s cn30xx; ++ struct cvmx_usbcx_hfnum_s cn31xx; ++ struct cvmx_usbcx_hfnum_s cn50xx; ++ struct cvmx_usbcx_hfnum_s cn52xx; ++ struct cvmx_usbcx_hfnum_s cn52xxp1; ++ struct cvmx_usbcx_hfnum_s cn56xx; ++ struct cvmx_usbcx_hfnum_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hprt { ++ uint32_t u32; ++ struct cvmx_usbcx_hprt_s { ++ uint32_t reserved_19_31:13; ++ uint32_t prtspd:2; ++ uint32_t prttstctl:4; ++ uint32_t prtpwr:1; ++ uint32_t prtlnsts:2; ++ uint32_t reserved_9_9:1; ++ uint32_t prtrst:1; ++ uint32_t prtsusp:1; ++ uint32_t prtres:1; ++ uint32_t prtovrcurrchng:1; ++ uint32_t prtovrcurract:1; ++ uint32_t prtenchng:1; ++ uint32_t prtena:1; ++ uint32_t prtconndet:1; ++ uint32_t prtconnsts:1; ++ } s; ++ struct cvmx_usbcx_hprt_s cn30xx; ++ struct cvmx_usbcx_hprt_s cn31xx; ++ struct cvmx_usbcx_hprt_s cn50xx; ++ struct cvmx_usbcx_hprt_s cn52xx; ++ struct cvmx_usbcx_hprt_s cn52xxp1; ++ struct cvmx_usbcx_hprt_s cn56xx; ++ struct cvmx_usbcx_hprt_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hptxfsiz { ++ uint32_t u32; ++ struct cvmx_usbcx_hptxfsiz_s { ++ uint32_t ptxfsize:16; ++ uint32_t ptxfstaddr:16; ++ } s; ++ struct cvmx_usbcx_hptxfsiz_s cn30xx; ++ struct cvmx_usbcx_hptxfsiz_s cn31xx; ++ struct cvmx_usbcx_hptxfsiz_s cn50xx; ++ struct cvmx_usbcx_hptxfsiz_s cn52xx; ++ struct cvmx_usbcx_hptxfsiz_s cn52xxp1; ++ struct cvmx_usbcx_hptxfsiz_s cn56xx; ++ struct cvmx_usbcx_hptxfsiz_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_hptxsts { ++ uint32_t u32; ++ struct cvmx_usbcx_hptxsts_s { ++ uint32_t ptxqtop:8; ++ uint32_t ptxqspcavail:8; ++ uint32_t ptxfspcavail:16; ++ } s; ++ struct cvmx_usbcx_hptxsts_s cn30xx; ++ struct cvmx_usbcx_hptxsts_s cn31xx; ++ struct cvmx_usbcx_hptxsts_s cn50xx; ++ struct cvmx_usbcx_hptxsts_s cn52xx; ++ struct cvmx_usbcx_hptxsts_s cn52xxp1; ++ struct cvmx_usbcx_hptxsts_s cn56xx; ++ struct cvmx_usbcx_hptxsts_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_nptxdfifox { ++ uint32_t u32; ++ struct cvmx_usbcx_nptxdfifox_s { ++ uint32_t data:32; ++ } s; ++ struct cvmx_usbcx_nptxdfifox_s cn30xx; ++ struct cvmx_usbcx_nptxdfifox_s cn31xx; ++ struct cvmx_usbcx_nptxdfifox_s cn50xx; ++ struct cvmx_usbcx_nptxdfifox_s cn52xx; ++ struct cvmx_usbcx_nptxdfifox_s cn52xxp1; ++ struct cvmx_usbcx_nptxdfifox_s cn56xx; ++ struct cvmx_usbcx_nptxdfifox_s cn56xxp1; ++}; ++ ++union cvmx_usbcx_pcgcctl { ++ uint32_t u32; ++ struct cvmx_usbcx_pcgcctl_s { ++ uint32_t reserved_5_31:27; ++ uint32_t physuspended:1; ++ uint32_t rstpdwnmodule:1; ++ uint32_t pwrclmp:1; ++ uint32_t gatehclk:1; ++ uint32_t stoppclk:1; ++ } s; ++ struct cvmx_usbcx_pcgcctl_s cn30xx; ++ struct cvmx_usbcx_pcgcctl_s cn31xx; ++ struct cvmx_usbcx_pcgcctl_s cn50xx; ++ struct cvmx_usbcx_pcgcctl_s cn52xx; ++ struct cvmx_usbcx_pcgcctl_s cn52xxp1; ++ struct cvmx_usbcx_pcgcctl_s cn56xx; ++ struct cvmx_usbcx_pcgcctl_s cn56xxp1; ++}; ++ ++#endif +diff --git a/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h b/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h +new file mode 100644 +index 0000000..90be974 +--- /dev/null ++++ b/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h +@@ -0,0 +1,760 @@ ++/***********************license start*************** ++ * Author: Cavium Networks ++ * ++ * Contact: support@caviumnetworks.com ++ * This file is part of the OCTEON SDK ++ * ++ * Copyright (c) 2003-2008 Cavium Networks ++ * ++ * This file is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License, Version 2, as ++ * published by the Free Software Foundation. ++ * ++ * This file is distributed in the hope that it will be useful, but ++ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty ++ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or ++ * NONINFRINGEMENT. See the GNU General Public License for more ++ * details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this file; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ++ * or visit http://www.gnu.org/licenses/. ++ * ++ * This file may also be available under a different license from Cavium. ++ * Contact Cavium Networks for more information ++ ***********************license end**************************************/ ++ ++#ifndef __CVMX_USBNX_DEFS_H__ ++#define __CVMX_USBNX_DEFS_H__ ++ ++#define CVMX_USBNX_BIST_STATUS(block_id) \ ++ CVMX_ADD_IO_SEG(0x00011800680007F8ull + (((block_id) & 1) * 0x10000000ull)) ++#define CVMX_USBNX_CLK_CTL(block_id) \ ++ CVMX_ADD_IO_SEG(0x0001180068000010ull + (((block_id) & 1) * 0x10000000ull)) ++#define CVMX_USBNX_CTL_STATUS(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000800ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_INB_CHN0(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000818ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_INB_CHN1(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000820ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_INB_CHN2(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000828ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_INB_CHN3(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000830ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_INB_CHN4(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000838ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_INB_CHN5(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000840ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_INB_CHN6(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000848ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_INB_CHN7(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000850ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_OUTB_CHN0(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000858ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_OUTB_CHN1(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000860ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_OUTB_CHN2(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000868ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_OUTB_CHN3(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000870ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_OUTB_CHN4(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000878ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_OUTB_CHN5(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000880ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_OUTB_CHN6(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000888ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA0_OUTB_CHN7(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000890ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_DMA_TEST(block_id) \ ++ CVMX_ADD_IO_SEG(0x00016F0000000808ull + (((block_id) & 1) * 0x100000000000ull)) ++#define CVMX_USBNX_INT_ENB(block_id) \ ++ CVMX_ADD_IO_SEG(0x0001180068000008ull + (((block_id) & 1) * 0x10000000ull)) ++#define CVMX_USBNX_INT_SUM(block_id) \ ++ CVMX_ADD_IO_SEG(0x0001180068000000ull + (((block_id) & 1) * 0x10000000ull)) ++#define CVMX_USBNX_USBP_CTL_STATUS(block_id) \ ++ CVMX_ADD_IO_SEG(0x0001180068000018ull + (((block_id) & 1) * 0x10000000ull)) ++ ++union cvmx_usbnx_bist_status { ++ uint64_t u64; ++ struct cvmx_usbnx_bist_status_s { ++ uint64_t reserved_7_63:57; ++ uint64_t u2nc_bis:1; ++ uint64_t u2nf_bis:1; ++ uint64_t e2hc_bis:1; ++ uint64_t n2uf_bis:1; ++ uint64_t usbc_bis:1; ++ uint64_t nif_bis:1; ++ uint64_t nof_bis:1; ++ } s; ++ struct cvmx_usbnx_bist_status_cn30xx { ++ uint64_t reserved_3_63:61; ++ uint64_t usbc_bis:1; ++ uint64_t nif_bis:1; ++ uint64_t nof_bis:1; ++ } cn30xx; ++ struct cvmx_usbnx_bist_status_cn30xx cn31xx; ++ struct cvmx_usbnx_bist_status_s cn50xx; ++ struct cvmx_usbnx_bist_status_s cn52xx; ++ struct cvmx_usbnx_bist_status_s cn52xxp1; ++ struct cvmx_usbnx_bist_status_s cn56xx; ++ struct cvmx_usbnx_bist_status_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_clk_ctl { ++ uint64_t u64; ++ struct cvmx_usbnx_clk_ctl_s { ++ uint64_t reserved_20_63:44; ++ uint64_t divide2:2; ++ uint64_t hclk_rst:1; ++ uint64_t p_x_on:1; ++ uint64_t reserved_14_15:2; ++ uint64_t p_com_on:1; ++ uint64_t p_c_sel:2; ++ uint64_t cdiv_byp:1; ++ uint64_t sd_mode:2; ++ uint64_t s_bist:1; ++ uint64_t por:1; ++ uint64_t enable:1; ++ uint64_t prst:1; ++ uint64_t hrst:1; ++ uint64_t divide:3; ++ } s; ++ struct cvmx_usbnx_clk_ctl_cn30xx { ++ uint64_t reserved_18_63:46; ++ uint64_t hclk_rst:1; ++ uint64_t p_x_on:1; ++ uint64_t p_rclk:1; ++ uint64_t p_xenbn:1; ++ uint64_t p_com_on:1; ++ uint64_t p_c_sel:2; ++ uint64_t cdiv_byp:1; ++ uint64_t sd_mode:2; ++ uint64_t s_bist:1; ++ uint64_t por:1; ++ uint64_t enable:1; ++ uint64_t prst:1; ++ uint64_t hrst:1; ++ uint64_t divide:3; ++ } cn30xx; ++ struct cvmx_usbnx_clk_ctl_cn30xx cn31xx; ++ struct cvmx_usbnx_clk_ctl_cn50xx { ++ uint64_t reserved_20_63:44; ++ uint64_t divide2:2; ++ uint64_t hclk_rst:1; ++ uint64_t reserved_16_16:1; ++ uint64_t p_rtype:2; ++ uint64_t p_com_on:1; ++ uint64_t p_c_sel:2; ++ uint64_t cdiv_byp:1; ++ uint64_t sd_mode:2; ++ uint64_t s_bist:1; ++ uint64_t por:1; ++ uint64_t enable:1; ++ uint64_t prst:1; ++ uint64_t hrst:1; ++ uint64_t divide:3; ++ } cn50xx; ++ struct cvmx_usbnx_clk_ctl_cn50xx cn52xx; ++ struct cvmx_usbnx_clk_ctl_cn50xx cn52xxp1; ++ struct cvmx_usbnx_clk_ctl_cn50xx cn56xx; ++ struct cvmx_usbnx_clk_ctl_cn50xx cn56xxp1; ++}; ++ ++union cvmx_usbnx_ctl_status { ++ uint64_t u64; ++ struct cvmx_usbnx_ctl_status_s { ++ uint64_t reserved_6_63:58; ++ uint64_t dma_0pag:1; ++ uint64_t dma_stt:1; ++ uint64_t dma_test:1; ++ uint64_t inv_a2:1; ++ uint64_t l2c_emod:2; ++ } s; ++ struct cvmx_usbnx_ctl_status_s cn30xx; ++ struct cvmx_usbnx_ctl_status_s cn31xx; ++ struct cvmx_usbnx_ctl_status_s cn50xx; ++ struct cvmx_usbnx_ctl_status_s cn52xx; ++ struct cvmx_usbnx_ctl_status_s cn52xxp1; ++ struct cvmx_usbnx_ctl_status_s cn56xx; ++ struct cvmx_usbnx_ctl_status_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_inb_chn0 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_inb_chn0_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_inb_chn0_s cn30xx; ++ struct cvmx_usbnx_dma0_inb_chn0_s cn31xx; ++ struct cvmx_usbnx_dma0_inb_chn0_s cn50xx; ++ struct cvmx_usbnx_dma0_inb_chn0_s cn52xx; ++ struct cvmx_usbnx_dma0_inb_chn0_s cn52xxp1; ++ struct cvmx_usbnx_dma0_inb_chn0_s cn56xx; ++ struct cvmx_usbnx_dma0_inb_chn0_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_inb_chn1 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_inb_chn1_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_inb_chn1_s cn30xx; ++ struct cvmx_usbnx_dma0_inb_chn1_s cn31xx; ++ struct cvmx_usbnx_dma0_inb_chn1_s cn50xx; ++ struct cvmx_usbnx_dma0_inb_chn1_s cn52xx; ++ struct cvmx_usbnx_dma0_inb_chn1_s cn52xxp1; ++ struct cvmx_usbnx_dma0_inb_chn1_s cn56xx; ++ struct cvmx_usbnx_dma0_inb_chn1_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_inb_chn2 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_inb_chn2_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_inb_chn2_s cn30xx; ++ struct cvmx_usbnx_dma0_inb_chn2_s cn31xx; ++ struct cvmx_usbnx_dma0_inb_chn2_s cn50xx; ++ struct cvmx_usbnx_dma0_inb_chn2_s cn52xx; ++ struct cvmx_usbnx_dma0_inb_chn2_s cn52xxp1; ++ struct cvmx_usbnx_dma0_inb_chn2_s cn56xx; ++ struct cvmx_usbnx_dma0_inb_chn2_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_inb_chn3 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_inb_chn3_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_inb_chn3_s cn30xx; ++ struct cvmx_usbnx_dma0_inb_chn3_s cn31xx; ++ struct cvmx_usbnx_dma0_inb_chn3_s cn50xx; ++ struct cvmx_usbnx_dma0_inb_chn3_s cn52xx; ++ struct cvmx_usbnx_dma0_inb_chn3_s cn52xxp1; ++ struct cvmx_usbnx_dma0_inb_chn3_s cn56xx; ++ struct cvmx_usbnx_dma0_inb_chn3_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_inb_chn4 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_inb_chn4_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_inb_chn4_s cn30xx; ++ struct cvmx_usbnx_dma0_inb_chn4_s cn31xx; ++ struct cvmx_usbnx_dma0_inb_chn4_s cn50xx; ++ struct cvmx_usbnx_dma0_inb_chn4_s cn52xx; ++ struct cvmx_usbnx_dma0_inb_chn4_s cn52xxp1; ++ struct cvmx_usbnx_dma0_inb_chn4_s cn56xx; ++ struct cvmx_usbnx_dma0_inb_chn4_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_inb_chn5 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_inb_chn5_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_inb_chn5_s cn30xx; ++ struct cvmx_usbnx_dma0_inb_chn5_s cn31xx; ++ struct cvmx_usbnx_dma0_inb_chn5_s cn50xx; ++ struct cvmx_usbnx_dma0_inb_chn5_s cn52xx; ++ struct cvmx_usbnx_dma0_inb_chn5_s cn52xxp1; ++ struct cvmx_usbnx_dma0_inb_chn5_s cn56xx; ++ struct cvmx_usbnx_dma0_inb_chn5_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_inb_chn6 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_inb_chn6_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_inb_chn6_s cn30xx; ++ struct cvmx_usbnx_dma0_inb_chn6_s cn31xx; ++ struct cvmx_usbnx_dma0_inb_chn6_s cn50xx; ++ struct cvmx_usbnx_dma0_inb_chn6_s cn52xx; ++ struct cvmx_usbnx_dma0_inb_chn6_s cn52xxp1; ++ struct cvmx_usbnx_dma0_inb_chn6_s cn56xx; ++ struct cvmx_usbnx_dma0_inb_chn6_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_inb_chn7 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_inb_chn7_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_inb_chn7_s cn30xx; ++ struct cvmx_usbnx_dma0_inb_chn7_s cn31xx; ++ struct cvmx_usbnx_dma0_inb_chn7_s cn50xx; ++ struct cvmx_usbnx_dma0_inb_chn7_s cn52xx; ++ struct cvmx_usbnx_dma0_inb_chn7_s cn52xxp1; ++ struct cvmx_usbnx_dma0_inb_chn7_s cn56xx; ++ struct cvmx_usbnx_dma0_inb_chn7_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_outb_chn0 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_outb_chn0_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_outb_chn0_s cn30xx; ++ struct cvmx_usbnx_dma0_outb_chn0_s cn31xx; ++ struct cvmx_usbnx_dma0_outb_chn0_s cn50xx; ++ struct cvmx_usbnx_dma0_outb_chn0_s cn52xx; ++ struct cvmx_usbnx_dma0_outb_chn0_s cn52xxp1; ++ struct cvmx_usbnx_dma0_outb_chn0_s cn56xx; ++ struct cvmx_usbnx_dma0_outb_chn0_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_outb_chn1 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_outb_chn1_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_outb_chn1_s cn30xx; ++ struct cvmx_usbnx_dma0_outb_chn1_s cn31xx; ++ struct cvmx_usbnx_dma0_outb_chn1_s cn50xx; ++ struct cvmx_usbnx_dma0_outb_chn1_s cn52xx; ++ struct cvmx_usbnx_dma0_outb_chn1_s cn52xxp1; ++ struct cvmx_usbnx_dma0_outb_chn1_s cn56xx; ++ struct cvmx_usbnx_dma0_outb_chn1_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_outb_chn2 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_outb_chn2_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_outb_chn2_s cn30xx; ++ struct cvmx_usbnx_dma0_outb_chn2_s cn31xx; ++ struct cvmx_usbnx_dma0_outb_chn2_s cn50xx; ++ struct cvmx_usbnx_dma0_outb_chn2_s cn52xx; ++ struct cvmx_usbnx_dma0_outb_chn2_s cn52xxp1; ++ struct cvmx_usbnx_dma0_outb_chn2_s cn56xx; ++ struct cvmx_usbnx_dma0_outb_chn2_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_outb_chn3 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_outb_chn3_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_outb_chn3_s cn30xx; ++ struct cvmx_usbnx_dma0_outb_chn3_s cn31xx; ++ struct cvmx_usbnx_dma0_outb_chn3_s cn50xx; ++ struct cvmx_usbnx_dma0_outb_chn3_s cn52xx; ++ struct cvmx_usbnx_dma0_outb_chn3_s cn52xxp1; ++ struct cvmx_usbnx_dma0_outb_chn3_s cn56xx; ++ struct cvmx_usbnx_dma0_outb_chn3_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_outb_chn4 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_outb_chn4_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_outb_chn4_s cn30xx; ++ struct cvmx_usbnx_dma0_outb_chn4_s cn31xx; ++ struct cvmx_usbnx_dma0_outb_chn4_s cn50xx; ++ struct cvmx_usbnx_dma0_outb_chn4_s cn52xx; ++ struct cvmx_usbnx_dma0_outb_chn4_s cn52xxp1; ++ struct cvmx_usbnx_dma0_outb_chn4_s cn56xx; ++ struct cvmx_usbnx_dma0_outb_chn4_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_outb_chn5 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_outb_chn5_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_outb_chn5_s cn30xx; ++ struct cvmx_usbnx_dma0_outb_chn5_s cn31xx; ++ struct cvmx_usbnx_dma0_outb_chn5_s cn50xx; ++ struct cvmx_usbnx_dma0_outb_chn5_s cn52xx; ++ struct cvmx_usbnx_dma0_outb_chn5_s cn52xxp1; ++ struct cvmx_usbnx_dma0_outb_chn5_s cn56xx; ++ struct cvmx_usbnx_dma0_outb_chn5_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_outb_chn6 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_outb_chn6_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_outb_chn6_s cn30xx; ++ struct cvmx_usbnx_dma0_outb_chn6_s cn31xx; ++ struct cvmx_usbnx_dma0_outb_chn6_s cn50xx; ++ struct cvmx_usbnx_dma0_outb_chn6_s cn52xx; ++ struct cvmx_usbnx_dma0_outb_chn6_s cn52xxp1; ++ struct cvmx_usbnx_dma0_outb_chn6_s cn56xx; ++ struct cvmx_usbnx_dma0_outb_chn6_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma0_outb_chn7 { ++ uint64_t u64; ++ struct cvmx_usbnx_dma0_outb_chn7_s { ++ uint64_t reserved_36_63:28; ++ uint64_t addr:36; ++ } s; ++ struct cvmx_usbnx_dma0_outb_chn7_s cn30xx; ++ struct cvmx_usbnx_dma0_outb_chn7_s cn31xx; ++ struct cvmx_usbnx_dma0_outb_chn7_s cn50xx; ++ struct cvmx_usbnx_dma0_outb_chn7_s cn52xx; ++ struct cvmx_usbnx_dma0_outb_chn7_s cn52xxp1; ++ struct cvmx_usbnx_dma0_outb_chn7_s cn56xx; ++ struct cvmx_usbnx_dma0_outb_chn7_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_dma_test { ++ uint64_t u64; ++ struct cvmx_usbnx_dma_test_s { ++ uint64_t reserved_40_63:24; ++ uint64_t done:1; ++ uint64_t req:1; ++ uint64_t f_addr:18; ++ uint64_t count:11; ++ uint64_t channel:5; ++ uint64_t burst:4; ++ } s; ++ struct cvmx_usbnx_dma_test_s cn30xx; ++ struct cvmx_usbnx_dma_test_s cn31xx; ++ struct cvmx_usbnx_dma_test_s cn50xx; ++ struct cvmx_usbnx_dma_test_s cn52xx; ++ struct cvmx_usbnx_dma_test_s cn52xxp1; ++ struct cvmx_usbnx_dma_test_s cn56xx; ++ struct cvmx_usbnx_dma_test_s cn56xxp1; ++}; ++ ++union cvmx_usbnx_int_enb { ++ uint64_t u64; ++ struct cvmx_usbnx_int_enb_s { ++ uint64_t reserved_38_63:26; ++ uint64_t nd4o_dpf:1; ++ uint64_t nd4o_dpe:1; ++ uint64_t nd4o_rpf:1; ++ uint64_t nd4o_rpe:1; ++ uint64_t ltl_f_pf:1; ++ uint64_t ltl_f_pe:1; ++ uint64_t u2n_c_pe:1; ++ uint64_t u2n_c_pf:1; ++ uint64_t u2n_d_pf:1; ++ uint64_t u2n_d_pe:1; ++ uint64_t n2u_pe:1; ++ uint64_t n2u_pf:1; ++ uint64_t uod_pf:1; ++ uint64_t uod_pe:1; ++ uint64_t rq_q3_e:1; ++ uint64_t rq_q3_f:1; ++ uint64_t rq_q2_e:1; ++ uint64_t rq_q2_f:1; ++ uint64_t rg_fi_f:1; ++ uint64_t rg_fi_e:1; ++ uint64_t l2_fi_f:1; ++ uint64_t l2_fi_e:1; ++ uint64_t l2c_a_f:1; ++ uint64_t l2c_s_e:1; ++ uint64_t dcred_f:1; ++ uint64_t dcred_e:1; ++ uint64_t lt_pu_f:1; ++ uint64_t lt_po_e:1; ++ uint64_t nt_pu_f:1; ++ uint64_t nt_po_e:1; ++ uint64_t pt_pu_f:1; ++ uint64_t pt_po_e:1; ++ uint64_t lr_pu_f:1; ++ uint64_t lr_po_e:1; ++ uint64_t nr_pu_f:1; ++ uint64_t nr_po_e:1; ++ uint64_t pr_pu_f:1; ++ uint64_t pr_po_e:1; ++ } s; ++ struct cvmx_usbnx_int_enb_s cn30xx; ++ struct cvmx_usbnx_int_enb_s cn31xx; ++ struct cvmx_usbnx_int_enb_cn50xx { ++ uint64_t reserved_38_63:26; ++ uint64_t nd4o_dpf:1; ++ uint64_t nd4o_dpe:1; ++ uint64_t nd4o_rpf:1; ++ uint64_t nd4o_rpe:1; ++ uint64_t ltl_f_pf:1; ++ uint64_t ltl_f_pe:1; ++ uint64_t reserved_26_31:6; ++ uint64_t uod_pf:1; ++ uint64_t uod_pe:1; ++ uint64_t rq_q3_e:1; ++ uint64_t rq_q3_f:1; ++ uint64_t rq_q2_e:1; ++ uint64_t rq_q2_f:1; ++ uint64_t rg_fi_f:1; ++ uint64_t rg_fi_e:1; ++ uint64_t l2_fi_f:1; ++ uint64_t l2_fi_e:1; ++ uint64_t l2c_a_f:1; ++ uint64_t l2c_s_e:1; ++ uint64_t dcred_f:1; ++ uint64_t dcred_e:1; ++ uint64_t lt_pu_f:1; ++ uint64_t lt_po_e:1; ++ uint64_t nt_pu_f:1; ++ uint64_t nt_po_e:1; ++ uint64_t pt_pu_f:1; ++ uint64_t pt_po_e:1; ++ uint64_t lr_pu_f:1; ++ uint64_t lr_po_e:1; ++ uint64_t nr_pu_f:1; ++ uint64_t nr_po_e:1; ++ uint64_t pr_pu_f:1; ++ uint64_t pr_po_e:1; ++ } cn50xx; ++ struct cvmx_usbnx_int_enb_cn50xx cn52xx; ++ struct cvmx_usbnx_int_enb_cn50xx cn52xxp1; ++ struct cvmx_usbnx_int_enb_cn50xx cn56xx; ++ struct cvmx_usbnx_int_enb_cn50xx cn56xxp1; ++}; ++ ++union cvmx_usbnx_int_sum { ++ uint64_t u64; ++ struct cvmx_usbnx_int_sum_s { ++ uint64_t reserved_38_63:26; ++ uint64_t nd4o_dpf:1; ++ uint64_t nd4o_dpe:1; ++ uint64_t nd4o_rpf:1; ++ uint64_t nd4o_rpe:1; ++ uint64_t ltl_f_pf:1; ++ uint64_t ltl_f_pe:1; ++ uint64_t u2n_c_pe:1; ++ uint64_t u2n_c_pf:1; ++ uint64_t u2n_d_pf:1; ++ uint64_t u2n_d_pe:1; ++ uint64_t n2u_pe:1; ++ uint64_t n2u_pf:1; ++ uint64_t uod_pf:1; ++ uint64_t uod_pe:1; ++ uint64_t rq_q3_e:1; ++ uint64_t rq_q3_f:1; ++ uint64_t rq_q2_e:1; ++ uint64_t rq_q2_f:1; ++ uint64_t rg_fi_f:1; ++ uint64_t rg_fi_e:1; ++ uint64_t lt_fi_f:1; ++ uint64_t lt_fi_e:1; ++ uint64_t l2c_a_f:1; ++ uint64_t l2c_s_e:1; ++ uint64_t dcred_f:1; ++ uint64_t dcred_e:1; ++ uint64_t lt_pu_f:1; ++ uint64_t lt_po_e:1; ++ uint64_t nt_pu_f:1; ++ uint64_t nt_po_e:1; ++ uint64_t pt_pu_f:1; ++ uint64_t pt_po_e:1; ++ uint64_t lr_pu_f:1; ++ uint64_t lr_po_e:1; ++ uint64_t nr_pu_f:1; ++ uint64_t nr_po_e:1; ++ uint64_t pr_pu_f:1; ++ uint64_t pr_po_e:1; ++ } s; ++ struct cvmx_usbnx_int_sum_s cn30xx; ++ struct cvmx_usbnx_int_sum_s cn31xx; ++ struct cvmx_usbnx_int_sum_cn50xx { ++ uint64_t reserved_38_63:26; ++ uint64_t nd4o_dpf:1; ++ uint64_t nd4o_dpe:1; ++ uint64_t nd4o_rpf:1; ++ uint64_t nd4o_rpe:1; ++ uint64_t ltl_f_pf:1; ++ uint64_t ltl_f_pe:1; ++ uint64_t reserved_26_31:6; ++ uint64_t uod_pf:1; ++ uint64_t uod_pe:1; ++ uint64_t rq_q3_e:1; ++ uint64_t rq_q3_f:1; ++ uint64_t rq_q2_e:1; ++ uint64_t rq_q2_f:1; ++ uint64_t rg_fi_f:1; ++ uint64_t rg_fi_e:1; ++ uint64_t lt_fi_f:1; ++ uint64_t lt_fi_e:1; ++ uint64_t l2c_a_f:1; ++ uint64_t l2c_s_e:1; ++ uint64_t dcred_f:1; ++ uint64_t dcred_e:1; ++ uint64_t lt_pu_f:1; ++ uint64_t lt_po_e:1; ++ uint64_t nt_pu_f:1; ++ uint64_t nt_po_e:1; ++ uint64_t pt_pu_f:1; ++ uint64_t pt_po_e:1; ++ uint64_t lr_pu_f:1; ++ uint64_t lr_po_e:1; ++ uint64_t nr_pu_f:1; ++ uint64_t nr_po_e:1; ++ uint64_t pr_pu_f:1; ++ uint64_t pr_po_e:1; ++ } cn50xx; ++ struct cvmx_usbnx_int_sum_cn50xx cn52xx; ++ struct cvmx_usbnx_int_sum_cn50xx cn52xxp1; ++ struct cvmx_usbnx_int_sum_cn50xx cn56xx; ++ struct cvmx_usbnx_int_sum_cn50xx cn56xxp1; ++}; ++ ++union cvmx_usbnx_usbp_ctl_status { ++ uint64_t u64; ++ struct cvmx_usbnx_usbp_ctl_status_s { ++ uint64_t txrisetune:1; ++ uint64_t txvreftune:4; ++ uint64_t txfslstune:4; ++ uint64_t txhsxvtune:2; ++ uint64_t sqrxtune:3; ++ uint64_t compdistune:3; ++ uint64_t otgtune:3; ++ uint64_t otgdisable:1; ++ uint64_t portreset:1; ++ uint64_t drvvbus:1; ++ uint64_t lsbist:1; ++ uint64_t fsbist:1; ++ uint64_t hsbist:1; ++ uint64_t bist_done:1; ++ uint64_t bist_err:1; ++ uint64_t tdata_out:4; ++ uint64_t siddq:1; ++ uint64_t txpreemphasistune:1; ++ uint64_t dma_bmode:1; ++ uint64_t usbc_end:1; ++ uint64_t usbp_bist:1; ++ uint64_t tclk:1; ++ uint64_t dp_pulld:1; ++ uint64_t dm_pulld:1; ++ uint64_t hst_mode:1; ++ uint64_t tuning:4; ++ uint64_t tx_bs_enh:1; ++ uint64_t tx_bs_en:1; ++ uint64_t loop_enb:1; ++ uint64_t vtest_enb:1; ++ uint64_t bist_enb:1; ++ uint64_t tdata_sel:1; ++ uint64_t taddr_in:4; ++ uint64_t tdata_in:8; ++ uint64_t ate_reset:1; ++ } s; ++ struct cvmx_usbnx_usbp_ctl_status_cn30xx { ++ uint64_t reserved_38_63:26; ++ uint64_t bist_done:1; ++ uint64_t bist_err:1; ++ uint64_t tdata_out:4; ++ uint64_t reserved_30_31:2; ++ uint64_t dma_bmode:1; ++ uint64_t usbc_end:1; ++ uint64_t usbp_bist:1; ++ uint64_t tclk:1; ++ uint64_t dp_pulld:1; ++ uint64_t dm_pulld:1; ++ uint64_t hst_mode:1; ++ uint64_t tuning:4; ++ uint64_t tx_bs_enh:1; ++ uint64_t tx_bs_en:1; ++ uint64_t loop_enb:1; ++ uint64_t vtest_enb:1; ++ uint64_t bist_enb:1; ++ uint64_t tdata_sel:1; ++ uint64_t taddr_in:4; ++ uint64_t tdata_in:8; ++ uint64_t ate_reset:1; ++ } cn30xx; ++ struct cvmx_usbnx_usbp_ctl_status_cn30xx cn31xx; ++ struct cvmx_usbnx_usbp_ctl_status_cn50xx { ++ uint64_t txrisetune:1; ++ uint64_t txvreftune:4; ++ uint64_t txfslstune:4; ++ uint64_t txhsxvtune:2; ++ uint64_t sqrxtune:3; ++ uint64_t compdistune:3; ++ uint64_t otgtune:3; ++ uint64_t otgdisable:1; ++ uint64_t portreset:1; ++ uint64_t drvvbus:1; ++ uint64_t lsbist:1; ++ uint64_t fsbist:1; ++ uint64_t hsbist:1; ++ uint64_t bist_done:1; ++ uint64_t bist_err:1; ++ uint64_t tdata_out:4; ++ uint64_t reserved_31_31:1; ++ uint64_t txpreemphasistune:1; ++ uint64_t dma_bmode:1; ++ uint64_t usbc_end:1; ++ uint64_t usbp_bist:1; ++ uint64_t tclk:1; ++ uint64_t dp_pulld:1; ++ uint64_t dm_pulld:1; ++ uint64_t hst_mode:1; ++ uint64_t reserved_19_22:4; ++ uint64_t tx_bs_enh:1; ++ uint64_t tx_bs_en:1; ++ uint64_t loop_enb:1; ++ uint64_t vtest_enb:1; ++ uint64_t bist_enb:1; ++ uint64_t tdata_sel:1; ++ uint64_t taddr_in:4; ++ uint64_t tdata_in:8; ++ uint64_t ate_reset:1; ++ } cn50xx; ++ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn52xx; ++ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn52xxp1; ++ struct cvmx_usbnx_usbp_ctl_status_cn56xx { ++ uint64_t txrisetune:1; ++ uint64_t txvreftune:4; ++ uint64_t txfslstune:4; ++ uint64_t txhsxvtune:2; ++ uint64_t sqrxtune:3; ++ uint64_t compdistune:3; ++ uint64_t otgtune:3; ++ uint64_t otgdisable:1; ++ uint64_t portreset:1; ++ uint64_t drvvbus:1; ++ uint64_t lsbist:1; ++ uint64_t fsbist:1; ++ uint64_t hsbist:1; ++ uint64_t bist_done:1; ++ uint64_t bist_err:1; ++ uint64_t tdata_out:4; ++ uint64_t siddq:1; ++ uint64_t txpreemphasistune:1; ++ uint64_t dma_bmode:1; ++ uint64_t usbc_end:1; ++ uint64_t usbp_bist:1; ++ uint64_t tclk:1; ++ uint64_t dp_pulld:1; ++ uint64_t dm_pulld:1; ++ uint64_t hst_mode:1; ++ uint64_t reserved_19_22:4; ++ uint64_t tx_bs_enh:1; ++ uint64_t tx_bs_en:1; ++ uint64_t loop_enb:1; ++ uint64_t vtest_enb:1; ++ uint64_t bist_enb:1; ++ uint64_t tdata_sel:1; ++ uint64_t taddr_in:4; ++ uint64_t tdata_in:8; ++ uint64_t ate_reset:1; ++ } cn56xx; ++ struct cvmx_usbnx_usbp_ctl_status_cn50xx cn56xxp1; ++}; ++ ++#endif +-- +1.6.0.6 + +-- +To unsubscribe from this list: send the line "unsubscribe linux-usb" in +the body of a message to majordomo@vger.kernel.org +More majordomo info at http://vger.kernel.org/majordomo-info.htmlSigned-off-by: David Daney <ddaney@caviumnetworks.com> +--- + drivers/usb/host/Kconfig | 8 + + drivers/usb/host/Makefile | 1 + + drivers/usb/host/dwc_otg/Kbuild | 16 + + drivers/usb/host/dwc_otg/dwc_otg_attr.c | 854 ++++++++ + drivers/usb/host/dwc_otg/dwc_otg_attr.h | 63 + + drivers/usb/host/dwc_otg/dwc_otg_cil.c | 2887 ++++++++++++++++++++++++++ + drivers/usb/host/dwc_otg/dwc_otg_cil.h | 866 ++++++++ + drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c | 689 ++++++ + drivers/usb/host/dwc_otg/dwc_otg_driver.h | 63 + + drivers/usb/host/dwc_otg/dwc_otg_hcd.c | 2878 +++++++++++++++++++++++++ + drivers/usb/host/dwc_otg/dwc_otg_hcd.h | 661 ++++++ + drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c | 1890 +++++++++++++++++ + drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c | 695 +++++++ + drivers/usb/host/dwc_otg/dwc_otg_octeon.c | 1078 ++++++++++ + drivers/usb/host/dwc_otg/dwc_otg_plat.h | 236 +++ + drivers/usb/host/dwc_otg/dwc_otg_regs.h | 2355 +++++++++++++++++++++ + 16 files changed, 15240 insertions(+), 0 deletions(-) + create mode 100644 drivers/usb/host/dwc_otg/Kbuild + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.c + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.h + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.c + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.h + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_driver.h + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.c + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.h + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_octeon.c + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_plat.h + create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_regs.h + +diff --git a/drivers/usb/host/Kconfig b/drivers/usb/host/Kconfig +index 9b43b22..342dc54 100644 +--- a/drivers/usb/host/Kconfig ++++ b/drivers/usb/host/Kconfig +@@ -381,3 +381,11 @@ config USB_HWA_HCD + + To compile this driver a module, choose M here: the module + will be called "hwa-hc". ++ ++config USB_DWC_OTG ++ tristate "Cavium Octeon USB" ++ depends on USB && CPU_CAVIUM_OCTEON ++ ---help--- ++ The Cavium Octeon on-chip USB controller. To compile this ++ driver as a module, choose M here: the module will be called ++ "dwc_otg". +diff --git a/drivers/usb/host/Makefile b/drivers/usb/host/Makefile +index f58b249..76faf12 100644 +--- a/drivers/usb/host/Makefile ++++ b/drivers/usb/host/Makefile +@@ -15,6 +15,7 @@ endif + xhci-objs := xhci-hcd.o xhci-mem.o xhci-pci.o xhci-ring.o xhci-hub.o xhci-dbg.o + + obj-$(CONFIG_USB_WHCI_HCD) += whci/ ++obj-$(CONFIG_USB_DWC_OTG) += dwc_otg/ + + obj-$(CONFIG_PCI) += pci-quirks.o + +diff --git a/drivers/usb/host/dwc_otg/Kbuild b/drivers/usb/host/dwc_otg/Kbuild +new file mode 100644 +index 0000000..cb32638 +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/Kbuild +@@ -0,0 +1,16 @@ ++# ++# Makefile for DWC_otg Highspeed USB controller driver ++# ++ ++# Use one of the following flags to compile the software in host-only or ++# device-only mode. ++#EXTRA_CFLAGS += -DDWC_HOST_ONLY ++#EXTRA_CFLAGS += -DDWC_DEVICE_ONLY ++ ++EXTRA_CFLAGS += -DDWC_HOST_ONLY ++obj-$(CONFIG_USB_DWC_OTG) += dwc_otg.o ++ ++dwc_otg-y := dwc_otg_octeon.o dwc_otg_attr.o ++dwc_otg-y += dwc_otg_cil.o dwc_otg_cil_intr.o ++dwc_otg-y += dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o ++ +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.c b/drivers/usb/host/dwc_otg/dwc_otg_attr.c +new file mode 100644 +index 0000000..d854a79 +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.c +@@ -0,0 +1,854 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/* ++ * ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. The Linux driver attributes ++ * feature will be used to provide the Linux Diagnostic ++ * Interface. These attributes are accessed through sysfs. ++ */ ++ ++/** @page "Linux Module Attributes" ++ * ++ * The Linux module attributes feature is used to provide the Linux ++ * Diagnostic Interface. These attributes are accessed through sysfs. ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. ++ ++ The following table shows the attributes. ++ <table> ++ <tr> ++ <td><b> Name</b></td> ++ <td><b> Description</b></td> ++ <td><b> Access</b></td> ++ </tr> ++ ++ <tr> ++ <td> mode </td> ++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hnpcapable </td> ++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> srpcapable </td> ++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> hnp </td> ++ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> srp </td> ++ <td> Initiates the Session Request Protocol. Read returns the status.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> buspower </td> ++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> bussuspend </td> ++ <td> Suspends the USB bus.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> busconnected </td> ++ <td> Gets the connection status of the bus</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> gotgctl </td> ++ <td> Gets or sets the Core Control Status Register.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gusbcfg </td> ++ <td> Gets or sets the Core USB Configuration Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> grxfsiz </td> ++ <td> Gets or sets the Receive FIFO Size Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gnptxfsiz </td> ++ <td> Gets or sets the non-periodic Transmit Size Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gpvndctl </td> ++ <td> Gets or sets the PHY Vendor Control Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> ggpio </td> ++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register ++ or sets the upper 16 bits.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> guid </td> ++ <td> Gets or sets the value of the User ID Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gsnpsid </td> ++ <td> Gets the value of the Synopsys ID Regester</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> devspeed </td> ++ <td> Gets or sets the device speed setting in the DCFG register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> enumspeed </td> ++ <td> Gets the device enumeration Speed.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hptxfsiz </td> ++ <td> Gets the value of the Host Periodic Transmit FIFO</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hprt0 </td> ++ <td> Gets or sets the value in the Host Port Control and Status Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regoffset </td> ++ <td> Sets the register offset for the next Register Access</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regvalue </td> ++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> remote_wakeup </td> ++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote ++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote ++ Wakeup signalling bit in the Device Control Register is set for 1 ++ milli-second.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regdump </td> ++ <td> Dumps the contents of core registers.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hcddump </td> ++ <td> Dumps the current HCD state.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hcd_frrem </td> ++ <td> Shows the average value of the Frame Remaining ++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt ++ occurs. This can be used to determine the average interrupt latency. Also ++ shows the average Frame Remaining value for start_transfer and the "a" and ++ "b" sample points. The "a" and "b" sample points may be used during debugging ++ bto determine how long it takes to execute a section of the HCD code.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> rd_reg_test </td> ++ <td> Displays the time required to read the GNPTXFSIZ register many times ++ (the output shows the number of times the register is read). ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> wr_reg_test </td> ++ <td> Displays the time required to write the GNPTXFSIZ register many times ++ (the output shows the number of times the register is written). ++ <td> Read</td> ++ </tr> ++ ++ </table> ++ ++ Example usage: ++ To get the current mode: ++ cat /sys/devices/lm0/mode ++ ++ To power down the USB: ++ echo 0 > /sys/devices/lm0/buspower ++ */ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/types.h> ++#include <linux/stat.h> /* permission constants */ ++ ++#include <asm/io.h> ++ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_attr.h" ++#include "dwc_otg_driver.h" ++#ifndef DWC_HOST_ONLY ++#include "dwc_otg_pcd.h" ++#endif ++#include "dwc_otg_hcd.h" ++ ++/* ++ * MACROs for defining sysfs attribute ++ */ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_, \ ++ _mask_, _shift_, _string_) \ ++ static ssize_t _otg_attr_name_##_show (struct device *_dev, \ ++ struct device_attribute *attr, \ ++ char *buf) \ ++ { \ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; \ ++ uint32_t val; \ ++ val = dwc_read_reg32(_addr_); \ ++ val = (val & (_mask_)) >> _shift_; \ ++ return sprintf(buf, "%s = 0x%x\n", _string_, val); \ ++ } ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_, \ ++ _mask_, _shift_, _string_) \ ++ static ssize_t _otg_attr_name_##_store (struct device *_dev, \ ++ struct device_attribute *attr, \ ++ const char *buf, size_t count) \ ++ { \ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; \ ++ uint32_t set = simple_strtoul(buf, NULL, 16); \ ++ uint32_t clear = set; \ ++ clear = ((~clear) << _shift_) & _mask_; \ ++ set = (set << _shift_) & _mask_; \ ++ dev_dbg(_dev, \ ++ "Storing Address=%p Set=0x%08x Clear=0x%08x\n", \ ++ _addr_, set, clear); \ ++ dwc_modify_reg32(_addr_, clear, set); \ ++ return count; \ ++ } ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_, _addr_, \ ++ _mask_, _shift_, _string_) \ ++ DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_, \ ++ _mask_, _shift_, _string_) \ ++ DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_, \ ++ _mask_, _shift_, _string_) \ ++ DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, \ ++ _otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_, _addr_, \ ++ _mask_, _shift_, _string_) \ ++ DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, \ ++ _addr_, _mask_, _shift_, _string_) \ ++ DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL); ++ ++/* ++ * MACROs for defining sysfs attribute for 32-bit registers ++ */ ++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \ ++ static ssize_t _otg_attr_name_##_show(struct device *_dev, \ ++ struct device_attribute *attr, \ ++ char *buf) \ ++ { \ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; \ ++ uint32_t val; \ ++ val = dwc_read_reg32(_addr_); \ ++ return sprintf(buf, "%s = 0x%08x\n", _string_, val); \ ++ } ++ ++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \ ++ static ssize_t _otg_attr_name_##_store(struct device *_dev, \ ++ struct device_attribute *attr, \ ++ const char *buf, size_t count) \ ++ { \ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; \ ++ uint32_t val = simple_strtoul(buf, NULL, 16); \ ++ dev_dbg(_dev, "Storing Address=%p Val=0x%08x\n", _addr_, val); \ ++ dwc_write_reg32(_addr_, val); \ ++ return count; \ ++ } ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_, _addr_, _string_) \ ++ DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \ ++ DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \ ++ DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, \ ++ _otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_, _addr_, _string_) \ ++ DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \ ++ DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL); ++ ++/** ++ * Show the register offset of the Register Access. ++ */ ++static ssize_t regoffset_show(struct device *_dev, ++ struct device_attribute *attr, char *buf) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ return snprintf(buf, sizeof("0xFFFFFFFF\n") + 1, "0x%08x\n", ++ otg_dev->reg_offset); ++} ++ ++/** ++ * Set the register offset for the next Register Access Read/Write ++ */ ++static ssize_t regoffset_store(struct device *_dev, ++ struct device_attribute *attr, const char *buf, ++ size_t count) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ uint32_t offset = simple_strtoul(buf, NULL, 16); ++ ++ if (offset < SZ_256K) ++ otg_dev->reg_offset = offset; ++ else ++ dev_err(_dev, "invalid offset\n"); ++ ++ return count; ++} ++ ++DEVICE_ATTR(regoffset, S_IRUGO | S_IWUSR, regoffset_show, regoffset_store); ++ ++/** ++ * Show the value of the register at the offset in the reg_offset ++ * attribute. ++ */ ++static ssize_t regvalue_show(struct device *_dev, struct device_attribute *attr, ++ char *buf) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ uint32_t val; ++ uint32_t *addr; ++ ++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t *) (otg_dev->reg_offset + ++ (uint8_t *) otg_dev->base); ++ ++ val = dwc_read_reg32(addr); ++ return snprintf(buf, ++ sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n") + 1, ++ "Reg@0x%06x = 0x%08x\n", otg_dev->reg_offset, ++ val); ++ } else { ++ dev_err(_dev, "Invalid offset (0x%0x)\n", otg_dev->reg_offset); ++ return sprintf(buf, "invalid offset\n"); ++ } ++} ++ ++/** ++ * Store the value in the register at the offset in the reg_offset ++ * attribute. ++ * ++ */ ++static ssize_t regvalue_store(struct device *_dev, ++ struct device_attribute *attr, const char *buf, ++ size_t count) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ uint32_t *addr; ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ ++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t *) (otg_dev->reg_offset + ++ (uint8_t *) otg_dev->base); ++ ++ dwc_write_reg32(addr, val); ++ } else { ++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n", ++ otg_dev->reg_offset); ++ } ++ return count; ++} ++ ++DEVICE_ATTR(regvalue, S_IRUGO | S_IWUSR, regvalue_show, regvalue_store); ++ ++/* ++ * Attributes ++ */ ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode, ++ &(otg_dev->core_if->core_global_regs->gotgctl), ++ (1 << 20), 20, "Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable, ++ &(otg_dev->core_if->core_global_regs->gusbcfg), ++ (1 << 9), 9, "Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable, ++ &(otg_dev->core_if->core_global_regs->gusbcfg), ++ (1 << 8), 8, "Mode"); ++#if 0 ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode"); ++#endif ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected, otg_dev->core_if->host_if->hprt0, ++ 0x01, 0, "Bus Connected"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl, ++ &(otg_dev->core_if->core_global_regs->gotgctl), ++ "GOTGCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg, ++ &(otg_dev->core_if->core_global_regs->gusbcfg), ++ "GUSBCFG"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz, ++ &(otg_dev->core_if->core_global_regs->grxfsiz), ++ "GRXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz, ++ &(otg_dev->core_if->core_global_regs->gnptxfsiz), ++ "GNPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl, ++ &(otg_dev->core_if->core_global_regs->gpvndctl), ++ "GPVNDCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio, ++ &(otg_dev->core_if->core_global_regs->ggpio), ++ "GGPIO"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(guid, &(otg_dev->core_if->core_global_regs->guid), ++ "GUID"); ++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid, ++ &(otg_dev->core_if->core_global_regs->gsnpsid), ++ "GSNPSID"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed, ++ &(otg_dev->core_if->dev_if->dev_global_regs-> ++ dcfg), 0x3, 0, "Device Speed"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed, ++ &(otg_dev->core_if->dev_if->dev_global_regs-> ++ dsts), 0x6, 1, "Device Enumeration Speed"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz, ++ &(otg_dev->core_if->core_global_regs->hptxfsiz), ++ "HPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0, otg_dev->core_if->host_if->hprt0, "HPRT0"); ++ ++/** ++ * @todo Add code to initiate the HNP. ++ */ ++/** ++ * Show the HNP status bit ++ */ ++static ssize_t hnp_show(struct device *_dev, struct device_attribute *attr, ++ char *buf) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ union gotgctl_data val; ++ val.d32 = ++ dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf(buf, "HstNegScs = 0x%x\n", val.b.hstnegscs); ++} ++ ++/** ++ * Set the HNP Request bit ++ */ ++static ssize_t hnp_store(struct device *_dev, struct device_attribute *attr, ++ const char *buf, size_t count) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = ++ (uint32_t *) &(otg_dev->core_if->core_global_regs->gotgctl); ++ union gotgctl_data mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.hnpreq = in; ++ dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++ ++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store); ++ ++/** ++ * @todo Add code to initiate the SRP. ++ */ ++/** ++ * Show the SRP status bit ++ */ ++static ssize_t srp_show(struct device *_dev, struct device_attribute *attr, ++ char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ union gotgctl_data val; ++ val.d32 = ++ dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf(buf, "SesReqScs = 0x%x\n", val.b.sesreqscs); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++ ++/** ++ * Set the SRP Request bit ++ */ ++static ssize_t srp_store(struct device *_dev, struct device_attribute *attr, ++ const char *buf, size_t count) ++{ ++#ifndef DWC_HOST_ONLY ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ dwc_otg_pcd_initiate_srp(otg_dev->pcd); ++#endif ++ return count; ++} ++ ++DEVICE_ATTR(srp, 0644, srp_show, srp_store); ++ ++/** ++ * @todo Need to do more for power on/off? ++ */ ++/** ++ * Show the Bus Power status ++ */ ++static ssize_t buspower_show(struct device *_dev, struct device_attribute *attr, ++ char *buf) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ union hprt0_data val; ++ val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0); ++ return sprintf(buf, "Bus Power = 0x%x\n", val.b.prtpwr); ++} ++ ++/** ++ * Set the Bus Power status ++ */ ++static ssize_t buspower_store(struct device *_dev, ++ struct device_attribute *attr, const char *buf, ++ size_t count) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ uint32_t on = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0; ++ union hprt0_data mem; ++ ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtpwr = on; ++ ++ dwc_write_reg32(addr, mem.d32); ++ ++ return count; ++} ++ ++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store); ++ ++/** ++ * @todo Need to do more for suspend? ++ */ ++/** ++ * Show the Bus Suspend status ++ */ ++static ssize_t bussuspend_show(struct device *_dev, ++ struct device_attribute *attr, char *buf) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ union hprt0_data val; ++ val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0); ++ return sprintf(buf, "Bus Suspend = 0x%x\n", val.b.prtsusp); ++} ++ ++/** ++ * Set the Bus Suspend status ++ */ ++static ssize_t bussuspend_store(struct device *_dev, ++ struct device_attribute *attr, const char *buf, ++ size_t count) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0; ++ union hprt0_data mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtsusp = in; ++ dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++ ++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store); ++ ++/** ++ * Show the status of Remote Wakeup. ++ */ ++static ssize_t remote_wakeup_show(struct device *_dev, ++ struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ union dctl_data val; ++ val.d32 = ++ dwc_read_reg32(&otg_dev->core_if->dev_if->dev_global_regs->dctl); ++ return sprintf(buf, "Remote Wakeup = %d Enabled = %d\n", ++ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++ ++/** ++ * Initiate a remote wakeup of the host. The Device control register ++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable ++ * flag is set. ++ * ++ */ ++static ssize_t remote_wakeup_store(struct device *_dev, ++ struct device_attribute *attr, ++ const char *buf, size_t count) ++{ ++#ifndef DWC_HOST_ONLY ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ if (val & 1) ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1); ++ else ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0); ++#endif ++ return count; ++} ++ ++DEVICE_ATTR(remote_wakeup, S_IRUGO | S_IWUSR, remote_wakeup_show, ++ remote_wakeup_store); ++ ++/** ++ * Dump global registers and either host or device registers (depending on the ++ * current mode of the core). ++ */ ++static ssize_t regdump_show(struct device *_dev, struct device_attribute *attr, ++ char *buf) ++{ ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ ++ dwc_otg_dump_global_registers(otg_dev->core_if); ++ if (dwc_otg_is_host_mode(otg_dev->core_if)) ++ dwc_otg_dump_host_registers(otg_dev->core_if); ++ else ++ dwc_otg_dump_dev_registers(otg_dev->core_if); ++ ++ return sprintf(buf, "Register Dump\n"); ++} ++ ++DEVICE_ATTR(regdump, S_IRUGO | S_IWUSR, regdump_show, 0); ++ ++/** ++ * Dump the current hcd state. ++ */ ++static ssize_t hcddump_show(struct device *_dev, struct device_attribute *attr, ++ char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ dwc_otg_hcd_dump_state(otg_dev->hcd); ++#endif ++ return sprintf(buf, "HCD Dump\n"); ++} ++ ++DEVICE_ATTR(hcddump, S_IRUGO | S_IWUSR, hcddump_show, 0); ++ ++/** ++ * Dump the average frame remaining at SOF. This can be used to ++ * determine average interrupt latency. Frame remaining is also shown for ++ * start transfer and two additional sample points. ++ */ ++static ssize_t hcd_frrem_show(struct device *_dev, ++ struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ dwc_otg_hcd_dump_frrem(otg_dev->hcd); ++#endif ++ return sprintf(buf, "HCD Dump Frame Remaining\n"); ++} ++ ++DEVICE_ATTR(hcd_frrem, S_IRUGO | S_IWUSR, hcd_frrem_show, 0); ++ ++/** ++ * Displays the time required to read the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is read). ++ */ ++#define RW_REG_COUNT 10000000 ++#define MSEC_PER_JIFFIE (1000/HZ) ++static ssize_t rd_reg_test_show(struct device *_dev, ++ struct device_attribute *attr, char *buf) ++{ ++ int i; ++ int time; ++ int start_jiffies; ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ ++ pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) ++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ ++ time = jiffies - start_jiffies; ++ return sprintf(buf, ++ "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); ++} ++ ++DEVICE_ATTR(rd_reg_test, S_IRUGO | S_IWUSR, rd_reg_test_show, 0); ++ ++/** ++ * Displays the time required to write the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is written). ++ */ ++static ssize_t wr_reg_test_show(struct device *_dev, ++ struct device_attribute *attr, char *buf) ++{ ++ int i; ++ int time; ++ int start_jiffies; ++ struct dwc_otg_device *otg_dev = _dev->platform_data; ++ uint32_t reg_val; ++ ++ pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ reg_val = ++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) ++ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, ++ reg_val); ++ ++ time = jiffies - start_jiffies; ++ return sprintf(buf, ++ "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); ++} ++ ++DEVICE_ATTR(wr_reg_test, S_IRUGO | S_IWUSR, wr_reg_test_show, 0); ++ ++/* ++ * Create the device files ++ */ ++void dwc_otg_attr_create(struct device *dev) ++{ ++ int error; ++ error = device_create_file(dev, &dev_attr_regoffset); ++ error |= device_create_file(dev, &dev_attr_regvalue); ++ error |= device_create_file(dev, &dev_attr_mode); ++ error |= device_create_file(dev, &dev_attr_hnpcapable); ++ error |= device_create_file(dev, &dev_attr_srpcapable); ++ error |= device_create_file(dev, &dev_attr_hnp); ++ error |= device_create_file(dev, &dev_attr_srp); ++ error |= device_create_file(dev, &dev_attr_buspower); ++ error |= device_create_file(dev, &dev_attr_bussuspend); ++ error |= device_create_file(dev, &dev_attr_busconnected); ++ error |= device_create_file(dev, &dev_attr_gotgctl); ++ error |= device_create_file(dev, &dev_attr_gusbcfg); ++ error |= device_create_file(dev, &dev_attr_grxfsiz); ++ error |= device_create_file(dev, &dev_attr_gnptxfsiz); ++ error |= device_create_file(dev, &dev_attr_gpvndctl); ++ error |= device_create_file(dev, &dev_attr_ggpio); ++ error |= device_create_file(dev, &dev_attr_guid); ++ error |= device_create_file(dev, &dev_attr_gsnpsid); ++ error |= device_create_file(dev, &dev_attr_devspeed); ++ error |= device_create_file(dev, &dev_attr_enumspeed); ++ error |= device_create_file(dev, &dev_attr_hptxfsiz); ++ error |= device_create_file(dev, &dev_attr_hprt0); ++ error |= device_create_file(dev, &dev_attr_remote_wakeup); ++ error |= device_create_file(dev, &dev_attr_regdump); ++ error |= device_create_file(dev, &dev_attr_hcddump); ++ error |= device_create_file(dev, &dev_attr_hcd_frrem); ++ error |= device_create_file(dev, &dev_attr_rd_reg_test); ++ error |= device_create_file(dev, &dev_attr_wr_reg_test); ++ if (error) ++ pr_err("DWC_OTG: Creating some device files failed\n"); ++} ++ ++/* ++ * Remove the device files ++ */ ++void dwc_otg_attr_remove(struct device *dev) ++{ ++ device_remove_file(dev, &dev_attr_regoffset); ++ device_remove_file(dev, &dev_attr_regvalue); ++ device_remove_file(dev, &dev_attr_mode); ++ device_remove_file(dev, &dev_attr_hnpcapable); ++ device_remove_file(dev, &dev_attr_srpcapable); ++ device_remove_file(dev, &dev_attr_hnp); ++ device_remove_file(dev, &dev_attr_srp); ++ device_remove_file(dev, &dev_attr_buspower); ++ device_remove_file(dev, &dev_attr_bussuspend); ++ device_remove_file(dev, &dev_attr_busconnected); ++ device_remove_file(dev, &dev_attr_gotgctl); ++ device_remove_file(dev, &dev_attr_gusbcfg); ++ device_remove_file(dev, &dev_attr_grxfsiz); ++ device_remove_file(dev, &dev_attr_gnptxfsiz); ++ device_remove_file(dev, &dev_attr_gpvndctl); ++ device_remove_file(dev, &dev_attr_ggpio); ++ device_remove_file(dev, &dev_attr_guid); ++ device_remove_file(dev, &dev_attr_gsnpsid); ++ device_remove_file(dev, &dev_attr_devspeed); ++ device_remove_file(dev, &dev_attr_enumspeed); ++ device_remove_file(dev, &dev_attr_hptxfsiz); ++ device_remove_file(dev, &dev_attr_hprt0); ++ device_remove_file(dev, &dev_attr_remote_wakeup); ++ device_remove_file(dev, &dev_attr_regdump); ++ device_remove_file(dev, &dev_attr_hcddump); ++ device_remove_file(dev, &dev_attr_hcd_frrem); ++ device_remove_file(dev, &dev_attr_rd_reg_test); ++ device_remove_file(dev, &dev_attr_wr_reg_test); ++} +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.h b/drivers/usb/host/dwc_otg/dwc_otg_attr.h +new file mode 100644 +index 0000000..925524f +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.h +@@ -0,0 +1,63 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_ATTR_H__) ++#define __DWC_OTG_ATTR_H__ ++ ++/* ++ * This file contains the interface to the Linux device attributes. ++ */ ++extern struct device_attribute dev_attr_regoffset; ++extern struct device_attribute dev_attr_regvalue; ++ ++extern struct device_attribute dev_attr_mode; ++extern struct device_attribute dev_attr_hnpcapable; ++extern struct device_attribute dev_attr_srpcapable; ++extern struct device_attribute dev_attr_hnp; ++extern struct device_attribute dev_attr_srp; ++extern struct device_attribute dev_attr_buspower; ++extern struct device_attribute dev_attr_bussuspend; ++extern struct device_attribute dev_attr_busconnected; ++extern struct device_attribute dev_attr_gotgctl; ++extern struct device_attribute dev_attr_gusbcfg; ++extern struct device_attribute dev_attr_grxfsiz; ++extern struct device_attribute dev_attr_gnptxfsiz; ++extern struct device_attribute dev_attr_gpvndctl; ++extern struct device_attribute dev_attr_ggpio; ++extern struct device_attribute dev_attr_guid; ++extern struct device_attribute dev_attr_gsnpsid; ++extern struct device_attribute dev_attr_devspeed; ++extern struct device_attribute dev_attr_enumspeed; ++extern struct device_attribute dev_attr_hptxfsiz; ++extern struct device_attribute dev_attr_hprt0; ++ ++void dwc_otg_attr_create(struct device *dev); ++void dwc_otg_attr_remove(struct device *dev); ++ ++#endif +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.c b/drivers/usb/host/dwc_otg/dwc_otg_cil.c +new file mode 100644 +index 0000000..86153ba +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.c +@@ -0,0 +1,2887 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/* ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * The CIL manages the memory map for the core so that the HCD and PCD ++ * don't have to do this separately. It also handles basic tasks like ++ * reading/writing the registers and data FIFOs in the controller. ++ * Some of the data access functions provide encapsulation of several ++ * operations required to perform a task, such as writing multiple ++ * registers to start a transfer. Finally, the CIL performs basic ++ * services that are not specific to either the host or device modes ++ * of operation. These services include management of the OTG Host ++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A ++ * Diagnostic API is also provided to allow testing of the controller ++ * hardware. ++ * ++ * The Core Interface Layer has the following requirements: ++ * - Provides basic controller operations. ++ * - Minimal use of OS services. ++ * - The OS services used will be abstracted by using inline functions ++ * or macros. ++ * ++ */ ++#include <asm/unaligned.h> ++#ifdef DEBUG ++#include <linux/jiffies.h> ++#endif ++ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_regs.h" ++#include "dwc_otg_cil.h" ++ ++/** ++ * This function is called to initialize the DWC_otg CSR data ++ * structures. The register addresses in the device and host ++ * structures are initialized from the base address supplied by the ++ * caller. The calling function must make the OS calls to get the ++ * base address of the DWC_otg controller registers. The core_params ++ * argument holds the parameters that specify how the core should be ++ * configured. ++ * ++ * @reg_base_addr: Base address of DWC_otg core registers ++ * @core_params: Pointer to the core configuration parameters ++ * ++ */ ++struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr, ++ struct dwc_otg_core_params *core_params) ++{ ++ struct dwc_otg_core_if *core_if = 0; ++ struct dwc_otg_dev_if *dev_if = 0; ++ struct dwc_otg_host_if *host_if = 0; ++ uint8_t *reg_base = (uint8_t *) reg_base_addr; ++ int i = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, ++ core_params); ++ ++ core_if = kmalloc(sizeof(struct dwc_otg_core_if), GFP_KERNEL); ++ if (core_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, ++ "Allocation of struct dwc_otg_core_if failed\n"); ++ return 0; ++ } ++ memset(core_if, 0, sizeof(struct dwc_otg_core_if)); ++ ++ core_if->core_params = core_params; ++ core_if->core_global_regs = ++ (struct dwc_otg_core_global_regs *)reg_base; ++ /* ++ * Allocate the Device Mode structures. ++ */ ++ dev_if = kmalloc(sizeof(struct dwc_otg_dev_if), GFP_KERNEL); ++ if (dev_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of struct dwc_otg_dev_if " ++ "failed\n"); ++ kfree(core_if); ++ return 0; ++ } ++ ++ dev_if->dev_global_regs = ++ (struct dwc_otg_dev_global_regs *) (reg_base + ++ DWC_DEV_GLOBAL_REG_OFFSET); ++ ++ for (i = 0; i < MAX_EPS_CHANNELS; i++) { ++ dev_if->in_ep_regs[i] = (struct dwc_otg_dev_in_ep_regs *) ++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ ++ dev_if->out_ep_regs[i] = (struct dwc_otg_dev_out_ep_regs *) ++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", ++ i, &dev_if->in_ep_regs[i]->diepctl); ++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", ++ i, &dev_if->out_ep_regs[i]->doepctl); ++ } ++ dev_if->speed = 0; /* unknown */ ++ dev_if->num_eps = MAX_EPS_CHANNELS; ++ dev_if->num_perio_eps = 0; ++ ++ core_if->dev_if = dev_if; ++ /* ++ * Allocate the Host Mode structures. ++ */ ++ host_if = kmalloc(sizeof(struct dwc_otg_host_if), GFP_KERNEL); ++ if (host_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, ++ "Allocation of struct dwc_otg_host_if failed\n"); ++ kfree(dev_if); ++ kfree(core_if); ++ return 0; ++ } ++ ++ host_if->host_global_regs = (struct dwc_otg_host_global_regs *) ++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); ++ host_if->hprt0 = ++ (uint32_t *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); ++ for (i = 0; i < MAX_EPS_CHANNELS; i++) { ++ host_if->hc_regs[i] = (struct dwc_otg_hc_regs *) ++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + ++ (i * DWC_OTG_CHAN_REGS_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", ++ i, &host_if->hc_regs[i]->hcchar); ++ } ++ host_if->num_host_channels = MAX_EPS_CHANNELS; ++ core_if->host_if = host_if; ++ ++ for (i = 0; i < MAX_EPS_CHANNELS; i++) { ++ core_if->data_fifo[i] = ++ (uint32_t *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET + ++ (i * DWC_OTG_DATA_FIFO_SIZE)); ++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=%p\n", ++ i, core_if->data_fifo[i]); ++ } ++ ++ core_if->pcgcctl = (uint32_t *) (reg_base + DWC_OTG_PCGCCTL_OFFSET); ++ ++ /* ++ * Store the contents of the hardware configuration registers here for ++ * easy access later. ++ */ ++ core_if->hwcfg1.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); ++ core_if->hwcfg2.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); ++ core_if->hwcfg3.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); ++ core_if->hwcfg4.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); ++ ++ DWC_DEBUGPL(DBG_CILV, "hwcfg1=%08x\n", core_if->hwcfg1.d32); ++ DWC_DEBUGPL(DBG_CILV, "hwcfg2=%08x\n", core_if->hwcfg2.d32); ++ DWC_DEBUGPL(DBG_CILV, "hwcfg3=%08x\n", core_if->hwcfg3.d32); ++ DWC_DEBUGPL(DBG_CILV, "hwcfg4=%08x\n", core_if->hwcfg4.d32); ++ ++ DWC_DEBUGPL(DBG_CILV, "op_mode=%0x\n", core_if->hwcfg2.b.op_mode); ++ DWC_DEBUGPL(DBG_CILV, "arch=%0x\n", core_if->hwcfg2.b.architecture); ++ DWC_DEBUGPL(DBG_CILV, "num_dev_ep=%d\n", core_if->hwcfg2.b.num_dev_ep); ++ DWC_DEBUGPL(DBG_CILV, "num_host_chan=%d\n", ++ core_if->hwcfg2.b.num_host_chan); ++ DWC_DEBUGPL(DBG_CILV, "nonperio_tx_q_depth=0x%0x\n", ++ core_if->hwcfg2.b.nonperio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV, "host_perio_tx_q_depth=0x%0x\n", ++ core_if->hwcfg2.b.host_perio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV, "dev_token_q_depth=0x%0x\n", ++ core_if->hwcfg2.b.dev_token_q_depth); ++ ++ DWC_DEBUGPL(DBG_CILV, "Total FIFO SZ=%d\n", ++ core_if->hwcfg3.b.dfifo_depth); ++ DWC_DEBUGPL(DBG_CILV, "xfer_size_cntr_width=%0x\n", ++ core_if->hwcfg3.b.xfer_size_cntr_width); ++ ++ /* ++ * Set the SRP sucess bit for FS-I2c ++ */ ++ core_if->srp_success = 0; ++ core_if->srp_timer_started = 0; ++ ++ return core_if; ++} ++ ++/** ++ * This function frees the structures allocated by dwc_otg_cil_init(). ++ * ++ * @core_if: The core interface pointer returned from ++ * dwc_otg_cil_init(). ++ * ++ */ ++void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if) ++{ ++ /* Disable all interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0); ++ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0); ++ ++ kfree(core_if->dev_if); ++ kfree(core_if->host_if); ++ ++ kfree(core_if); ++} ++ ++/** ++ * This function enables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if) ++{ ++ union gahbcfg_data ahbcfg = {.d32 = 0 }; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); ++} ++ ++/** ++ * This function disables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if) ++{ ++ union gahbcfg_data ahbcfg = {.d32 = 0 }; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); ++} ++ ++/** ++ * This function initializes the commmon interrupts, used in both ++ * device and host modes. ++ * ++ * @core_if: Programming view of the DWC_otg controller ++ * ++ */ ++static void dwc_otg_enable_common_interrupts(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = ++ core_if->core_global_regs; ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ /* Clear any pending OTG Interrupts */ ++ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF); ++ /* Clear any pending interrupts */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ /* ++ * Enable the interrupts in the GINTMSK. ++ */ ++ intr_mask.b.modemismatch = 1; ++ intr_mask.b.otgintr = 1; ++ if (!core_if->dma_enable) ++ intr_mask.b.rxstsqlvl = 1; ++ ++ intr_mask.b.conidstschng = 1; ++ intr_mask.b.wkupintr = 1; ++ intr_mask.b.disconnect = 1; ++ intr_mask.b.usbsuspend = 1; ++ intr_mask.b.sessreqintr = 1; ++ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32); ++} ++ ++/** ++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY ++ * type. ++ */ ++static void init_fslspclksel(struct dwc_otg_core_if *core_if) ++{ ++ uint32_t val; ++ union hcfg_data hcfg; ++ ++ if (((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) || ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* Full speed PHY */ ++ val = DWC_HCFG_48_MHZ; ++ } else { ++ /* High speed PHY running at full speed or high speed */ ++ val = DWC_HCFG_30_60_MHZ; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); ++ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg); ++ hcfg.b.fslspclksel = val; ++ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32); ++} ++ ++/** ++ * Initializes the DevSpd field of the DCFG register depending on the PHY type ++ * and the enumeration speed of the device. ++ */ ++static void init_devspd(struct dwc_otg_core_if *core_if) ++{ ++ uint32_t val; ++ union dcfg_data dcfg; ++ ++ if (((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) || ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* Full speed PHY */ ++ val = 0x3; ++ } else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { ++ /* High speed PHY running at full speed */ ++ val = 0x1; ++ } else { ++ /* High speed PHY running at high speed */ ++ val = 0x0; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); ++ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); ++ dcfg.b.devspd = val; ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers and ++ * prepares the core for device mode or host mode operation. ++ * ++ * @core_if: Programming view of the DWC_otg controller ++ * ++ */ ++void dwc_otg_core_init(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ struct dwc_otg_dev_if *dev_if = core_if->dev_if; ++ int i = 0; ++ union gahbcfg_data ahbcfg = {.d32 = 0 }; ++ union gusbcfg_data usbcfg = {.d32 = 0 }; ++ union gi2cctl_data i2cctl = {.d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if); ++ ++ /* Common Initialization */ ++ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ ++ /* Program the ULPI External VBUS bit if needed */ ++ usbcfg.b.ulpi_ext_vbus_drv = ++ (core_if->core_params->phy_ulpi_ext_vbus == ++ DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; ++ ++ /* Set external TS Dline pulsing */ ++ usbcfg.b.term_sel_dl_pulse = ++ (core_if->core_params->ts_dline == 1) ? 1 : 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset the Controller */ ++ dwc_otg_core_reset(core_if); ++ ++ /* Initialize parameters from Hardware configuration registers. */ ++ dev_if->num_eps = core_if->hwcfg2.b.num_dev_ep; ++ dev_if->num_perio_eps = core_if->hwcfg4.b.num_dev_perio_in_ep; ++ ++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", ++ core_if->hwcfg4.b.num_dev_perio_in_ep); ++ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { ++ dev_if->perio_tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", ++ i, dev_if->perio_tx_fifo_size[i]); ++ } ++ ++ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth; ++ core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz); ++ core_if->nperio_tx_fifo_size = ++ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; ++ ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", ++ core_if->nperio_tx_fifo_size); ++ ++ /* This programming sequence needs to happen in FS mode before any other ++ * programming occurs */ ++ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* If FS mode with FS PHY */ ++ ++ /* core_init() is now called on every switch so only call the ++ * following for the first time through. */ ++ if (!core_if->phy_init_done) { ++ core_if->phy_init_done = 1; ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.physel = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after a PHY select */ ++ dwc_otg_core_reset(core_if); ++ } ++ ++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also ++ * do this on HNP Dev/Host mode switches (done in dev_init and ++ * host_init). */ ++ if (dwc_otg_is_host_mode(core_if)) ++ init_fslspclksel(core_if); ++ else ++ init_devspd(core_if); ++ ++ if (core_if->core_params->i2c_enable) { ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); ++ /* Program GUSBCFG.OtgUtmifsSel to I2C */ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.otgutmifssel = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Program GI2CCTL.I2CEn */ ++ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); ++ i2cctl.b.i2cdevaddr = 1; ++ i2cctl.b.i2cen = 0; ++ dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32); ++ i2cctl.b.i2cen = 1; ++ dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32); ++ } ++ ++ } ++ /* endif speed == DWC_SPEED_PARAM_FULL */ ++ else { ++ /* High speed PHY. */ ++ if (!core_if->phy_init_done) { ++ core_if->phy_init_done = 1; ++ /* HS PHY parameters. These parameters are preserved ++ * during soft reset so only program the first time. Do ++ * a soft reset immediately after setting phyif. */ ++ usbcfg.b.ulpi_utmi_sel = ++ (core_if->core_params->phy_type == ++ DWC_PHY_TYPE_PARAM_ULPI); ++ if (usbcfg.b.ulpi_utmi_sel == 1) { ++ /* ULPI interface */ ++ usbcfg.b.phyif = 0; ++ usbcfg.b.ddrsel = ++ core_if->core_params->phy_ulpi_ddr; ++ } else { ++ /* UTMI+ interface */ ++ if (core_if->core_params->phy_utmi_width == 16) ++ usbcfg.b.phyif = 1; ++ else ++ usbcfg.b.phyif = 0; ++ } ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after setting the PHY parameters */ ++ dwc_otg_core_reset(core_if); ++ } ++ } ++ ++ if ((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) { ++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 1; ++ usbcfg.b.ulpi_clk_sus_m = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } else { ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 0; ++ usbcfg.b.ulpi_clk_sus_m = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } ++ ++ /* Program the GAHBCFG Register. */ ++ switch (core_if->hwcfg2.b.architecture) { ++ ++ case DWC_SLAVE_ONLY_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); ++ ahbcfg.b.nptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ core_if->dma_enable = 0; ++ break; ++ ++ case DWC_EXT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); ++ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size; ++ core_if->dma_enable = (core_if->core_params->dma_enable != 0); ++ break; ++ ++ case DWC_INT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); ++ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; ++ core_if->dma_enable = (core_if->core_params->dma_enable != 0); ++ break; ++ ++ } ++ ahbcfg.b.dmaenable = core_if->dma_enable; ++ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); ++ ++ /* ++ * Program the GUSBCFG register. ++ */ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ ++ switch (core_if->hwcfg2.b.op_mode) { ++ case DWC_MODE_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = (core_if->core_params->otg_cap == ++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_SRP_ONLY_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ } ++ ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Enable common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* Do device or host intialization based on mode during PCD ++ * and HCD initialization */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n"); ++ core_if->op_state = A_HOST; ++ } else { ++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n"); ++ core_if->op_state = B_PERIPHERAL; ++#ifdef DWC_DEVICE_ONLY ++ dwc_otg_core_dev_init(core_if); ++#endif ++ } ++} ++ ++/** ++ * This function enables the Device mode interrupts. ++ * ++ * @core_if: Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if) ++{ ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* Enable interrupts */ ++ intr_mask.b.usbreset = 1; ++ intr_mask.b.enumdone = 1; ++ intr_mask.b.epmismatch = 1; ++ intr_mask.b.inepintr = 1; ++ intr_mask.b.outepintr = 1; ++ intr_mask.b.erlysuspend = 1; ++ ++#ifdef USE_PERIODIC_EP ++ /** @todo NGS: Should this be a module parameter? */ ++ intr_mask.b.isooutdrop = 1; ++ intr_mask.b.eopframe = 1; ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++#endif ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, ++ dwc_read_reg32(&global_regs->gintmsk)); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * device mode. ++ * ++ * @core_if: Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ struct dwc_otg_dev_if *dev_if = core_if->dev_if; ++ struct dwc_otg_core_params *params = core_if->core_params; ++ union dcfg_data dcfg = {.d32 = 0 }; ++ union grstctl_data resetctl = {.d32 = 0 }; ++ int i; ++ uint32_t rx_fifo_size; ++ union fifosize_data nptxfifosize; ++#ifdef USE_PERIODIC_EP ++ union fifosize_data ptxfifosize; ++#endif ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(core_if->pcgcctl, 0); ++ ++ /* Device configuration register */ ++ init_devspd(core_if); ++ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); ++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; ++ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); ++ ++ /* Configure data FIFO sizes */ ++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { ++ ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", ++ core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", ++ params->dev_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", ++ params->dev_nperio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ rx_fifo_size = params->dev_rx_fifo_size; ++ dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size; ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++#ifdef USE_PERIODIC_EP ++ /**@todo NGS: Fix Periodic FIFO Sizing! */ ++ /* ++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_perio_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz array run from 0 to 14. ++ */ ++ /** @todo Finish debug of this */ ++ ptxfifosize.b.startaddr = ++ nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ for (i = 0; i < dev_if->num_perio_eps; i++) { ++ ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i]; ++ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz[%d]=%08x\n", i, ++ dwc_read_reg32(&global_regs->dptxfsiz[i])); ++ dwc_write_reg32(&global_regs->dptxfsiz[i], ++ ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz[%d]=%08x\n", i, ++ dwc_read_reg32(&global_regs->dptxfsiz[i])); ++ ptxfifosize.b.startaddr += ptxfifosize.b.depth; ++ } ++#endif ++ } ++ /* Flush the FIFOs */ ++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */ ++ dwc_otg_flush_rx_fifo(core_if); ++ ++ /* Flush the Learning Queue. */ ++ resetctl.b.intknqflsh = 1; ++ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); ++ ++ /* Clear all pending Device Interrupts */ ++ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0); ++ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0); ++ dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF); ++ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0); ++ ++ for (i = 0; i < dev_if->num_eps; i++) { ++ union depctl_data depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } else { ++ depctl.d32 = 0; ++ } ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32); ++ ++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } else { ++ depctl.d32 = 0; ++ } ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32); ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF); ++ } ++ ++ dwc_otg_enable_device_interrupts(core_if); ++} ++ ++/** ++ * This function enables the Host mode interrupts. ++ * ++ * @core_if: Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts. */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* ++ * Enable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++} ++ ++/** ++ * This function disables the Host Mode interrupts. ++ * ++ * @core_if: Programming view of DWC_otg controller ++ */ ++void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); ++ ++ /* ++ * Disable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ intr_mask.b.ptxfempty = 1; ++ intr_mask.b.nptxfempty = 1; ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++} ++ ++/** ++ * The FIFOs are established based on a default percentage of the ++ * total FIFO depth. This function converts the percentage into the ++ * proper setting. ++ * ++ */ ++static inline uint32_t fifo_percentage(uint16_t total_fifo_size, ++ int32_t percentage) ++{ ++ /* 16-byte aligned */ ++ return ((total_fifo_size * percentage) / 100) & (-1 << 3); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * host mode. ++ * ++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the ++ * request queues. Host channels are reset to ensure that they are ready for ++ * performing transfers. ++ * ++ * @core_if: Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ struct dwc_otg_host_if *host_if = core_if->host_if; ++ struct dwc_otg_core_params *params = core_if->core_params; ++ union hprt0_data hprt0 = {.d32 = 0 }; ++ union fifosize_data nptxfifosize; ++ union fifosize_data ptxfifosize; ++ int i; ++ union hcchar_data hcchar; ++ union hcfg_data hcfg; ++ struct dwc_otg_hc_regs *hc_regs; ++ int num_channels; ++ union gotgctl_data gotgctl = {.d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, core_if); ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(core_if->pcgcctl, 0); ++ ++ /* Initialize Host Configuration Register */ ++ init_fslspclksel(core_if); ++ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ hcfg.b.fslssupp = 1; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); ++ } ++ ++ /* Configure data FIFO sizes */ ++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", ++ core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", ++ params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", ++ params->host_nperio_tx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "P Tx FIFO Size=%d\n", ++ params->host_perio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ dwc_write_reg32(&global_regs->grxfsiz, ++ fifo_percentage(core_if->total_fifo_size, ++ dwc_param_host_rx_fifo_size_percentage)); ++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = ++ fifo_percentage(core_if->total_fifo_size, ++ dwc_param_host_nperio_tx_fifo_size_percentage); ++ nptxfifosize.b.startaddr = ++ dwc_read_reg32(&global_regs->grxfsiz); ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ /* Periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial hptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->hptxfsiz)); ++ ptxfifosize.b.depth = ++ core_if->total_fifo_size - ++ dwc_read_reg32(&global_regs->grxfsiz) - ++ nptxfifosize.b.depth; ++ ptxfifosize.b.startaddr = ++ nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL, "new hptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->hptxfsiz)); ++ } ++ ++ /* Clear Host Set HNP Enable in the OTG Control Register */ ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); ++ ++ /* Make sure the FIFOs are flushed. */ ++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */ ++ dwc_otg_flush_rx_fifo(core_if); ++ ++ /* Flush out any leftover queued requests. */ ++ num_channels = core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ hc_regs = core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ /* Halt all channels to put them into a known state. */ ++ for (i = 0; i < num_channels; i++) { ++ int count = 0; ++ hc_regs = core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); ++ do { ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (++count > 1000) { ++ DWC_ERROR ++ ("%s: Unable to clear halt on channel %d\n", ++ __func__, i); ++ break; ++ } ++ } while (hcchar.b.chen); ++ } ++ ++ /* Turn on the vbus power. */ ++ DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state); ++ if (core_if->op_state == A_HOST) { ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); ++ if (hprt0.b.prtpwr == 0) { ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(host_if->hprt0, hprt0.d32); ++ } ++ } ++ ++ dwc_otg_enable_host_interrupts(core_if); ++} ++ ++/** ++ * Prepares a host channel for transferring packets to/from a specific ++ * endpoint. The HCCHARn register is set up with the characteristics specified ++ * in hc. Host channel interrupts that may need to be serviced while this ++ * transfer is in progress are enabled. ++ * ++ * @core_if: Programming view of DWC_otg controller ++ * @hc: Information needed to initialize the host channel ++ */ ++void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc) ++{ ++ uint32_t intr_enable; ++ union hcintmsk_data hc_intr_mask; ++ union gintmsk_data gintmsk = {.d32 = 0 }; ++ union hcchar_data hcchar; ++ union hcsplt_data hcsplt; ++ ++ uint8_t hc_num = hc->hc_num; ++ struct dwc_otg_host_if *host_if = core_if->host_if; ++ struct dwc_otg_hc_regs *hc_regs = host_if->hc_regs[hc_num]; ++ ++ /* Clear old interrupt conditions for this host channel. */ ++ hc_intr_mask.d32 = 0xFFFFFFFF; ++ hc_intr_mask.b.reserved = 0; ++ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); ++ ++ /* Enable channel interrupts required for this transfer. */ ++ hc_intr_mask.d32 = 0; ++ hc_intr_mask.b.chhltd = 1; ++ if (core_if->dma_enable) { ++ hc_intr_mask.b.ahberr = 1; ++ if (hc->error_state && !hc->do_split && ++ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ hc_intr_mask.b.ack = 1; ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.datatglerr = 1; ++ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) ++ hc_intr_mask.b.nak = 1; ++ } ++ } ++ } else { ++ switch (hc->ep_type) { ++ case DWC_OTG_EP_TYPE_CONTROL: ++ case DWC_OTG_EP_TYPE_BULK: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } else { ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.nyet = 1; ++ if (hc->do_ping) ++ hc_intr_mask.b.ack = 1; ++ } ++ ++ if (hc->do_split) { ++ hc_intr_mask.b.nak = 1; ++ if (hc->complete_split) ++ hc_intr_mask.b.nyet = 1; ++ else ++ hc_intr_mask.b.ack = 1; ++ } ++ ++ if (hc->error_state) ++ hc_intr_mask.b.ack = 1; ++ break; ++ case DWC_OTG_EP_TYPE_INTR: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ ++ if (hc->ep_is_in) ++ hc_intr_mask.b.bblerr = 1; ++ if (hc->error_state) ++ hc_intr_mask.b.ack = 1; ++ if (hc->do_split) { ++ if (hc->complete_split) ++ hc_intr_mask.b.nyet = 1; ++ else ++ hc_intr_mask.b.ack = 1; ++ } ++ break; ++ case DWC_OTG_EP_TYPE_ISOC: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ hc_intr_mask.b.ack = 1; ++ ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.bblerr = 1; ++ } ++ break; ++ } ++ } ++ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); ++ ++ /* Enable the top level host channel interrupt. */ ++ intr_enable = (1 << hc_num); ++ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); ++ ++ /* Make sure host channel interrupts are enabled. */ ++ gintmsk.b.hcintr = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32); ++ ++ /* ++ * Program the HCCHARn register with the endpoint characteristics for ++ * the current transfer. ++ */ ++ hcchar.d32 = 0; ++ hcchar.b.devaddr = hc->dev_addr; ++ hcchar.b.epnum = hc->ep_num; ++ hcchar.b.epdir = hc->ep_is_in; ++ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW); ++ hcchar.b.eptype = hc->ep_type; ++ hcchar.b.mps = hc->max_packet; ++ ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); ++ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); ++ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); ++ ++ /* ++ * Program the HCSPLIT register for SPLITs ++ */ ++ hcsplt.d32 = 0; ++ if (hc->do_split) { ++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", ++ hc->hc_num, ++ hc->complete_split ? "CSPLIT" : "SSPLIT"); ++ hcsplt.b.compsplt = hc->complete_split; ++ hcsplt.b.xactpos = hc->xact_pos; ++ hcsplt.b.hubaddr = hc->hub_addr; ++ hcsplt.b.prtaddr = hc->port_addr; ++ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", ++ hc->complete_split); ++ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos); ++ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr); ++ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr); ++ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len); ++ } ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); ++ ++} ++ ++/** ++ * Attempts to halt a host channel. This function should only be called in ++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under ++ * normal circumstances in DMA mode, the controller halts the channel when the ++ * transfer is complete or a condition occurs that requires application ++ * intervention. ++ * ++ * In slave mode, checks for a free request queue entry, then sets the Channel ++ * Enable and Channel Disable bits of the Host Channel Characteristics ++ * register of the specified channel to intiate the halt. If there is no free ++ * request queue entry, sets only the Channel Disable bit of the HCCHARn ++ * register to flush requests for this channel. In the latter case, sets a ++ * flag to indicate that the host channel needs to be halted when a request ++ * queue slot is open. ++ * ++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the ++ * HCCHARn register. The controller ensures there is space in the request ++ * queue before submitting the halt request. ++ * ++ * Some time may elapse before the core flushes any posted requests for this ++ * host channel and halts. The Channel Halted interrupt handler completes the ++ * deactivation of the host channel. ++ * ++ * @core_if: Controller register interface. ++ * @hc: Host channel to halt. ++ * @halt_status: Reason for halting the channel. ++ */ ++void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc, enum dwc_otg_halt_status halt_status) ++{ ++ union gnptxsts_data nptxsts; ++ union hptxsts_data hptxsts; ++ union hcchar_data hcchar; ++ struct dwc_otg_hc_regs *hc_regs; ++ struct dwc_otg_core_global_regs *global_regs; ++ struct dwc_otg_host_global_regs *host_global_regs; ++ ++ hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ global_regs = core_if->core_global_regs; ++ host_global_regs = core_if->host_if->host_global_regs; ++ ++ WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); ++ ++ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Disable all channel interrupts except Ch Halted. The QTD ++ * and QH state associated with this transfer has been cleared ++ * (in the case of URB_DEQUEUE), so the channel needs to be ++ * shut down carefully to prevent crashes. ++ */ ++ union hcintmsk_data hcintmsk; ++ hcintmsk.d32 = 0; ++ hcintmsk.b.chhltd = 1; ++ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); ++ ++ /* ++ * Make sure no other interrupts besides halt are currently ++ * pending. Handling another interrupt could cause a crash due ++ * to the QTD and QH state. ++ */ ++ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); ++ ++ /* ++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR ++ * even if the channel was already halted for some other ++ * reason. ++ */ ++ hc->halt_status = halt_status; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen == 0) { ++ /* ++ * The channel is either already halted or it hasn't ++ * started yet. In DMA mode, the transfer may halt if ++ * it finishes normally or a condition occurs that ++ * requires driver intervention. Don't want to halt ++ * the channel again. In either Slave or DMA mode, ++ * it's possible that the transfer has been assigned ++ * to a channel, but not started yet when an URB is ++ * dequeued. Don't want to halt a channel that hasn't ++ * started yet. ++ */ ++ return; ++ } ++ } ++ ++ if (hc->halt_pending) { ++ /* ++ * A halt has already been issued for this channel. This might ++ * happen when a transfer is aborted by a higher level in ++ * the stack. ++ */ ++#ifdef DEBUG ++ DWC_PRINT ++ ("*** %s: Channel %d, hc->halt_pending already set ***\n", ++ __func__, hc->hc_num); ++ ++/* dwc_otg_dump_global_registers(core_if); */ ++/* dwc_otg_dump_host_registers(core_if); */ ++#endif ++ return; ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ ++ if (!core_if->dma_enable) { ++ /* Check for space in the request queue to issue the halt. */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (nptxsts.b.nptxqspcavail == 0) ++ hcchar.b.chen = 0; ++ } else { ++ hptxsts.d32 = ++ dwc_read_reg32(&host_global_regs->hptxsts); ++ if ((hptxsts.b.ptxqspcavail == 0) ++ || (core_if->queuing_high_bandwidth)) { ++ hcchar.b.chen = 0; ++ } ++ } ++ } ++ ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ hc->halt_status = halt_status; ++ ++ if (hcchar.b.chen) { ++ hc->halt_pending = 1; ++ hc->halt_on_queue = 0; ++ } else { ++ hc->halt_on_queue = 1; ++ } ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending); ++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue); ++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status); ++ ++ return; ++} ++ ++/** ++ * Clears the transfer state for a host channel. This function is normally ++ * called after a transfer is done and the host channel is being released. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @hc: Identifies the host channel to clean up. ++ */ ++void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if, struct dwc_hc *hc) ++{ ++ struct dwc_otg_hc_regs *hc_regs; ++ ++ hc->xfer_started = 0; ++ ++ /* ++ * Clear channel interrupt enables and any unhandled channel interrupt ++ * conditions. ++ */ ++ hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ dwc_write_reg32(&hc_regs->hcintmsk, 0); ++ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); ++ ++#ifdef DEBUG ++ del_timer(&core_if->hc_xfer_timer[hc->hc_num]); ++ { ++ union hcchar_data hcchar; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, hc->hc_num, hcchar.d32); ++ } ++ } ++#endif ++} ++ ++/** ++ * Sets the channel property that indicates in which frame a periodic transfer ++ * should occur. This is always set to the _next_ frame. This function has no ++ * effect on non-periodic transfers. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @hc: Identifies the host channel to set up and its properties. ++ * @hcchar: Current value of the HCCHAR register for the specified host ++ * channel. ++ */ ++static inline void hc_set_even_odd_frame(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc, ++ union hcchar_data *hcchar) ++{ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ union hfnum_data hfnum; ++ hfnum.d32 = ++ dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum); ++ /* 1 if _next_ frame is odd, 0 if it's even */ ++ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; ++#ifdef DEBUG ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split ++ && !hc->complete_split) { ++ switch (hfnum.b.frnum & 0x7) { ++ case 7: ++ core_if->hfnum_7_samples++; ++ core_if->hfnum_7_frrem_accum += hfnum.b.frrem; ++ break; ++ case 0: ++ core_if->hfnum_0_samples++; ++ core_if->hfnum_0_frrem_accum += hfnum.b.frrem; ++ break; ++ default: ++ core_if->hfnum_other_samples++; ++ core_if->hfnum_other_frrem_accum += ++ hfnum.b.frrem; ++ break; ++ } ++ } ++#endif ++ } ++} ++ ++#ifdef DEBUG ++static void hc_xfer_timeout(unsigned long _ptr) ++{ ++ struct hc_xfer_info *xfer_info = (struct hc_xfer_info *) _ptr; ++ int hc_num = xfer_info->hc->hc_num; ++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); ++ DWC_WARN(" start_hcchar_val 0x%08x\n", ++ xfer_info->core_if->start_hcchar_val[hc_num]); ++} ++#endif ++ ++/** ++ * This function does the setup for a data transfer for a host channel and ++ * starts the transfer. May be called in either Slave mode or DMA mode. In ++ * Slave mode, the caller must ensure that there is sufficient space in the ++ * request queue and Tx Data FIFO. ++ * ++ * For an OUT transfer in Slave mode, it loads a data packet into the ++ * appropriate FIFO. If necessary, additional data packets will be loaded in ++ * the Host ISR. ++ * ++ * For an IN transfer in Slave mode, a data packet is requested. The data ++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, ++ * additional data packets are requested in the Host ISR. ++ * ++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ ++ * register along with a packet count of 1 and the channel is enabled. This ++ * causes a single PING transaction to occur. Other fields in HCTSIZ are ++ * simply set to 0 since no data transfer occurs in this case. ++ * ++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with ++ * all the information required to perform the subsequent data transfer. In ++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the ++ * controller performs the entire PING protocol, then starts the data ++ * transfer. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @hc: Information needed to initialize the host channel. The xfer_len ++ * value may be reduced to accommodate the max widths of the XferSize and ++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed ++ * to reflect the final xfer_len value. ++ */ ++void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc) ++{ ++ union hcchar_data hcchar; ++ union hctsiz_data hctsiz; ++ uint16_t num_packets; ++ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size; ++ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count; ++ struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ ++ hctsiz.d32 = 0; ++ ++ if (hc->do_ping) { ++ if (!core_if->dma_enable) { ++ dwc_otg_hc_do_ping(core_if, hc); ++ hc->xfer_started = 1; ++ return; ++ } else { ++ hctsiz.b.dopng = 1; ++ } ++ } ++ ++ if (hc->do_split) { ++ num_packets = 1; ++ ++ if (hc->complete_split && !hc->ep_is_in) { ++ /* For CSPLIT OUT Transfer, set the size to 0 so the ++ * core doesn't expect any data written to the FIFO */ ++ hc->xfer_len = 0; ++ } else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) { ++ hc->xfer_len = hc->max_packet; ++ } else if (!hc->ep_is_in && (hc->xfer_len > 188)) { ++ hc->xfer_len = 188; ++ } ++ ++ hctsiz.b.xfersize = hc->xfer_len; ++ } else { ++ /* ++ * Ensure that the transfer length and packet count will fit ++ * in the widths allocated for them in the HCTSIZn register. ++ */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure the transfer size is no larger than one ++ * (micro)frame's worth of data. (A check was done ++ * when the periodic transfer was accepted to ensure ++ * that a (micro)frame's worth of data can be ++ * programmed into a channel.) ++ */ ++ uint32_t max_periodic_len = ++ hc->multi_count * hc->max_packet; ++ if (hc->xfer_len > max_periodic_len) ++ hc->xfer_len = max_periodic_len; ++ } else if (hc->xfer_len > max_hc_xfer_size) { ++ /* ++ * Make sure that xfer_len is a multiple of ++ * max packet size. ++ */ ++ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1; ++ } ++ ++ if (hc->xfer_len > 0) { ++ num_packets = ++ (hc->xfer_len + hc->max_packet - ++ 1) / hc->max_packet; ++ if (num_packets > max_hc_pkt_count) { ++ num_packets = max_hc_pkt_count; ++ hc->xfer_len = num_packets * hc->max_packet; ++ } ++ } else { ++ /* Need 1 packet for transfer length of 0. */ ++ num_packets = 1; ++ } ++ ++ if (hc->ep_is_in) { ++ /* ++ * Always program an integral # of max packets ++ * for IN transfers. ++ */ ++ hc->xfer_len = num_packets * hc->max_packet; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure that the multi_count field matches the ++ * actual transfer length. ++ */ ++ hc->multi_count = num_packets; ++ ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* Set up the initial PID for the transfer. */ ++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) { ++ if (hc->ep_is_in) { ++ if (hc->multi_count == 1) { ++ hc->data_pid_start = ++ DWC_OTG_HC_PID_DATA0; ++ } else if (hc->multi_count == 2) { ++ hc->data_pid_start = ++ DWC_OTG_HC_PID_DATA1; ++ } else { ++ hc->data_pid_start = ++ DWC_OTG_HC_PID_DATA2; ++ } ++ } else { ++ if (hc->multi_count == 1) { ++ hc->data_pid_start = ++ DWC_OTG_HC_PID_DATA0; ++ } else { ++ hc->data_pid_start = ++ DWC_OTG_HC_PID_MDATA; ++ } ++ } ++ } else { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ } ++ ++ hctsiz.b.xfersize = hc->xfer_len; ++ } ++ ++ hc->start_pkt_count = num_packets; ++ hctsiz.b.pktcnt = num_packets; ++ hctsiz.b.pid = hc->data_pid_start; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); ++ ++ if (core_if->dma_enable) { ++#ifdef CONFIG_CPU_CAVIUM_OCTEON ++ /* Octeon uses external DMA */ ++ const uint64_t USBN_DMA0_OUTB_CHN0 = ++ CVMX_USBNX_DMA0_OUTB_CHN0(core_if->usb_num); ++ wmb(); ++ cvmx_write_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8, ++ (unsigned long)hc->xfer_buff); ++ cvmx_read_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8); ++ DWC_DEBUGPL(DBG_HCDV, ++ "OUT: hc->hc_num = %d, hc->xfer_buff = %p\n", ++ hc->hc_num, hc->xfer_buff); ++#else ++ dwc_write_reg32(&hc_regs->hcdma, ++ (uint32_t) (long)hc->xfer_buff); ++#endif /* CONFIG_CPU_CAVIUM_OCTEON */ ++ } ++ ++ /* Start the split */ ++ if (hc->do_split) { ++ union hcsplt_data hcsplt; ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hcsplt.b.spltena = 1; ++ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.multicnt = hc->multi_count; ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++#ifdef DEBUG ++ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32; ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, hc->hc_num, hcchar.d32); ++ } ++#endif ++ ++ /* Set host channel enable after all other setup is complete. */ ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ hc->xfer_started = 1; ++ hc->requests++; ++ ++ if (!core_if->dma_enable && !hc->ep_is_in && hc->xfer_len > 0) { ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(core_if, hc); ++ } ++#ifdef DEBUG ++ /* Start a timer for this transfer. */ ++ core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout; ++ core_if->hc_xfer_info[hc->hc_num].core_if = core_if; ++ core_if->hc_xfer_info[hc->hc_num].hc = hc; ++ core_if->hc_xfer_timer[hc->hc_num].data = ++ (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]); ++ core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ * 10); ++ add_timer(&core_if->hc_xfer_timer[hc->hc_num]); ++#endif ++} ++ ++/** ++ * This function continues a data transfer that was started by previous call ++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is ++ * sufficient space in the request queue and Tx Data FIFO. This function ++ * should only be called in Slave mode. In DMA mode, the controller acts ++ * autonomously to complete transfers programmed to a host channel. ++ * ++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO ++ * if there is any data remaining to be queued. For an IN transfer, another ++ * data packet is always requested. For the SETUP phase of a control transfer, ++ * this function does nothing. ++ * ++ * Returns 1 if a new request is queued, 0 if no more requests are required ++ * for this transfer. ++ */ ++int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ ++ if (hc->do_split) { ++ /* SPLITs always queue just once per channel */ ++ return 0; ++ } else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ /* SETUPs are queued only once since they can't be NAKed. */ ++ return 0; ++ } else if (hc->ep_is_in) { ++ /* ++ * Always queue another request for other IN transfers. If ++ * back-to-back INs are issued and NAKs are received for both, ++ * the driver may still be processing the first NAK when the ++ * second NAK is received. When the interrupt handler clears ++ * the NAK interrupt for the first NAK, the second NAK will ++ * not be seen. So we can't depend on the NAK interrupt ++ * handler to requeue a NAKed request. Instead, IN requests ++ * are issued each time this function is called. When the ++ * transfer completes, the extra requests for the channel will ++ * be flushed. ++ */ ++ union hcchar_data hcchar; ++ struct dwc_otg_hc_regs *hc_regs = ++ core_if->host_if->hc_regs[hc->hc_num]; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", ++ hcchar.d32); ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ hc->requests++; ++ return 1; ++ } else { ++ /* OUT transfers. */ ++ if (hc->xfer_count < hc->xfer_len) { ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ union hcchar_data hcchar; ++ struct dwc_otg_hc_regs *hc_regs; ++ hc_regs = ++ core_if->host_if->hc_regs[hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++ } ++ ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(core_if, hc); ++ hc->requests++; ++ return 1; ++ } else { ++ return 0; ++ } ++ } ++} ++ ++/** ++ * Starts a PING transfer. This function should only be called in Slave mode. ++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. ++ */ ++void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if, struct dwc_hc *hc) ++{ ++ union hcchar_data hcchar; ++ union hctsiz_data hctsiz; ++ struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ ++ hctsiz.d32 = 0; ++ hctsiz.b.dopng = 1; ++ hctsiz.b.pktcnt = 1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++} ++ ++/* ++ * This function writes a packet into the Tx FIFO associated with the Host ++ * Channel. For a channel associated with a non-periodic EP, the non-periodic ++ * Tx FIFO is written. For a channel associated with a periodic EP, the ++ * periodic Tx FIFO is written. This function should only be called in Slave ++ * mode. ++ * ++ * Upon return the xfer_buff and xfer_count fields in hc are incremented by ++ * then number of bytes written to the Tx FIFO. ++ */ ++void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if, struct dwc_hc *hc) ++{ ++ uint32_t i; ++ uint32_t remaining_count; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ ++ uint32_t *data_buff = (uint32_t *) (hc->xfer_buff); ++ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num]; ++ ++ remaining_count = hc->xfer_len - hc->xfer_count; ++ if (remaining_count > hc->max_packet) ++ byte_count = hc->max_packet; ++ else ++ byte_count = remaining_count; ++ ++ dword_count = (byte_count + 3) / 4; ++ ++ if ((((unsigned long)data_buff) & 0x3) == 0) { ++ /* xfer_buff is DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) ++ dwc_write_reg32(data_fifo, *data_buff); ++ } else { ++ /* xfer_buff is not DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) ++ dwc_write_reg32(data_fifo, get_unaligned(data_buff)); ++ } ++ ++ hc->xfer_count += byte_count; ++ hc->xfer_buff += byte_count; ++} ++ ++/** ++ * Gets the current USB frame number. This is the frame number from the last ++ * SOF packet. ++ */ ++uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if) ++{ ++ union dsts_data dsts; ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ /* read current frame/microfreme number from DSTS register */ ++ return dsts.b.soffn; ++} ++ ++/** ++ * This function reads a setup packet from the Rx FIFO into the destination ++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) ++ * Interrupt routine when a SETUP packet has been received in Slave mode. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @dest: Destination buffer for packet data. ++ */ ++void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if, uint32_t *dest) ++{ ++ /* Get the 8 bytes of a setup transaction data */ ++ ++ /* Pop 2 DWORDS off the receive data FIFO into memory */ ++ dest[0] = dwc_read_reg32(core_if->data_fifo[0]); ++ dest[1] = dwc_read_reg32(core_if->data_fifo[0]); ++} ++ ++/** ++ * This function enables EP0 OUT to receive SETUP packets and configures EP0 ++ * IN for transmitting packets. It is normally called when the ++ * "Enumeration Done" interrupt occurs. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP0 data. ++ */ ++void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) ++{ ++ struct dwc_otg_dev_if *dev_if = core_if->dev_if; ++ union dsts_data dsts; ++ union depctl_data diepctl; ++ union depctl_data doepctl; ++ union dctl_data dctl = {.d32 = 0 }; ++ ++ /* Read the Device Status and Endpoint 0 Control registers */ ++ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); ++ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); ++ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); ++ ++ /* Set the MPS of the IN EP based on the enumeration speed */ ++ switch (dsts.b.enumspd) { ++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_64; ++ break; ++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_8; ++ break; ++ } ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); ++ ++ /* Enable OUT EP for receive */ ++ doepctl.b.epena = 1; ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++ DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); ++#endif ++ dctl.b.cgnpinnak = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); ++ DWC_DEBUGPL(DBG_PCDV, "dctl=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->dctl)); ++} ++ ++/** ++ * This function activates an EP. The Device EP control register for ++ * the EP is configured as defined in the ep structure. Note: This ++ * function is not used for EP0. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP to activate. ++ */ ++void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) ++{ ++ struct dwc_otg_dev_if *dev_if = core_if->dev_if; ++ union depctl_data depctl; ++ uint32_t *addr; ++ union daint_data daintmsk = {.d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num, ++ (ep->is_in ? "IN" : "OUT")); ++ ++ /* Read DEPCTLn register */ ++ if (ep->is_in == 1) { ++ addr = &dev_if->in_ep_regs[ep->num]->diepctl; ++ daintmsk.ep.in = 1 << ep->num; ++ } else { ++ addr = &dev_if->out_ep_regs[ep->num]->doepctl; ++ daintmsk.ep.out = 1 << ep->num; ++ } ++ ++ /* If the EP is already active don't change the EP Control ++ * register. */ ++ depctl.d32 = dwc_read_reg32(addr); ++ if (!depctl.b.usbactep) { ++ depctl.b.mps = ep->maxpacket; ++ depctl.b.eptype = ep->type; ++ depctl.b.txfnum = ep->tx_fifo_num; ++ ++ if (ep->type != DWC_OTG_EP_TYPE_ISOC) ++ depctl.b.setd0pid = 1; ++ ++ depctl.b.usbactep = 1; ++ ++ dwc_write_reg32(addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCDV, "DEPCTL=%08x\n", dwc_read_reg32(addr)); ++ } ++ ++ /* Enable the Interrupt for this EP */ ++ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, 0, daintmsk.d32); ++ DWC_DEBUGPL(DBG_PCDV, "DAINTMSK=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); ++ return; ++} ++ ++/** ++ * This function deactivates an EP. This is done by clearing the USB Active ++ * EP bit in the Device EP control register. Note: This function is not used ++ * for EP0. EP0 cannot be deactivated. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP to deactivate. ++ */ ++void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) ++{ ++ union depctl_data depctl = {.d32 = 0 }; ++ uint32_t *addr; ++ union daint_data daintmsk = {.d32 = 0 }; ++ ++ /* Read DEPCTLn register */ ++ if (ep->is_in == 1) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ daintmsk.ep.in = 1 << ep->num; ++ } else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ daintmsk.ep.out = 1 << ep->num; ++ } ++ ++ depctl.b.usbactep = 0; ++ dwc_write_reg32(addr, depctl.d32); ++ ++ /* Disable the Interrupt for this EP */ ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk, ++ daintmsk.d32, 0); ++ ++ return; ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP to start the transfer on. ++ */ ++void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep) ++{ ++ /* ++ * @todo Refactor this funciton to check the transfer size ++ * count value does not execed the number bits in the Transfer ++ * count register. ++ */ ++ union depctl_data depctl; ++ union deptsiz_data deptsiz; ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ ++#ifdef CHECK_PACKET_COUNTER_WIDTH ++ const uint32_t MAX_XFER_SIZE = core_if->core_params->max_transfer_size; ++ const uint32_t MAX_PKT_COUNT = core_if->core_params->max_packet_count; ++ uint32_t num_packets; ++ uint32_t transfer_len; ++ struct dwc_otg_dev_out_ep_regs *out_regs = ++ core_if->dev_if->out_ep_regs[ep->num]; ++ struct dwc_otg_dev_in_ep_regs *in_regs = ++ core_if->dev_if->in_ep_regs[ep->num]; ++ union gnptxsts_data txstatus; ++ ++ int lvl = SET_DEBUG_LEVEL(DBG_PCD); ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p\n", ++ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len, ++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff); ++ ++ transfer_len = ep->xfer_len - ep->xfer_count; ++ if (transfer_len > MAX_XFER_SIZE) ++ transfer_len = MAX_XFER_SIZE; ++ ++ if (transfer_len == 0) { ++ num_packets = 1; ++ /* OUT EP to recieve Zero-length packet set transfer ++ * size to maxpacket size. */ ++ if (!ep->is_in) ++ transfer_len = ep->maxpacket; ++ } else { ++ num_packets = ++ (transfer_len + ep->maxpacket - 1) / ep->maxpacket; ++ if (num_packets > MAX_PKT_COUNT) ++ num_packets = MAX_PKT_COUNT; ++ } ++ DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len, ++ num_packets); ++ ++ deptsiz.b.xfersize = transfer_len; ++ deptsiz.b.pktcnt = num_packets; ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ } else { /* OUT endpoint */ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ txstatus.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ if (txstatus.b.nptxqspcavail == 0) { ++ DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n", ++ txstatus.d32); ++ return; ++ } ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ /* ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (core_if->dma_enable) { ++ dwc_write_reg32(&in_regs->diepdma, ++ (uint32_t) ep->xfer_buff); ++ } else { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintsts, ++ intr_mask.d32, 0); ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ } else { /* OUT endpoint */ ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ if (core_if->dma_enable) { ++ dwc_write_reg32(&out_regs->doepdma, ++ (uint32_t) ep->xfer_buff); ++ } ++ } ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", ++ dwc_read_reg32(&out_regs->doepctl), ++ dwc_read_reg32(&out_regs->doeptsiz)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs-> ++ daintmsk), ++ dwc_read_reg32(&core_if->core_global_regs->gintmsk)); ++ ++ SET_DEBUG_LEVEL(lvl); ++#endif ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p\n", ++ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len, ++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff); ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ struct dwc_otg_dev_in_ep_regs *in_regs = ++ core_if->dev_if->in_ep_regs[ep->num]; ++ union gnptxsts_data txstatus; ++ ++ txstatus.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ if (txstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ DWC_PRINT("TX Queue Full (0x%0x)\n", txstatus.d32); ++#endif ++ return; ++ } ++ ++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); ++ ++ /* Zero Length Packet? */ ++ if (ep->xfer_len == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = ep->xfer_len; ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ } ++ ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ dwc_write_reg32(&(in_regs->diepdma), ++ (uint32_t) ep->dma_addr); ++ } else { ++ /* ++ * Enable the Non-Periodic Tx FIFO empty interrupt, ++ * the data will be written into the fifo by the ISR. ++ */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintsts, ++ intr_mask.d32, 0); ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ depctl.d32 = ++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl); ++ depctl.b.nextep = ep->num; ++ dwc_write_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl, ++ depctl.d32); ++ ++ } else { ++ /* OUT endpoint */ ++ struct dwc_otg_dev_out_ep_regs *out_regs = ++ core_if->dev_if->out_ep_regs[ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); ++ ++ /* Program the transfer size and packet count as follows: ++ * ++ * pktcnt = N ++ * xfersize = N * maxpacket ++ */ ++ if (ep->xfer_len == 0) { ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ deptsiz.b.pktcnt = ++ (ep->xfer_len + (ep->maxpacket - 1)) / ++ ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; ++ } ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", ++ ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if (core_if->dma_enable) { ++ dwc_write_reg32(&(out_regs->doepdma), ++ (uint32_t) ep->dma_addr); ++ } ++ ++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * @todo NGS: dpid is read-only. Use setd0pid ++ * or setd1pid. ++ */ ++ depctl.b.dpid = ep->even_odd_frame; ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", ++ dwc_read_reg32(&out_regs->doepctl), ++ dwc_read_reg32(&out_regs->doeptsiz)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs-> ++ daintmsk), ++ dwc_read_reg32(&core_if->core_global_regs-> ++ gintmsk)); ++ } ++} ++ ++/** ++ * This function does the setup for a data transfer for EP0 and starts ++ * the transfer. For an IN transfer, the packets will be loaded into ++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are ++ * unloaded from the Rx FIFO in the ISR. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP0 data. ++ */ ++void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep) ++{ ++ union depctl_data depctl; ++ union deptsiz0_data deptsiz; ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p total_len=%d\n", ++ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len, ++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff, ++ ep->total_len); ++ ep->total_len = ep->xfer_len; ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ struct dwc_otg_dev_in_ep_regs *in_regs = ++ core_if->dev_if->in_ep_regs[0]; ++ union gnptxsts_data tx_status = {.d32 = 0 }; ++ ++ tx_status.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ if (tx_status.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ DWC_DEBUGPL(DBG_PCD, "DIEPCTL0=%0x\n", ++ dwc_read_reg32(&in_regs->diepctl)); ++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", ++ deptsiz.d32, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", ++ tx_status.d32); ++#endif ++ ++ return; ++ } ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Zero Length Packet? */ ++ if (ep->xfer_len == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ if (ep->xfer_len > ep->maxpacket) { ++ ep->xfer_len = ep->maxpacket; ++ deptsiz.b.xfersize = ep->maxpacket; ++ } else { ++ deptsiz.b.xfersize = ep->xfer_len; ++ } ++ deptsiz.b.pktcnt = 1; ++ ++ } ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, ++ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt, ++ deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ dwc_write_reg32(&(in_regs->diepdma), ++ (uint32_t) ep->dma_addr); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /* ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!core_if->dma_enable) { ++ /* First clear it from GINTSTS */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintsts, ++ intr_mask.d32, 0); ++ ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ ++ } else { /* OUT endpoint */ ++ struct dwc_otg_dev_out_ep_regs *out_regs = ++ core_if->dev_if->out_ep_regs[ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); ++ ++ /* Program the transfer size and packet count as follows: ++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) ++ * pktcnt = N */ ++ if (ep->xfer_len == 0) { ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ deptsiz.b.pktcnt = ++ (ep->xfer_len + (ep->maxpacket - 1)) / ++ ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; ++ } ++ ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if (core_if->dma_enable) { ++ dwc_write_reg32(&(out_regs->doepdma), ++ (uint32_t) ep->dma_addr); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&(out_regs->doepctl), depctl.d32); ++ } ++} ++ ++/** ++ * This function continues control IN transfers started by ++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a ++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one ++ * bit for the packet count. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP0 data. ++ */ ++void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep) ++{ ++ union depctl_data depctl; ++ union deptsiz0_data deptsiz; ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ ++ if (ep->is_in == 1) { ++ struct dwc_otg_dev_in_ep_regs *in_regs = ++ core_if->dev_if->in_ep_regs[0]; ++ union gnptxsts_data tx_status = {.d32 = 0 }; ++ ++ tx_status.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ /* ++ * @todo Should there be check for room in the Tx ++ * Status Queue. If not remove the code above this comment. ++ */ ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* ++ * Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = ++ (ep->total_len - ep->xfer_count) > ++ ep->maxpacket ? ep->maxpacket : (ep->total_len - ++ ep->xfer_count); ++ deptsiz.b.pktcnt = 1; ++ ep->xfer_len += deptsiz.b.xfersize; ++ ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, ++ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt, ++ deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { ++ dwc_write_reg32(&(in_regs->diepdma), ++ (uint32_t) ep->dma_addr); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /* ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!core_if->dma_enable) { ++ /* First clear it from GINTSTS */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, ++ intr_mask.d32); ++ ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ ++ } ++ ++} ++ ++#ifdef DEBUG ++void dump_msg(const u8 *buf, unsigned int length) ++{ ++ unsigned int start, num, i; ++ char line[52], *p; ++ ++ if (length >= 512) ++ return; ++ start = 0; ++ while (length > 0) { ++ num = min(length, 16u); ++ p = line; ++ for (i = 0; i < num; ++i) { ++ if (i == 8) ++ *p++ = ' '; ++ sprintf(p, " %02x", buf[i]); ++ p += 3; ++ } ++ *p = 0; ++ DWC_PRINT("%6x: %s\n", start, line); ++ buf += num; ++ start += num; ++ length -= num; ++ } ++} ++#else ++static inline void dump_msg(const u8 *buf, unsigned int length) ++{ ++} ++#endif ++ ++/** ++ * This function writes a packet into the Tx FIFO associated with the ++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For ++ * periodic EPs the periodic Tx FIFO associated with the EP is written ++ * with all packets for the next micro-frame. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP to write packet for. ++ * @_dma: Indicates if DMA is being used. ++ */ ++void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep, ++ int _dma) ++{ ++ /** ++ * The buffer is padded to DWORD on a per packet basis in ++ * slave/dma mode if the MPS is not DWORD aligned. The last ++ * packet, if short, is also padded to a multiple of DWORD. ++ * ++ * ep->xfer_buff always starts DWORD aligned in memory and is a ++ * multiple of DWORD in length ++ * ++ * ep->xfer_len can be any number of bytes ++ * ++ * ep->xfer_count is a multiple of ep->maxpacket until the last ++ * packet ++ * ++ * FIFO access is DWORD */ ++ ++ uint32_t i; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ uint32_t *fifo; ++ uint32_t *data_buff = (uint32_t *) ep->xfer_buff; ++ ++ if (ep->xfer_count >= ep->xfer_len) { ++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num); ++ return; ++ } ++ ++ /* Find the byte length of the packet either short packet or MPS */ ++ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) ++ byte_count = ep->xfer_len - ep->xfer_count; ++ else ++ byte_count = ep->maxpacket; ++ ++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS ++ * is not a multiple of DWORD */ ++ dword_count = (byte_count + 3) / 4; ++ ++#ifdef VERBOSE ++ dump_msg(ep->xfer_buff, byte_count); ++#endif ++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) ++ /* ++ *@todo NGS Where are the Periodic Tx FIFO addresses ++ * intialized? What should this be? ++ */ ++ fifo = core_if->data_fifo[ep->tx_fifo_num]; ++ else ++ fifo = core_if->data_fifo[ep->num]; ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", ++ fifo, data_buff, *data_buff, byte_count); ++ ++ if (!_dma) { ++ for (i = 0; i < dword_count; i++, data_buff++) ++ dwc_write_reg32(fifo, *data_buff); ++ } ++ ++ ep->xfer_count += byte_count; ++ ep->xfer_buff += byte_count; ++} ++ ++/** ++ * Set the EP STALL. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP to set the stall on. ++ */ ++void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) ++{ ++ union depctl_data depctl; ++ uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num, ++ (ep->is_in ? "IN" : "OUT")); ++ ++ if (ep->is_in == 1) { ++ depctl_addr = ++ &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the disable and stall bits */ ++ if (depctl.b.epena) ++ depctl.b.epdis = 1; ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ ++ } else { ++ depctl_addr = ++ &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the stall bit */ ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ } ++ DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr)); ++ return; ++} ++ ++/** ++ * Clear the EP STALL. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @ep: The EP to clear stall from. ++ */ ++void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) ++{ ++ union depctl_data depctl; ++ uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num, ++ (ep->is_in ? "IN" : "OUT")); ++ ++ if (ep->is_in == 1) { ++ depctl_addr = ++ &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); ++ } else { ++ depctl_addr = ++ &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); ++ } ++ ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* clear the stall bits */ ++ depctl.b.stall = 0; ++ ++ /* ++ * USB Spec 9.4.5: For endpoints using data toggle, regardless ++ * of whether an endpoint has the Halt feature set, a ++ * ClearFeature(ENDPOINT_HALT) request always results in the ++ * data toggle being reinitialized to DATA0. ++ */ ++ if (ep->type == DWC_OTG_EP_TYPE_INTR || ++ ep->type == DWC_OTG_EP_TYPE_BULK) { ++ depctl.b.setd0pid = 1; /* DATA0 */ ++ } ++ ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr)); ++ return; ++} ++ ++/** ++ * This function reads a packet from the Rx FIFO into the destination ++ * buffer. To read SETUP data use dwc_otg_read_setup_packet. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @dest: Destination buffer for the packet. ++ * @bytes: Number of bytes to copy to the destination. ++ */ ++void dwc_otg_read_packet(struct dwc_otg_core_if *core_if, ++ uint8_t *dest, uint16_t bytes) ++{ ++ int i; ++ int word_count = (bytes + 3) / 4; ++ ++ uint32_t *fifo = core_if->data_fifo[0]; ++ uint32_t *data_buff = (uint32_t *) dest; ++ ++ /** ++ * @todo Account for the case where dest is not dword aligned. This ++ * requires reading data from the FIFO into a uint32_t temp buffer, ++ * then moving it into the data buffer. ++ */ ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__, ++ core_if, dest, bytes); ++ ++ for (i = 0; i < word_count; i++, data_buff++) ++ *data_buff = dwc_read_reg32(fifo); ++ return; ++} ++ ++/** ++ * This functions reads the device registers and prints them ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if) ++{ ++ int i; ++ uint32_t *addr; ++ ++ DWC_PRINT("Device Global Registers\n"); ++ addr = &core_if->dev_if->dev_global_regs->dcfg; ++ DWC_PRINT("DCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->dev_global_regs->dctl; ++ DWC_PRINT("DCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->dev_global_regs->dsts; ++ DWC_PRINT("DSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->dev_global_regs->diepmsk; ++ DWC_PRINT("DIEPMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->dev_global_regs->doepmsk; ++ DWC_PRINT("DOEPMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->dev_global_regs->daint; ++ DWC_PRINT("DAINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->dev_global_regs->dtknqr1; ++ DWC_PRINT("DTKNQR1 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ if (core_if->hwcfg2.b.dev_token_q_depth > 6) { ++ addr = &core_if->dev_if->dev_global_regs->dtknqr2; ++ DWC_PRINT("DTKNQR2 @%p : 0x%08X\n", ++ addr, dwc_read_reg32(addr)); ++ } ++ ++ addr = &core_if->dev_if->dev_global_regs->dvbusdis; ++ DWC_PRINT("DVBUSID @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ ++ addr = &core_if->dev_if->dev_global_regs->dvbuspulse; ++ DWC_PRINT("DVBUSPULSE @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ ++ if (core_if->hwcfg2.b.dev_token_q_depth > 14) { ++ addr = &core_if->dev_if->dev_global_regs->dtknqr3; ++ DWC_PRINT("DTKNQR3 @%p : 0x%08X\n", ++ addr, dwc_read_reg32(addr)); ++ } ++ ++ if (core_if->hwcfg2.b.dev_token_q_depth > 22) { ++ addr = &core_if->dev_if->dev_global_regs->dtknqr4; ++ DWC_PRINT("DTKNQR4 @%p : 0x%08X\n", ++ addr, dwc_read_reg32(addr)); ++ } ++ ++ for (i = 0; i < core_if->dev_if->num_eps; i++) { ++ DWC_PRINT("Device IN EP %d Registers\n", i); ++ addr = &core_if->dev_if->in_ep_regs[i]->diepctl; ++ DWC_PRINT("DIEPCTL @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->in_ep_regs[i]->diepint; ++ DWC_PRINT("DIEPINT @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->in_ep_regs[i]->dieptsiz; ++ DWC_PRINT("DIETSIZ @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->in_ep_regs[i]->diepdma; ++ DWC_PRINT("DIEPDMA @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ ++ DWC_PRINT("Device OUT EP %d Registers\n", i); ++ addr = &core_if->dev_if->out_ep_regs[i]->doepctl; ++ DWC_PRINT("DOEPCTL @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->out_ep_regs[i]->doepfn; ++ DWC_PRINT("DOEPFN @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->out_ep_regs[i]->doepint; ++ DWC_PRINT("DOEPINT @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->out_ep_regs[i]->doeptsiz; ++ DWC_PRINT("DOETSIZ @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->dev_if->out_ep_regs[i]->doepdma; ++ DWC_PRINT("DOEPDMA @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ } ++ return; ++} ++ ++/** ++ * This function reads the host registers and prints them ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if) ++{ ++ int i; ++ uint32_t *addr; ++ ++ DWC_PRINT("Host Global Registers\n"); ++ addr = &core_if->host_if->host_global_regs->hcfg; ++ DWC_PRINT("HCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->host_if->host_global_regs->hfir; ++ DWC_PRINT("HFIR @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->host_if->host_global_regs->hfnum; ++ DWC_PRINT("HFNUM @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->host_if->host_global_regs->hptxsts; ++ DWC_PRINT("HPTXSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->host_if->host_global_regs->haint; ++ DWC_PRINT("HAINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->host_if->host_global_regs->haintmsk; ++ DWC_PRINT("HAINTMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = core_if->host_if->hprt0; ++ DWC_PRINT("HPRT0 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ ++ for (i = 0; i < core_if->core_params->host_channels; i++) { ++ DWC_PRINT("Host Channel %d Specific Registers\n", i); ++ addr = &core_if->host_if->hc_regs[i]->hcchar; ++ DWC_PRINT("HCCHAR @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->host_if->hc_regs[i]->hcsplt; ++ DWC_PRINT("HCSPLT @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->host_if->hc_regs[i]->hcint; ++ DWC_PRINT("HCINT @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->host_if->hc_regs[i]->hcintmsk; ++ DWC_PRINT("HCINTMSK @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->host_if->hc_regs[i]->hctsiz; ++ DWC_PRINT("HCTSIZ @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ addr = &core_if->host_if->hc_regs[i]->hcdma; ++ DWC_PRINT("HCDMA @%p : 0x%08X\n", addr, ++ dwc_read_reg32(addr)); ++ ++ } ++ return; ++} ++ ++/** ++ * This function reads the core global registers and prints them ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if) ++{ ++ int i; ++ uint32_t *addr; ++ ++ DWC_PRINT("Core Global Registers\n"); ++ addr = &core_if->core_global_regs->gotgctl; ++ DWC_PRINT("GOTGCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gotgint; ++ DWC_PRINT("GOTGINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gahbcfg; ++ DWC_PRINT("GAHBCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gusbcfg; ++ DWC_PRINT("GUSBCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->grstctl; ++ DWC_PRINT("GRSTCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gintsts; ++ DWC_PRINT("GINTSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gintmsk; ++ DWC_PRINT("GINTMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->grxstsr; ++ DWC_PRINT("GRXSTSR @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->grxfsiz; ++ DWC_PRINT("GRXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gnptxfsiz; ++ DWC_PRINT("GNPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gnptxsts; ++ DWC_PRINT("GNPTXSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gi2cctl; ++ DWC_PRINT("GI2CCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gpvndctl; ++ DWC_PRINT("GPVNDCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->ggpio; ++ DWC_PRINT("GGPIO @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->guid; ++ DWC_PRINT("GUID @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->gsnpsid; ++ DWC_PRINT("GSNPSID @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->ghwcfg1; ++ DWC_PRINT("GHWCFG1 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->ghwcfg2; ++ DWC_PRINT("GHWCFG2 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->ghwcfg3; ++ DWC_PRINT("GHWCFG3 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->ghwcfg4; ++ DWC_PRINT("GHWCFG4 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ addr = &core_if->core_global_regs->hptxfsiz; ++ DWC_PRINT("HPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); ++ ++ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { ++ addr = &core_if->core_global_regs->dptxfsiz[i]; ++ DWC_PRINT("DPTXFSIZ[%d] @%p : 0x%08X\n", i, addr, ++ dwc_read_reg32(addr)); ++ } ++ ++} ++ ++/** ++ * Flush a Tx FIFO. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @_num: Tx FIFO to flush. ++ */ ++extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if, const int _num) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ union grstctl_data greset = {.d32 = 0 }; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "Flush Tx FIFO %d\n", _num); ++ ++ greset.b.txfflsh = 1; ++ greset.b.txfnum = _num; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", ++ __func__, greset.d32, ++ dwc_read_reg32(&global_regs->gnptxsts)); ++ break; ++ } ++ ++ } while (greset.b.txfflsh == 1); ++ /* Wait for 3 PHY Clocks */ ++ udelay(1); ++} ++ ++/** ++ * Flush Rx FIFO. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ union grstctl_data greset = {.d32 = 0 }; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "%s\n", __func__); ++ /* ++ * ++ */ ++ greset.b.rxfflsh = 1; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ } while (greset.b.rxfflsh == 1); ++ /* Wait for 3 PHY Clocks */ ++ udelay(1); ++} ++ ++/** ++ * Do core a soft reset of the core. Be careful with this because it ++ * resets all the internal state machines of the core. ++ */ ++void dwc_otg_core_reset(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ union grstctl_data greset = {.d32 = 0 }; ++ int count = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); ++ /* Wait for AHB master IDLE state. */ ++ do { ++ udelay(10); ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 100000) { ++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ return; ++ } ++ } while (greset.b.ahbidle == 0); ++ ++ /* Core Soft Reset */ ++ count = 0; ++ greset.b.csftrst = 1; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", ++ __func__, greset.d32); ++ break; ++ } ++ } while (greset.b.csftrst == 1); ++ /* Wait for 3 PHY Clocks */ ++ mdelay(100); ++} ++ ++/** ++ * Register HCD callbacks. The callbacks are used to start and stop ++ * the HCD for interrupt processing. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @_cb: the HCD callback structure. ++ * @_p: pointer to be passed to callback function (usb_hcd*). ++ */ ++extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if, ++ struct dwc_otg_cil_callbacks *_cb, ++ void *_p) ++{ ++ core_if->hcd_cb = _cb; ++ _cb->p = _p; ++} ++ ++/** ++ * Register PCD callbacks. The callbacks are used to start and stop ++ * the PCD for interrupt processing. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ * @_cb: the PCD callback structure. ++ * @_p: pointer to be passed to callback function (pcd*). ++ */ ++extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if, ++ struct dwc_otg_cil_callbacks *_cb, ++ void *_p) ++{ ++ core_if->pcd_cb = _cb; ++ _cb->p = _p; ++} +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.h b/drivers/usb/host/dwc_otg/dwc_otg_cil.h +new file mode 100644 +index 0000000..36ef561 +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.h +@@ -0,0 +1,866 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_CIL_H__) ++#define __DWC_CIL_H__ ++ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_regs.h" ++#ifdef DEBUG ++#include "linux/timer.h" ++#endif ++ ++/* ++ * This file contains the interface to the Core Interface Layer. ++ */ ++ ++/** ++ * The <code>dwc_ep</code> structure represents the state of a single ++ * endpoint when acting in device mode. It contains the data items ++ * needed for an endpoint to be activated and transfer packets. ++ */ ++struct dwc_ep { ++ /** EP number used for register address lookup */ ++ uint8_t num; ++ /** EP direction 0 = OUT */ ++ unsigned is_in:1; ++ /** EP active. */ ++ unsigned active:1; ++ ++ /* ++ * Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use ++ * non-periodic Tx FIFO ++ */ ++ unsigned tx_fifo_num:4; ++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */ ++ unsigned type:2; ++#define DWC_OTG_EP_TYPE_CONTROL 0 ++#define DWC_OTG_EP_TYPE_ISOC 1 ++#define DWC_OTG_EP_TYPE_BULK 2 ++#define DWC_OTG_EP_TYPE_INTR 3 ++ ++ /** DATA start PID for INTR and BULK EP */ ++ unsigned data_pid_start:1; ++ /** Frame (even/odd) for ISOC EP */ ++ unsigned even_odd_frame:1; ++ /** Max Packet bytes */ ++ unsigned maxpacket:11; ++ ++ /** @name Transfer state */ ++ /** @{ */ ++ ++ /** ++ * Pointer to the beginning of the transfer buffer -- do not modify ++ * during transfer. ++ */ ++ ++ uint32_t dma_addr; ++ ++ uint8_t *start_xfer_buff; ++ /** pointer to the transfer buffer */ ++ uint8_t *xfer_buff; ++ /** Number of bytes to transfer */ ++ unsigned xfer_len:19; ++ /** Number of bytes transferred. */ ++ unsigned xfer_count:19; ++ /** Sent ZLP */ ++ unsigned sent_zlp:1; ++ /** Total len for control transfer */ ++ unsigned total_len:19; ++ ++ /** @} */ ++}; ++ ++/* ++ * Reasons for halting a host channel. ++ */ ++enum dwc_otg_halt_status { ++ DWC_OTG_HC_XFER_NO_HALT_STATUS, ++ DWC_OTG_HC_XFER_COMPLETE, ++ DWC_OTG_HC_XFER_URB_COMPLETE, ++ DWC_OTG_HC_XFER_ACK, ++ DWC_OTG_HC_XFER_NAK, ++ DWC_OTG_HC_XFER_NYET, ++ DWC_OTG_HC_XFER_STALL, ++ DWC_OTG_HC_XFER_XACT_ERR, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN, ++ DWC_OTG_HC_XFER_BABBLE_ERR, ++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR, ++ DWC_OTG_HC_XFER_AHB_ERR, ++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, ++ DWC_OTG_HC_XFER_URB_DEQUEUE ++}; ++ ++/** ++ * Host channel descriptor. This structure represents the state of a single ++ * host channel when acting in host mode. It contains the data items needed to ++ * transfer packets to an endpoint via a host channel. ++ */ ++struct dwc_hc { ++ /** Host channel number used for register address lookup */ ++ uint8_t hc_num; ++ ++ /** Device to access */ ++ unsigned dev_addr:7; ++ ++ /** EP to access */ ++ unsigned ep_num:4; ++ ++ /** EP direction. 0: OUT, 1: IN */ ++ unsigned ep_is_in:1; ++ ++ /** ++ * EP speed. ++ * One of the following values: ++ * - DWC_OTG_EP_SPEED_LOW ++ * - DWC_OTG_EP_SPEED_FULL ++ * - DWC_OTG_EP_SPEED_HIGH ++ */ ++ unsigned speed:2; ++#define DWC_OTG_EP_SPEED_LOW 0 ++#define DWC_OTG_EP_SPEED_FULL 1 ++#define DWC_OTG_EP_SPEED_HIGH 2 ++ ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - DWC_OTG_EP_TYPE_CONTROL: 0 ++ * - DWC_OTG_EP_TYPE_ISOC: 1 ++ * - DWC_OTG_EP_TYPE_BULK: 2 ++ * - DWC_OTG_EP_TYPE_INTR: 3 ++ */ ++ unsigned ep_type:2; ++ ++ /** Max packet size in bytes */ ++ unsigned max_packet:11; ++ ++ /** ++ * PID for initial transaction. ++ * 0: DATA0,<br> ++ * 1: DATA2,<br> ++ * 2: DATA1,<br> ++ * 3: MDATA (non-Control EP), ++ * SETUP (Control EP) ++ */ ++ unsigned data_pid_start:2; ++#define DWC_OTG_HC_PID_DATA0 0 ++#define DWC_OTG_HC_PID_DATA2 1 ++#define DWC_OTG_HC_PID_DATA1 2 ++#define DWC_OTG_HC_PID_MDATA 3 ++#define DWC_OTG_HC_PID_SETUP 3 ++ ++ /** Number of periodic transactions per (micro)frame */ ++ unsigned multi_count:2; ++ ++ /** @name Transfer State */ ++ /** @{ */ ++ ++ /** Pointer to the current transfer buffer position. */ ++ uint8_t *xfer_buff; ++ /** Total number of bytes to transfer. */ ++ uint32_t xfer_len; ++ /** Number of bytes transferred so far. */ ++ uint32_t xfer_count; ++ /** Packet count at start of transfer.*/ ++ uint16_t start_pkt_count; ++ ++ /** ++ * Flag to indicate whether the transfer has been started. Set to 1 if ++ * it has been started, 0 otherwise. ++ */ ++ uint8_t xfer_started; ++ ++ /** ++ * Set to 1 to indicate that a PING request should be issued on this ++ * channel. If 0, process normally. ++ */ ++ uint8_t do_ping; ++ ++ /** ++ * Set to 1 to indicate that the error count for this transaction is ++ * non-zero. Set to 0 if the error count is 0. ++ */ ++ uint8_t error_state; ++ ++ /** ++ * Set to 1 to indicate that this channel should be halted the next ++ * time a request is queued for the channel. This is necessary in ++ * slave mode if no request queue space is available when an attempt ++ * is made to halt the channel. ++ */ ++ uint8_t halt_on_queue; ++ ++ /** ++ * Set to 1 if the host channel has been halted, but the core is not ++ * finished flushing queued requests. Otherwise 0. ++ */ ++ uint8_t halt_pending; ++ ++ /** ++ * Reason for halting the host channel. ++ */ ++ enum dwc_otg_halt_status halt_status; ++ ++ /* ++ * Split settings for the host channel ++ */ ++ uint8_t do_split; /**< Enable split for the channel */ ++ uint8_t complete_split; /**< Enable complete split */ ++ uint8_t hub_addr; /**< Address of high speed hub */ ++ ++ uint8_t port_addr; /**< Port of the low/full speed device */ ++ /** Split transaction position ++ * One of the following values: ++ * - DWC_HCSPLIT_XACTPOS_MID ++ * - DWC_HCSPLIT_XACTPOS_BEGIN ++ * - DWC_HCSPLIT_XACTPOS_END ++ * - DWC_HCSPLIT_XACTPOS_ALL */ ++ uint8_t xact_pos; ++ ++ /** Set when the host channel does a short read. */ ++ uint8_t short_read; ++ ++ /** ++ * Number of requests issued for this channel since it was assigned to ++ * the current transfer (not counting PINGs). ++ */ ++ uint8_t requests; ++ ++ /** ++ * Queue Head for the transfer being processed by this channel. ++ */ ++ struct dwc_otg_qh *qh; ++ ++ /** @} */ ++ ++ /** Entry in list of host channels. */ ++ struct list_head hc_list_entry; ++}; ++ ++/** ++ * The following parameters may be specified when starting the module. These ++ * parameters define how the DWC_otg controller should be configured. ++ * Parameter values are passed to the CIL initialization function ++ * dwc_otg_cil_init. ++ */ ++struct dwc_otg_core_params { ++ int32_t opt; ++#define dwc_param_opt_default 1 ++ ++ /* ++ * Specifies the OTG capabilities. The driver will automatically ++ * detect the value for this parameter if none is specified. ++ * 0 - HNP and SRP capable (default) ++ * 1 - SRP Only capable ++ * 2 - No HNP/SRP capable ++ */ ++ int32_t otg_cap; ++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 ++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 ++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 ++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE ++ ++ /* ++ * Specifies whether to use slave or DMA mode for accessing the data ++ * FIFOs. The driver will automatically detect the value for this ++ * parameter if none is specified. ++ * 0 - Slave ++ * 1 - DMA (default, if available) ++ */ ++ int32_t dma_enable; ++#define dwc_param_dma_enable_default 1 ++ ++ /* ++ * The DMA Burst size (applicable only for External DMA ++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++ */ ++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */ ++#define dwc_param_dma_burst_size_default 32 ++ ++ /* ++ * Specifies the maximum speed of operation in host and device mode. ++ * The actual speed depends on the speed of the attached device and ++ * the value of phy_type. The actual speed depends on the speed of the ++ * attached device. ++ * 0 - High Speed (default) ++ * 1 - Full Speed ++ */ ++ int32_t speed; ++#define dwc_param_speed_default 0 ++#define DWC_SPEED_PARAM_HIGH 0 ++#define DWC_SPEED_PARAM_FULL 1 ++ ++ /** Specifies whether low power mode is supported when attached ++ * to a Full Speed or Low Speed device in host mode. ++ * 0 - Don't support low power mode (default) ++ * 1 - Support low power mode ++ */ ++ int32_t host_support_fs_ls_low_power; ++#define dwc_param_host_support_fs_ls_low_power_default 0 ++ ++ /** Specifies the PHY clock rate in low power mode when connected to a ++ * Low Speed device in host mode. This parameter is applicable only if ++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS ++ * then defaults to 6 MHZ otherwise 48 MHZ. ++ * ++ * 0 - 48 MHz ++ * 1 - 6 MHz ++ */ ++ int32_t host_ls_low_power_phy_clk; ++#define dwc_param_host_ls_low_power_phy_clk_default 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 ++ ++ /** ++ * 0 - Use cC FIFO size parameters ++ * 1 - Allow dynamic FIFO sizing (default) ++ */ ++ int32_t enable_dynamic_fifo; ++#define dwc_param_enable_dynamic_fifo_default 1 ++ ++ /** Total number of 4-byte words in the data FIFO memory. This ++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic ++ * Tx FIFOs. ++ * 32 to 32768 (default 8192) ++ * Note: The total FIFO memory depth in the FPGA configuration is 8192. ++ */ ++ int32_t data_fifo_size; ++#define dwc_param_data_fifo_size_default 8192 ++ ++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1064) ++ */ ++ int32_t dev_rx_fifo_size; ++#define dwc_param_dev_rx_fifo_size_default 1064 ++ ++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode ++ * when dynamic FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t dev_nperio_tx_fifo_size; ++#define dwc_param_dev_nperio_tx_fifo_size_default 1024 ++ ++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++#define dwc_param_dev_perio_tx_fifo_size_default 256 ++ ++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_rx_fifo_size; ++#define dwc_param_host_rx_fifo_size_default 1024 ++#define dwc_param_host_rx_fifo_size_percentage 30 ++ ++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode ++ * when Dynamic FIFO sizing is enabled in the core. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_nperio_tx_fifo_size; ++#define dwc_param_host_nperio_tx_fifo_size_default 1024 ++#define dwc_param_host_nperio_tx_fifo_size_percentage 40 ++ ++ /* ++ * Number of 4-byte words in the host periodic Tx FIFO when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_perio_tx_fifo_size; ++#define dwc_param_host_perio_tx_fifo_size_default 1024 ++#define dwc_param_host_perio_tx_fifo_size_percentage 30 ++ ++ /* ++ * The maximum transfer size supported in bytes. ++ * 2047 to 65,535 (default 65,535) ++ */ ++ int32_t max_transfer_size; ++#define dwc_param_max_transfer_size_default 65535 ++ ++ /* ++ * The maximum number of packets in a transfer. ++ * 15 to 511 (default 511) ++ */ ++ int32_t max_packet_count; ++#define dwc_param_max_packet_count_default 511 ++ ++ /* ++ * The number of host channel registers to use. ++ * 1 to 16 (default 12) ++ * Note: The FPGA configuration supports a maximum of 12 host channels. ++ */ ++ int32_t host_channels; ++#define dwc_param_host_channels_default 12 ++ ++ /* ++ * The number of endpoints in addition to EP0 available for device ++ * mode operations. ++ * 1 to 15 (default 6 IN and OUT) ++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT ++ * endpoints in addition to EP0. ++ */ ++ int32_t dev_endpoints; ++#define dwc_param_dev_endpoints_default 6 ++ ++ /* ++ * Specifies the type of PHY interface to use. By default, the driver ++ * will automatically detect the phy_type. ++ * ++ * 0 - Full Speed PHY ++ * 1 - UTMI+ (default) ++ * 2 - ULPI ++ */ ++ int32_t phy_type; ++#define DWC_PHY_TYPE_PARAM_FS 0 ++#define DWC_PHY_TYPE_PARAM_UTMI 1 ++#define DWC_PHY_TYPE_PARAM_ULPI 2 ++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI ++ ++ /* ++ * Specifies the UTMI+ Data Width. This parameter is ++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI ++ * PHY_TYPE, this parameter indicates the data width between ++ * the MAC and the ULPI Wrapper.) Also, this parameter is ++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set ++ * to "8 and 16 bits", meaning that the core has been ++ * configured to work at either data path width. ++ * ++ * 8 or 16 bits (default 16) ++ */ ++ int32_t phy_utmi_width; ++#define dwc_param_phy_utmi_width_default 16 ++ ++ /* ++ * Specifies whether the ULPI operates at double or single ++ * data rate. This parameter is only applicable if PHY_TYPE is ++ * ULPI. ++ * ++ * 0 - single data rate ULPI interface with 8 bit wide data ++ * bus (default) ++ * 1 - double data rate ULPI interface with 4 bit wide data ++ * bus ++ */ ++ int32_t phy_ulpi_ddr; ++#define dwc_param_phy_ulpi_ddr_default 0 ++ ++ /* ++ * Specifies whether to use the internal or external supply to ++ * drive the vbus with a ULPI phy. ++ */ ++ int32_t phy_ulpi_ext_vbus; ++#define DWC_PHY_ULPI_INTERNAL_VBUS 0 ++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 ++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS ++ ++ /* ++ * Specifies whether to use the I2Cinterface for full speed PHY. This ++ * parameter is only applicable if PHY_TYPE is FS. ++ * 0 - No (default) ++ * 1 - Yes ++ */ ++ int32_t i2c_enable; ++#define dwc_param_i2c_enable_default 0 ++ ++ int32_t ulpi_fs_ls; ++#define dwc_param_ulpi_fs_ls_default 0 ++ ++ int32_t ts_dline; ++#define dwc_param_ts_dline_default 0 ++ ++}; ++ ++/** ++ * The FIFOs are established based on a default percentage of the total ++ * FIFO depth. This check insures that the defaults are reasonable. ++ */ ++#if (((dwc_param_host_rx_fifo_size_percentage) \ ++ +(dwc_param_host_nperio_tx_fifo_size_percentage) \ ++ +(dwc_param_host_perio_tx_fifo_size_percentage)) > 100) ++#error Invalid FIFO allocation ++#endif ++ ++#ifdef DEBUG ++struct dwc_otg_core_if; ++struct hc_xfer_info { ++ struct dwc_otg_core_if *core_if; ++ struct dwc_hc *hc; ++}; ++#endif ++ ++/* ++ * The <code>dwc_otg_core_if</code> structure contains information ++ * needed to manage the DWC_otg controller acting in either host or ++ * device mode. It represents the programming view of the controller ++ * as a whole. ++ */ ++struct dwc_otg_core_if { ++ /** USB block index number for Octeon's that support multiple */ ++ int usb_num; ++ ++ /** Parameters that define how the core should be configured.*/ ++ struct dwc_otg_core_params *core_params; ++ ++ /** Core Global registers starting at offset 000h. */ ++ struct dwc_otg_core_global_regs *core_global_regs; ++ ++ /** Device-specific information */ ++ struct dwc_otg_dev_if *dev_if; ++ /** Host-specific information */ ++ struct dwc_otg_host_if *host_if; ++ ++ /* ++ * Set to 1 if the core PHY interface bits in USBCFG have been ++ * initialized. ++ */ ++ uint8_t phy_init_done; ++ ++ /* ++ * SRP Success flag, set by srp success interrupt in FS I2C mode ++ */ ++ uint8_t srp_success; ++ uint8_t srp_timer_started; ++ ++ /* Common configuration information */ ++ /** Power and Clock Gating Control Register */ ++ uint32_t *pcgcctl; ++#define DWC_OTG_PCGCCTL_OFFSET 0xE00 ++ ++ /** Push/pop addresses for endpoints or host channels.*/ ++ uint32_t *data_fifo[MAX_EPS_CHANNELS]; ++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000 ++#define DWC_OTG_DATA_FIFO_SIZE 0x1000 ++ ++ /** Total RAM for FIFOs (Bytes) */ ++ uint16_t total_fifo_size; ++ /** Size of Rx FIFO (Bytes) */ ++ uint16_t rx_fifo_size; ++ /** Size of Non-periodic Tx FIFO (Bytes) */ ++ uint16_t nperio_tx_fifo_size; ++ ++ /** 1 if DMA is enabled, 0 otherwise. */ ++ uint8_t dma_enable; ++ ++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in ++ * process of being queued */ ++ uint8_t queuing_high_bandwidth; ++ ++ /** Hardware Configuration -- stored here for convenience.*/ ++ union hwcfg1_data hwcfg1; ++ union hwcfg2_data hwcfg2; ++ union hwcfg3_data hwcfg3; ++ union hwcfg4_data hwcfg4; ++ ++ /* ++ * The operational State, during transations ++ * (a_host>>a_peripherial and b_device=>b_host) this may not ++ * match the core but allows the software to determine ++ * transitions. ++ */ ++ uint8_t op_state; ++ ++ /* ++ * Set to 1 if the HCD needs to be restarted on a session request ++ * interrupt. This is required if no connector ID status change has ++ * occurred since the HCD was last disconnected. ++ */ ++ uint8_t restart_hcd_on_session_req; ++ ++ /** HCD callbacks */ ++ /** A-Device is a_host */ ++#define A_HOST (1) ++ /** A-Device is a_suspend */ ++#define A_SUSPEND (2) ++ /** A-Device is a_peripherial */ ++#define A_PERIPHERAL (3) ++ /** B-Device is operating as a Peripheral. */ ++#define B_PERIPHERAL (4) ++ /** B-Device is operating as a Host. */ ++#define B_HOST (5) ++ ++ /** HCD callbacks */ ++ struct dwc_otg_cil_callbacks *hcd_cb; ++ /** PCD callbacks */ ++ struct dwc_otg_cil_callbacks *pcd_cb; ++ ++#ifdef DEBUG ++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS]; ++ ++ struct hc_xfer_info hc_xfer_info[MAX_EPS_CHANNELS]; ++ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS]; ++ ++ uint32_t hfnum_7_samples; ++ uint64_t hfnum_7_frrem_accum; ++ uint32_t hfnum_0_samples; ++ uint64_t hfnum_0_frrem_accum; ++ uint32_t hfnum_other_samples; ++ uint64_t hfnum_other_frrem_accum; ++#endif ++ ++}; ++ ++/* ++ * The following functions support initialization of the CIL driver component ++ * and the DWC_otg controller. ++ */ ++extern struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr, ++ struct dwc_otg_core_params * ++ _core_params); ++extern void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_core_init(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if); ++ ++/* Device CIL Functions ++ * The following functions support managing the DWC_otg controller in device ++ * mode. ++ */ ++ ++extern void dwc_otg_wakeup(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if, ++ uint32_t *dest); ++extern uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep); ++extern void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep); ++extern void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep); ++extern void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep); ++extern void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep); ++extern void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep); ++extern void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep, int _dma); ++extern void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep); ++extern void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if, ++ struct dwc_ep *ep); ++extern void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if); ++ ++/* Host CIL Functions ++ * The following functions support managing the DWC_otg controller in host ++ * mode. ++ */ ++ ++extern void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc); ++extern void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc, ++ enum dwc_otg_halt_status halt_status); ++extern void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc); ++extern void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc); ++extern int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc); ++extern void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc); ++extern void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc); ++extern void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if); ++ ++/** ++ * This function Reads HPRT0 in preparation to modify. It keeps the ++ * WC bits 0 so that if they are read as 1, they won't clear when you ++ * write it back ++ */ ++static inline uint32_t dwc_otg_read_hprt0(struct dwc_otg_core_if *core_if) ++{ ++ union hprt0_data hprt0; ++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); ++ hprt0.b.prtena = 0; ++ hprt0.b.prtconndet = 0; ++ hprt0.b.prtenchng = 0; ++ hprt0.b.prtovrcurrchng = 0; ++ return hprt0.d32; ++} ++ ++extern void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if); ++ ++/* Common CIL Functions ++ * The following functions support managing the DWC_otg controller in either ++ * device or host mode. ++ */ ++ ++ ++extern void dwc_otg_read_packet(struct dwc_otg_core_if *core_if, ++ uint8_t *dest, uint16_t bytes); ++ ++extern void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if); ++ ++extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if, ++ const int _num); ++extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if); ++extern void dwc_otg_core_reset(struct dwc_otg_core_if *core_if); ++ ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_core_intr(struct dwc_otg_core_if *core_if) ++{ ++ return dwc_read_reg32(&core_if->core_global_regs->gintsts) & ++ dwc_read_reg32(&core_if->core_global_regs->gintmsk); ++} ++ ++/** ++ * This function returns the OTG Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_otg_intr(struct dwc_otg_core_if *core_if) ++{ ++ return dwc_read_reg32(&core_if->core_global_regs->gotgint); ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the IN endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(struct dwc_otg_core_if * ++ core_if) ++{ ++ uint32_t v; ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk); ++ return v & 0xffff; ++ ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the OUT endpoint interrupt bits. ++ */ ++static inline uint32_t ++dwc_otg_read_dev_all_out_ep_intr(struct dwc_otg_core_if *core_if) ++{ ++ uint32_t v; ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk); ++ return (v & 0xffff0000) >> 16; ++} ++ ++/** ++ * This function returns the Device IN EP Interrupt register ++ */ ++static inline uint32_t ++dwc_otg_read_dev_in_ep_intr(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) ++{ ++ struct dwc_otg_dev_if *dev_if = core_if->dev_if; ++ uint32_t v; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & ++ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); ++ return v; ++} ++ ++/** ++ * This function returns the Device OUT EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_out_ep_intr(struct dwc_otg_core_if * ++ core_if, struct dwc_ep *ep) ++{ ++ struct dwc_otg_dev_if *dev_if = core_if->dev_if; ++ uint32_t v; ++ v = dwc_read_reg32(&dev_if->out_ep_regs[ep->num]->doepint) & ++ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); ++ return v; ++} ++ ++/** ++ * This function returns the Host All Channel Interrupt register ++ */ ++static inline uint32_t ++dwc_otg_read_host_all_channels_intr(struct dwc_otg_core_if *core_if) ++{ ++ return dwc_read_reg32(&core_if->host_if->host_global_regs->haint); ++} ++ ++static inline uint32_t ++dwc_otg_read_host_channel_intr(struct dwc_otg_core_if *core_if, ++ struct dwc_hc *hc) ++{ ++ return dwc_read_reg32(&core_if->host_if->hc_regs[hc->hc_num]->hcint); ++} ++ ++/** ++ * This function returns the mode of the operation, host or device. ++ * ++ * Returns 0 - Device Mode, 1 - Host Mode ++ */ ++static inline uint32_t dwc_otg_mode(struct dwc_otg_core_if *core_if) ++{ ++ return dwc_read_reg32(&core_if->core_global_regs->gintsts) & 0x1; ++} ++ ++static inline uint8_t dwc_otg_is_device_mode(struct dwc_otg_core_if *core_if) ++{ ++ return dwc_otg_mode(core_if) != DWC_HOST_MODE; ++} ++ ++static inline uint8_t dwc_otg_is_host_mode(struct dwc_otg_core_if *core_if) ++{ ++ return dwc_otg_mode(core_if) == DWC_HOST_MODE; ++} ++ ++extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if); ++ ++/* ++ * DWC_otg CIL callback structure. This structure allows the HCD and ++ * PCD to register functions used for starting and stopping the PCD ++ * and HCD for role change on for a DRD. ++ */ ++struct dwc_otg_cil_callbacks { ++ /* Start function for role change */ ++ int (*start) (void *p); ++ /* Stop Function for role change */ ++ int (*stop) (void *p); ++ /* Disconnect Function for role change */ ++ int (*disconnect) (void *p); ++ /* Resume/Remote wakeup Function */ ++ int (*resume_wakeup) (void *p); ++ /* Suspend function */ ++ int (*suspend) (void *p); ++ /* Session Start (SRP) */ ++ int (*session_start) (void *p); ++ /* Pointer passed to start() and stop() */ ++ void *p; ++}; ++ ++extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if, ++ struct dwc_otg_cil_callbacks *cb, ++ void *p); ++extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if, ++ struct dwc_otg_cil_callbacks *cb, ++ void *p); ++#endif +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c +new file mode 100644 +index 0000000..38c46df +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c +@@ -0,0 +1,689 @@ ++/* ========================================================================== ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * This file contains the Common Interrupt handlers. ++ */ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_regs.h" ++#include "dwc_otg_cil.h" ++ ++#ifdef DEBUG ++inline const char *op_state_str(struct dwc_otg_core_if *core_if) ++{ ++ return (core_if->op_state == A_HOST ? "a_host" : ++ (core_if->op_state == A_SUSPEND ? "a_suspend" : ++ (core_if->op_state == A_PERIPHERAL ? "a_peripheral" : ++ (core_if->op_state == B_PERIPHERAL ? "b_peripheral" : ++ (core_if->op_state == B_HOST ? "b_host" : "unknown"))))); ++} ++#endif ++ ++/** This function will log a debug message ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_mode_mismatch_intr(struct dwc_otg_core_if *core_if) ++{ ++ union gintsts_data gintsts; ++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n", ++ dwc_otg_mode(core_if) ? "Host" : "Device"); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.modemismatch = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++ ++/** Start the HCD. Helper function for using the HCD callbacks. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++static inline void hcd_start(struct dwc_otg_core_if *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->start) ++ core_if->hcd_cb->start(core_if->hcd_cb->p); ++} ++ ++/** Stop the HCD. Helper function for using the HCD callbacks. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++static inline void hcd_stop(struct dwc_otg_core_if *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->stop) ++ core_if->hcd_cb->stop(core_if->hcd_cb->p); ++} ++ ++/** Disconnect the HCD. Helper function for using the HCD callbacks. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++static inline void hcd_disconnect(struct dwc_otg_core_if *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->disconnect) ++ core_if->hcd_cb->disconnect(core_if->hcd_cb->p); ++} ++ ++/** Inform the HCD the a New Session has begun. Helper function for ++ * using the HCD callbacks. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++static inline void hcd_session_start(struct dwc_otg_core_if *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->session_start) ++ core_if->hcd_cb->session_start(core_if->hcd_cb->p); ++} ++ ++/** Start the PCD. Helper function for using the PCD callbacks. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++static inline void pcd_start(struct dwc_otg_core_if *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->start) ++ core_if->pcd_cb->start(core_if->pcd_cb->p); ++} ++ ++/** Stop the PCD. Helper function for using the PCD callbacks. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++static inline void pcd_stop(struct dwc_otg_core_if *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->stop) ++ core_if->pcd_cb->stop(core_if->pcd_cb->p); ++} ++ ++/** Suspend the PCD. Helper function for using the PCD callbacks. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++static inline void pcd_suspend(struct dwc_otg_core_if *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->suspend) ++ core_if->pcd_cb->suspend(core_if->pcd_cb->p); ++} ++ ++/** Resume the PCD. Helper function for using the PCD callbacks. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++static inline void pcd_resume(struct dwc_otg_core_if *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) ++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); ++} ++ ++/** ++ * This function handles the OTG Interrupts. It reads the OTG ++ * Interrupt Register (GOTGINT) to determine what interrupt has ++ * occurred. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_otg_intr(struct dwc_otg_core_if *core_if) ++{ ++ struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; ++ union gotgint_data gotgint; ++ union gotgctl_data gotgctl; ++ union gintmsk_data gintmsk; ++ ++ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32, ++ op_state_str(core_if)); ++ ++ if (gotgint.b.sesenddet) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Session End Detected++ (%s)\n", ++ op_state_str(core_if)); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ ++ if (core_if->op_state == B_HOST) { ++ pcd_start(core_if); ++ core_if->op_state = B_PERIPHERAL; ++ } else { ++ /* If not B_HOST and Device HNP still set. HNP ++ * Did not succeed!*/ ++ if (gotgctl.b.devhnpen) { ++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n"); ++ DWC_ERROR("Device Not Connected/Responding!\n"); ++ } ++ ++ /* If Session End Detected the B-Cable has ++ * been disconnected. */ ++ /* Reset PCD and Gadget driver to a ++ * clean state. */ ++ pcd_stop(core_if); ++ } ++ gotgctl.d32 = 0; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); ++ } ++ if (gotgint.b.sesreqsucstschng) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Session Reqeust Success Status Change++\n"); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ if (gotgctl.b.sesreqscs) { ++ if ((core_if->core_params->phy_type == ++ DWC_PHY_TYPE_PARAM_FS) ++ && (core_if->core_params->i2c_enable)) { ++ core_if->srp_success = 1; ++ } else { ++ pcd_resume(core_if); ++ /* Clear Session Request */ ++ gotgctl.d32 = 0; ++ gotgctl.b.sesreq = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ } ++ } ++ if (gotgint.b.hstnegsucstschng) { ++ /* Print statements during the HNP interrupt handling ++ * can cause it to fail.*/ ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ if (gotgctl.b.hstnegscs) { ++ if (dwc_otg_is_host_mode(core_if)) { ++ core_if->op_state = B_HOST; ++ /* ++ * Need to disable SOF interrupt immediately. ++ * When switching from device to host, the PCD ++ * interrupt handler won't handle the ++ * interrupt if host mode is already set. The ++ * HCD interrupt handler won't get called if ++ * the HCD state is HALT. This means that the ++ * interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ pcd_stop(core_if); ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ hcd_start(core_if); ++ core_if->op_state = B_HOST; ++ } ++ } else { ++ gotgctl.d32 = 0; ++ gotgctl.b.hnpreq = 1; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); ++ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n"); ++ DWC_ERROR("Device Not Connected/Responding\n"); ++ } ++ } ++ if (gotgint.b.hstnegdet) { ++ /* The disconnect interrupt is set at the same time as ++ * Host Negotiation Detected. During the mode ++ * switch all interrupts are cleared so the disconnect ++ * interrupt handler will not get executed. ++ */ ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Host Negotiation Detected++ (%s)\n", ++ (dwc_otg_is_host_mode(core_if) ? "Host" : ++ "Device")); ++ if (dwc_otg_is_device_mode(core_if)) { ++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", ++ core_if->op_state); ++ hcd_disconnect(core_if); ++ pcd_start(core_if); ++ core_if->op_state = A_PERIPHERAL; ++ } else { ++ /* ++ * Need to disable SOF interrupt immediately. When ++ * switching from device to host, the PCD interrupt ++ * handler won't handle the interrupt if host mode is ++ * already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that ++ * the interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, gintmsk.d32, 0); ++ pcd_stop(core_if); ++ hcd_start(core_if); ++ core_if->op_state = A_HOST; ++ } ++ } ++ if (gotgint.b.adevtoutchng) ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "A-Device Timeout Change++\n"); ++ if (gotgint.b.debdone) ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " "Debounce Done++\n"); ++ ++ /* Clear GOTGINT */ ++ dwc_write_reg32(&core_if->core_global_regs->gotgint, gotgint.d32); ++ ++ return 1; ++} ++ ++/** ++ * This function handles the Connector ID Status Change Interrupt. It ++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this ++ * is a Device to Host Mode transition or a Host Mode to Device ++ * Transition. ++ * ++ * This only occurs when the cable is connected/removed from the PHY ++ * connector. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_conn_id_status_change_intr(struct dwc_otg_core_if *core_if) ++{ ++ uint32_t count = 0; ++ ++ union gintsts_data gintsts = {.d32 = 0 }; ++ union gintmsk_data gintmsk = {.d32 = 0 }; ++ union gotgctl_data gotgctl = {.d32 = 0 }; ++ ++ /* ++ * Need to disable SOF interrupt immediately. If switching from device ++ * to host, the PCD interrupt handler won't handle the interrupt if ++ * host mode is already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that the interrupt does ++ * not get handled and Linux complains loudly. ++ */ ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0); ++ ++ DWC_DEBUGPL(DBG_CIL, ++ " ++Connector ID Status Change Interrupt++ (%s)\n", ++ (dwc_otg_is_host_mode(core_if) ? "Host" : "Device")); ++ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts); ++ ++ /* B-Device connector (Device Mode) */ ++ if (gotgctl.b.conidsts) { ++ /* Wait for switch to device mode. */ ++ while (!dwc_otg_is_device_mode(core_if)) { ++ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(core_if) ? "Host" : ++ "Peripheral")); ++ mdelay(100); ++ if (++count > 10000) ++ *(uint32_t *) NULL = 0; ++ } ++ core_if->op_state = B_PERIPHERAL; ++ dwc_otg_core_init(core_if); ++ dwc_otg_enable_global_interrupts(core_if); ++ pcd_start(core_if); ++ } else { ++ /* A-Device connector (Host Mode) */ ++ while (!dwc_otg_is_host_mode(core_if)) { ++ DWC_PRINT("Waiting for Host Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(core_if) ? "Host" : ++ "Peripheral")); ++ mdelay(100); ++ if (++count > 10000) ++ *(uint32_t *) NULL = 0; ++ } ++ core_if->op_state = A_HOST; ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ dwc_otg_core_init(core_if); ++ dwc_otg_enable_global_interrupts(core_if); ++ hcd_start(core_if); ++ } ++ ++ /* Set flag and clear interrupt */ ++ gintsts.b.conidstschng = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device is initiating the Session ++ * Request Protocol to request the host to turn on bus power so a new ++ * session can begin. The handler responds by turning on bus power. If ++ * the DWC_otg controller is in low power mode, the handler brings the ++ * controller out of low power mode before turning on bus power. ++ * ++ * @core_if: Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_session_req_intr(struct dwc_otg_core_if *core_if) ++{ ++ union gintsts_data gintsts; ++#ifndef DWC_HOST_ONLY ++ union hprt0_data hprt0; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ DWC_PRINT("SRP: Device mode\n"); ++ } else { ++ DWC_PRINT("SRP: Host mode\n"); ++ ++ /* Turn on the port power bit. */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Start the Connection timer. So a message can be displayed ++ * if connect does not occur within 10 seconds. */ ++ hcd_session_start(core_if); ++ } ++#endif ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.sessreqintr = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that the DWC_otg controller has detected a ++ * resume or remote wakeup sequence. If the DWC_otg controller is in ++ * low power mode, the handler must brings the controller out of low ++ * power mode. The controller automatically begins resume ++ * signaling. The handler schedules a time to stop resume signaling. ++ */ ++int32_t dwc_otg_handle_wakeup_detected_intr(struct dwc_otg_core_if *core_if) ++{ ++ union gintsts_data gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, ++ "++Resume and Remote Wakeup Detected Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ union dctl_data dctl = {.d32 = 0 }; ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs-> ++ dsts)); ++#ifdef PARTIAL_POWER_DOWN ++ if (core_if->hwcfg4.b.power_optimiz) { ++ union pcgcctl_data power = {.d32 = 0 }; ++ ++ power.d32 = dwc_read_reg32(core_if->pcgcctl); ++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32); ++ ++ power.b.stoppclk = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.pwrclmp = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ } ++#endif ++ /* Clear the Remote Wakeup Signalling */ ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, ++ dctl.d32, 0); ++ ++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) ++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); ++ } else { ++ /* ++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms ++ * so that OPT tests pass with all PHYs). ++ */ ++ union hprt0_data hprt0 = {.d32 = 0 }; ++ union pcgcctl_data pcgcctl = {.d32 = 0 }; ++ /* Restart the Phy Clock */ ++ pcgcctl.b.stoppclk = 1; ++ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0); ++ udelay(10); ++ ++ /* Now wait for 70 ms. */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ DWC_DEBUGPL(DBG_ANY, "Resume: HPRT0=%0x\n", hprt0.d32); ++ mdelay(70); ++ hprt0.b.prtres = 0; /* Resume */ ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ DWC_DEBUGPL(DBG_ANY, "Clear Resume: HPRT0=%0x\n", ++ dwc_read_reg32(core_if->host_if->hprt0)); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.wkupintr = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device has been disconnected from ++ * the root port. ++ */ ++int32_t dwc_otg_handle_disconnect_intr(struct dwc_otg_core_if *core_if) ++{ ++ union gintsts_data gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n", ++ (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"), ++ op_state_str(core_if)); ++ ++/** @todo Consolidate this if statement. */ ++#ifndef DWC_HOST_ONLY ++ if (core_if->op_state == B_HOST) { ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect(core_if); ++ pcd_start(core_if); ++ core_if->op_state = B_PERIPHERAL; ++ } else if (dwc_otg_is_device_mode(core_if)) { ++ union gotgctl_data gotgctl = {.d32 = 0 }; ++ gotgctl.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gotgctl); ++ if (gotgctl.b.hstsethnpen == 1) { ++ /* Do nothing, if HNP in process the OTG ++ * interrupt "Host Negotiation Detected" ++ * interrupt will do the mode switch. ++ */ ++ } else if (gotgctl.b.devhnpen == 0) { ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect(core_if); ++ pcd_start(core_if); ++ core_if->op_state = B_PERIPHERAL; ++ } else { ++ DWC_DEBUGPL(DBG_ANY, "!a_peripheral && !devhnpen\n"); ++ } ++ } else { ++ if (core_if->op_state == A_HOST) { ++ /* A-Cable still connected but device disconnected. */ ++ hcd_disconnect(core_if); ++ } ++ } ++#endif ++ ++ gintsts.d32 = 0; ++ gintsts.b.disconnect = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that SUSPEND state has been detected on ++ * the USB. ++ * ++ * For HNP the USB Suspend interrupt signals the change from ++ * "a_peripheral" to "a_host". ++ * ++ * When power management is enabled the core will be put in low power ++ * mode. ++ */ ++int32_t dwc_otg_handle_usb_suspend_intr(struct dwc_otg_core_if *core_if) ++{ ++ union dsts_data dsts; ++ union gintsts_data gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "USB SUSPEND\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ /* Check the Device status register to determine if the Suspend ++ * state is active. */ ++ dsts.d32 = ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32); ++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d " ++ "HWCFG4.power Optimize=%d\n", ++ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz); ++ ++#ifdef PARTIAL_POWER_DOWN ++/** @todo Add a module parameter for power management. */ ++ ++ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) { ++ union pcgcctl_data_t power = {.d32 = 0 }; ++ DWC_DEBUGPL(DBG_CIL, "suspend\n"); ++ ++ power.b.pwrclmp = 1; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 1; ++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32); ++ ++ power.b.stoppclk = 1; ++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32); ++ ++ } else { ++ DWC_DEBUGPL(DBG_ANY, "disconnect?\n"); ++ } ++#endif ++ /* PCD callback for suspend. */ ++ pcd_suspend(core_if); ++ } else { ++ if (core_if->op_state == A_PERIPHERAL) { ++ DWC_DEBUGPL(DBG_ANY, "a_peripheral->a_host\n"); ++ /* Clear the a_peripheral flag, back to a_host. */ ++ pcd_stop(core_if); ++ hcd_start(core_if); ++ core_if->op_state = A_HOST; ++ } ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.usbsuspend = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_common_intr(struct dwc_otg_core_if *core_if) ++{ ++ union gintsts_data gintsts; ++ union gintmsk_data gintmsk; ++ union gintmsk_data gintmsk_common = {.d32 = 0 }; ++ gintmsk_common.b.wkupintr = 1; ++ gintmsk_common.b.sessreqintr = 1; ++ gintmsk_common.b.conidstschng = 1; ++ gintmsk_common.b.otgintr = 1; ++ gintmsk_common.b.modemismatch = 1; ++ gintmsk_common.b.disconnect = 1; ++ gintmsk_common.b.usbsuspend = 1; ++ /* ++ * @todo: The port interrupt occurs while in device ++ * mode. Added code to CIL to clear the interrupt for now! ++ */ ++ gintmsk_common.b.portintr = 1; ++ ++ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts); ++ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk); ++#ifdef DEBUG ++ /* if any common interrupts set */ ++ if (gintsts.d32 & gintmsk_common.d32) { ++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n", ++ gintsts.d32, gintmsk.d32); ++ } ++#endif ++ ++ return (gintsts.d32 & gintmsk.d32) & gintmsk_common.d32; ++ ++} ++ ++/** ++ * Common interrupt handler. ++ * ++ * The common interrupts are those that occur in both Host and Device mode. ++ * This handler handles the following interrupts: ++ * - Mode Mismatch Interrupt ++ * - Disconnect Interrupt ++ * - OTG Interrupt ++ * - Connector ID Status Change Interrupt ++ * - Session Request Interrupt. ++ * - Resume / Remote Wakeup Detected Interrupt. ++ * ++ */ ++extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if) ++{ ++ int retval = 0; ++ union gintsts_data gintsts; ++ ++ gintsts.d32 = dwc_otg_read_common_intr(core_if); ++ ++ if (gintsts.b.modemismatch) ++ retval |= dwc_otg_handle_mode_mismatch_intr(core_if); ++ if (gintsts.b.otgintr) ++ retval |= dwc_otg_handle_otg_intr(core_if); ++ if (gintsts.b.conidstschng) ++ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if); ++ if (gintsts.b.disconnect) ++ retval |= dwc_otg_handle_disconnect_intr(core_if); ++ if (gintsts.b.sessreqintr) ++ retval |= dwc_otg_handle_session_req_intr(core_if); ++ if (gintsts.b.wkupintr) ++ retval |= dwc_otg_handle_wakeup_detected_intr(core_if); ++ if (gintsts.b.usbsuspend) ++ retval |= dwc_otg_handle_usb_suspend_intr(core_if); ++ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) { ++ /* The port interrupt occurs while in device mode with HPRT0 ++ * Port Enable/Disable. ++ */ ++ gintsts.d32 = 0; ++ gintsts.b.portintr = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, ++ gintsts.d32); ++ retval |= 1; ++ ++ } ++ return retval; ++} +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_driver.h b/drivers/usb/host/dwc_otg/dwc_otg_driver.h +new file mode 100644 +index 0000000..1cc116d +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_driver.h +@@ -0,0 +1,63 @@ ++/* ========================================================================== ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#ifndef __DWC_OTG_DRIVER_H__ ++#define __DWC_OTG_DRIVER_H__ ++ ++#include "dwc_otg_cil.h" ++ ++/* Type declarations */ ++struct dwc_otg_pcd; ++struct dwc_otg_hcd; ++ ++/** ++ * This structure is a wrapper that encapsulates the driver components used to ++ * manage a single DWC_otg controller. ++ */ ++struct dwc_otg_device { ++ /** Base address returned from ioremap() */ ++ void *base; ++ ++ /** Pointer to the core interface structure. */ ++ struct dwc_otg_core_if *core_if; ++ ++ /** Register offset for Diagnostic API.*/ ++ uint32_t reg_offset; ++ ++ /** Pointer to the PCD structure. */ ++ struct dwc_otg_pcd *pcd; ++ ++ /** Pointer to the HCD structure. */ ++ struct dwc_otg_hcd *hcd; ++ ++ /** Flag to indicate whether the common IRQ handler is installed. */ ++ uint8_t common_irq_installed; ++ ++}; ++ ++#endif +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c +new file mode 100644 +index 0000000..a4392f5 +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c +@@ -0,0 +1,2878 @@ ++/* ========================================================================== ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * ++ * This file contains the implementation of the HCD. In Linux, the HCD ++ * implements the hc_driver API. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++#include <linux/dma-mapping.h> ++#include <linux/workqueue.h> ++#include <linux/platform_device.h> ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++static const char dwc_otg_hcd_name[] = "dwc_otg_hcd"; ++ ++static const struct hc_driver dwc_otg_hc_driver = { ++ ++ .description = dwc_otg_hcd_name, ++ .product_desc = "DWC OTG Controller", ++ .hcd_priv_size = sizeof(struct dwc_otg_hcd), ++ ++ .irq = dwc_otg_hcd_irq, ++ ++ .flags = HCD_MEMORY | HCD_USB2, ++ ++ .start = dwc_otg_hcd_start, ++ .stop = dwc_otg_hcd_stop, ++ ++ .urb_enqueue = dwc_otg_hcd_urb_enqueue, ++ .urb_dequeue = dwc_otg_hcd_urb_dequeue, ++ .endpoint_disable = dwc_otg_hcd_endpoint_disable, ++ ++ .get_frame_number = dwc_otg_hcd_get_frame_number, ++ ++ .hub_status_data = dwc_otg_hcd_hub_status_data, ++ .hub_control = dwc_otg_hcd_hub_control, ++}; ++ ++/** ++ * Work queue function for starting the HCD when A-Cable is connected. ++ * The dwc_otg_hcd_start() must be called in a process context. ++ */ ++static void hcd_start_func(struct work_struct *work) ++{ ++ void *_vp = ++ (void *)(atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)_vp; ++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd); ++ if (usb_hcd) ++ dwc_otg_hcd_start(usb_hcd); ++} ++ ++/** ++ * HCD Callback function for starting the HCD when A-Cable is ++ * connected. ++ * ++ * @_p: void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_start_cb(void *_p) ++{ ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); ++ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if; ++ union hprt0_data hprt0; ++ ++ if (core_if->op_state == B_HOST) { ++ /* ++ * Reset the port. During a HNP mode switch the reset ++ * needs to occur within 1ms and have a duration of at ++ * least 50ms. ++ */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ((struct usb_hcd *)_p)->self.is_b_host = 1; ++ } else { ++ ((struct usb_hcd *)_p)->self.is_b_host = 0; ++ } ++ ++ /* Need to start the HCD in a non-interrupt context. */ ++ INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func); ++ atomic_long_set(&dwc_otg_hcd->start_work.data, (long)_p); ++ schedule_work(&dwc_otg_hcd->start_work); ++ ++ return 1; ++} ++ ++/** ++ * HCD Callback function for stopping the HCD. ++ * ++ * @_p: void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_stop_cb(void *_p) ++{ ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)_p; ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); ++ dwc_otg_hcd_stop(usb_hcd); ++ return 1; ++} ++ ++static void del_xfer_timers(struct dwc_otg_hcd *hcd) ++{ ++#ifdef DEBUG ++ int i; ++ int num_channels = hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) ++ del_timer(&hcd->core_if->hc_xfer_timer[i]); ++#endif ++} ++ ++static void del_timers(struct dwc_otg_hcd *hcd) ++{ ++ del_xfer_timers(hcd); ++ del_timer(&hcd->conn_timer); ++} ++ ++/** ++ * Processes all the URBs in a single list of QHs. Completes them with ++ * -ETIMEDOUT and frees the QTD. ++ */ ++static void kill_urbs_in_qh_list(struct dwc_otg_hcd *hcd, ++ struct list_head *_qh_list) ++{ ++ struct dwc_otg_qh *qh; ++ struct dwc_otg_qtd *qtd; ++ struct dwc_otg_qtd *qtd_next; ++ ++ list_for_each_entry(qh, _qh_list, qh_list_entry) { ++ list_for_each_entry_safe(qtd, qtd_next, &qh->qtd_list, ++ qtd_list_entry) { ++ if (qtd->urb != NULL) { ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, ++ -ETIMEDOUT); ++ qtd->urb = NULL; ++ } ++ dwc_otg_hcd_qtd_remove_and_free(qtd); ++ } ++ } ++} ++ ++/** ++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic ++ * and periodic schedules. The QTD associated with each URB is removed from ++ * the schedule and freed. This function may be called when a disconnect is ++ * detected or when the HCD is being stopped. ++ */ ++static void kill_all_urbs(struct dwc_otg_hcd *hcd) ++{ ++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive); ++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @_p: void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_disconnect_cb(void *_p) ++{ ++ union gintsts_data intr; ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); ++ ++ /* ++ * Set status flags for the hub driver. ++ */ ++ dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ dwc_otg_hcd->flags.b.port_connect_status = 0; ++ ++ /* ++ * Shutdown any transfers in process by clearing the Tx FIFO Empty ++ * interrupt mask and status bits and disabling subsequent host ++ * channel interrupts. ++ */ ++ intr.d32 = 0; ++ intr.b.nptxfempty = 1; ++ intr.b.ptxfempty = 1; ++ intr.b.hcintr = 1; ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, ++ intr.d32, 0); ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, ++ intr.d32, 0); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* ++ * Turn off the vbus power only if the core has transitioned to device ++ * mode. If still in host mode, need to keep power on to detect a ++ * reconnection. ++ */ ++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) { ++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) { ++ union hprt0_data hprt0 = {.d32 = 0 }; ++ DWC_PRINT("Disconnect: PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, ++ hprt0.d32); ++ } ++ ++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); ++ } ++ ++ /* Respond with an error status to all URBs in the schedule. */ ++ kill_all_urbs(dwc_otg_hcd); ++ ++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) { ++ /* Clean up any host channels that were in use. */ ++ int num_channels; ++ int i; ++ struct dwc_hc *channel; ++ struct dwc_otg_hc_regs *hc_regs; ++ union hcchar_data hcchar; ++ ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ ++ if (!dwc_otg_hcd->core_if->dma_enable) { ++ /* Flush out any channel requests in slave mode. */ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = ++ dwc_otg_hcd->core_if->host_if-> ++ hc_regs[i]; ++ hcchar.d32 = ++ dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs-> ++ hcchar, ++ hcchar.d32); ++ } ++ } ++ } ++ } ++ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = ++ dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ /* Halt the channel. */ ++ hcchar.b.chdis = 1; ++ dwc_write_reg32(&hc_regs->hcchar, ++ hcchar.d32); ++ } ++ ++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, ++ channel); ++ list_add_tail(&channel->hc_list_entry, ++ &dwc_otg_hcd->free_hc_list); ++ } ++ } ++ } ++ ++ /* A disconnect will end the session so the B-Device is no ++ * longer a B-host. */ ++ ((struct usb_hcd *)_p)->self.is_b_host = 0; ++ return 1; ++} ++ ++/** ++ * Connection timeout function. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. ++ */ ++void dwc_otg_hcd_connect_timeout(unsigned long _ptr) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr); ++ DWC_PRINT("Connect Timeout\n"); ++ DWC_ERROR("Device Not Connected/Responding\n"); ++} ++ ++/** ++ * Start the connection timer. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. The ++ * timer is deleted if a port connect interrupt occurs before the ++ * timer expires. ++ */ ++static void dwc_otg_hcd_start_connect_timer(struct dwc_otg_hcd *hcd) ++{ ++ init_timer(&hcd->conn_timer); ++ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout; ++ hcd->conn_timer.data = (unsigned long)0; ++ hcd->conn_timer.expires = jiffies + (HZ * 10); ++ add_timer(&hcd->conn_timer); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @_p: void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_session_start_cb(void *_p) ++{ ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); ++ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd); ++ return 1; ++} ++ ++/** ++ * HCD Callback structure for handling mode switching. ++ */ ++static struct dwc_otg_cil_callbacks hcd_cil_callbacks = { ++ .start = dwc_otg_hcd_start_cb, ++ .stop = dwc_otg_hcd_stop_cb, ++ .disconnect = dwc_otg_hcd_disconnect_cb, ++ .session_start = dwc_otg_hcd_session_start_cb, ++ .p = 0, ++}; ++ ++/** ++ * Reset tasklet function ++ */ ++static void reset_tasklet_func(unsigned long data) ++{ ++ struct dwc_otg_hcd *dwc_otg_hcd = (struct dwc_otg_hcd *)data; ++ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if; ++ union hprt0_data hprt0; ++ ++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n"); ++ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay(60); ++ ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ dwc_otg_hcd->flags.b.port_reset_change = 1; ++ ++ return; ++} ++ ++static struct tasklet_struct reset_tasklet = { ++ .next = NULL, ++ .state = 0, ++ .count = ATOMIC_INIT(0), ++ .func = reset_tasklet_func, ++ .data = 0, ++}; ++ ++static enum hrtimer_restart delayed_enable(struct hrtimer *t) ++{ ++ struct dwc_otg_hcd *hcd = container_of(t, struct dwc_otg_hcd, ++ poll_rate_limit); ++ struct dwc_otg_core_global_regs *global_regs = ++ hcd->core_if->core_global_regs; ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ ++ return HRTIMER_NORESTART; ++} ++ ++/** ++ * Initializes the HCD. This function allocates memory for and initializes the ++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the ++ * USB bus with the core and calls the hc_driver->start() function. It returns ++ * a negative error on failure. ++ */ ++int __devinit dwc_otg_hcd_init(struct device *dev) ++{ ++ struct usb_hcd *hcd = NULL; ++ struct dwc_otg_hcd *dwc_otg_hcd = NULL; ++ struct dwc_otg_device *otg_dev = dev->platform_data; ++ ++ int num_channels; ++ int i; ++ struct dwc_hc *channel; ++ ++ int retval = 0; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n"); ++ ++ /* Set device flags indicating whether the HCD supports DMA. */ ++ if (otg_dev->core_if->dma_enable) { ++ DWC_PRINT("Using DMA mode\n"); ++ dev->coherent_dma_mask = ~0; ++ dev->dma_mask = &dev->coherent_dma_mask; ++ } else { ++ DWC_PRINT("Using Slave mode\n"); ++ dev->coherent_dma_mask = 0; ++ dev->dma_mask = NULL; ++ } ++ ++ /* ++ * Allocate memory for the base HCD plus the DWC OTG HCD. ++ * Initialize the base HCD. ++ */ ++ hcd = usb_create_hcd(&dwc_otg_hc_driver, dev, dev_name(dev)); ++ if (hcd == NULL) { ++ retval = -ENOMEM; ++ goto error1; ++ } ++ hcd->regs = otg_dev->base; ++ hcd->self.otg_port = 1; ++ ++ /* Integrate TT in root hub, by default this is disbled. */ ++ hcd->has_tt = 1; ++ ++ /* Initialize the DWC OTG HCD. */ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ spin_lock_init(&dwc_otg_hcd->global_lock); ++ ++ dwc_otg_hcd->core_if = otg_dev->core_if; ++ otg_dev->hcd = dwc_otg_hcd; ++ ++ /* Register the HCD CIL Callbacks */ ++ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, ++ &hcd_cil_callbacks, hcd); ++ ++ /* Initialize the non-periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active); ++ ++ /* Initialize the periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued); ++ ++ /* ++ * Create a host channel descriptor for each host channel implemented ++ * in the controller. Initialize the channel descriptor array. ++ */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list); ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ channel = kmalloc(sizeof(struct dwc_hc), GFP_KERNEL); ++ if (channel == NULL) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: host channel allocation failed\n", ++ __func__); ++ goto error2; ++ } ++ memset(channel, 0, sizeof(struct dwc_hc)); ++ channel->hc_num = i; ++ dwc_otg_hcd->hc_ptr_array[i] = channel; ++#ifdef DEBUG ++ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]); ++#endif ++ ++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, ++ channel); ++ } ++ ++ /* Initialize the Connection timeout timer. */ ++ init_timer(&dwc_otg_hcd->conn_timer); ++ ++ /* Initialize reset tasklet. */ ++ reset_tasklet.data = (unsigned long)dwc_otg_hcd; ++ dwc_otg_hcd->reset_tasklet = &reset_tasklet; ++ ++ hrtimer_init(&dwc_otg_hcd->poll_rate_limit, CLOCK_MONOTONIC, ++ HRTIMER_MODE_REL); ++ dwc_otg_hcd->poll_rate_limit.function = delayed_enable; ++ ++ /* ++ * Finish generic HCD initialization and start the HCD. This function ++ * allocates the DMA buffer pool, registers the USB bus, requests the ++ * IRQ line, and calls dwc_otg_hcd_start method. ++ */ ++ retval = ++ usb_add_hcd(hcd, platform_get_irq(to_platform_device(dev), 0), ++ IRQF_SHARED); ++ if (retval < 0) ++ goto error2; ++ ++ /* ++ * Allocate space for storing data on status transactions. Normally no ++ * data is sent, but this space acts as a bit bucket. This must be ++ * done after usb_add_hcd since that function allocates the DMA buffer ++ * pool. ++ */ ++ if (otg_dev->core_if->dma_enable) { ++ dwc_otg_hcd->status_buf = ++ dma_alloc_coherent(dev, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ &dwc_otg_hcd->status_buf_dma, ++ GFP_KERNEL | GFP_DMA); ++ } else { ++ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE, ++ GFP_KERNEL); ++ } ++ if (dwc_otg_hcd->status_buf == NULL) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: status_buf allocation failed\n", __func__); ++ goto error3; ++ } ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n", ++ hcd->self.busnum); ++ ++ return 0; ++ ++ /* Error conditions */ ++error3: ++ usb_remove_hcd(hcd); ++error2: ++ dwc_otg_hcd_free(hcd); ++ usb_put_hcd(hcd); ++error1: ++ return retval; ++} ++ ++/** ++ * Removes the HCD. ++ * Frees memory and resources associated with the HCD and deregisters the bus. ++ */ ++void dwc_otg_hcd_remove(struct device *dev) ++{ ++ struct dwc_otg_device *otg_dev = dev->platform_data; ++ struct dwc_otg_hcd *dwc_otg_hcd = otg_dev->hcd; ++ struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd); ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n"); ++ ++ /* Turn off all interrupts */ ++ dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0); ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, ++ 0); ++ ++ usb_remove_hcd(hcd); ++ dwc_otg_hcd_free(hcd); ++ usb_put_hcd(hcd); ++ ++ return; ++} ++ ++/* ========================================================================= ++ * Linux HC Driver Functions ++ * ========================================================================= */ ++ ++/** ++ * Initializes dynamic portions of the DWC_otg HCD state. ++ */ ++static void hcd_reinit(struct dwc_otg_hcd *hcd) ++{ ++ struct list_head *item; ++ int num_channels; ++ int i; ++ struct dwc_hc *channel; ++ ++ hcd->flags.d32 = 0; ++ ++ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active; ++ hcd->non_periodic_channels = 0; ++ hcd->periodic_channels = 0; ++ ++ /* ++ * Put all channels in the free channel list and clean up channel ++ * states. ++ */ ++ item = hcd->free_hc_list.next; ++ while (item != &hcd->free_hc_list) { ++ list_del(item); ++ item = hcd->free_hc_list.next; ++ } ++ num_channels = hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ channel = hcd->hc_ptr_array[i]; ++ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list); ++ dwc_otg_hc_cleanup(hcd->core_if, channel); ++ } ++ ++ /* Initialize the DWC core for host mode operation. */ ++ dwc_otg_core_host_init(hcd->core_if); ++} ++ ++/** Initializes the DWC_otg controller and its root hub and prepares it for host ++ * mode operation. Activates the root port. Returns 0 on success and a negative ++ * error code on failure. */ ++int dwc_otg_hcd_start(struct usb_hcd *hcd) ++{ ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if; ++ unsigned long flags; ++ ++ struct usb_bus *bus; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n"); ++ ++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); ++ ++ bus = hcd_to_bus(hcd); ++ ++ /* Initialize the bus state. If the core is in Device Mode ++ * HALT the USB bus and return. */ ++ if (dwc_otg_is_device_mode(core_if)) { ++ hcd->state = HC_STATE_HALT; ++ goto out; ++ } ++ hcd->state = HC_STATE_RUNNING; ++ ++ hcd_reinit(dwc_otg_hcd); ++out: ++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); ++ ++ return 0; ++} ++ ++static void qh_list_free(struct dwc_otg_hcd *hcd, struct list_head *_qh_list) ++{ ++ struct list_head *item; ++ struct dwc_otg_qh *qh; ++ ++ if (_qh_list->next == NULL) { ++ /* The list hasn't been initialized yet. */ ++ return; ++ } ++ ++ /* Ensure there are no QTDs or URBs left. */ ++ kill_urbs_in_qh_list(hcd, _qh_list); ++ ++ for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) { ++ qh = list_entry(item, struct dwc_otg_qh, qh_list_entry); ++ dwc_otg_hcd_qh_remove_and_free(hcd, qh); ++ } ++} ++ ++/** ++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are ++ * stopped. ++ */ ++void dwc_otg_hcd_stop(struct usb_hcd *hcd) ++{ ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ union hprt0_data hprt0 = {.d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n"); ++ ++ /* Turn off all host-specific interrupts. */ ++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); ++ ++ /* ++ * The root hub should be disconnected before this function is called. ++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) ++ * and the QH lists (via ..._hcd_endpoint_disable). ++ */ ++ ++ /* Turn off the vbus power */ ++ DWC_PRINT("PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++ ++ return; ++} ++ ++/** Returns the current frame number. */ ++int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd) ++{ ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ union hfnum_data hfnum; ++ ++ hfnum.d32 = ++ dwc_read_reg32(&dwc_otg_hcd->core_if->host_if->host_global_regs-> ++ hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", ++ hfnum.b.frnum); ++#endif ++ return hfnum.b.frnum; ++} ++ ++/** ++ * Frees secondary storage associated with the dwc_otg_hcd structure contained ++ * in the struct usb_hcd field. ++ */ ++void dwc_otg_hcd_free(struct usb_hcd *hcd) ++{ ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ int i; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n"); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* Free memory for QH/QTD lists */ ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued); ++ ++ /* Free memory for the host channels. */ ++ for (i = 0; i < MAX_EPS_CHANNELS; i++) { ++ struct dwc_hc *hc = dwc_otg_hcd->hc_ptr_array[i]; ++ if (hc != NULL) { ++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", ++ i, hc); ++ kfree(hc); ++ } ++ } ++ ++ if (dwc_otg_hcd->core_if->dma_enable) { ++ if (dwc_otg_hcd->status_buf_dma) { ++ dma_free_coherent(hcd->self.controller, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ dwc_otg_hcd->status_buf, ++ dwc_otg_hcd->status_buf_dma); ++ } ++ } else if (dwc_otg_hcd->status_buf != NULL) { ++ kfree(dwc_otg_hcd->status_buf); ++ } ++ ++ return; ++} ++ ++#ifdef DEBUG ++static void dump_urb_info(struct urb *urb, char *_fn_name) ++{ ++ DWC_PRINT("%s, urb %p\n", _fn_name, urb); ++ DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe)); ++ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), ++ (usb_pipein(urb->pipe) ? "IN" : "OUT")); ++ DWC_PRINT(" Endpoint type: %s\n", ++ ({ ++ char *pipetype; ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ pipetype = "CONTROL"; ++ break; ++ case PIPE_BULK: ++ pipetype = "BULK"; ++ break; ++ case PIPE_INTERRUPT: ++ pipetype = "INTERRUPT"; ++ break; ++ case PIPE_ISOCHRONOUS: ++ pipetype = "ISOCHRONOUS"; ++ break; ++ default: ++ pipetype = "UNKNOWN"; ++ break; ++ } ++ pipetype; ++ })) ; ++ DWC_PRINT(" Speed: %s\n", ++ ({ ++ char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_HIGH: ++ speed = "HIGH"; ++ break; ++ case USB_SPEED_FULL: ++ speed = "FULL"; ++ break; ++ case USB_SPEED_LOW: ++ speed = "LOW"; ++ break; ++ default: ++ speed = "UNKNOWN"; ++ break; ++ } ++ speed; ++ })); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, ++ usb_pipeout(urb->pipe))); ++ DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length); ++ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n", ++ urb->transfer_buffer, (void *)urb->transfer_dma); ++ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n", ++ urb->setup_packet, (void *)urb->setup_dma); ++ DWC_PRINT(" Interval: %d\n", urb->interval); ++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d:\n", i); ++ DWC_PRINT(" offset: %d, length %d\n", ++ urb->iso_frame_desc[i].offset, ++ urb->iso_frame_desc[i].length); ++ } ++ } ++} ++ ++static void dump_channel_info(struct dwc_otg_hcd *hcd, struct dwc_otg_qh * qh) ++{ ++ if (qh->channel != NULL) { ++ struct dwc_hc *hc = qh->channel; ++ struct list_head *item; ++ struct dwc_otg_qh *qh_item; ++ int num_channels = hcd->core_if->core_params->host_channels; ++ int i; ++ ++ struct dwc_otg_hc_regs *hc_regs; ++ union hcchar_data hcchar; ++ union hcsplt_data hcsplt; ++ union hctsiz_data hctsiz; ++ uint32_t hcdma; ++ ++ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&hc_regs->hcdma); ++ ++ DWC_PRINT(" Assigned to channel %p:\n", hc); ++ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, ++ hcsplt.d32); ++ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, ++ hcdma); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ DWC_PRINT(" NP inactive sched:\n"); ++ list_for_each(item, &hcd->non_periodic_sched_inactive) { ++ qh_item = list_entry(item, struct dwc_otg_qh, ++ qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } ++ DWC_PRINT(" NP active sched:\n"); ++ list_for_each(item, &hcd->non_periodic_sched_active) { ++ qh_item = list_entry(item, struct dwc_otg_qh, ++ qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } ++ DWC_PRINT(" Channels: \n"); ++ for (i = 0; i < num_channels; i++) { ++ struct dwc_hc *hc = hcd->hc_ptr_array[i]; ++ DWC_PRINT(" %2d: %p\n", i, hc); ++ } ++ } ++} ++#endif ++ ++/* Starts processing a USB transfer request specified by a USB Request Block ++ * (URB). mem_flags indicates the type of memory allocation to use while ++ * processing this URB. */ ++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, ++ struct urb *urb, unsigned _mem_flags) ++{ ++ unsigned long flags; ++ int retval = 0; ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ struct dwc_otg_qtd *qtd; ++ ++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); ++ ++ /* ++ * Make sure the start of frame interrupt is enabled now that ++ * we know we should have queued data. The SOF interrupt ++ * handler automatically disables itself when idle to reduce ++ * the number of interrupts. See dwc_otg_hcd_handle_sof_intr() ++ * for the disable ++ */ ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0, ++ DWC_SOF_INTR_MASK); ++ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) ++ dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue"); ++#endif ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* No longer connected. */ ++ retval = -ENODEV; ++ goto out; ++ } ++ ++ qtd = dwc_otg_hcd_qtd_create(urb); ++ if (qtd == NULL) { ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n"); ++ retval = -ENOMEM; ++ goto out; ++ } ++ ++ retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd); ++ if (retval < 0) { ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. " ++ "Error status %d\n", retval); ++ dwc_otg_hcd_qtd_free(qtd); ++ } ++out: ++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); ++ ++ return retval; ++} ++ ++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate ++ * success. */ ++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) ++{ ++ unsigned long flags; ++ struct dwc_otg_hcd *dwc_otg_hcd; ++ struct dwc_otg_qtd *urb_qtd; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n"); ++ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); ++ ++ urb_qtd = urb->hcpriv; ++ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue"); ++ if (urb_qtd == urb_qtd->qh->qtd_in_process) ++ dump_channel_info(dwc_otg_hcd, urb_qtd->qh); ++ } ++#endif ++ ++ if (urb_qtd == urb_qtd->qh->qtd_in_process) { ++ /* The QTD is in process (it has been assigned to a channel). */ ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * If still connected (i.e. in host mode), halt the ++ * channel so it can be used for other transfers. If ++ * no longer connected, the host registers can't be ++ * written to halt the channel since the core is in ++ * device mode. ++ */ ++ dwc_otg_hc_halt(dwc_otg_hcd->core_if, ++ urb_qtd->qh->channel, ++ DWC_OTG_HC_XFER_URB_DEQUEUE); ++ } ++ } ++ ++ /* ++ * Free the QTD and clean up the associated QH. Leave the QH in the ++ * schedule if it has any remaining QTDs. ++ */ ++ dwc_otg_hcd_qtd_remove_and_free(urb_qtd); ++ if (urb_qtd == urb_qtd->qh->qtd_in_process) { ++ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, urb_qtd->qh, 0); ++ urb_qtd->qh->channel = NULL; ++ urb_qtd->qh->qtd_in_process = NULL; ++ } else if (list_empty(&urb_qtd->qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(dwc_otg_hcd, urb_qtd->qh); ++ } ++ ++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); ++ ++ urb->hcpriv = NULL; ++ ++ /* Higher layer software sets URB status. */ ++ usb_hcd_giveback_urb(hcd, urb, status); ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("Called usb_hcd_giveback_urb()\n"); ++ DWC_PRINT(" urb->status = %d\n", urb->status); ++ } ++ ++ return 0; ++} ++ ++/* Frees resources in the DWC_otg controller related to a given endpoint. Also ++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint ++ * must already be dequeued. */ ++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, ++ struct usb_host_endpoint *_ep) ++{ ++ unsigned long flags; ++ struct dwc_otg_qh *qh; ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); ++ ++ DWC_DEBUGPL(DBG_HCD, ++ "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, " ++ "endpoint=%d\n", _ep->desc.bEndpointAddress, ++ dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress)); ++ ++ qh = _ep->hcpriv; ++ if (qh != NULL) { ++#if 1 ++ /* ++ * FIXME: Kludge to not crash on Octeon in SMP ++ * mode. Normally dwc_otg_hcd_qh_remove_and_free() is ++ * called even if the list isn't empty. This causes a ++ * crash on SMP, so we don't call it now. It works ++ * better, but probably does evil things I don't know ++ * about. ++ */ ++ /* Check that the QTD list is really empty */ ++ if (!list_empty(&qh->qtd_list)) { ++ pr_err("DWC OTG HCD EP DISABLE:" ++ " QTD List for this endpoint is not empty\n"); ++ } else ++#endif ++ { ++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh); ++ _ep->hcpriv = NULL; ++ } ++ } ++ ++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); ++ ++ return; ++} ++ ++/* Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if ++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid ++ * interrupt. ++ * ++ * This function is called by the USB core when an interrupt occurs */ ++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd) ++{ ++ irqreturn_t result; ++ unsigned long flags; ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); ++ ++ result = IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd)); ++ ++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); ++ ++ return result; ++} ++ ++/** Creates Status Change bitmap for the root hub and root port. The bitmap is ++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 ++ * is the status change indicator for the single root port. Returns 1 if either ++ * change indicator is 1, otherwise returns 0. */ ++int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *_buf) ++{ ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ _buf[0] = 0; ++ _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change || ++ dwc_otg_hcd->flags.b.port_reset_change || ++ dwc_otg_hcd->flags.b.port_enable_change || ++ dwc_otg_hcd->flags.b.port_suspend_change || ++ dwc_otg_hcd->flags.b.port_over_current_change) << 1; ++ ++#ifdef DEBUG ++ if (_buf[0]) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:" ++ " Root port status changed\n"); ++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n", ++ dwc_otg_hcd->flags.b.port_connect_status_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n", ++ dwc_otg_hcd->flags.b.port_reset_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n", ++ dwc_otg_hcd->flags.b.port_enable_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n", ++ dwc_otg_hcd->flags.b.port_suspend_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n", ++ dwc_otg_hcd->flags.b.port_over_current_change); ++ } ++#endif ++ return (_buf[0] != 0); ++} ++ ++#ifdef DWC_HS_ELECT_TST ++/* ++ * Quick and dirty hack to implement the HS Electrical Test ++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature. ++ * ++ * This code was copied from our userspace app "hset". It sends a ++ * Get Device Descriptor control sequence in two parts, first the ++ * Setup packet by itself, followed some time later by the In and ++ * Ack packets. Rather than trying to figure out how to add this ++ * functionality to the normal driver code, we just hijack the ++ * hardware, using these two function to drive the hardware ++ * directly. ++ */ ++ ++struct dwc_otg_core_global_regs *global_regs; ++struct dwc_otg_host_global_regs *hc_global_regs; ++struct dwc_otg_hc_regs *hc_regs; ++uint32_t *data_fifo; ++ ++static void do_setup(void) ++{ ++ union gintsts_data gintsts; ++ union hctsiz_data hctsiz; ++ union hcchar_data hcchar; ++ union haint_data haint; ++ union hcint_data hcint; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* ++ * Send Setup packet (Get Device Descriptor) ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ hcchar.b.chdis = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ /* Fill FIFO with Setup data for Get Device Descriptor */ ++ data_fifo = (uint32_t *) ((char *)global_regs + 0x1000); ++ dwc_write_reg32(data_fifo++, 0x01000680); ++ dwc_write_reg32(data_fifo++, 0x00080000); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++} ++ ++static void do_in_ack(void) ++{ ++ union gintsts_data gintsts; ++ union hctsiz_data hctsiz; ++ union hcchar_data hcchar; ++ union haint_data haint; ++ union hcint_data hcint; ++ union host_grxsts_data grxsts; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* ++ * Receive Control In packet ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 1; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer */ ++ if (grxsts.b.bcnt > 0) { ++ int i; ++ int word_count = (grxsts.b.bcnt + 3) / 4; ++ ++ data_fifo = (uint32_t *) ((char *)global_regs + 0x1000); ++ ++ for (i = 0; i < word_count; i++) ++ (void)dwc_read_reg32(data_fifo++); ++ } ++ break; ++ ++ default: ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ break; ++ ++ default: ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ mdelay(1); ++ ++ /* ++ * Send handshake packet ++ */ ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 0; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++} ++#endif /* DWC_HS_ELECT_TST */ ++ ++/* Handles hub class-specific requests.*/ ++int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, ++ u16 _typeReq, ++ u16 _wValue, u16 _wIndex, char *_buf, u16 _wLength) ++{ ++ int retval = 0; ++ unsigned long flags; ++ ++ struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ struct dwc_otg_core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if; ++ struct usb_hub_descriptor *desc; ++ union hprt0_data hprt0 = {.d32 = 0 }; ++ ++ uint32_t port_status; ++#ifdef DWC_HS_ELECT_TST ++ uint32_t t; ++ union gintmsk_data gintmsk; ++#endif ++ spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); ++ ++ switch (_typeReq) { ++ case ClearHubFeature: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearHubFeature 0x%x\n", _wValue); ++ switch (_wValue) { ++ case C_HUB_LOCAL_POWER: ++ case C_HUB_OVER_CURRENT: ++ /* Nothing required here */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "ClearHubFeature request %xh unknown\n", ++ _wValue); ++ } ++ break; ++ case ClearPortFeature: ++ if (!_wIndex || _wIndex > 1) ++ goto error; ++ ++ switch (_wValue) { ++ case USB_PORT_FEAT_ENABLE: ++ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtena = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ /* Clear Resume bit */ ++ mdelay(100); ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); ++ /* Port inidicator not supported */ ++ break; ++ case USB_PORT_FEAT_C_CONNECTION: ++ /* Clears drivers internal connect status change ++ * flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); ++ dwc_otg_hcd->flags.b.port_connect_status_change = 0; ++ break; ++ case USB_PORT_FEAT_C_RESET: ++ /* Clears the driver's internal Port Reset Change ++ * flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); ++ dwc_otg_hcd->flags.b.port_reset_change = 0; ++ break; ++ case USB_PORT_FEAT_C_ENABLE: ++ /* Clears the driver's internal Port ++ * Enable/Disable Change flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); ++ dwc_otg_hcd->flags.b.port_enable_change = 0; ++ break; ++ case USB_PORT_FEAT_C_SUSPEND: ++ /* Clears the driver's internal Port Suspend ++ * Change flag, which is set when resume signaling on ++ * the host port is complete */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); ++ dwc_otg_hcd->flags.b.port_suspend_change = 0; ++ break; ++ case USB_PORT_FEAT_C_OVER_CURRENT: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); ++ dwc_otg_hcd->flags.b.port_over_current_change = 0; ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "ClearPortFeature request %xh " ++ "unknown or unsupported\n", _wValue); ++ } ++ break; ++ case GetHubDescriptor: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubDescriptor\n"); ++ desc = (struct usb_hub_descriptor *)_buf; ++ desc->bDescLength = 9; ++ desc->bDescriptorType = 0x29; ++ desc->bNbrPorts = 1; ++ desc->wHubCharacteristics = 0x08; ++ desc->bPwrOn2PwrGood = 1; ++ desc->bHubContrCurrent = 0; ++ desc->bitmap[0] = 0; ++ desc->bitmap[1] = 0xff; ++ break; ++ case GetHubStatus: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubStatus\n"); ++ memset(_buf, 0, 4); ++ break; ++ case GetPortStatus: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetPortStatus\n"); ++ ++ if (!_wIndex || _wIndex > 1) ++ goto error; ++ ++ port_status = 0; ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status_change) ++ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); ++ ++ if (dwc_otg_hcd->flags.b.port_enable_change) ++ port_status |= (1 << USB_PORT_FEAT_C_ENABLE); ++ ++ if (dwc_otg_hcd->flags.b.port_suspend_change) ++ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND); ++ ++ if (dwc_otg_hcd->flags.b.port_reset_change) ++ port_status |= (1 << USB_PORT_FEAT_C_RESET); ++ ++ if (dwc_otg_hcd->flags.b.port_over_current_change) { ++ DWC_ERROR("Device Not Supported\n"); ++ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT); ++ } ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return 0's for the remainder of the port status ++ * since the port register can't be read if the core ++ * is in device mode. ++ */ ++ *((__le32 *) _buf) = cpu_to_le32(port_status); ++ break; ++ } ++ ++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); ++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32); ++ ++ if (hprt0.b.prtconnsts) ++ port_status |= (1 << USB_PORT_FEAT_CONNECTION); ++ ++ if (hprt0.b.prtena) ++ port_status |= (1 << USB_PORT_FEAT_ENABLE); ++ ++ if (hprt0.b.prtsusp) ++ port_status |= (1 << USB_PORT_FEAT_SUSPEND); ++ ++ if (hprt0.b.prtovrcurract) ++ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); ++ ++ if (hprt0.b.prtrst) ++ port_status |= (1 << USB_PORT_FEAT_RESET); ++ ++ if (hprt0.b.prtpwr) ++ port_status |= (1 << USB_PORT_FEAT_POWER); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) ++ port_status |= (1 << USB_PORT_FEAT_HIGHSPEED); ++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ++ port_status |= (1 << USB_PORT_FEAT_LOWSPEED); ++ ++ if (hprt0.b.prttstctl) ++ port_status |= (1 << USB_PORT_FEAT_TEST); ++ ++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ ++ ++ *((__le32 *) _buf) = cpu_to_le32(port_status); ++ ++ break; ++ case SetHubFeature: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetHubFeature\n"); ++ /* No HUB features supported */ ++ break; ++ case SetPortFeature: ++ if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1)) ++ goto error; ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return without doing anything since the port ++ * register can't be written if the core is in device ++ * mode. ++ */ ++ break; ++ } ++ ++ switch (_wValue) { ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); ++ if (hcd->self.otg_port == _wIndex && ++ hcd->self.b_hnp_enable) { ++ union gotgctl_data gotgctl = {.d32 = 0 }; ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32(&core_if->core_global_regs-> ++ gotgctl, 0, gotgctl.d32); ++ core_if->op_state = A_SUSPEND; ++ } ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ /* Suspend the Phy Clock */ ++ { ++ union pcgcctl_data pcgcctl = {.d32 = 0 }; ++ pcgcctl.b.stoppclk = 1; ++ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32); ++ } ++ ++ /* ++ * For HNP the bus must be suspended for at ++ * least 200ms. ++ */ ++ if (hcd->self.b_hnp_enable) ++ mdelay(200); ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_RESET: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_RESET\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ /* When B-Host the Port reset bit is set in ++ * the Start HCD Callback function, so that ++ * the reset is started within 1ms of the HNP ++ * success interrupt. */ ++ if (!hcd->self.is_b_host) { ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, ++ hprt0.d32); ++ } ++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ ++ mdelay(60); ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ ++#ifdef DWC_HS_ELECT_TST ++ case USB_PORT_FEAT_TEST: ++ t = (_wIndex >> 8); /* MSB wIndex USB */ ++ DWC_DEBUGPL(DBG_HCD, ++ "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t); ++ warn("USB_PORT_FEAT_TEST %d\n", t); ++ if (t < 6) { ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prttstctl = t; ++ dwc_write_reg32(core_if->host_if->hprt0, ++ hprt0.d32); ++ } else { ++ /* Setup global vars with reg ++ * addresses (quick and dirty hack, ++ * should be cleaned up) ++ */ ++ global_regs = core_if->core_global_regs; ++ hc_global_regs = ++ core_if->host_if->host_global_regs; ++ hc_regs = ++ (struct dwc_otg_hc_regs *) ((char *) ++ global_regs + ++ 0x500); ++ data_fifo = ++ (uint32_t *) ((char *)global_regs + ++ 0x1000); ++ ++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = ++ dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts ++ * while we muck with the ++ * hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, ++ 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive suspend on the root port */ ++ hprt0.d32 = ++ dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 1; ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, ++ hprt0.d32); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive resume on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 0; ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, ++ hprt0.d32); ++ mdelay(100); ++ ++ /* Clear the resume bit */ ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, ++ hprt0.d32); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, ++ gintmsk.d32); ++ } else if (t == 7) { ++ /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = ++ dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* ++ * Disable all interrupts ++ * while we muck with the ++ * hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, ++ 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* ++ * 15 second delay so nothing ++ * else happens for awhile. ++ */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, ++ gintmsk.d32); ++ } else if (t == 8) { ++ /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = ++ dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* ++ * Disable all interrupts ++ * while we muck with the ++ * hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, ++ 0); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Send the In and Ack packets */ ++ do_in_ack(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, ++ gintmsk.d32); ++ } ++ } ++ break; ++#endif /* DWC_HS_ELECT_TST */ ++ ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); ++ /* Not supported */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "SetPortFeature request %xh " ++ "unknown or unsupported\n", _wValue); ++ break; ++ } ++ break; ++ default: ++error: ++ retval = -EINVAL; ++ DWC_WARN("DWC OTG HCD - Unknown hub control request type or " ++ "invalid typeReq: %xh wIndex: %xh wValue: %xh\n", ++ _typeReq, _wIndex, _wValue); ++ break; ++ } ++ ++ spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); ++ ++ return retval; ++} ++ ++/** ++ * Assigns transactions from a QTD to a free host channel and initializes the ++ * host channel to perform the transactions. The host channel is removed from ++ * the free list. ++ * ++ * @hcd: The HCD state structure. ++ * @_qh: Transactions from the first QTD for this QH are selected and ++ * assigned to a free host channel. ++ */ ++static void assign_and_init_hc(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *_qh) ++{ ++ struct dwc_hc *hc; ++ struct dwc_otg_qtd *qtd; ++ struct urb *urb; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, _qh); ++ ++ hc = list_entry(hcd->free_hc_list.next, struct dwc_hc, hc_list_entry); ++ ++ /* Remove the host channel from the free list. */ ++ list_del_init(&hc->hc_list_entry); ++ ++ qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd, ++ qtd_list_entry); ++ urb = qtd->urb; ++ _qh->channel = hc; ++ _qh->qtd_in_process = qtd; ++ ++ /* ++ * Use usb_pipedevice to determine device address. This address is ++ * 0 before the SET_ADDRESS command and the correct address afterward. ++ */ ++ hc->dev_addr = usb_pipedevice(urb->pipe); ++ hc->ep_num = usb_pipeendpoint(urb->pipe); ++ ++ if (urb->dev->speed == USB_SPEED_LOW) ++ hc->speed = DWC_OTG_EP_SPEED_LOW; ++ else if (urb->dev->speed == USB_SPEED_FULL) ++ hc->speed = DWC_OTG_EP_SPEED_FULL; ++ else ++ hc->speed = DWC_OTG_EP_SPEED_HIGH; ++ ++ hc->max_packet = dwc_max_packet(_qh->maxp); ++ ++ hc->xfer_started = 0; ++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS; ++ hc->error_state = (qtd->error_count > 0); ++ hc->halt_on_queue = 0; ++ hc->halt_pending = 0; ++ hc->requests = 0; ++ ++ /* ++ * The following values may be modified in the transfer type section ++ * below. The xfer_len value may be reduced when the transfer is ++ * started to accommodate the max widths of the XferSize and PktCnt ++ * fields in the HCTSIZn register. ++ */ ++ hc->do_ping = _qh->ping_state; ++ hc->ep_is_in = (usb_pipein(urb->pipe) != 0); ++ hc->data_pid_start = _qh->data_toggle; ++ hc->multi_count = 1; ++ ++ if (hcd->core_if->dma_enable) { ++#ifdef CONFIG_CPU_CAVIUM_OCTEON ++ const uint64_t USBN_DMA0_INB_CHN0 = ++ CVMX_USBNX_DMA0_INB_CHN0(hcd->core_if->usb_num); ++#endif /* CONFIG_CPU_CAVIUM_OCTEON */ ++ hc->xfer_buff = ++ (uint8_t *) (unsigned long)urb->transfer_dma + ++ urb->actual_length; ++#ifdef CONFIG_CPU_CAVIUM_OCTEON ++ /* Octeon uses external DMA */ ++ wmb(); ++ cvmx_write_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8, ++ (unsigned long)hc->xfer_buff); ++ cvmx_read_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8); ++ DWC_DEBUGPL(DBG_HCDV, ++ "IN: hc->hc_num = %d, hc->xfer_buff = %p\n", ++ hc->hc_num, hc->xfer_buff); ++#endif /* CONFIG_CPU_CAVIUM_OCTEON */ ++ } else { ++ hc->xfer_buff = ++ (uint8_t *) urb->transfer_buffer + urb->actual_length; ++ } ++ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length; ++ hc->xfer_count = 0; ++ ++ /* ++ * Set the split attributes ++ */ ++ hc->do_split = 0; ++ if (_qh->do_split) { ++ hc->do_split = 1; ++ hc->xact_pos = qtd->isoc_split_pos; ++ hc->complete_split = qtd->complete_split; ++ hc->hub_addr = urb->dev->tt->hub->devnum; ++ hc->port_addr = urb->dev->ttport; ++ } ++ ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL; ++ switch (qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n"); ++ hc->do_ping = 0; ++ hc->ep_is_in = 0; ++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = ++ (uint8_t *) (unsigned long)urb->setup_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *) urb->setup_packet; ++ } ++ hc->xfer_len = 8; ++ break; ++ case DWC_OTG_CONTROL_DATA: ++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n"); ++ hc->data_pid_start = qtd->data_toggle; ++ break; ++ case DWC_OTG_CONTROL_STATUS: ++ /* ++ * Direction is opposite of data direction or IN if no ++ * data. ++ */ ++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n"); ++ if (urb->transfer_buffer_length == 0) { ++ hc->ep_is_in = 1; ++ } else { ++ hc->ep_is_in = ++ (usb_pipein(urb->pipe) != USB_DIR_IN); ++ } ++ if (hc->ep_is_in) ++ hc->do_ping = 0; ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ hc->xfer_len = 0; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = ++ (uint8_t *) (unsigned long)hcd-> ++ status_buf_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *) hcd->status_buf; ++ } ++ break; ++ } ++ break; ++ case PIPE_BULK: ++ hc->ep_type = DWC_OTG_EP_TYPE_BULK; ++ break; ++ case PIPE_INTERRUPT: ++ hc->ep_type = DWC_OTG_EP_TYPE_INTR; ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ struct usb_iso_packet_descriptor *frame_desc; ++ frame_desc = ++ &urb->iso_frame_desc[qtd->isoc_frame_index]; ++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = ++ (uint8_t *) (unsigned long)urb-> ++ transfer_dma; ++ } else { ++ hc->xfer_buff = ++ (uint8_t *) urb->transfer_buffer; ++ } ++ hc->xfer_buff += ++ frame_desc->offset + qtd->isoc_split_offset; ++ hc->xfer_len = ++ frame_desc->length - qtd->isoc_split_offset; ++ ++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) { ++ if (hc->xfer_len <= 188) { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ } else { ++ hc->xact_pos = ++ DWC_HCSPLIT_XACTPOS_BEGIN; ++ } ++ } ++ } ++ break; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This value may be modified when the transfer is started to ++ * reflect the actual transfer length. ++ */ ++ hc->multi_count = dwc_hb_mult(_qh->maxp); ++ } ++ ++ dwc_otg_hc_init(hcd->core_if, hc); ++ hc->qh = _qh; ++} ++ ++/** ++ * This function selects transactions from the HCD transfer schedule and ++ * assigns them to available host channels. It is called from HCD interrupt ++ * handler functions. ++ * ++ * @hcd: The HCD state structure. ++ * ++ * Returns The types of new transactions that were assigned to host channels. ++ */ ++enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct dwc_otg_hcd ++ *hcd) ++{ ++ struct list_head *qh_ptr; ++ struct dwc_otg_qh *qh; ++ int num_channels; ++ enum dwc_otg_transaction_type ret_val = DWC_OTG_TRANSACTION_NONE; ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n"); ++#endif ++ ++ /* Process entries in the periodic ready list. */ ++ qh_ptr = hcd->periodic_sched_ready.next; ++ while (qh_ptr != &hcd->periodic_sched_ready && ++ !list_empty(&hcd->free_hc_list)) { ++ ++ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry); ++ assign_and_init_hc(hcd, qh); ++ ++ /* ++ * Move the QH from the periodic ready schedule to the ++ * periodic assigned schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned); ++ ++ ret_val = DWC_OTG_TRANSACTION_PERIODIC; ++ } ++ ++ /* ++ * Process entries in the inactive portion of the non-periodic ++ * schedule. Some free host channels may not be used if they are ++ * reserved for periodic transfers. ++ */ ++ qh_ptr = hcd->non_periodic_sched_inactive.next; ++ num_channels = hcd->core_if->core_params->host_channels; ++ while (qh_ptr != &hcd->non_periodic_sched_inactive && ++ (hcd->non_periodic_channels < ++ num_channels - hcd->periodic_channels) && ++ !list_empty(&hcd->free_hc_list)) { ++ ++ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry); ++ assign_and_init_hc(hcd, qh); ++ ++ /* ++ * Move the QH from the non-periodic inactive schedule to the ++ * non-periodic active schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active); ++ ++ if (ret_val == DWC_OTG_TRANSACTION_NONE) ++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC; ++ else ++ ret_val = DWC_OTG_TRANSACTION_ALL; ++ ++ hcd->non_periodic_channels++; ++ } ++ ++ return ret_val; ++} ++ ++/** ++ * Attempts to queue a single transaction request for a host channel ++ * associated with either a periodic or non-periodic transfer. This function ++ * assumes that there is space available in the appropriate request queue. For ++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space ++ * is available in the appropriate Tx FIFO. ++ * ++ * @hcd: The HCD state structure. ++ * @_hc: Host channel descriptor associated with either a periodic or ++ * non-periodic transfer. ++ * @_fifo_dwords_avail: Number of DWORDs available in the periodic Tx ++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic ++ * transfers. ++ * ++ * Returns 1 if a request is queued and more requests may be needed to ++ * complete the transfer, 0 if no more requests are required for this ++ * transfer, -1 if there is insufficient space in the Tx FIFO. ++ */ ++static int queue_transaction(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *_hc, uint16_t _fifo_dwords_avail) ++{ ++ int retval; ++ ++ if (hcd->core_if->dma_enable) { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, _hc); ++ _hc->qh->ping_state = 0; ++ } ++ retval = 0; ++ } else if (_hc->halt_pending) { ++ /* Don't queue a request if the channel has been halted. */ ++ retval = 0; ++ } else if (_hc->halt_on_queue) { ++ dwc_otg_hc_halt(hcd->core_if, _hc, _hc->halt_status); ++ retval = 0; ++ } else if (_hc->do_ping) { ++ if (!_hc->xfer_started) ++ dwc_otg_hc_start_transfer(hcd->core_if, _hc); ++ retval = 0; ++ } else if (!_hc->ep_is_in || ++ _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ if ((_fifo_dwords_avail * 4) >= _hc->max_packet) { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, _hc); ++ retval = 1; ++ } else { ++ retval = ++ dwc_otg_hc_continue_transfer(hcd->core_if, ++ _hc); ++ } ++ } else { ++ retval = -1; ++ } ++ } else { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, _hc); ++ retval = 1; ++ } else { ++ retval = ++ dwc_otg_hc_continue_transfer(hcd->core_if, _hc); ++ } ++ } ++ ++ return retval; ++} ++ ++/** ++ * Processes active non-periodic channels and queues transactions for these ++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx ++ * FIFO Empty interrupt is enabled if there are more transactions to queue as ++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx ++ * FIFO Empty interrupt is disabled. ++ */ ++static void process_non_periodic_channels(struct dwc_otg_hcd *hcd) ++{ ++ union gnptxsts_data tx_status; ++ struct list_head *orig_qh_ptr; ++ struct dwc_otg_qh *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ int more_to_do = 0; ++ ++ struct dwc_otg_core_global_regs *global_regs = ++ hcd->core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, ++ " NP Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ /* ++ * Keep track of the starting point. Skip over the start-of-list ++ * entry. ++ */ ++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ ++ orig_qh_ptr = hcd->non_periodic_qh_ptr; ++ ++ /* ++ * Process once through the active list or until no more space is ++ * available in the request queue or the Tx FIFO. ++ */ ++ do { ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (!hcd->core_if->dma_enable ++ && tx_status.b.nptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(hcd->non_periodic_qh_ptr, struct dwc_otg_qh, ++ qh_list_entry); ++ status = ++ queue_transaction(hcd, qh->channel, ++ tx_status.b.nptxfspcavail); ++ ++ if (status > 0) { ++ more_to_do = 1; ++ } else if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* Advance to next QH, skipping start-of-list entry. */ ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ if (hcd->non_periodic_qh_ptr == ++ &hcd->non_periodic_sched_active) { ++ hcd->non_periodic_qh_ptr = ++ hcd->non_periodic_qh_ptr->next; ++ } ++ ++ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr); ++ ++ if (!hcd->core_if->dma_enable) { ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ intr_mask.b.nptxfempty = 1; ++ ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, ++ " NP Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, ++ " NP Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ if (no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the non-periodic ++ * Tx FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, ++ intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, ++ 0); ++ if (more_to_do) { ++ /* When not using DMA, many USB ++ * devices cause excessive loads on ++ * the serial bus simply because they ++ * continuously poll the device for ++ * status. Here we use the timer to ++ * rate limit how fast we can get the ++ * the NP TX fifo empty interrupt. We ++ * leave the interrupt disable until ++ * the timer fires and reenables it */ ++ ++ /* We'll rate limit the interrupt at ++ * 20000 per second. Making this ++ * faster improves USB performance but ++ * uses more CPU */ ++ hrtimer_start_range_ns(&hcd->poll_rate_limit, ++ ktime_set(0, 50000), ++ 5000, HRTIMER_MODE_REL); ++ } ++ } ++ } ++} ++ ++/** ++ * Processes periodic channels for the next frame and queues transactions for ++ * these channels to the DWC_otg controller. After queueing transactions, the ++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions ++ * to queue as Periodic Tx FIFO or request queue space becomes available. ++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. ++ */ ++static void process_periodic_channels(struct dwc_otg_hcd *hcd) ++{ ++ union hptxsts_data tx_status; ++ struct list_head *qh_ptr; ++ struct dwc_otg_qh *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ ++ struct dwc_otg_host_global_regs *host_regs; ++ host_regs = hcd->core_if->host_if->host_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, ++ " P Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ ++ qh_ptr = hcd->periodic_sched_assigned.next; ++ while (qh_ptr != &hcd->periodic_sched_assigned) { ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ if (tx_status.b.ptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry); ++ ++ /* ++ * Set a flag if we're queuing high-bandwidth in slave mode. ++ * The flag prevents any halts to get into the request queue in ++ * the middle of multiple high-bandwidth packets getting queued. ++ */ ++ if ((!hcd->core_if->dma_enable) && ++ (qh->channel->multi_count > 1)) { ++ hcd->core_if->queuing_high_bandwidth = 1; ++ } ++ ++ status = ++ queue_transaction(hcd, qh->channel, ++ tx_status.b.ptxfspcavail); ++ if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* ++ * In Slave mode, stay on the current transfer until there is ++ * nothing more to do or the high-bandwidth request count is ++ * reached. In DMA mode, only need to queue one request. The ++ * controller automatically handles multiple packets for ++ * high-bandwidth transfers. ++ */ ++ if (hcd->core_if->dma_enable || ++ (status == 0 || ++ qh->channel->requests == qh->channel->multi_count)) { ++ qh_ptr = qh_ptr->next; ++ /* ++ * Move the QH from the periodic assigned schedule to ++ * the periodic queued schedule. ++ */ ++ list_move(&qh->qh_list_entry, ++ &hcd->periodic_sched_queued); ++ ++ /* done queuing high bandwidth */ ++ hcd->core_if->queuing_high_bandwidth = 0; ++ } ++ } ++ ++ if (!hcd->core_if->dma_enable) { ++ struct dwc_otg_core_global_regs *global_regs; ++ union gintmsk_data intr_mask = {.d32 = 0 }; ++ ++ global_regs = hcd->core_if->core_global_regs; ++ intr_mask.b.ptxfempty = 1; ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, ++ " P Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, ++ " P Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ if (!(list_empty(&hcd->periodic_sched_assigned)) || ++ no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the periodic Tx ++ * FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, ++ intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, ++ 0); ++ } ++ } ++} ++ ++/** ++ * This function processes the currently active host channels and queues ++ * transactions for these channels to the DWC_otg controller. It is called ++ * from HCD interrupt handler functions. ++ * ++ * @hcd: The HCD state structure. ++ * @_tr_type: The type(s) of transactions to queue (non-periodic, ++ * periodic, or both). ++ */ ++void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd, ++ enum dwc_otg_transaction_type _tr_type) ++{ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n"); ++#endif ++ /* Process host channels associated with periodic transfers. */ ++ if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC || ++ _tr_type == DWC_OTG_TRANSACTION_ALL) && ++ !list_empty(&hcd->periodic_sched_assigned)) { ++ ++ process_periodic_channels(hcd); ++ } ++ ++ /* Process host channels associated with non-periodic transfers. */ ++ if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC || ++ _tr_type == DWC_OTG_TRANSACTION_ALL)) { ++ if (!list_empty(&hcd->non_periodic_sched_active)) { ++ process_non_periodic_channels(hcd); ++ } else { ++ /* ++ * Ensure NP Tx FIFO empty interrupt is disabled when ++ * there are no non-periodic transfers to process. ++ */ ++ union gintmsk_data gintmsk = {.d32 = 0 }; ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&hcd->core_if->core_global_regs-> ++ gintmsk, gintmsk.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Sets the final status of an URB and returns it to the device driver. Any ++ * required cleanup of the URB is performed. ++ */ ++void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb, ++ int status) ++{ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n", ++ __func__, urb, usb_pipedevice(urb->pipe), ++ usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) ? "IN" : "OUT", status); ++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d status: %d\n", ++ i, urb->iso_frame_desc[i].status); ++ } ++ } ++ } ++#endif ++ ++ urb->status = status; ++ urb->hcpriv = NULL; ++ ++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status); ++} ++ ++/* ++ * Returns the Queue Head for an URB. ++ */ ++struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb) ++{ ++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb); ++ return ep->hcpriv; ++} ++ ++#ifdef DEBUG ++void dwc_print_setup_data(uint8_t *setup) ++{ ++ int i; ++ if (CHK_DEBUG_LEVEL(DBG_HCD)) { ++ DWC_PRINT("Setup Data = MSB "); ++ for (i = 7; i >= 0; i--) ++ DWC_PRINT("%02x ", setup[i]); ++ DWC_PRINT("\n"); ++ DWC_PRINT(" bmRequestType Tranfer = %s\n", ++ (setup[0] & 0x80) ? "Device-to-Host" : ++ "Host-to-Device"); ++ DWC_PRINT(" bmRequestType Type = "); ++ switch ((setup[0] & 0x60) >> 5) { ++ case 0: ++ DWC_PRINT("Standard\n"); ++ break; ++ case 1: ++ DWC_PRINT("Class\n"); ++ break; ++ case 2: ++ DWC_PRINT("Vendor\n"); ++ break; ++ case 3: ++ DWC_PRINT("Reserved\n"); ++ break; ++ } ++ DWC_PRINT(" bmRequestType Recipient = "); ++ switch (setup[0] & 0x1f) { ++ case 0: ++ DWC_PRINT("Device\n"); ++ break; ++ case 1: ++ DWC_PRINT("Interface\n"); ++ break; ++ case 2: ++ DWC_PRINT("Endpoint\n"); ++ break; ++ case 3: ++ DWC_PRINT("Other\n"); ++ break; ++ default: ++ DWC_PRINT("Reserved\n"); ++ break; ++ } ++ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]); ++ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *) &setup[2])); ++ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *) &setup[4])); ++ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *) &setup[6])); ++ } ++} ++#endif ++ ++void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd) ++{ ++#ifdef DEBUG ++ DWC_PRINT("Frame remaining at SOF:\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->frrem_samples, hcd->frrem_accum, ++ (hcd->frrem_samples > 0) ? ++ hcd->frrem_accum / hcd->frrem_samples : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->core_if->hfnum_7_samples, ++ hcd->core_if->hfnum_7_frrem_accum, ++ (hcd->core_if->hfnum_7_samples > ++ 0) ? hcd->core_if->hfnum_7_frrem_accum / ++ hcd->core_if->hfnum_7_samples : 0); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->core_if->hfnum_0_samples, ++ hcd->core_if->hfnum_0_frrem_accum, ++ (hcd->core_if->hfnum_0_samples > ++ 0) ? hcd->core_if->hfnum_0_frrem_accum / ++ hcd->core_if->hfnum_0_samples : 0); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->core_if->hfnum_other_samples, ++ hcd->core_if->hfnum_other_frrem_accum, ++ (hcd->core_if->hfnum_other_samples > ++ 0) ? hcd->core_if->hfnum_other_frrem_accum / ++ hcd->core_if->hfnum_other_samples : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at sample point A (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->hfnum_7_samples_a, hcd->hfnum_7_frrem_accum_a, ++ (hcd->hfnum_7_samples_a > 0) ? ++ hcd->hfnum_7_frrem_accum_a / hcd->hfnum_7_samples_a : 0); ++ DWC_PRINT("Frame remaining at sample point A (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->hfnum_0_samples_a, hcd->hfnum_0_frrem_accum_a, ++ (hcd->hfnum_0_samples_a > 0) ? ++ hcd->hfnum_0_frrem_accum_a / hcd->hfnum_0_samples_a : 0); ++ DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->hfnum_other_samples_a, hcd->hfnum_other_frrem_accum_a, ++ (hcd->hfnum_other_samples_a > 0) ? ++ hcd->hfnum_other_frrem_accum_a / ++ hcd->hfnum_other_samples_a : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at sample point B (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->hfnum_7_samples_b, hcd->hfnum_7_frrem_accum_b, ++ (hcd->hfnum_7_samples_b > 0) ? ++ hcd->hfnum_7_frrem_accum_b / hcd->hfnum_7_samples_b : 0); ++ DWC_PRINT("Frame remaining at sample point B (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->hfnum_0_samples_b, hcd->hfnum_0_frrem_accum_b, ++ (hcd->hfnum_0_samples_b > 0) ? ++ hcd->hfnum_0_frrem_accum_b / hcd->hfnum_0_samples_b : 0); ++ DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %lu, avg %lu\n", ++ hcd->hfnum_other_samples_b, hcd->hfnum_other_frrem_accum_b, ++ (hcd->hfnum_other_samples_b > 0) ? ++ hcd->hfnum_other_frrem_accum_b / ++ hcd->hfnum_other_samples_b : 0); ++#endif ++} ++ ++void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd) ++{ ++#ifdef DEBUG ++ int num_channels; ++ int i; ++ union gnptxsts_data np_tx_status; ++ union hptxsts_data p_tx_status; ++ ++ num_channels = hcd->core_if->core_params->host_channels; ++ DWC_PRINT("\n"); ++ DWC_PRINT ++ ("************************************************************\n"); ++ DWC_PRINT("HCD State:\n"); ++ DWC_PRINT(" Num channels: %d\n", num_channels); ++ for (i = 0; i < num_channels; i++) { ++ struct dwc_hc *hc = hcd->hc_ptr_array[i]; ++ DWC_PRINT(" Channel %d:\n", i); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" speed: %d\n", hc->speed); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" multi_count: %d\n", hc->multi_count); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count); ++ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue); ++ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" do_split: %d\n", hc->do_split); ++ DWC_PRINT(" complete_split: %d\n", hc->complete_split); ++ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr); ++ DWC_PRINT(" port_addr: %d\n", hc->port_addr); ++ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos); ++ DWC_PRINT(" requests: %d\n", hc->requests); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ if (hc->xfer_started) { ++ union hfnum_data hfnum; ++ union hcchar_data hcchar; ++ union hctsiz_data hctsiz; ++ union hcint_data hcint; ++ union hcintmsk_data hcintmsk; ++ hfnum.d32 = ++ dwc_read_reg32(&hcd->core_if->host_if-> ++ host_global_regs->hfnum); ++ hcchar.d32 = ++ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]-> ++ hcchar); ++ hctsiz.d32 = ++ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]-> ++ hctsiz); ++ hcint.d32 = ++ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]-> ++ hcint); ++ hcintmsk.d32 = ++ dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]-> ++ hcintmsk); ++ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32); ++ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32); ++ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32); ++ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32); ++ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32); ++ } ++ if (hc->xfer_started && (hc->qh != NULL) ++ && (hc->qh->qtd_in_process != NULL)) { ++ struct dwc_otg_qtd *qtd; ++ struct urb *urb; ++ qtd = hc->qh->qtd_in_process; ++ urb = qtd->urb; ++ DWC_PRINT(" URB Info:\n"); ++ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb); ++ if (urb != NULL) { ++ DWC_PRINT(" Dev: %d, EP: %d %s\n", ++ usb_pipedevice(urb->pipe), ++ usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) ? "IN" : "OUT"); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, ++ usb_pipeout(urb-> ++ pipe))); ++ DWC_PRINT(" transfer_buffer: %p\n", ++ urb->transfer_buffer); ++ DWC_PRINT(" transfer_dma: %p\n", ++ (void *)urb->transfer_dma); ++ DWC_PRINT(" transfer_buffer_length: %d\n", ++ urb->transfer_buffer_length); ++ DWC_PRINT(" actual_length: %d\n", ++ urb->actual_length); ++ } ++ } ++ } ++ DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels); ++ DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels); ++ DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs); ++ np_tx_status.d32 = ++ dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts); ++ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", ++ np_tx_status.b.nptxqspcavail); ++ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", ++ np_tx_status.b.nptxfspcavail); ++ p_tx_status.d32 = ++ dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts); ++ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", ++ p_tx_status.b.ptxqspcavail); ++ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail); ++ dwc_otg_hcd_dump_frrem(hcd); ++ dwc_otg_dump_global_registers(hcd->core_if); ++ dwc_otg_dump_host_registers(hcd->core_if); ++ DWC_PRINT ++ ("************************************************************\n"); ++ DWC_PRINT("\n"); ++#endif ++} ++#endif /* DWC_DEVICE_ONLY */ +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.h b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h +new file mode 100644 +index 0000000..6dcf1f5 +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h +@@ -0,0 +1,661 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++#if !defined(__DWC_HCD_H__) ++#define __DWC_HCD_H__ ++ ++#include <linux/list.h> ++#include <linux/usb.h> ++#include <linux/hrtimer.h> ++ ++#include <../drivers/usb/core/hcd.h> ++ ++struct dwc_otg_device; ++ ++#include "dwc_otg_cil.h" ++ ++/** ++ * ++ * This file contains the structures, constants, and interfaces for ++ * the Host Contoller Driver (HCD). ++ * ++ * The Host Controller Driver (HCD) is responsible for translating requests ++ * from the USB Driver into the appropriate actions on the DWC_otg controller. ++ * It isolates the USBD from the specifics of the controller by providing an ++ * API to the USBD. ++ */ ++ ++/** ++ * Phases for control transfers. ++ */ ++enum dwc_otg_control_phase { ++ DWC_OTG_CONTROL_SETUP, ++ DWC_OTG_CONTROL_DATA, ++ DWC_OTG_CONTROL_STATUS ++}; ++ ++/** Transaction types. */ ++enum dwc_otg_transaction_type { ++ DWC_OTG_TRANSACTION_NONE, ++ DWC_OTG_TRANSACTION_PERIODIC, ++ DWC_OTG_TRANSACTION_NON_PERIODIC, ++ DWC_OTG_TRANSACTION_ALL ++}; ++ ++struct dwc_otg_qh; ++ ++/* ++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, ++ * interrupt, or isochronous transfer. A single QTD is created for each URB ++ * (of one of these types) submitted to the HCD. The transfer associated with ++ * a QTD may require one or multiple transactions. ++ * ++ * A QTD is linked to a Queue Head, which is entered in either the ++ * non-periodic or periodic schedule for execution. When a QTD is chosen for ++ * execution, some or all of its transactions may be executed. After ++ * execution, the state of the QTD is updated. The QTD may be retired if all ++ * its transactions are complete or if an error occurred. Otherwise, it ++ * remains in the schedule so more transactions can be executed later. ++ */ ++struct dwc_otg_qtd { ++ /* ++ * Determines the PID of the next data packet for the data phase of ++ * control transfers. Ignored for other transfer types.<br> ++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Current phase for control transfers (Setup, Data, or Status). */ ++ enum dwc_otg_control_phase control_phase; ++ ++ /** Keep track of the current split type ++ * for FS/LS endpoints on a HS Hub */ ++ uint8_t complete_split; ++ ++ /** How many bytes transferred during SSPLIT OUT */ ++ uint32_t ssplit_out_xfer_count; ++ ++ /** ++ * Holds the number of bus errors that have occurred for a transaction ++ * within this transfer. ++ */ ++ uint8_t error_count; ++ ++ /** ++ * Index of the next frame descriptor for an isochronous transfer. A ++ * frame descriptor describes the buffer position and length of the ++ * data to be transferred in the next scheduled (micro)frame of an ++ * isochronous transfer. It also holds status for that transaction. ++ * The frame index starts at 0. ++ */ ++ int isoc_frame_index; ++ ++ /** Position of the ISOC split on full/low speed */ ++ uint8_t isoc_split_pos; ++ ++ /** Position of the ISOC split in the buffer for the current frame */ ++ uint16_t isoc_split_offset; ++ ++ /** URB for this transfer */ ++ struct urb *urb; ++ ++ /* The queue head for this transfer. */ ++ struct dwc_otg_qh *qh; ++ ++ /** This list of QTDs */ ++ struct list_head qtd_list_entry; ++ ++}; ++ ++/** ++ * A Queue Head (QH) holds the static characteristics of an endpoint and ++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may ++ * be entered in either the non-periodic or periodic schedule. ++ */ ++struct dwc_otg_qh { ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - USB_ENDPOINT_XFER_CONTROL ++ * - USB_ENDPOINT_XFER_ISOC ++ * - USB_ENDPOINT_XFER_BULK ++ * - USB_ENDPOINT_XFER_INT ++ */ ++ uint8_t ep_type; ++ uint8_t ep_is_in; ++ ++ /** wMaxPacketSize Field of Endpoint Descriptor. */ ++ uint16_t maxp; ++ ++ /** ++ * Determines the PID of the next data packet for non-control ++ * transfers. Ignored for control transfers.<br> ++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Ping state if 1. */ ++ uint8_t ping_state; ++ ++ /** ++ * List of QTDs for this QH. ++ */ ++ struct list_head qtd_list; ++ ++ /** Host channel currently processing transfers for this QH. */ ++ struct dwc_hc *channel; ++ ++ /** QTD currently assigned to a host channel for this QH. */ ++ struct dwc_otg_qtd *qtd_in_process; ++ ++ /** Full/low speed endpoint on high-speed hub requires split. */ ++ uint8_t do_split; ++ ++ /** @name Periodic schedule information */ ++ /** @{ */ ++ ++ /** Bandwidth in microseconds per (micro)frame. */ ++ uint8_t usecs; ++ ++ /** Interval between transfers in (micro)frames. */ ++ uint16_t interval; ++ ++ /** ++ * (micro)frame to initialize a periodic transfer. The transfer ++ * executes in the following (micro)frame. ++ */ ++ uint16_t sched_frame; ++ ++ /** (micro)frame at which last start split was initialized. */ ++ uint16_t start_split_frame; ++ ++ /** @} */ ++ ++ /** Entry for QH in either the periodic or non-periodic schedule. */ ++ struct list_head qh_list_entry; ++}; ++ ++/** ++ * This structure holds the state of the HCD, including the non-periodic and ++ * periodic schedules. ++ */ ++struct dwc_otg_hcd { ++ ++ /** DWC OTG Core Interface Layer */ ++ struct dwc_otg_core_if *core_if; ++ ++ /** Internal DWC HCD Flags */ ++ union dwc_otg_hcd_internal_flags { ++ uint32_t d32; ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:26; ++ unsigned port_over_current_change:1; ++ unsigned port_suspend_change:1; ++ unsigned port_enable_change:1; ++ unsigned port_reset_change:1; ++ unsigned port_connect_status:1; ++ unsigned port_connect_status_change:1; ++#else ++ unsigned port_connect_status_change:1; ++ unsigned port_connect_status:1; ++ unsigned port_reset_change:1; ++ unsigned port_enable_change:1; ++ unsigned port_suspend_change:1; ++ unsigned port_over_current_change:1; ++ unsigned reserved:26; ++#endif ++ } b; ++ } flags; ++ ++ /** ++ * Inactive items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are not ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_inactive; ++ ++ /** ++ * Active items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_active; ++ ++ /** ++ * Pointer to the next Queue Head to process in the active ++ * non-periodic schedule. ++ */ ++ struct list_head *non_periodic_qh_ptr; ++ ++ /** ++ * Inactive items in the periodic schedule. This is a list of QHs for ++ * periodic transfers that are _not_ scheduled for the next frame. ++ * Each QH in the list has an interval counter that determines when it ++ * needs to be scheduled for execution. This scheduling mechanism ++ * allows only a simple calculation for periodic bandwidth used (i.e. ++ * must assume that all periodic transfers may need to execute in the ++ * same frame). However, it greatly simplifies scheduling and should ++ * be sufficient for the vast majority of OTG hosts, which need to ++ * connect to a small number of peripherals at one time. ++ * ++ * Items move from this list to periodic_sched_ready when the QH ++ * interval counter is 0 at SOF. ++ */ ++ struct list_head periodic_sched_inactive; ++ ++ /** ++ * List of periodic QHs that are ready for execution in the next ++ * frame, but have not yet been assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_assigned as host ++ * channels become available during the current frame. ++ */ ++ struct list_head periodic_sched_ready; ++ ++ /** ++ * List of periodic QHs to be executed in the next frame that are ++ * assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_queued as the ++ * transactions for the QH are queued to the DWC_otg controller. ++ */ ++ struct list_head periodic_sched_assigned; ++ ++ /** ++ * List of periodic QHs that have been queued for execution. ++ * ++ * Items move from this list to either periodic_sched_inactive or ++ * periodic_sched_ready when the channel associated with the transfer ++ * is released. If the interval for the QH is 1, the item moves to ++ * periodic_sched_ready because it must be rescheduled for the next ++ * frame. Otherwise, the item moves to periodic_sched_inactive. ++ */ ++ struct list_head periodic_sched_queued; ++ ++ /** ++ * Total bandwidth claimed so far for periodic transfers. This value ++ * is in microseconds per (micro)frame. The assumption is that all ++ * periodic transfers may occur in the same (micro)frame. ++ */ ++ uint16_t periodic_usecs; ++ ++ /** ++ * Frame number read from the core at SOF. The value ranges from 0 to ++ * DWC_HFNUM_MAX_FRNUM. ++ */ ++ uint16_t frame_number; ++ ++ /** ++ * Free host channels in the controller. This is a list of ++ * struct dwc_hc items. ++ */ ++ struct list_head free_hc_list; ++ ++ /** ++ * Number of host channels assigned to periodic transfers. Currently ++ * assuming that there is a dedicated host channel for each periodic ++ * transaction and at least one host channel available for ++ * non-periodic transactions. ++ */ ++ int periodic_channels; ++ ++ /** ++ * Number of host channels assigned to non-periodic transfers. ++ */ ++ int non_periodic_channels; ++ ++ /** ++ * Array of pointers to the host channel descriptors. Allows accessing ++ * a host channel descriptor given the host channel number. This is ++ * useful in interrupt handlers. ++ */ ++ struct dwc_hc *hc_ptr_array[MAX_EPS_CHANNELS]; ++ ++ /** ++ * Buffer to use for any data received during the status phase of a ++ * control transfer. Normally no data is transferred during the status ++ * phase. This buffer is used as a bit bucket. ++ */ ++ uint8_t *status_buf; ++ ++ /** ++ * DMA address for status_buf. ++ */ ++ dma_addr_t status_buf_dma; ++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64 ++ ++ /** ++ * Structure to allow starting the HCD in a non-interrupt context ++ * during an OTG role change. ++ */ ++ struct work_struct start_work; ++ ++ /** ++ * Connection timer. An OTG host must display a message if the device ++ * does not connect. Started when the VBus power is turned on via ++ * sysfs attribute "buspower". ++ */ ++ struct timer_list conn_timer; ++ ++ /* Tasket to do a reset */ ++ struct tasklet_struct *reset_tasklet; ++ ++ struct hrtimer poll_rate_limit; ++ ++ spinlock_t global_lock; ++ ++#ifdef DEBUG ++ uint32_t frrem_samples; ++ uint64_t frrem_accum; ++ ++ uint32_t hfnum_7_samples_a; ++ uint64_t hfnum_7_frrem_accum_a; ++ uint32_t hfnum_0_samples_a; ++ uint64_t hfnum_0_frrem_accum_a; ++ uint32_t hfnum_other_samples_a; ++ uint64_t hfnum_other_frrem_accum_a; ++ ++ uint32_t hfnum_7_samples_b; ++ uint64_t hfnum_7_frrem_accum_b; ++ uint32_t hfnum_0_samples_b; ++ uint64_t hfnum_0_frrem_accum_b; ++ uint32_t hfnum_other_samples_b; ++ uint64_t hfnum_other_frrem_accum_b; ++#endif ++ ++}; ++ ++/** Gets the dwc_otg_hcd from a struct usb_hcd */ ++static inline struct dwc_otg_hcd *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd) ++{ ++ return (struct dwc_otg_hcd *)(hcd->hcd_priv); ++} ++ ++/** Gets the struct usb_hcd that contains a struct dwc_otg_hcd. */ ++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(struct dwc_otg_hcd ++ *dwc_otg_hcd) ++{ ++ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv); ++} ++ ++/** @name HCD Create/Destroy Functions */ ++/** @{ */ ++extern int __init dwc_otg_hcd_init(struct device *_dev); ++extern void dwc_otg_hcd_remove(struct device *_dev); ++/** @} */ ++ ++/** @name Linux HC Driver API Functions */ ++ ++extern int dwc_otg_hcd_start(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_free(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, ++ struct urb *urb, unsigned mem_flags); ++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, ++ struct urb *urb, int status); ++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, ++ struct usb_host_endpoint *ep); ++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf); ++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, ++ u16 typeReq, ++ u16 wValue, ++ u16 wIndex, char *buf, u16 wLength); ++ ++ ++/** @name Transaction Execution Functions */ ++extern enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct ++ dwc_otg_hcd ++ *hcd); ++extern void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd, ++ enum dwc_otg_transaction_type tr_type); ++extern void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb, ++ int status); ++ ++/** @name Interrupt Handler Functions */ ++extern int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd ++ *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd ++ *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd ++ *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(struct dwc_otg_hcd ++ *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(struct dwc_otg_hcd ++ *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_disconnect_intr(struct dwc_otg_hcd ++ *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd, ++ uint32_t num); ++extern int32_t dwc_otg_hcd_handle_session_req_intr(struct dwc_otg_hcd ++ *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(struct dwc_otg_hcd ++ *dwc_otg_hcd); ++ ++/** @name Schedule Queue Functions */ ++ ++/* Implemented in dwc_otg_hcd_queue.c */ ++extern struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd, ++ struct urb *urb); ++extern void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh, ++ struct urb *urb); ++extern void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh); ++extern int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh); ++extern void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh); ++extern void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd, ++ struct dwc_otg_qh *qh, int sched_csplit); ++ ++/** Remove and free a QH */ ++static inline void dwc_otg_hcd_qh_remove_and_free(struct dwc_otg_hcd *hcd, ++ struct dwc_otg_qh *qh) ++{ ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ dwc_otg_hcd_qh_free(qh); ++} ++ ++/** Allocates memory for a QH structure. ++ * Returns Returns the memory allocate or NULL on error. */ ++static inline struct dwc_otg_qh *dwc_otg_hcd_qh_alloc(void) ++{ ++ return kmalloc(sizeof(struct dwc_otg_qh), GFP_ATOMIC); ++} ++ ++extern struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb); ++extern void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb); ++extern int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd, ++ struct dwc_otg_hcd *dwc_otg_hcd); ++ ++/** Allocates memory for a QTD structure. ++ * Returns Returns the memory allocate or NULL on error. */ ++static inline struct dwc_otg_qtd *dwc_otg_hcd_qtd_alloc(void) ++{ ++ return kmalloc(sizeof(struct dwc_otg_qtd), GFP_ATOMIC); ++} ++ ++/** ++ * Frees the memory for a QTD structure. QTD should already be removed from ++ * list. ++ * @qtd: QTD to free. ++ */ ++static inline void dwc_otg_hcd_qtd_free(struct dwc_otg_qtd *qtd) ++{ ++ kfree(qtd); ++} ++ ++/** ++ * Removes a QTD from list. ++ * @qtd: QTD to remove from list. ++ */ ++static inline void dwc_otg_hcd_qtd_remove(struct dwc_otg_qtd *qtd) ++{ ++ list_del(&qtd->qtd_list_entry); ++} ++ ++/** Remove and free a QTD */ ++static inline void dwc_otg_hcd_qtd_remove_and_free(struct dwc_otg_qtd *qtd) ++{ ++ dwc_otg_hcd_qtd_remove(qtd); ++ dwc_otg_hcd_qtd_free(qtd); ++} ++ ++/** @name Internal Functions */ ++struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb); ++void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd); ++void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd); ++ ++/** Gets the usb_host_endpoint associated with an URB. */ ++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb) ++{ ++ struct usb_device *dev = urb->dev; ++ int ep_num = usb_pipeendpoint(urb->pipe); ++ ++ if (usb_pipein(urb->pipe)) ++ return dev->ep_in[ep_num]; ++ else ++ return dev->ep_out[ep_num]; ++} ++ ++/* ++ * Gets the endpoint number from a bEndpointAddress argument. The endpoint is ++ * qualified with its direction (possible 32 endpoints per device). ++ */ ++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \ ++ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \ ++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4) ++ ++/** Gets the QH that contains the list_head */ ++#define dwc_list_to_qh(_list_head_ptr_) \ ++ (container_of(_list_head_ptr_, struct dwc_otg_qh, qh_list_entry)) ++ ++/** Gets the QTD that contains the list_head */ ++#define dwc_list_to_qtd(_list_head_ptr_) \ ++ (container_of(_list_head_ptr_, struct dwc_otg_qtd, qtd_list_entry)) ++ ++/** Check if QH is non-periodic */ ++#define dwc_qh_is_non_per(_qh_ptr_) \ ++ ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \ ++ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL)) ++ ++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */ ++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) ++ ++/** Packet size for any kind of endpoint descriptor */ ++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) ++ ++/** ++ * Returns true if frame1 is less than or equal to frame2. The comparison is ++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the ++ * frame number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2) ++{ ++ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <= ++ (DWC_HFNUM_MAX_FRNUM >> 1); ++} ++ ++/** ++ * Returns true if frame1 is greater than frame2. The comparison is done ++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame ++ * number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2) ++{ ++ return (frame1 != frame2) && ++ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) < ++ (DWC_HFNUM_MAX_FRNUM >> 1)); ++} ++ ++/** ++ * Increments frame by the amount specified by inc. The addition is done ++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value. ++ */ ++static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc) ++{ ++ return (frame + inc) & DWC_HFNUM_MAX_FRNUM; ++} ++ ++static inline uint16_t dwc_full_frame_num(uint16_t frame) ++{ ++ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3; ++} ++ ++static inline uint16_t dwc_micro_frame_num(uint16_t frame) ++{ ++ return frame & 0x7; ++} ++ ++#ifdef DEBUG ++/** ++ * Macro to sample the remaining PHY clocks left in the current frame. This ++ * may be used during debugging to determine the average time it takes to ++ * execute sections of code. There are two possible sample points, "a" and ++ * "b", so the letter argument must be one of these values. ++ * ++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For ++ * example, "cat /sys/devices/lm0/hcd_frrem". ++ */ ++#define dwc_sample_frrem(_hcd, _qh, _letter) \ ++{ \ ++ union hfnum_data hfnum; \ ++ struct dwc_otg_qtd *qtd; \ ++ qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry); \ ++ if (usb_pipeint(qtd->urb->pipe) && qh->start_split_frame != 0 && !qtd->complete_split) { \ ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \ ++ switch (hfnum.b.frnum & 0x7) { \ ++ case 7: \ ++ _hcd->hfnum_7_samples_##_letter++; \ ++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ case 0: \ ++ _hcd->hfnum_0_samples_##_letter++; \ ++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ default: \ ++ _hcd->hfnum_other_samples_##_letter++; \ ++ _hcd->hfnum_other_frrem_accum_##_letter += \ ++ hfnum.b.frrem; \ ++ break; \ ++ } \ ++ } \ ++} ++#else ++#define dwc_sample_frrem(hcd, qh, letter) ++#endif ++#endif ++#endif /* DWC_DEVICE_ONLY */ +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c +new file mode 100644 +index 0000000..2c4266f +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c +@@ -0,0 +1,1890 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++/* ++ * This file contains the implementation of the HCD Interrupt handlers. ++ */ ++ ++/* This function handles interrupts for the HCD. */ ++int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd) ++{ ++ int retval = 0; ++ ++ struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if; ++ union gintsts_data gintsts; ++#ifdef DEBUG ++ struct dwc_otg_core_global_regs *global_regs = ++ core_if->core_global_regs; ++#endif ++ ++ /* Check if HOST Mode */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ gintsts.d32 = dwc_otg_read_core_intr(core_if); ++ if (!gintsts.d32) ++ return 0; ++#ifdef DEBUG ++ /* Don't print debug message in the interrupt handler on SOF */ ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "\n"); ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected " ++ "gintsts&gintmsk=0x%08x\n", ++ gintsts.d32); ++#endif ++ ++ if (gintsts.b.sofintr) ++ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd); ++ ++ if (gintsts.b.rxstsqlvl) ++ retval |= ++ dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd); ++ ++ if (gintsts.b.nptxfempty) ++ retval |= ++ dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd); ++ ++ if (gintsts.b.i2cintr) ++ ;/** @todo Implement i2cintr handler. */ ++ ++ if (gintsts.b.portintr) ++ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd); ++ ++ if (gintsts.b.hcintr) ++ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd); ++ ++ if (gintsts.b.ptxfempty) { ++ retval |= ++ dwc_otg_hcd_handle_perio_tx_fifo_empty_intr ++ (dwc_otg_hcd); ++ } ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ { ++ DWC_DEBUGPL(DBG_HCD, ++ "DWC OTG HCD Finished Servicing Interrupts\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintsts)); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintmsk)); ++ } ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "\n"); ++#endif ++ ++ } ++ ++ return retval; ++} ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++#warning Compiling code to track missed SOFs ++#define FRAME_NUM_ARRAY_SIZE 1000 ++/** ++ * This function is for debug only. ++ */ ++static inline void track_missed_sofs(uint16_t _curr_frame_number) ++{ ++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static int frame_num_idx; ++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; ++ static int dumped_frame_num_array; ++ ++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { ++ if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != ++ _curr_frame_number)) { ++ frame_num_array[frame_num_idx] = _curr_frame_number; ++ last_frame_num_array[frame_num_idx++] = last_frame_num; ++ } ++ } else if (!dumped_frame_num_array) { ++ int i; ++ printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); ++ printk(KERN_EMERG USB_DWC "----- ----------\n"); ++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { ++ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", ++ frame_num_array[i], last_frame_num_array[i]); ++ } ++ dumped_frame_num_array = 1; ++ } ++ last_frame_num = _curr_frame_number; ++} ++#endif ++ ++/** ++ * Handles the start-of-frame interrupt in host mode. Non-periodic ++ * transactions may be queued to the DWC_otg controller for the current ++ * (micro)frame. Periodic transactions may be queued to the controller for the ++ * next (micro)frame. ++ */ ++int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *hcd) ++{ ++ union hfnum_data hfnum; ++ struct list_head *qh_entry; ++ struct dwc_otg_qh *qh; ++ enum dwc_otg_transaction_type tr_type; ++ union gintsts_data gintsts = {.d32 = 0 }; ++ ++ hfnum.d32 = ++ dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); ++#endif ++ ++ hcd->frame_number = hfnum.b.frnum; ++ ++#ifdef DEBUG ++ hcd->frrem_accum += hfnum.b.frrem; ++ hcd->frrem_samples++; ++#endif ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++ track_missed_sofs(hcd->frame_number); ++#endif ++ ++ /* Determine whether any periodic QHs should be executed. */ ++ qh_entry = hcd->periodic_sched_inactive.next; ++ while (qh_entry != &hcd->periodic_sched_inactive) { ++ qh = list_entry(qh_entry, struct dwc_otg_qh, qh_list_entry); ++ qh_entry = qh_entry->next; ++ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) { ++ /* ++ * Move QH to the ready list to be executed next ++ * (micro)frame. ++ */ ++ list_move(&qh->qh_list_entry, ++ &hcd->periodic_sched_ready); ++ } ++ } ++ ++ tr_type = dwc_otg_hcd_select_transactions(hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(hcd, tr_type); ++ } else if (list_empty(&hcd->periodic_sched_inactive) && ++ list_empty(&hcd->periodic_sched_ready) && ++ list_empty(&hcd->periodic_sched_assigned) && ++ list_empty(&hcd->periodic_sched_queued)) { ++ /* ++ * We don't have USB data to send. Unfortunately the ++ * Synopsis block continues to generate interrupts at ++ * about 8k/sec. In order not waste time on these ++ * useless interrupts, we're going to disable the SOF ++ * interrupt. It will be re-enabled when a new packet ++ * is enqueued in dwc_otg_hcd_urb_enqueue() ++ */ ++ dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk, ++ DWC_SOF_INTR_MASK, 0); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.b.sofintr = 1; ++ dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/* Handles the Rx Status Queue Level Interrupt, which indicates that ++ * there is at least one packet in the Rx FIFO. The packets are moved ++ * from the FIFO to memory if the DWC_otg controller is operating in ++ * Slave mode. */ ++int32_t ++dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd *dwc_otg_hcd) ++{ ++ union host_grxsts_data grxsts; ++ struct dwc_hc *hc = NULL; ++ ++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); ++ ++ grxsts.d32 = ++ dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp); ++ ++ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; ++ ++ /* Packet Status */ ++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); ++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); ++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, ++ hc->data_pid_start); ++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer. */ ++ if (grxsts.b.bcnt > 0) { ++ dwc_otg_read_packet(dwc_otg_hcd->core_if, ++ hc->xfer_buff, grxsts.b.bcnt); ++ ++ /* Update the HC fields for the next packet received. */ ++ hc->xfer_count += grxsts.b.bcnt; ++ hc->xfer_buff += grxsts.b.bcnt; ++ } ++ ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: ++ case DWC_GRXSTS_PKTSTS_CH_HALTED: ++ /* Handled in interrupt, just ignore data */ ++ break; ++ default: ++ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", ++ grxsts.b.pktsts); ++ break; ++ } ++ ++ return 1; ++} ++ ++/* This interrupt occurs when the non-periodic Tx FIFO is ++ * half-empty. More data packets may be written to the FIFO for OUT ++ * transfers. More requests may be written to the non-periodic request ++ * queue for IN transfers. This interrupt is enabled only in Slave ++ * mode. */ ++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd * ++ dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_NON_PERIODIC); ++ return 1; ++} ++ ++/* This interrupt occurs when the periodic Tx FIFO is half-empty. More ++ * data packets may be written to the FIFO for OUT transfers. More ++ * requests may be written to the periodic request queue for IN ++ * transfers. This interrupt is enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd * ++ dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_PERIODIC); ++ return 1; ++} ++ ++/* There are multiple conditions that can cause a port interrupt. This ++ * function determines which interrupt conditions have occurred and ++ * handles them appropriately. */ ++int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd) ++{ ++ int retval = 0; ++ union hprt0_data hprt0; ++ union hprt0_data hprt0_modify; ++ ++ hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); ++ hprt0_modify.d32 = ++ dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); ++ ++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in ++ * GINTSTS */ ++ ++ hprt0_modify.b.prtena = 0; ++ hprt0_modify.b.prtconndet = 0; ++ hprt0_modify.b.prtenchng = 0; ++ hprt0_modify.b.prtovrcurrchng = 0; ++ ++ /* Port Connect Detected ++ * Set flag and clear if detected */ ++ if (hprt0.b.prtconndet) { ++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " ++ "Port Connect Detected--\n", hprt0.d32); ++ dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ dwc_otg_hcd->flags.b.port_connect_status = 1; ++ hprt0_modify.b.prtconndet = 1; ++ ++ /* B-Device has connected, Delete the connection timer. */ ++ del_timer(&dwc_otg_hcd->conn_timer); ++ ++ /* The Hub driver asserts a reset when it sees port connect ++ * status change flag */ ++ retval |= 1; ++ } ++ ++ /* Port Enable Changed ++ * Clear if detected - Set internal flag if disabled */ ++ if (hprt0.b.prtenchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Enable Changed--\n", hprt0.d32); ++ hprt0_modify.b.prtenchng = 1; ++ if (hprt0.b.prtena == 1) { ++ int do_reset = 0; ++ struct dwc_otg_core_params *params = ++ dwc_otg_hcd->core_if->core_params; ++ struct dwc_otg_core_global_regs *global_regs = ++ dwc_otg_hcd->core_if->core_global_regs; ++ struct dwc_otg_host_if *host_if = ++ dwc_otg_hcd->core_if->host_if; ++ ++ /* Check if we need to adjust the PHY clock speed for ++ * low power and adjust it */ ++ if (params->host_support_fs_ls_low_power) { ++ union gusbcfg_data usbcfg; ++ ++ usbcfg.d32 = ++ dwc_read_reg32(&global_regs->gusbcfg); ++ ++ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ++ || (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) { ++ /* ++ * Low power ++ */ ++ union hcfg_data hcfg; ++ if (usbcfg.b.phylpwrclksel == 0) { ++ /* Set PHY low power clock select for FS/LS devices */ ++ usbcfg.b.phylpwrclksel = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, ++ usbcfg.d32); ++ do_reset = 1; ++ } ++ ++ hcfg.d32 = ++ dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ ++ if ((hprt0.b.prtspd == ++ DWC_HPRT0_PRTSPD_LOW_SPEED) ++ && (params-> ++ host_ls_low_power_phy_clk == ++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) { ++ /* 6 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, ++ "FS_PHY programming HCFG to 6 MHz (Low Power)\n"); ++ if (hcfg.b.fslspclksel != ++ DWC_HCFG_6_MHZ) { ++ hcfg.b.fslspclksel = ++ DWC_HCFG_6_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } else { ++ /* 48 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, ++ "FS_PHY programming HCFG to 48 MHz ()\n"); ++ if (hcfg.b.fslspclksel != ++ DWC_HCFG_48_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } ++ } else { ++ /* ++ * Not low power ++ */ ++ if (usbcfg.b.phylpwrclksel == 1) { ++ usbcfg.b.phylpwrclksel = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, ++ usbcfg.d32); ++ do_reset = 1; ++ } ++ } ++ if (do_reset) ++ tasklet_schedule(dwc_otg_hcd->reset_tasklet); ++ } ++ if (!do_reset) ++ /* ++ * Port has been enabled set the reset ++ * change flag ++ */ ++ dwc_otg_hcd->flags.b.port_reset_change = 1; ++ } else { ++ dwc_otg_hcd->flags.b.port_enable_change = 1; ++ } ++ retval |= 1; ++ } ++ ++ /** Overcurrent Change Interrupt */ ++ if (hprt0.b.prtovrcurrchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Overcurrent Changed--\n", hprt0.d32); ++ dwc_otg_hcd->flags.b.port_over_current_change = 1; ++ hprt0_modify.b.prtovrcurrchng = 1; ++ retval |= 1; ++ } ++ ++ /* Clear Port Interrupts */ ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, ++ hprt0_modify.d32); ++ ++ return retval; ++} ++ ++/** This interrupt indicates that one or more host channels has a pending ++ * interrupt. There are multiple conditions that can cause each host channel ++ * interrupt. This function determines which conditions have occurred for each ++ * host channel interrupt and handles them appropriately. */ ++int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd) ++{ ++ int i; ++ int retval = 0; ++ union haint_data haint; ++ ++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in ++ * GINTSTS */ ++ ++ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if); ++ ++ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) { ++ if (haint.b2.chint & (1 << i)) ++ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i); ++ } ++ ++ return retval; ++} ++ ++/* Macro used to clear one channel interrupt */ ++#define clear_hc_int(_hc_regs_, _intr_) \ ++do { \ ++ union hcint_data hcint_clear = {.d32 = 0}; \ ++ hcint_clear.b._intr_ = 1; \ ++ dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \ ++} while (0) ++ ++/* ++ * Macro used to disable one channel interrupt. Channel interrupts are ++ * disabled when the channel is halted or released by the interrupt handler. ++ * There is no need to handle further interrupts of that type until the ++ * channel is re-assigned. In fact, subsequent handling may cause crashes ++ * because the channel structures are cleaned up when the channel is released. ++ */ ++#define disable_hc_int(_hc_regs_, _intr_) \ ++ do { \ ++ union hcintmsk_data hcintmsk = {.d32 = 0}; \ ++ hcintmsk.b._intr_ = 1; \ ++ dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \ ++ } while (0) ++ ++/** ++ * Gets the actual length of a transfer after the transfer halts. _halt_status ++ * holds the reason for the halt. ++ * ++ * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE, ++ * *_short_read is set to 1 upon return if less than the requested ++ * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon ++ * return. _short_read may also be NULL on entry, in which case it remains ++ * unchanged. ++ */ ++static uint32_t get_actual_xfer_length(struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd, ++ enum dwc_otg_halt_status _halt_status, ++ int *_short_read) ++{ ++ union hctsiz_data hctsiz; ++ uint32_t length; ++ ++ if (_short_read != NULL) ++ *_short_read = 0; ++ ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ ++ if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) { ++ if (hc->ep_is_in) { ++ length = hc->xfer_len - hctsiz.b.xfersize; ++ if (_short_read != NULL) ++ *_short_read = (hctsiz.b.xfersize != 0); ++ } else if (hc->qh->do_split) { ++ length = qtd->ssplit_out_xfer_count; ++ } else { ++ length = hc->xfer_len; ++ } ++ } else { ++ /* ++ * Must use the hctsiz.pktcnt field to determine how much data ++ * has been transferred. This field reflects the number of ++ * packets that have been transferred via the USB. This is ++ * always an integral number of packets if the transfer was ++ * halted before its normal completion. (Can't use the ++ * hctsiz.xfersize field because that reflects the number of ++ * bytes transferred via the AHB, not the USB). ++ */ ++ length = ++ (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet; ++ } ++ ++ return length; ++} ++ ++/** ++ * Updates the state of the URB after a Transfer Complete interrupt on the ++ * host channel. Updates the actual_length field of the URB based on the ++ * number of bytes transferred via the host channel. Sets the URB status ++ * if the data transfer is finished. ++ * ++ * Returns 1 if the data transfer specified by the URB is completely finished, ++ * 0 otherwise. ++ */ ++static int update_urb_state_xfer_comp(struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct urb *urb, struct dwc_otg_qtd *qtd) ++{ ++ int xfer_done = 0; ++ int short_read = 0; ++ ++ urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_COMPLETE, ++ &short_read); ++ ++ if (short_read || (urb->actual_length == urb->transfer_buffer_length)) { ++ xfer_done = 1; ++ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) ++ urb->status = -EREMOTEIO; ++ else ++ urb->status = 0; ++ } ++#ifdef DEBUG ++ { ++ union hctsiz_data hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (hc->ep_is_in ? "IN" : "OUT"), ++ hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", ++ hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", ++ urb->transfer_buffer_length); ++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", ++ urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", ++ short_read, xfer_done); ++ } ++#endif ++ ++ return xfer_done; ++} ++ ++/* ++ * Save the starting data toggle for the next transfer. The data toggle is ++ * saved in the QH for non-control transfers and it's saved in the QTD for ++ * control transfers. ++ */ ++static void save_data_toggle(struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ union hctsiz_data hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ ++ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { ++ struct dwc_otg_qh *qh = hc->qh; ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) ++ qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ else ++ qh->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } else { ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA0; ++ else ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++} ++ ++/** ++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic ++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are ++ * still linked to the QH, the QH is added to the end of the inactive ++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic ++ * schedule if no more QTDs are linked to the QH. ++ */ ++static void deactivate_qh(struct dwc_otg_hcd *hcd, ++ struct dwc_otg_qh *qh, int free_qtd) ++{ ++ int continue_split = 0; ++ struct dwc_otg_qtd *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd); ++ ++ qtd = list_entry(qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry); ++ ++ if (qtd->complete_split) { ++ continue_split = 1; ++ } else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) || ++ (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) { ++ continue_split = 1; ++ } ++ ++ if (free_qtd) { ++ dwc_otg_hcd_qtd_remove_and_free(qtd); ++ continue_split = 0; ++ } ++ ++ qh->channel = NULL; ++ qh->qtd_in_process = NULL; ++ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split); ++} ++ ++/** ++ * Updates the state of an Isochronous URB when the transfer is stopped for ++ * any reason. The fields of the current entry in the frame descriptor array ++ * are set based on the transfer state and the input _halt_status. Completes ++ * the Isochronous URB if all the URB frames have been completed. ++ * ++ * Returns DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be ++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. ++ */ ++static enum dwc_otg_halt_status ++update_isoc_urb_state(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd, ++ enum dwc_otg_halt_status halt_status) ++{ ++ struct urb *urb = qtd->urb; ++ enum dwc_otg_halt_status ret_val = halt_status; ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; ++ switch (halt_status) { ++ case DWC_OTG_HC_XFER_COMPLETE: ++ frame_desc->status = 0; ++ frame_desc->actual_length = ++ get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ break; ++ case DWC_OTG_HC_XFER_FRAME_OVERRUN: ++ urb->error_count++; ++ if (hc->ep_is_in) ++ frame_desc->status = -ENOSR; ++ else ++ frame_desc->status = -ECOMM; ++ frame_desc->actual_length = 0; ++ break; ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ urb->error_count++; ++ frame_desc->status = -EOVERFLOW; ++ /* Don't need to update actual_length in this case. */ ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ urb->error_count++; ++ frame_desc->status = -EPROTO; ++ frame_desc->actual_length = ++ get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ break; ++ default: ++ DWC_ERROR("%s: Unhandled halt_status (%d)\n", __func__, ++ halt_status); ++ BUG(); ++ break; ++ } ++ ++ if (++qtd->isoc_frame_index == urb->number_of_packets) { ++ /* ++ * urb->status is not used for isoc transfers. ++ * The individual frame_desc statuses are used instead. ++ */ ++ dwc_otg_hcd_complete_urb(hcd, urb, 0); ++ qtd->urb = NULL; ++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ ret_val = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ return ret_val; ++} ++ ++/** ++ * Releases a host channel for use by other transfers. Attempts to select and ++ * queue more transactions since at least one host channel is available. ++ * ++ * @hcd: The HCD state structure. ++ * @hc: The host channel to release. ++ * @qtd: The QTD associated with the host channel. This QTD may be freed ++ * if the transfer is complete or an error has occurred. ++ * @_halt_status: Reason the channel is being released. This status ++ * determines the actions taken by this function. ++ */ ++static void release_channel(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_qtd *qtd, ++ enum dwc_otg_halt_status halt_status) ++{ ++ enum dwc_otg_transaction_type tr_type; ++ int free_qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", ++ __func__, hc->hc_num, halt_status); ++ ++ switch (halt_status) { ++ case DWC_OTG_HC_XFER_URB_COMPLETE: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_AHB_ERR: ++ case DWC_OTG_HC_XFER_STALL: ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ if (qtd->error_count >= 3) { ++ DWC_DEBUGPL(DBG_HCDV, ++ " Complete URB with transaction error\n"); ++ free_qtd = 1; ++ qtd->urb->status = -EPROTO; ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO); ++ qtd->urb = NULL; ++ } else { ++ free_qtd = 0; ++ } ++ break; ++ case DWC_OTG_HC_XFER_URB_DEQUEUE: ++ /* ++ * The QTD has already been removed and the QH has been ++ * deactivated. Don't want to do anything except release the ++ * host channel and try to queue more transfers. ++ */ ++ goto cleanup; ++ case DWC_OTG_HC_XFER_NO_HALT_STATUS: ++ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, ++ hc->hc_num); ++ free_qtd = 0; ++ break; ++ default: ++ free_qtd = 0; ++ break; ++ } ++ ++ deactivate_qh(hcd, hc->qh, free_qtd); ++ ++cleanup: ++ /* ++ * Release the host channel for use by other transfers. The cleanup ++ * function clears the channel interrupt enables and conditions, so ++ * there's no need to clear the Channel Halted interrupt separately. ++ */ ++ dwc_otg_hc_cleanup(hcd->core_if, hc); ++ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list); ++ ++ switch (hc->ep_type) { ++ case DWC_OTG_EP_TYPE_CONTROL: ++ case DWC_OTG_EP_TYPE_BULK: ++ hcd->non_periodic_channels--; ++ break; ++ ++ default: ++ /* ++ * Don't release reservations for periodic channels here. ++ * That's done when a periodic transfer is descheduled (i.e. ++ * when the QH is removed from the periodic schedule). ++ */ ++ break; ++ } ++ ++ /* Try to queue more transfers now that there's a free channel. */ ++ tr_type = dwc_otg_hcd_select_transactions(hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) ++ dwc_otg_hcd_queue_transactions(hcd, tr_type); ++} ++ ++/** ++ * Halts a host channel. If the channel cannot be halted immediately because ++ * the request queue is full, this function ensures that the FIFO empty ++ * interrupt for the appropriate queue is enabled so that the halt request can ++ * be queued when there is space in the request queue. ++ * ++ * This function may also be called in DMA mode. In that case, the channel is ++ * simply released since the core always halts the channel automatically in ++ * DMA mode. ++ */ ++static void halt_channel(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_qtd *qtd, ++ enum dwc_otg_halt_status halt_status) ++{ ++ if (hcd->core_if->dma_enable) { ++ release_channel(hcd, hc, qtd, halt_status); ++ return; ++ } ++ ++ /* Slave mode processing... */ ++ dwc_otg_hc_halt(hcd->core_if, hc, halt_status); ++ ++ if (hc->halt_on_queue) { ++ union gintmsk_data gintmsk = {.d32 = 0 }; ++ struct dwc_otg_core_global_regs *global_regs; ++ global_regs = hcd->core_if->core_global_regs; ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ /* ++ * Make sure the Non-periodic Tx FIFO empty interrupt ++ * is enabled so that the non-periodic schedule will ++ * be processed. ++ */ ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } else { ++ /* ++ * Move the QH from the periodic queued schedule to ++ * the periodic assigned schedule. This allows the ++ * halt to be queued when the periodic schedule is ++ * processed. ++ */ ++ list_move(&hc->qh->qh_list_entry, ++ &hcd->periodic_sched_assigned); ++ ++ /* ++ * Make sure the Periodic Tx FIFO Empty interrupt is ++ * enabled so that the periodic schedule will be ++ * processed. ++ */ ++ gintmsk.b.ptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } ++ } ++} ++ ++/** ++ * Performs common cleanup for non-periodic transfers after a Transfer ++ * Complete interrupt. This function should be called after any endpoint type ++ * specific handling is finished to release the host channel. ++ */ ++static void complete_non_periodic_xfer(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd, ++ enum dwc_otg_halt_status halt_status) ++{ ++ union hcint_data hcint; ++ ++ qtd->error_count = 0; ++ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ if (hcint.b.nyet) { ++ /* ++ * Got a NYET on the last transaction of the transfer. This ++ * means that the endpoint should be in the PING state at the ++ * beginning of the next transfer. ++ */ ++ hc->qh->ping_state = 1; ++ clear_hc_int(hc_regs, nyet); ++ } ++ ++ /* ++ * Always halt and release the host channel to make it available for ++ * more transfers. There may still be more phases for a control ++ * transfer or more data packets for a bulk transfer at this point, ++ * but the host channel is still halted. A channel will be reassigned ++ * to the transfer when the non-periodic schedule is processed after ++ * the channel is released. This allows transactions to be queued ++ * properly via dwc_otg_hcd_queue_transactions, which also enables the ++ * Tx FIFO Empty interrupt if necessary. ++ */ ++ if (hc->ep_is_in) { ++ /* ++ * IN transfers in Slave mode require an explicit disable to ++ * halt the channel. (In DMA mode, this call simply releases ++ * the channel.) ++ */ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } else { ++ /* ++ * The channel is automatically disabled by the core for OUT ++ * transfers in Slave mode. ++ */ ++ release_channel(hcd, hc, qtd, halt_status); ++ } ++} ++ ++/** ++ * Performs common cleanup for periodic transfers after a Transfer Complete ++ * interrupt. This function should be called after any endpoint type specific ++ * handling is finished to release the host channel. ++ */ ++static void complete_periodic_xfer(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd, ++ enum dwc_otg_halt_status halt_status) ++{ ++ union hctsiz_data hctsiz; ++ qtd->error_count = 0; ++ ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) { ++ /* Core halts channel in these cases. */ ++ release_channel(hcd, hc, qtd, halt_status); ++ } else { ++ /* Flush any outstanding requests from the Tx queue. */ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++} ++ ++/** ++ * Handles a host channel Transfer Complete interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xfercomp_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ int urb_xfer_done; ++ enum dwc_otg_halt_status halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ struct urb *urb = qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transfer Complete--\n", hc->hc_num); ++ ++ /* ++ * Handle xfer complete on CSPLIT. ++ */ ++ if (hc->qh->do_split) ++ qtd->complete_split = 0; ++ ++ /* Update the QTD and URB states. */ ++ switch (pipe_type) { ++ case PIPE_CONTROL: ++ switch (qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ if (urb->transfer_buffer_length > 0) ++ qtd->control_phase = DWC_OTG_CONTROL_DATA; ++ else ++ qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ DWC_DEBUGPL(DBG_HCDV, ++ " Control setup transaction done\n"); ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ case DWC_OTG_CONTROL_DATA:{ ++ urb_xfer_done = ++ update_urb_state_xfer_comp(hc, hc_regs, ++ urb, qtd); ++ if (urb_xfer_done) { ++ qtd->control_phase = ++ DWC_OTG_CONTROL_STATUS; ++ DWC_DEBUGPL(DBG_HCDV, ++ " Control data transfer done\n"); ++ } else { ++ save_data_toggle(hc, hc_regs, qtd); ++ } ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ } ++ case DWC_OTG_CONTROL_STATUS: ++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); ++ if (urb->status == -EINPROGRESS) ++ urb->status = 0; ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ qtd->urb = NULL; ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ break; ++ } ++ ++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, ++ halt_status); ++ break; ++ case PIPE_BULK: ++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); ++ urb_xfer_done = ++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); ++ if (urb_xfer_done) { ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ qtd->urb = NULL; ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ save_data_toggle(hc, hc_regs, qtd); ++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, ++ halt_status); ++ break; ++ case PIPE_INTERRUPT: ++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); ++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); ++ ++ /* ++ * Interrupt URB is done on the first transfer complete ++ * interrupt. ++ */ ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ qtd->urb = NULL; ++ save_data_toggle(hc, hc_regs, qtd); ++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_URB_COMPLETE); ++ break; ++ case PIPE_ISOCHRONOUS: ++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); ++ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) { ++ halt_status = ++ update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_COMPLETE); ++ } ++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); ++ break; ++ } ++ ++ disable_hc_int(hc_regs, xfercompl); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel STALL interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_stall_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ struct urb *urb = qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "STALL Received--\n", hc->hc_num); ++ ++ if (pipe_type == PIPE_CONTROL) { ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE); ++ qtd->urb = NULL; ++ } ++ ++ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE); ++ qtd->urb = NULL; ++ /* ++ * USB protocol requires resetting the data toggle for bulk ++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) ++ * setup command is issued to the endpoint. Anticipate the ++ * CLEAR_FEATURE command since a STALL has occurred and reset ++ * the data toggle now. ++ */ ++ hc->qh->data_toggle = 0; ++ } ++ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL); ++ ++ disable_hc_int(hc_regs, stall); ++ ++ return 1; ++} ++ ++/* ++ * Updates the state of the URB when a transfer has been stopped due to an ++ * abnormal condition before the transfer completes. Modifies the ++ * actual_length field of the URB to reflect the number of bytes that have ++ * actually been transferred via the host channel. ++ */ ++static void update_urb_state_xfer_intr(struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct urb *urb, ++ struct dwc_otg_qtd *qtd, ++ enum dwc_otg_halt_status halt_status) ++{ ++ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ urb->actual_length += bytes_transferred; ++ ++#ifdef DEBUG ++ { ++ union hctsiz_data hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (hc->ep_is_in ? "IN" : "OUT"), ++ hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", ++ hc->start_pkt_count); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", ++ hc->max_packet); ++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", ++ bytes_transferred); ++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", ++ urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", ++ urb->transfer_buffer_length); ++ } ++#endif ++} ++ ++/** ++ * Handles a host channel NAK interrupt. This handler may be called in either ++ * DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nak_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NAK Received--\n", hc->hc_num); ++ ++ /* ++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and ++ * interrupt. Re-start the SSPLIT transfer. ++ */ ++ if (hc->do_split) { ++ if (hc->complete_split) ++ qtd->error_count = 0; ++ qtd->complete_split = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ goto handle_nak_done; ++ } ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ if (hcd->core_if->dma_enable && hc->ep_is_in) { ++ /* ++ * NAK interrupts are enabled on bulk/control IN ++ * transfers in DMA mode for the sole purpose of ++ * resetting the error count after a transaction error ++ * occurs. The core will continue transferring data. ++ */ ++ qtd->error_count = 0; ++ goto handle_nak_done; ++ } ++ ++ /* ++ * NAK interrupts normally occur during OUT transfers in DMA ++ * or Slave mode. For IN transfers, more requests will be ++ * queued as request queue space is available. ++ */ ++ qtd->error_count = 0; ++ ++ if (!hc->qh->ping_state) { ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, ++ qtd, DWC_OTG_HC_XFER_NAK); ++ save_data_toggle(hc, hc_regs, qtd); ++ if (qtd->urb->dev->speed == USB_SPEED_HIGH) ++ hc->qh->ping_state = 1; ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will ++ * start/continue. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ break; ++ case PIPE_INTERRUPT: ++ qtd->error_count = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ break; ++ case PIPE_ISOCHRONOUS: ++ /* Should never get called for isochronous transfers. */ ++ BUG(); ++ break; ++ } ++ ++handle_nak_done: ++ disable_hc_int(hc_regs, nak); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel ACK interrupt. This interrupt is enabled when ++ * performing the PING protocol in Slave mode, when errors occur during ++ * either Slave mode or DMA mode, and during Start Split transactions. ++ */ ++static int32_t handle_hc_ack_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "ACK Received--\n", hc->hc_num); ++ ++ if (hc->do_split) { ++ /* ++ * Handle ACK on SSPLIT. ++ * ACK should not occur in CSPLIT. ++ */ ++ if ((!hc->ep_is_in) ++ && (hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) { ++ qtd->ssplit_out_xfer_count = hc->xfer_len; ++ } ++ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) { ++ /* Don't need complete for isochronous out transfers. */ ++ qtd->complete_split = 1; ++ } ++ ++ /* ISOC OUT */ ++ if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !hc->ep_is_in) { ++ switch (hc->xact_pos) { ++ case DWC_HCSPLIT_XACTPOS_ALL: ++ break; ++ case DWC_HCSPLIT_XACTPOS_END: ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ qtd->isoc_split_offset = 0; ++ break; ++ case DWC_HCSPLIT_XACTPOS_BEGIN: ++ case DWC_HCSPLIT_XACTPOS_MID: ++ /* ++ * For BEGIN or MID, calculate the length for ++ * the next microframe to determine the correct ++ * SSPLIT token, either MID or END. ++ */ ++ do { ++ struct usb_iso_packet_descriptor ++ *frame_desc; ++ ++ frame_desc = ++ &qtd->urb->iso_frame_desc[qtd->isoc_frame_index]; ++ qtd->isoc_split_offset += 188; ++ ++ if ((frame_desc->length - ++ qtd->isoc_split_offset) <= 188) { ++ qtd->isoc_split_pos = ++ DWC_HCSPLIT_XACTPOS_END; ++ } else { ++ qtd->isoc_split_pos = ++ DWC_HCSPLIT_XACTPOS_MID; ++ } ++ ++ } while (0); ++ break; ++ } ++ } else { ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); ++ } ++ } else { ++ qtd->error_count = 0; ++ ++ if (hc->qh->ping_state) { ++ hc->qh->ping_state = 0; ++ /* ++ * Halt the channel so the transfer can be re-started ++ * from the appropriate point. This only happens in ++ * Slave mode. In DMA mode, the ping_state is cleared ++ * when the transfer is started because the core ++ * automatically executes the PING, then the transfer. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); ++ } ++ } ++ ++ /* ++ * If the ACK occurred when _not_ in the PING state, let the channel ++ * continue transferring data after clearing the error count. ++ */ ++ ++ disable_hc_int(hc_regs, ack); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel NYET interrupt. This interrupt should only occur on ++ * Bulk and Control OUT endpoints and for complete split transactions. If a ++ * NYET occurs at the same time as a Transfer Complete interrupt, it is ++ * handled in the xfercomp interrupt handler, not here. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nyet_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NYET Received--\n", hc->hc_num); ++ ++ /* ++ * NYET on CSPLIT ++ * re-do the CSPLIT immediately on non-periodic ++ */ ++ if ((hc->do_split) && (hc->complete_split)) { ++ if ((hc->ep_type == DWC_OTG_EP_TYPE_INTR) || ++ (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) { ++ int frnum = ++ dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd ++ (hcd)); ++ ++ if (dwc_full_frame_num(frnum) != ++ dwc_full_frame_num(hc->qh->sched_frame)) { ++ /* ++ * No longer in the same full speed frame. ++ * Treat this as a transaction error. ++ */ ++#if 0 ++ /** @todo Fix system performance so this can ++ * be treated as an error. Right now complete ++ * splits cannot be scheduled precisely enough ++ * due to other system activity, so this error ++ * occurs regularly in Slave mode. ++ */ ++ qtd->error_count++; ++#endif ++ qtd->complete_split = 0; ++ halt_channel(hcd, hc, qtd, ++ DWC_OTG_HC_XFER_XACT_ERR); ++ /** @todo add support for isoc release */ ++ goto handle_nyet_done; ++ } ++ } ++ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); ++ goto handle_nyet_done; ++ } ++ ++ hc->qh->ping_state = 1; ++ qtd->error_count = 0; ++ ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd, ++ DWC_OTG_HC_XFER_NYET); ++ save_data_toggle(hc, hc_regs, qtd); ++ ++ /* ++ * Halt the channel and re-start the transfer so the PING ++ * protocol will start. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); ++ ++handle_nyet_done: ++ disable_hc_int(hc_regs, nyet); ++ return 1; ++} ++ ++/** ++ * Handles a host channel babble interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_babble_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Babble Error--\n", hc->hc_num); ++ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW); ++ qtd->urb = NULL; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR); ++ } else { ++ enum dwc_otg_halt_status halt_status; ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_BABBLE_ERR); ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++ disable_hc_int(hc_regs, bblerr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel AHB error interrupt. This handler is only called in ++ * DMA mode. ++ */ ++static int32_t handle_hc_ahberr_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ union hcchar_data hcchar; ++ union hcsplt_data hcsplt; ++ union hctsiz_data hctsiz; ++ uint32_t hcdma; ++ struct urb *urb = qtd->urb; ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "AHB Error--\n", hc->hc_num); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&hc_regs->hcdma); ++ ++ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num); ++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); ++ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); ++ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), ++ (usb_pipein(urb->pipe) ? "IN" : "OUT")); ++ DWC_ERROR(" Endpoint type: %s\n", ++ ({ ++ char *pipetype; ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ pipetype = "CONTROL"; ++ break; ++ case PIPE_BULK: ++ pipetype = "BULK"; ++ break; ++ case PIPE_INTERRUPT: ++ pipetype = "INTERRUPT"; ++ break; ++ case PIPE_ISOCHRONOUS: ++ pipetype = "ISOCHRONOUS"; ++ break; ++ default: ++ pipetype = "UNKNOWN"; ++ break; ++ } ++ pipetype; ++ })); ++ DWC_ERROR(" Speed: %s\n", ++ ({ ++ char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_HIGH: ++ speed = "HIGH"; ++ break; ++ case USB_SPEED_FULL: ++ speed = "FULL"; ++ break; ++ case USB_SPEED_LOW: ++ speed = "LOW"; ++ break; ++ default: ++ speed = "UNKNOWN"; ++ break; ++ } ++ speed; ++ })); ++ DWC_ERROR(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); ++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: 0x%llx\n", ++ urb->transfer_buffer, (unsigned long long)urb->transfer_dma); ++ DWC_ERROR(" Setup buffer: %p, Setup DMA: 0x%llx\n", ++ urb->setup_packet, (unsigned long long)urb->setup_dma); ++ DWC_ERROR(" Interval: %d\n", urb->interval); ++ ++ dwc_otg_hcd_complete_urb(hcd, urb, -EIO); ++ qtd->urb = NULL; ++ ++ /* ++ * Force a channel halt. Don't call halt_channel because that won't ++ * write to the HCCHARn register in DMA mode to force the halt. ++ */ ++ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR); ++ ++ disable_hc_int(hc_regs, ahberr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel transaction error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xacterr_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transaction Error--\n", hc->hc_num); ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ qtd->error_count++; ++ if (!hc->qh->ping_state) { ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, ++ qtd, ++ DWC_OTG_HC_XFER_XACT_ERR); ++ save_data_toggle(hc, hc_regs, qtd); ++ if (!hc->ep_is_in ++ && qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will start. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ break; ++ case PIPE_INTERRUPT: ++ qtd->error_count++; ++ if ((hc->do_split) && (hc->complete_split)) ++ qtd->complete_split = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ enum dwc_otg_halt_status halt_status; ++ halt_status = ++ update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_XACT_ERR); ++ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++ break; ++ } ++ ++ disable_hc_int(hc_regs, xacterr); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel frame overrun interrupt. This handler may be called ++ * in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_frmovrun_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ enum dwc_otg_halt_status halt_status; ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Frame Overrun--\n", hc->hc_num); ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ break; ++ case PIPE_INTERRUPT: ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN); ++ break; ++ case PIPE_ISOCHRONOUS: ++ halt_status = ++ update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN); ++ halt_channel(hcd, hc, qtd, halt_status); ++ break; ++ } ++ ++ disable_hc_int(hc_regs, frmovrun); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel data toggle error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_datatglerr_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Data Toggle Error--\n", hc->hc_num); ++ ++ if (hc->ep_is_in) { ++ qtd->error_count = 0; ++ } else { ++ DWC_ERROR("Data Toggle Error on OUT transfer," ++ "channel %d\n", hc->hc_num); ++ } ++ ++ disable_hc_int(hc_regs, datatglerr); ++ ++ return 1; ++} ++ ++#ifdef DEBUG ++/** ++ * This function is for debug only. It checks that a valid halt status is set ++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is ++ * taken and a warning is issued. ++ * Returns 1 if halt status is ok, 0 otherwise. ++ */ ++static inline int halt_status_ok(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ union hcchar_data hcchar; ++ union hctsiz_data hctsiz; ++ union hcint_data hcint; ++ union hcintmsk_data hcintmsk; ++ union hcsplt_data hcsplt; ++ ++ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { ++ /* ++ * This code is here only as a check. This condition should ++ * never happen. Ignore the halt if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ DWC_WARN ++ ("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, " ++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " ++ "hcint 0x%08x, hcintmsk 0x%08x, " ++ "hcsplt 0x%08x, qtd->complete_split %d\n", __func__, ++ hc->hc_num, hcchar.d32, hctsiz.d32, hcint.d32, ++ hcintmsk.d32, hcsplt.d32, qtd->complete_split); ++ ++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", ++ __func__, hc->hc_num); ++ DWC_WARN("\n"); ++ clear_hc_int(hc_regs, chhltd); ++ return 0; ++ } ++ ++ /* ++ * This code is here only as a check. hcchar.chdis should ++ * never be set when the halt interrupt occurs. Halt the ++ * channel again if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: hcchar.chdis set unexpectedly, " ++ "hcchar 0x%08x, trying to halt again\n", ++ __func__, hcchar.d32); ++ clear_hc_int(hc_regs, chhltd); ++ hc->halt_pending = 0; ++ halt_channel(hcd, hc, qtd, hc->halt_status); ++ return 0; ++ } ++ ++ return 1; ++} ++#endif ++ ++/** ++ * Handles a host Channel Halted interrupt in DMA mode. This handler ++ * determines the reason the channel halted and proceeds accordingly. ++ */ ++static void handle_hc_chhltd_intr_dma(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ union hcint_data hcint; ++ union hcintmsk_data hcintmsk; ++ ++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Just release the channel. A dequeue can happen on a ++ * transfer timeout. In the case of an AHB Error, the channel ++ * was forced to halt because there's no way to gracefully ++ * recover. ++ */ ++ release_channel(hcd, hc, qtd, hc->halt_status); ++ return; ++ } ++ ++ /* Read the HCINTn register to determine the cause for the halt. */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ ++ if (hcint.b.xfercomp) { ++ /* ++ * @todo This is here because of a possible hardware ++ * bug. Spec says that on SPLIT-ISOC OUT transfers in ++ * DMA mode that a HALT interrupt w/ACK bit set should ++ * occur, but I only see the XFERCOMP bit, even with ++ * it masked out. This is a workaround for that ++ * behavior. Should fix this when hardware is fixed. ++ */ ++ if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!hc->ep_is_in)) ++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd); ++ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.stall) { ++ handle_hc_stall_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.xacterr) { ++ /* ++ * Must handle xacterr before nak or ack. Could get a xacterr ++ * at the same time as either of these on a BULK/CONTROL OUT ++ * that started with a PING. The xacterr takes precedence. ++ */ ++ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.nyet) { ++ /* ++ * Must handle nyet before nak or ack. Could get a nyet at the ++ * same time as either of those on a BULK/CONTROL OUT that ++ * started with a PING. The nyet takes precedence. ++ */ ++ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.bblerr) { ++ handle_hc_babble_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.frmovrun) { ++ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.nak && !hcintmsk.b.nak) { ++ /* ++ * If nak is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the nak is handled by ++ * the nak interrupt handler, not here. Handle nak here for ++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow ++ * rewinding the buffer pointer. ++ */ ++ handle_hc_nak_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.ack && !hcintmsk.b.ack) { ++ /* ++ * If ack is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the ack is handled by ++ * the ack interrupt handler, not here. Handle ack here for ++ * split transfers. Start splits halt on ACK. ++ */ ++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd); ++ } else { ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * A periodic transfer halted with no other channel ++ * interrupts set. Assume it was halted by the core ++ * because it could not be completed in its scheduled ++ * (micro)frame. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("%s: Halt channel %d (assume incomplete " ++ "periodic transfer)\n", ++ __func__, hc->hc_num); ++#endif ++ halt_channel(hcd, hc, qtd, ++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE); ++ } else { ++ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, " ++ "but reason for halting is unknown, hcint " ++ "0x%08x, intsts 0x%08x\n", ++ __func__, hc->hc_num, hcint.d32, ++ dwc_read_reg32(&hcd->core_if->core_global_regs-> ++ gintsts)); ++ } ++ } ++} ++ ++/** ++ * Handles a host channel Channel Halted interrupt. ++ * ++ * In slave mode, this handler is called only when the driver specifically ++ * requests a halt. This occurs during handling other host channel interrupts ++ * (e.g. nak, xacterr, stall, nyet, etc.). ++ * ++ * In DMA mode, this is the interrupt that occurs when the core has finished ++ * processing a transfer on a channel. Other host channel interrupts (except ++ * ahberr) are disabled in DMA mode. ++ */ ++static int32_t handle_hc_chhltd_intr(struct dwc_otg_hcd *hcd, ++ struct dwc_hc *hc, ++ struct dwc_otg_hc_regs *hc_regs, ++ struct dwc_otg_qtd *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Channel Halted--\n", hc->hc_num); ++ ++ if (hcd->core_if->dma_enable) { ++ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd); ++ } else { ++#ifdef DEBUG ++ if (!halt_status_ok(hcd, hc, hc_regs, qtd)) ++ return 1; ++#endif ++ release_channel(hcd, hc, qtd, hc->halt_status); ++ } ++ ++ return 1; ++} ++ ++/** Handles interrupt for a specific Host Channel */ ++int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd, ++ uint32_t _num) ++{ ++ int retval = 0; ++ union hcint_data hcint; ++ union hcintmsk_data hcintmsk; ++ struct dwc_hc *hc; ++ struct dwc_otg_hc_regs *hc_regs; ++ struct dwc_otg_qtd *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num); ++ ++ hc = dwc_otg_hcd->hc_ptr_array[_num]; ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[_num]; ++ qtd = list_entry(hc->qh->qtd_list.next, struct dwc_otg_qtd, ++ qtd_list_entry); ++ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ DWC_DEBUGPL(DBG_HCDV, ++ " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", ++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); ++ hcint.d32 = hcint.d32 & hcintmsk.d32; ++ ++ if (!dwc_otg_hcd->core_if->dma_enable) { ++ if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) ++ hcint.b.chhltd = 0; ++ } ++ ++ if (hcint.b.xfercomp) { ++ retval |= ++ handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ /* ++ * If NYET occurred at same time as Xfer Complete, the NYET is ++ * handled by the Xfer Complete interrupt handler. Don't want ++ * to call the NYET interrupt handler in this case. ++ */ ++ hcint.b.nyet = 0; ++ } ++ if (hcint.b.chhltd) ++ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.ahberr) ++ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.stall) ++ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.nak) ++ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.ack) ++ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.nyet) ++ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.xacterr) ++ retval |= ++ handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.bblerr) ++ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.frmovrun) ++ retval |= ++ handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ if (hcint.b.datatglerr) ++ retval |= ++ handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c +new file mode 100644 +index 0000000..e4c96f2 +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c +@@ -0,0 +1,695 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/* ++ * ++ * This file contains the functions to manage Queue Heads and Queue ++ * Transfer Descriptors. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++/** ++ * This function allocates and initializes a QH. ++ * ++ * @hcd: The HCD state structure for the DWC OTG controller. ++ * @urb: Holds the information about the device/endpoint that we need ++ * to initialize the QH. ++ * ++ * Returns Returns pointer to the newly allocated QH, or NULL on error. */ ++struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd, ++ struct urb *urb) ++{ ++ struct dwc_otg_qh *qh; ++ ++ /* Allocate memory */ ++ /** @todo add memflags argument */ ++ qh = dwc_otg_hcd_qh_alloc(); ++ if (qh == NULL) ++ return NULL; ++ ++ dwc_otg_hcd_qh_init(hcd, qh, urb); ++ return qh; ++} ++ ++/** Free each QTD in the QH's QTD-list then free the QH. QH should already be ++ * removed from a list. QTD list should already be empty if called from URB ++ * Dequeue. ++ * ++ * @qh: The QH to free. ++ */ ++void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh) ++{ ++ struct dwc_otg_qtd *qtd; ++ struct list_head *pos; ++ ++ /* Free each QTD in the QTD list */ ++ for (pos = qh->qtd_list.next; ++ pos != &qh->qtd_list; pos = qh->qtd_list.next) { ++ list_del(pos); ++ qtd = dwc_list_to_qtd(pos); ++ dwc_otg_hcd_qtd_free(qtd); ++ } ++ ++ kfree(qh); ++ return; ++} ++ ++/** Initializes a QH structure. ++ * ++ * @hcd: The HCD state structure for the DWC OTG controller. ++ * @qh: The QH to init. ++ * @urb: Holds the information about the device/endpoint that we need ++ * to initialize the QH. */ ++#define SCHEDULE_SLOP 10 ++void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh, ++ struct urb *urb) ++{ ++ memset(qh, 0, sizeof(struct dwc_otg_qh)); ++ ++ /* Initialize QH */ ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ qh->ep_type = USB_ENDPOINT_XFER_CONTROL; ++ break; ++ case PIPE_BULK: ++ qh->ep_type = USB_ENDPOINT_XFER_BULK; ++ break; ++ case PIPE_ISOCHRONOUS: ++ qh->ep_type = USB_ENDPOINT_XFER_ISOC; ++ break; ++ case PIPE_INTERRUPT: ++ qh->ep_type = USB_ENDPOINT_XFER_INT; ++ break; ++ } ++ ++ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0; ++ ++ qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ qh->maxp = ++ usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe))); ++ INIT_LIST_HEAD(&qh->qtd_list); ++ INIT_LIST_HEAD(&qh->qh_list_entry); ++ qh->channel = NULL; ++ ++ /* FS/LS Enpoint on HS Hub ++ * NOT virtual root hub */ ++ qh->do_split = 0; ++ if (((urb->dev->speed == USB_SPEED_LOW) || ++ (urb->dev->speed == USB_SPEED_FULL)) && ++ (urb->dev->tt) && (urb->dev->tt->hub->devnum != 1)) { ++ DWC_DEBUGPL(DBG_HCD, ++ "QH init: EP %d: TT found at hub addr %d, for " ++ "port %d\n", ++ usb_pipeendpoint(urb->pipe), ++ urb->dev->tt->hub->devnum, urb->dev->ttport); ++ qh->do_split = 1; ++ } ++ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT || ++ qh->ep_type == USB_ENDPOINT_XFER_ISOC) { ++ /* Compute scheduling parameters once and save them. */ ++ union hprt0_data hprt; ++ ++ /* todo Account for split transfers in the bus time. */ ++ int bytecount = ++ dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp); ++ /* ++ * The results from usb_calc_bus_time are in nanosecs, ++ * so divide the result by 1000 to convert to ++ * microsecs expected by this driver ++ */ ++ qh->usecs = usb_calc_bus_time(urb->dev->speed, ++ usb_pipein(urb->pipe), ++ (qh->ep_type == ++ USB_ENDPOINT_XFER_ISOC), ++ bytecount) / 1000; ++ ++ /* Start in a slightly future (micro)frame. */ ++ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number, ++ SCHEDULE_SLOP); ++ qh->interval = urb->interval; ++#if 0 ++ /* Increase interrupt polling rate for debugging. */ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) ++ qh->interval = 8; ++#endif ++ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0); ++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && ++ ((urb->dev->speed == USB_SPEED_LOW) || ++ (urb->dev->speed == USB_SPEED_FULL))) { ++ qh->interval *= 8; ++ qh->sched_frame |= 0x7; ++ qh->start_split_frame = qh->sched_frame; ++ } ++ ++ } ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n", ++ urb->dev->devnum); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n", ++ usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", ++ ({ ++ char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_LOW: ++ speed = "low"; ++ break; ++ case USB_SPEED_FULL: ++ speed = "full"; ++ break; ++ case USB_SPEED_HIGH: ++ speed = "high"; ++ break; ++ default: ++ speed = "?"; ++ break; ++ } ++ speed; ++ })); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n", ++ ({ ++ char *type; ++ switch (qh->ep_type) { ++ case USB_ENDPOINT_XFER_ISOC: ++ type = "isochronous"; ++ break; ++ case USB_ENDPOINT_XFER_INT: ++ type = "interrupt"; ++ break; ++ case USB_ENDPOINT_XFER_CONTROL: ++ type = "control"; ++ break; ++ case USB_ENDPOINT_XFER_BULK: ++ type = "bulk"; ++ break; ++ default: ++ type = "?"; ++ break; ++ } ++ type; ++ })); ++#ifdef DEBUG ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n", ++ qh->usecs); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n", ++ qh->interval); ++ } ++#endif ++ ++ return; ++} ++ ++/** ++ * Checks that a channel is available for a periodic transfer. ++ * ++ * Returns 0 if successful, negative error code otherise. ++ */ ++static int periodic_channel_available(struct dwc_otg_hcd *hcd) ++{ ++ /* ++ * Currently assuming that there is a dedicated host channnel for each ++ * periodic transaction plus at least one host channel for ++ * non-periodic transactions. ++ */ ++ int status; ++ int num_channels; ++ ++ num_channels = hcd->core_if->core_params->host_channels; ++ if ((hcd->periodic_channels + hcd->non_periodic_channels < ++ num_channels) && (hcd->periodic_channels < num_channels - 1)) { ++ status = 0; ++ } else { ++ DWC_NOTICE ++ ("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n", ++ __func__, num_channels, hcd->periodic_channels, ++ hcd->non_periodic_channels); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Checks that there is sufficient bandwidth for the specified QH in the ++ * periodic schedule. For simplicity, this calculation assumes that all the ++ * transfers in the periodic schedule may occur in the same (micro)frame. ++ * ++ * @hcd: The HCD state structure for the DWC OTG controller. ++ * @qh: QH containing periodic bandwidth required. ++ * ++ * Returns 0 if successful, negative error code otherwise. ++ */ ++static int check_periodic_bandwidth(struct dwc_otg_hcd *hcd, ++ struct dwc_otg_qh *qh) ++{ ++ int status; ++ uint16_t max_claimed_usecs; ++ ++ status = 0; ++ ++ if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) { ++ /* ++ * High speed mode. ++ * Max periodic usecs is 80% x 125 usec = 100 usec. ++ */ ++ max_claimed_usecs = 100 - qh->usecs; ++ } else { ++ /* ++ * Full speed mode. ++ * Max periodic usecs is 90% x 1000 usec = 900 usec. ++ */ ++ max_claimed_usecs = 900 - qh->usecs; ++ } ++ ++ if (hcd->periodic_usecs > max_claimed_usecs) { ++ DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n", ++ __func__, hcd->periodic_usecs, qh->usecs); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Checks that the max transfer size allowed in a host channel is large enough ++ * to handle the maximum data transfer in a single (micro)frame for a periodic ++ * transfer. ++ * ++ * @hcd: The HCD state structure for the DWC OTG controller. ++ * @qh: QH for a periodic endpoint. ++ * ++ * Returns 0 if successful, negative error code otherwise. ++ */ ++static int check_max_xfer_size(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) ++{ ++ int status; ++ uint32_t max_xfer_size; ++ uint32_t max_channel_xfer_size; ++ ++ status = 0; ++ ++ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp); ++ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size; ++ ++ if (max_xfer_size > max_channel_xfer_size) { ++ DWC_NOTICE("%s: Periodic xfer length %d > " ++ "max xfer length for channel %d\n", ++ __func__, max_xfer_size, max_channel_xfer_size); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Schedules an interrupt or isochronous transfer in the periodic schedule. ++ * ++ * @hcd: The HCD state structure for the DWC OTG controller. ++ * @qh: QH for the periodic transfer. The QH should already contain the ++ * scheduling information. ++ * ++ * Returns 0 if successful, negative error code otherwise. ++ */ ++static int schedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) ++{ ++ int status = 0; ++ ++ status = periodic_channel_available(hcd); ++ if (status) { ++ DWC_NOTICE("%s: No host channel available for periodic " ++ "transfer.\n", __func__); ++ return status; ++ } ++ ++ status = check_periodic_bandwidth(hcd, qh); ++ if (status) { ++ DWC_NOTICE("%s: Insufficient periodic bandwidth for " ++ "periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ status = check_max_xfer_size(hcd, qh); ++ if (status) { ++ DWC_NOTICE("%s: Channel max transfer size too small " ++ "for periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive); ++ ++ /* Reserve the periodic channel. */ ++ hcd->periodic_channels++; ++ ++ /* Update claimed usecs per (micro)frame. */ ++ hcd->periodic_usecs += qh->usecs; ++ ++ /* ++ * Update average periodic bandwidth claimed and # periodic ++ * reqs for usbfs. ++ */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated += ++ qh->usecs / qh->interval; ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++; ++ DWC_DEBUGPL(DBG_HCD, ++ "Scheduled intr: qh %p, usecs %d, period %d\n", qh, ++ qh->usecs, qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++; ++ DWC_DEBUGPL(DBG_HCD, ++ "Scheduled isoc: qh %p, usecs %d, period %d\n", qh, ++ qh->usecs, qh->interval); ++ } ++ ++ return status; ++} ++ ++/** ++ * This function adds a QH to either the non periodic or periodic schedule if ++ * it is not already in the schedule. If the QH is already in the schedule, no ++ * action is taken. ++ * ++ * Returns 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) ++{ ++ int status = 0; ++ ++ if (!spin_is_locked(&hcd->global_lock)) { ++ pr_err("%s don't have hcd->global_lock", __func__); ++ BUG(); ++ } ++ ++ if (!list_empty(&qh->qh_list_entry)) { ++ /* QH already in a schedule. */ ++ goto done; ++ } ++ ++ /* Add the new QH to the appropriate schedule */ ++ if (dwc_qh_is_non_per(qh)) { ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&qh->qh_list_entry, ++ &hcd->non_periodic_sched_inactive); ++ } else { ++ status = schedule_periodic(hcd, qh); ++ } ++ ++done: ++ return status; ++} ++ ++/** ++ * Removes an interrupt or isochronous transfer from the periodic schedule. ++ * ++ * @hcd: The HCD state structure for the DWC OTG controller. ++ * @qh: QH for the periodic transfer. ++ */ ++static void deschedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) ++{ ++ list_del_init(&qh->qh_list_entry); ++ ++ /* Release the periodic channel reservation. */ ++ hcd->periodic_channels--; ++ ++ /* Update claimed usecs per (micro)frame. */ ++ hcd->periodic_usecs -= qh->usecs; ++ ++ /* ++ * Update average periodic bandwidth claimed and # periodic ++ * reqs for usbfs. ++ */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -= ++ qh->usecs / qh->interval; ++ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--; ++ DWC_DEBUGPL(DBG_HCD, ++ "Descheduled intr: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--; ++ DWC_DEBUGPL(DBG_HCD, ++ "Descheduled isoc: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } ++} ++ ++/** ++ * Removes a QH from either the non-periodic or periodic schedule. Memory is ++ * not freed. ++ * ++ * @hcd: The HCD state structure. ++ * @qh: QH to remove from schedule. */ ++void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) ++{ ++ if (!spin_is_locked(&hcd->global_lock)) { ++ pr_err("%s don't have hcd->global_lock", __func__); ++ BUG(); ++ } ++ ++ if (list_empty(&qh->qh_list_entry)) { ++ /* QH is not in a schedule. */ ++ goto done; ++ } ++ ++ if (dwc_qh_is_non_per(qh)) { ++ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) { ++ hcd->non_periodic_qh_ptr = ++ hcd->non_periodic_qh_ptr->next; ++ } ++ list_del_init(&qh->qh_list_entry); ++ } else { ++ deschedule_periodic(hcd, qh); ++ } ++ ++done: ++ ; ++} ++ ++/** ++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active ++ * non-periodic schedule. The QH is added to the inactive non-periodic ++ * schedule if any QTDs are still attached to the QH. ++ * ++ * For periodic QHs, the QH is removed from the periodic queued schedule. If ++ * there are any QTDs still attached to the QH, the QH is added to either the ++ * periodic inactive schedule or the periodic ready schedule and its next ++ * scheduled frame is calculated. The QH is placed in the ready schedule if ++ * the scheduled frame has been reached already. Otherwise it's placed in the ++ * inactive schedule. If there are no QTDs attached to the QH, the QH is ++ * completely removed from the periodic schedule. ++ */ ++void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh, ++ int sched_next_periodic_split) ++{ ++ uint16_t frame_number; ++ ++ if (!spin_is_locked(&hcd->global_lock)) { ++ pr_err("%s don't have hcd->global_lock", __func__); ++ BUG(); ++ } ++ ++ if (dwc_qh_is_non_per(qh)) { ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ if (!list_empty(&qh->qtd_list)) ++ /* Add back to inactive non-periodic schedule. */ ++ dwc_otg_hcd_qh_add(hcd, qh); ++ return; ++ } ++ ++ frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd)); ++ ++ if (qh->do_split) { ++ /* Schedule the next continuing periodic split transfer */ ++ if (sched_next_periodic_split) { ++ ++ qh->sched_frame = frame_number; ++ if (dwc_frame_num_le(frame_number, ++ dwc_frame_num_inc(qh->start_split_frame, ++ 1))) { ++ /* ++ * Allow one frame to elapse after ++ * start split microframe before ++ * scheduling complete split, but DONT ++ * if we are doing the next start ++ * split in the same frame for an ISOC ++ * out. ++ */ ++ if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) ++ || (qh->ep_is_in != 0)) { ++ qh->sched_frame = ++ dwc_frame_num_inc(qh->sched_frame, ++ 1); ++ } ++ } ++ } else { ++ qh->sched_frame = ++ dwc_frame_num_inc(qh->start_split_frame, ++ qh->interval); ++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) ++ qh->sched_frame = frame_number; ++ ++ qh->sched_frame |= 0x7; ++ qh->start_split_frame = qh->sched_frame; ++ } ++ } else { ++ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, ++ qh->interval); ++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) ++ qh->sched_frame = frame_number; ++ } ++ ++ if (list_empty(&qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ } else { ++ /* ++ * Remove from periodic_sched_queued and move to ++ * appropriate queue. ++ */ ++ if (qh->sched_frame == frame_number) { ++ list_move(&qh->qh_list_entry, ++ &hcd->periodic_sched_ready); ++ } else { ++ list_move(&qh->qh_list_entry, ++ &hcd->periodic_sched_inactive); ++ } ++ } ++} ++ ++/** ++ * This function allocates and initializes a QTD. ++ * ++ * @urb: The URB to create a QTD from. Each URB-QTD pair will end up ++ * pointing to each other so each pair should have a unique correlation. ++ * ++ * Returns Returns pointer to the newly allocated QTD, or NULL on error. */ ++struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb) ++{ ++ struct dwc_otg_qtd *qtd; ++ ++ qtd = dwc_otg_hcd_qtd_alloc(); ++ if (qtd == NULL) ++ return NULL; ++ ++ dwc_otg_hcd_qtd_init(qtd, urb); ++ return qtd; ++} ++ ++/** ++ * Initializes a QTD structure. ++ * ++ * @qtd: The QTD to initialize. ++ * @urb: The URB to use for initialization. ++ */ ++void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb) ++{ ++ memset(qtd, 0, sizeof(struct dwc_otg_qtd)); ++ qtd->urb = urb; ++ if (usb_pipecontrol(urb->pipe)) { ++ /* ++ * The only time the QTD data toggle is used is on the data ++ * phase of control transfers. This phase always starts with ++ * DATA1. ++ */ ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ qtd->control_phase = DWC_OTG_CONTROL_SETUP; ++ } ++ ++ /* start split */ ++ qtd->complete_split = 0; ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ qtd->isoc_split_offset = 0; ++ ++ /* Store the qtd ptr in the urb to reference what QTD. */ ++ urb->hcpriv = qtd; ++ return; ++} ++ ++/** ++ * This function adds a QTD to the QTD-list of a QH. It will find the correct ++ * QH to place the QTD into. If it does not find a QH, then it will create a ++ * new QH. If the QH to which the QTD is added is not currently scheduled, it ++ * is placed into the proper schedule based on its EP type. ++ * ++ * @qtd: The QTD to add ++ * @dwc_otg_hcd: The DWC HCD structure ++ * ++ * Returns 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd, ++ struct dwc_otg_hcd *dwc_otg_hcd) ++{ ++ struct usb_host_endpoint *ep; ++ struct dwc_otg_qh *qh; ++ int retval = 0; ++ ++ struct urb *urb = qtd->urb; ++ ++ /* ++ * Get the QH which holds the QTD-list to insert to. Create QH if it ++ * doesn't exist. ++ */ ++ ep = dwc_urb_to_endpoint(urb); ++ qh = ep->hcpriv; ++ if (qh == NULL) { ++ qh = dwc_otg_hcd_qh_create(dwc_otg_hcd, urb); ++ if (qh == NULL) { ++ retval = -ENOMEM; ++ goto done; ++ } ++ ep->hcpriv = qh; ++ } ++ qtd->qh = qh; ++ retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh); ++ if (retval == 0) ++ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); ++done: ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_octeon.c b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c +new file mode 100644 +index 0000000..5e92b3c +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c +@@ -0,0 +1,1078 @@ ++/* ========================================================================== ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/types.h> ++#include <linux/stat.h> /* permission constants */ ++#include <linux/platform_device.h> ++#include <linux/io.h> ++ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_attr.h" ++#include "dwc_otg_driver.h" ++#include "dwc_otg_cil.h" ++#ifndef DWC_HOST_ONLY ++#include "dwc_otg_pcd.h" ++#endif ++#include "dwc_otg_hcd.h" ++ ++#define DWC_DRIVER_VERSION "2.40a 10-APR-2006" ++#define DWC_DRIVER_DESC "HS OTG USB Controller driver" ++ ++static const char dwc_driver_name[] = "dwc_otg"; ++int dwc_errata_write_count; /* See dwc_otg_plat.h, dwc_write_reg32 */ ++ ++/*-------------------------------------------------------------------------*/ ++/* Encapsulate the module parameter settings */ ++ ++static struct dwc_otg_core_params dwc_otg_module_params = { ++ .opt = -1, ++ .otg_cap = -1, ++ .dma_enable = -1, ++ .dma_burst_size = -1, ++ .speed = -1, ++ .host_support_fs_ls_low_power = -1, ++ .host_ls_low_power_phy_clk = -1, ++ .enable_dynamic_fifo = -1, ++ .data_fifo_size = -1, ++ .dev_rx_fifo_size = -1, ++ .dev_nperio_tx_fifo_size = -1, ++ .dev_perio_tx_fifo_size = {-1, /* dev_perio_tx_fifo_size_1 */ ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1}, /* 15 */ ++ .host_rx_fifo_size = -1, ++ .host_nperio_tx_fifo_size = -1, ++ .host_perio_tx_fifo_size = -1, ++ .max_transfer_size = -1, ++ .max_packet_count = -1, ++ .host_channels = -1, ++ .dev_endpoints = -1, ++ .phy_type = -1, ++ .phy_utmi_width = -1, ++ .phy_ulpi_ddr = -1, ++ .phy_ulpi_ext_vbus = -1, ++ .i2c_enable = -1, ++ .ulpi_fs_ls = -1, ++ .ts_dline = -1, ++}; ++ ++/** ++ * Global Debug Level Mask. ++ */ ++uint32_t g_dbg_lvl; /* 0 -> OFF */ ++ ++/** ++ * This function shows the Driver Version. ++ */ ++static ssize_t version_show(struct device_driver *dev, char *buf) ++{ ++ return snprintf(buf, sizeof(DWC_DRIVER_VERSION) + 2, "%s\n", ++ DWC_DRIVER_VERSION); ++} ++ ++static DRIVER_ATTR(version, S_IRUGO, version_show, NULL); ++ ++/** ++ * This function is called during module intialization to verify that ++ * the module parameters are in a valid state. ++ */ ++static int check_parameters(struct dwc_otg_core_if *core_if) ++{ ++ int i; ++ int retval = 0; ++ ++/* Checks if the parameter is outside of its valid range of values */ ++#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \ ++ ((dwc_otg_module_params._param_ < (_low_)) || \ ++ (dwc_otg_module_params._param_ > (_high_))) ++ ++/* If the parameter has been set by the user, check that the parameter value is ++ * within the value range of values. If not, report a module error. */ ++#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \ ++ do { \ ++ if (dwc_otg_module_params._param_ != -1) { \ ++ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'\n", \ ++ dwc_otg_module_params._param_, _string_); \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ retval++; \ ++ } \ ++ } \ ++ } while (0) ++ ++ DWC_OTG_PARAM_ERR(opt, 0, 1, "opt"); ++ DWC_OTG_PARAM_ERR(otg_cap, 0, 2, "otg_cap"); ++ DWC_OTG_PARAM_ERR(dma_enable, 0, 1, "dma_enable"); ++ DWC_OTG_PARAM_ERR(speed, 0, 1, "speed"); ++ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power, 0, 1, ++ "host_support_fs_ls_low_power"); ++ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk, 0, 1, ++ "host_ls_low_power_phy_clk"); ++ DWC_OTG_PARAM_ERR(enable_dynamic_fifo, 0, 1, "enable_dynamic_fifo"); ++ DWC_OTG_PARAM_ERR(data_fifo_size, 32, 32768, "data_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_rx_fifo_size, 16, 32768, "dev_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size, 16, 32768, ++ "dev_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_rx_fifo_size, 16, 32768, "host_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size, 16, 32768, ++ "host_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size, 16, 32768, ++ "host_perio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(max_transfer_size, 2047, 524288, "max_transfer_size"); ++ DWC_OTG_PARAM_ERR(max_packet_count, 15, 511, "max_packet_count"); ++ DWC_OTG_PARAM_ERR(host_channels, 1, 16, "host_channels"); ++ DWC_OTG_PARAM_ERR(dev_endpoints, 1, 15, "dev_endpoints"); ++ DWC_OTG_PARAM_ERR(phy_type, 0, 2, "phy_type"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ddr, 0, 1, "phy_ulpi_ddr"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus, 0, 1, "phy_ulpi_ext_vbus"); ++ DWC_OTG_PARAM_ERR(i2c_enable, 0, 1, "i2c_enable"); ++ DWC_OTG_PARAM_ERR(ulpi_fs_ls, 0, 1, "ulpi_fs_ls"); ++ DWC_OTG_PARAM_ERR(ts_dline, 0, 1, "ts_dline"); ++ ++ if (dwc_otg_module_params.dma_burst_size != -1) { ++ if (DWC_OTG_PARAM_TEST(dma_burst_size, 1, 1) && ++ DWC_OTG_PARAM_TEST(dma_burst_size, 4, 4) && ++ DWC_OTG_PARAM_TEST(dma_burst_size, 8, 8) && ++ DWC_OTG_PARAM_TEST(dma_burst_size, 16, 16) && ++ DWC_OTG_PARAM_TEST(dma_burst_size, 32, 32) && ++ DWC_OTG_PARAM_TEST(dma_burst_size, 64, 64) && ++ DWC_OTG_PARAM_TEST(dma_burst_size, 128, 128) && ++ DWC_OTG_PARAM_TEST(dma_burst_size, 256, 256)) { ++ DWC_ERROR ++ ("`%d' invalid for parameter `dma_burst_size'\n", ++ dwc_otg_module_params.dma_burst_size); ++ dwc_otg_module_params.dma_burst_size = 32; ++ retval++; ++ } ++ } ++ ++ if (dwc_otg_module_params.phy_utmi_width != -1) { ++ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) && ++ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) { ++ DWC_ERROR ++ ("`%d' invalid for parameter `phy_utmi_width'\n", ++ dwc_otg_module_params.phy_utmi_width); ++ dwc_otg_module_params.phy_utmi_width = 16; ++ retval++; ++ } ++ } ++ ++ for (i = 0; i < 15; i++) { ++ /* @todo should be like above */ ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != ++ (unsigned)-1) { ++ if (DWC_OTG_PARAM_TEST ++ (dev_perio_tx_fifo_size[i], 4, 768)) { ++ DWC_ERROR ++ ("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params. ++ dev_perio_tx_fifo_size[i], ++ "dev_perio_tx_fifo_size", i); ++ dwc_otg_module_params. ++ dev_perio_tx_fifo_size[i] = ++ dwc_param_dev_perio_tx_fifo_size_default; ++ retval++; ++ } ++ } ++ } ++ ++ /* At this point, all module parameters that have been set by the user ++ * are valid, and those that have not are left unset. Now set their ++ * default values and/or check the parameters against the hardware ++ * configurations of the OTG core. */ ++ ++/* This sets the parameter to the default value if it has not been set by the ++ * user */ ++#define PARAM_SET_DEFAULT(_param_) \ ++ ({ \ ++ int changed = 1; \ ++ if (dwc_otg_module_params._param_ == -1) { \ ++ changed = 0; \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ } \ ++ changed; \ ++ }) ++ ++/* This checks the macro agains the hardware configuration to see if it is ++ * valid. It is possible that the default value could be invalid. In this ++ * case, it will report a module error if the user touched the parameter. ++ * Otherwise it will adjust the value without any error. */ ++#define PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \ ++ ({ \ ++ int changed = PARAM_SET_DEFAULT(_param_); \ ++ int error = 0; \ ++ if (!(_is_valid_)) { \ ++ if (changed) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \ ++ error = 1; \ ++ } \ ++ dwc_otg_module_params._param_ = (_set_valid_); \ ++ } \ ++ error; \ ++ }) ++ ++ /* OTG Cap */ ++ retval += PARAM_CHECK_VALID(otg_cap, "otg_cap", ++ ({ ++ int valid; ++ valid = 1; ++ switch (dwc_otg_module_params.otg_cap) { ++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE: ++ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ++ valid = 0; ++ break; ++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE: ++ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ++ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ++ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ++ && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ++ valid = 0; ++ break; ++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE: ++ /* always valid */ ++ break; ++ } ++ valid; ++ }), ++ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ++ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ++ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ++ || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ++ ? ++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE)); ++ ++ retval += PARAM_CHECK_VALID(dma_enable, "dma_enable", ++ ((dwc_otg_module_params. ++ dma_enable == 1) ++ && (core_if->hwcfg2.b. ++ architecture == 0)) ? 0 : 1, ++ 0); ++ ++ retval += PARAM_CHECK_VALID(opt, "opt", 1, 0); ++ ++ PARAM_SET_DEFAULT(dma_burst_size); ++ ++ retval += PARAM_CHECK_VALID(host_support_fs_ls_low_power, ++ "host_support_fs_ls_low_power", ++ 1, 0); ++ ++ retval += PARAM_CHECK_VALID(enable_dynamic_fifo, ++ "enable_dynamic_fifo", ++ ((dwc_otg_module_params.enable_dynamic_fifo == 0) ++ || (core_if->hwcfg2.b.dynamic_fifo == 1)), 0); ++ ++ retval += PARAM_CHECK_VALID(data_fifo_size, ++ "data_fifo_size", ++ dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth, ++ core_if->hwcfg3.b.dfifo_depth); ++ ++ retval += PARAM_CHECK_VALID(dev_rx_fifo_size, ++ "dev_rx_fifo_size", ++ (dwc_otg_module_params.dev_rx_fifo_size <= ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ retval += PARAM_CHECK_VALID(dev_nperio_tx_fifo_size, ++ "dev_nperio_tx_fifo_size", ++ dwc_otg_module_params.dev_nperio_tx_fifo_size <= ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16), ++ dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16); ++ ++ retval += PARAM_CHECK_VALID(host_rx_fifo_size, ++ "host_rx_fifo_size", ++ dwc_otg_module_params.host_rx_fifo_size <= ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ retval += PARAM_CHECK_VALID(host_nperio_tx_fifo_size, ++ "host_nperio_tx_fifo_size", ++ dwc_otg_module_params.host_nperio_tx_fifo_size <= ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16), ++ dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16); ++ ++ retval += PARAM_CHECK_VALID(host_perio_tx_fifo_size, ++ "host_perio_tx_fifo_size", ++ dwc_otg_module_params.host_perio_tx_fifo_size <= ++ (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16), ++ (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)); ++ ++ retval += PARAM_CHECK_VALID(max_transfer_size, ++ "max_transfer_size", ++ dwc_otg_module_params.max_transfer_size < ++ (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)), ++ (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1); ++ ++ retval += PARAM_CHECK_VALID(max_packet_count, ++ "max_packet_count", ++ dwc_otg_module_params.max_packet_count < ++ (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)), ++ (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1); ++ ++ retval += PARAM_CHECK_VALID(host_channels, ++ "host_channels", ++ dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1), ++ core_if->hwcfg2.b.num_host_chan + 1); ++ ++ retval += PARAM_CHECK_VALID(dev_endpoints, ++ "dev_endpoints", ++ dwc_otg_module_params.dev_endpoints <= core_if->hwcfg2.b.num_dev_ep, ++ core_if->hwcfg2.b.num_dev_ep); ++ ++/* ++ * Define the following to disable the FS PHY Hardware checking. This is for ++ * internal testing only. ++ * ++ * #define NO_FS_PHY_HW_CHECKS ++ */ ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += PARAM_CHECK_VALID(phy_type, "phy_type", 1, 0); ++#else ++ retval += PARAM_CHECK_VALID(phy_type, "phy_type", ++ ({ ++ int valid = 0; ++ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ((core_if->hwcfg2.b.hs_phy_type == 1) || (core_if->hwcfg2.b.hs_phy_type == 3))) ++ valid = 1; ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ((core_if->hwcfg2.b.hs_phy_type == 2) || (core_if->hwcfg2.b.hs_phy_type == 3))) ++ valid = 1; ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && (core_if->hwcfg2.b.fs_phy_type == 1)) ++ valid = 1; ++ valid; ++ }), ++ ({ ++ int set = DWC_PHY_TYPE_PARAM_FS; ++ if (core_if->hwcfg2.b.hs_phy_type) { ++ if ((core_if->hwcfg2.b.hs_phy_type == 3) ++ || (core_if->hwcfg2.b.hs_phy_type == 1)) ++ set = DWC_PHY_TYPE_PARAM_UTMI; ++ else ++ set = DWC_PHY_TYPE_PARAM_ULPI; ++ } ++ set; ++ })); ++#endif ++ ++ retval += PARAM_CHECK_VALID(speed, "speed", ++ dwc_otg_module_params.speed == 0 ++ && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, ++ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0); ++ ++ retval += PARAM_CHECK_VALID(host_ls_low_power_phy_clk, ++ "host_ls_low_power_phy_clk", ++ dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ ++ && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, ++ (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? ++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ); ++ ++ PARAM_SET_DEFAULT(phy_ulpi_ddr); ++ PARAM_SET_DEFAULT(phy_ulpi_ext_vbus); ++ PARAM_SET_DEFAULT(phy_utmi_width); ++ PARAM_SET_DEFAULT(ulpi_fs_ls); ++ PARAM_SET_DEFAULT(ts_dline); ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0); ++#else ++ retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable", ++ dwc_otg_module_params.i2c_enable == 1 ++ && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, 0); ++#endif ++ ++ for (i = 0; i < 15; i++) { ++ ++ int changed = 1; ++ int error = 0; ++ ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = ++ dwc_param_dev_perio_tx_fifo_size_default; ++ } ++ if (! ++ (dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= ++ (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz[i])))) { ++ if (changed) { ++ DWC_ERROR("`%d' invalid for parameter " ++ "`dev_perio_fifo_size_%d'. " ++ "Check HW configuration.\n", ++ dwc_otg_module_params. ++ dev_perio_tx_fifo_size[i], i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = ++ dwc_read_reg32(&core_if->core_global_regs-> ++ dptxfsiz[i]); ++ } ++ retval += error; ++ } ++ ++ return retval; ++} ++ ++/** ++ * This function is the top level interrupt handler for the Common ++ * (Device and host modes) interrupts. ++ */ ++static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev) ++{ ++ struct dwc_otg_device *otg_dev = _dev; ++ int32_t retval = IRQ_NONE; ++ unsigned long flags; ++ ++ spin_lock_irqsave(&otg_dev->hcd->global_lock, flags); ++ ++ retval = dwc_otg_handle_common_intr(otg_dev->core_if); ++ ++ spin_unlock_irqrestore(&otg_dev->hcd->global_lock, flags); ++ ++ return IRQ_RETVAL(retval); ++} ++ ++/** ++ * This function is called when a device is unregistered with the ++ * dwc_otg_driver. This happens, for example, when the rmmod command is ++ * executed. The device may or may not be electrically present. If it is ++ * present, the driver stops device processing. Any resources used on behalf ++ * of this device are freed. ++ * ++ * @dev: ++ */ ++static int dwc_otg_driver_remove(struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ struct dwc_otg_device *otg_dev = dev->platform_data; ++ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, dev); ++ ++ if (otg_dev == NULL) ++ /* Memory allocation for the dwc_otg_device failed. */ ++ return -ENOMEM; ++ ++ /* ++ * Free the IRQ ++ */ ++ if (otg_dev->common_irq_installed) ++ free_irq(platform_get_irq(to_platform_device(dev), 0), otg_dev); ++ ++#ifndef DWC_DEVICE_ONLY ++ if (otg_dev->hcd != NULL) ++ dwc_otg_hcd_remove(dev); ++#endif ++ ++#ifndef DWC_HOST_ONLY ++ if (otg_dev->pcd != NULL) ++ dwc_otg_pcd_remove(dev); ++#endif ++ if (otg_dev->core_if != NULL) ++ dwc_otg_cil_remove(otg_dev->core_if); ++ ++ /* ++ * Remove the device attributes ++ */ ++ dwc_otg_attr_remove(dev); ++ ++ /* ++ * Clear the platform_data pointer. ++ */ ++ dev->platform_data = 0; ++ return 0; ++} ++ ++/** ++ * This function is called when an device is bound to a ++ * dwc_otg_driver. It creates the driver components required to ++ * control the device (CIL, HCD, and PCD) and it initializes the ++ * device. The driver components are stored in a dwc_otg_device ++ * structure. A reference to the dwc_otg_device is saved in the ++ * device. This allows the driver to access the dwc_otg_device ++ * structure on subsequent calls to driver methods for this device. ++ * ++ * @dev: device definition ++ */ ++static __devinit int dwc_otg_driver_probe(struct platform_device *pdev) ++{ ++ struct resource *res_base; ++ struct device *dev = &pdev->dev; ++ struct dwc_otg_device *dwc_otg_device; ++ int32_t snpsid; ++ unsigned long flags; ++ int irq; ++ int retval; ++ ++ dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", dev); ++ ++ dwc_otg_device = devm_kzalloc(&pdev->dev, ++ sizeof(struct dwc_otg_device), ++ GFP_KERNEL); ++ if (!dwc_otg_device) { ++ dev_err(dev, "kmalloc of dwc_otg_device failed\n"); ++ return -ENOMEM; ++ } ++ dwc_otg_device->reg_offset = 0xFFFFFFFF; ++ ++ /* ++ * Map the DWC_otg Core memory into virtual address space. ++ */ ++ res_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (!res_base) ++ goto err_ports; ++ ++ dwc_otg_device->base = ++ devm_ioremap_nocache(&pdev->dev, ++ res_base->start, ++ res_base->end - res_base->start); ++ ++ if (!dwc_otg_device->base) ++ goto err_ports; ++ ++ dev_dbg(dev, "base=%p\n", dwc_otg_device->base); ++ ++ /* ++ * Attempt to ensure this device is really a DWC_otg Controller. ++ * Read and verify the SNPSID register contents. The value should be ++ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX". ++ */ ++ snpsid = ++ dwc_read_reg32((uint32_t *) ((uint8_t *) dwc_otg_device->base + ++ 0x40)); ++ if ((snpsid & 0xFFFFF000) != 0x4F542000) { ++ dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid); ++ goto err_ports; ++ } ++ ++ /* ++ * Initialize driver data to point to the global DWC_otg ++ * Device structure. ++ */ ++ dev->platform_data = dwc_otg_device; ++ dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device); ++ ++ dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base, ++ &dwc_otg_module_params); ++ if (dwc_otg_device->core_if == 0) { ++ dev_err(dev, "CIL initialization failed!\n"); ++ goto err_ports; ++ } ++ dwc_otg_device->core_if->usb_num = to_platform_device(dev)->id; ++ ++ /* ++ * Validate parameter values. ++ */ ++ if (check_parameters(dwc_otg_device->core_if) != 0) ++ goto err_ports; ++ ++ /* ++ * Create Device Attributes in sysfs ++ */ ++ dwc_otg_attr_create(dev); ++ ++ /* ++ * Disable the global interrupt until all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_disable_global_interrupts(dwc_otg_device->core_if); ++ /* ++ * Install the interrupt handler for the common interrupts before ++ * enabling common interrupts in core_init below. ++ */ ++ irq = platform_get_irq(to_platform_device(dev), 0); ++ DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n", irq); ++ retval = request_irq(irq, dwc_otg_common_irq, ++ IRQF_SHARED, "dwc_otg", dwc_otg_device); ++ if (retval != 0) { ++ DWC_ERROR("request of irq%d failed\n", irq); ++ goto err_ports; ++ } else { ++ dwc_otg_device->common_irq_installed = 1; ++ } ++ ++ /* ++ * Initialize the DWC_otg core. ++ */ ++ dwc_otg_core_init(dwc_otg_device->core_if); ++ ++#ifndef DWC_HOST_ONLY ++ /* ++ * Initialize the PCD ++ */ ++ retval = dwc_otg_pcd_init(dev); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_pcd_init failed\n"); ++ dwc_otg_device->pcd = NULL; ++ goto err_ports; ++ } ++#endif ++#ifndef DWC_DEVICE_ONLY ++ /* ++ * Initialize the HCD ++ */ ++ retval = dwc_otg_hcd_init(dev); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_hcd_init failed\n"); ++ dwc_otg_device->hcd = NULL; ++ goto err_ports; ++ } ++#endif ++ ++ /* ++ * Enable the global interrupt after all the interrupt ++ * handlers are installed. ++ */ ++ local_irq_save(flags); ++ dwc_otg_enable_global_interrupts(dwc_otg_device->core_if); ++ local_irq_restore(flags); ++ ++ return 0; ++ ++err_ports: ++ devm_kfree(&pdev->dev, dwc_otg_device); ++ return -ENOENT; ++} ++ ++/** ++ * This structure defines the methods to be called by a bus driver ++ * during the lifecycle of a device on that bus. Both drivers and ++ * devices are registered with a bus driver. The bus driver matches ++ * devices to drivers based on information in the device and driver ++ * structures. ++ * ++ * The probe function is called when the bus driver matches a device ++ * to this driver. The remove function is called when a device is ++ * unregistered with the bus driver. ++ */ ++static struct platform_driver dwc_otg_driver = { ++ .probe = dwc_otg_driver_probe, ++ .remove = dwc_otg_driver_remove, ++ .driver = { ++ .name = dwc_driver_name, ++ .owner = THIS_MODULE}, ++}; ++ ++/** ++ * This function is called when the dwc_otg_driver is installed with the ++ * insmod command. It registers the dwc_otg_driver structure with the ++ * appropriate bus driver. This will cause the dwc_otg_driver_probe function ++ * to be called. In addition, the bus driver will automatically expose ++ * attributes defined for the device and driver in the special sysfs file ++ * system. ++ * ++ * Returns ++ */ ++static int __init dwc_otg_driver_init(void) ++{ ++ int retval; ++ ++ pr_info("%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION); ++ ++ /* Though core was configured for external dma override that with slave ++ mode only for CN31XX. DMA is broken in this chip */ ++ if (OCTEON_IS_MODEL(OCTEON_CN31XX)) ++ dwc_otg_module_params.dma_enable = 0; ++ ++ retval = platform_driver_register(&dwc_otg_driver); ++ ++ if (retval < 0) { ++ pr_err("%s retval=%d\n", __func__, retval); ++ return retval; ++ } ++ if (driver_create_file(&dwc_otg_driver.driver, &driver_attr_version)) ++ pr_warning("DWC_OTG: Failed to create driver version file\n"); ++ ++ return retval; ++} ++module_init(dwc_otg_driver_init); ++ ++/** ++ * This function is called when the driver is removed from the kernel ++ * with the rmmod command. The driver unregisters itself with its bus ++ * driver. ++ * ++ */ ++static void __exit dwc_otg_driver_cleanup(void) ++{ ++ printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n"); ++ ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version); ++ ++ platform_driver_unregister(&dwc_otg_driver); ++ ++ printk(KERN_INFO "%s module removed\n", dwc_driver_name); ++} ++module_exit(dwc_otg_driver_cleanup); ++ ++MODULE_DESCRIPTION(DWC_DRIVER_DESC); ++MODULE_AUTHOR("Synopsys Inc."); ++MODULE_LICENSE("GPL"); ++ ++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444); ++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None"); ++module_param_named(opt, dwc_otg_module_params.opt, int, 0444); ++MODULE_PARM_DESC(opt, "OPT Mode"); ++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444); ++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled"); ++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, ++ 0444); ++MODULE_PARM_DESC(dma_burst_size, ++ "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256"); ++module_param_named(speed, dwc_otg_module_params.speed, int, 0444); ++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed"); ++module_param_named(host_support_fs_ls_low_power, ++ dwc_otg_module_params.host_support_fs_ls_low_power, int, ++ 0444); ++MODULE_PARM_DESC(host_support_fs_ls_low_power, ++ "Support Low Power w/FS or LS 0=Support 1=Don't Support"); ++module_param_named(host_ls_low_power_phy_clk, ++ dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444); ++MODULE_PARM_DESC(host_ls_low_power_phy_clk, ++ "Low Speed Low Power Clock 0=48Mhz 1=6Mhz"); ++module_param_named(enable_dynamic_fifo, ++ dwc_otg_module_params.enable_dynamic_fifo, int, 0444); ++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing"); ++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, ++ 0444); ++MODULE_PARM_DESC(data_fifo_size, ++ "Total number of words in the data FIFO memory 32-32768"); ++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, ++ int, 0444); ++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(dev_nperio_tx_fifo_size, ++ dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_nperio_tx_fifo_size, ++ "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(dev_perio_tx_fifo_size_1, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_2, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_3, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_4, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_5, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_6, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_7, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_8, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_9, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_10, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_11, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_12, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_13, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_14, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_15, ++ dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, ++ "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, ++ int, 0444); ++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(host_nperio_tx_fifo_size, ++ dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_nperio_tx_fifo_size, ++ "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(host_perio_tx_fifo_size, ++ dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_perio_tx_fifo_size, ++ "Number of words in the host periodic Tx FIFO 16-32768"); ++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, ++ int, 0444); ++/** @todo Set the max to 512K, modify checks */ ++MODULE_PARM_DESC(max_transfer_size, ++ "The maximum transfer size supported in bytes 2047-65535"); ++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, ++ int, 0444); ++MODULE_PARM_DESC(max_packet_count, ++ "The maximum number of packets in a transfer 15-511"); ++module_param_named(host_channels, dwc_otg_module_params.host_channels, int, ++ 0444); ++MODULE_PARM_DESC(host_channels, ++ "The number of host channel registers to use 1-16"); ++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, ++ 0444); ++MODULE_PARM_DESC(dev_endpoints, ++ "The number of endpoints in addition to EP0 available " ++ "for device mode 1-15"); ++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444); ++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI"); ++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, ++ 0444); ++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits"); ++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ddr, ++ "ULPI at double or single data rate 0=Single 1=Double"); ++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, ++ int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ext_vbus, ++ "ULPI PHY using internal or external vbus 0=Internal"); ++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444); ++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface"); ++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444); ++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only"); ++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444); ++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs"); ++module_param_named(debug, g_dbg_lvl, int, 0644); ++MODULE_PARM_DESC(debug, ""); ++ ++/** @page "Module Parameters" ++ * ++ * The following parameters may be specified when starting the module. ++ * These parameters define how the DWC_otg controller should be ++ * configured. Parameter values are passed to the CIL initialization ++ * function dwc_otg_cil_init ++ * ++ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code> ++ * ++ ++ <table> ++ <tr><td>Parameter Name</td><td>Meaning</td></tr> ++ ++ <tr> ++ <td>otg_cap</td> ++ <td>Specifies the OTG capabilities. The driver will automatically detect the ++ value for this parameter if none is specified. ++ - 0: HNP and SRP capable (default, if available) ++ - 1: SRP Only capable ++ - 2: No HNP/SRP capable ++ </td></tr> ++ ++ <tr> ++ <td>dma_enable</td> ++ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs. ++ The driver will automatically detect the value for this parameter if none is ++ specified. ++ - 0: Slave ++ - 1: DMA (default, if available) ++ </td></tr> ++ ++ <tr> ++ <td>dma_burst_size</td> ++ <td>The DMA Burst size (applicable only for External DMA Mode). ++ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++ </td></tr> ++ ++ <tr> ++ <td>speed</td> ++ <td>Specifies the maximum speed of operation in host and device mode. The ++ actual speed depends on the speed of the attached device and the value of ++ phy_type. ++ - 0: High Speed (default) ++ - 1: Full Speed ++ </td></tr> ++ ++ <tr> ++ <td>host_support_fs_ls_low_power</td> ++ <td>Specifies whether low power mode is supported when attached to a Full ++ Speed or Low Speed device in host mode. ++ - 0: Don't support low power mode (default) ++ - 1: Support low power mode ++ </td></tr> ++ ++ <tr> ++ <td>host_ls_low_power_phy_clk</td> ++ <td>Specifies the PHY clock rate in low power mode when connected to a Low ++ Speed device in host mode. This parameter is applicable only if ++ HOST_SUPPORT_FS_LS_LOW_POWER is enabled. ++ - 0: 48 MHz (default) ++ - 1: 6 MHz ++ </td></tr> ++ ++ <tr> ++ <td>enable_dynamic_fifo</td> ++ <td> Specifies whether FIFOs may be resized by the driver software. ++ - 0: Use cC FIFO size parameters ++ - 1: Allow dynamic FIFO sizing (default) ++ </td></tr> ++ ++ <tr> ++ <td>data_fifo_size</td> ++ <td>Total number of 4-byte words in the data FIFO memory. This memory ++ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs. ++ - Values: 32 to 32768 (default 8192) ++ ++ Note: The total FIFO memory depth in the FPGA configuration is 8192. ++ </td></tr> ++ ++ <tr> ++ <td>dev_rx_fifo_size</td> ++ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic ++ FIFO sizing is enabled. ++ - Values: 16 to 32768 (default 1064) ++ </td></tr> ++ ++ <tr> ++ <td>dev_nperio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when ++ dynamic FIFO sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td> ++ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode ++ when dynamic FIFO sizing is enabled. ++ - Values: 4 to 768 (default 256) ++ </td></tr> ++ ++ <tr> ++ <td>host_rx_fifo_size</td> ++ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO ++ sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>host_nperio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when ++ dynamic FIFO sizing is enabled in the core. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>host_perio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO ++ sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>max_transfer_size</td> ++ <td>The maximum transfer size supported in bytes. ++ - Values: 2047 to 65,535 (default 65,535) ++ </td></tr> ++ ++ <tr> ++ <td>max_packet_count</td> ++ <td>The maximum number of packets in a transfer. ++ - Values: 15 to 511 (default 511) ++ </td></tr> ++ ++ <tr> ++ <td>host_channels</td> ++ <td>The number of host channel registers to use. ++ - Values: 1 to 16 (default 12) ++ ++ Note: The FPGA configuration supports a maximum of 12 host channels. ++ </td></tr> ++ ++ <tr> ++ <td>dev_endpoints</td> ++ <td>The number of endpoints in addition to EP0 available for device mode ++ operations. ++ - Values: 1 to 15 (default 6 IN and OUT) ++ ++ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in ++ addition to EP0. ++ </td></tr> ++ ++ <tr> ++ <td>phy_type</td> ++ <td>Specifies the type of PHY interface to use. By default, the driver will ++ automatically detect the phy_type. ++ - 0: Full Speed ++ - 1: UTMI+ (default, if available) ++ - 2: ULPI ++ </td></tr> ++ ++ <tr> ++ <td>phy_utmi_width</td> ++ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a ++ phy_type of UTMI+. Also, this parameter is applicable only if the ++ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the ++ core has been configured to work at either data path width. ++ - Values: 8 or 16 bits (default 16) ++ </td></tr> ++ ++ <tr> ++ <td>phy_ulpi_ddr</td> ++ <td>Specifies whether the ULPI operates at double or single data rate. This ++ parameter is only applicable if phy_type is ULPI. ++ - 0: single data rate ULPI interface with 8 bit wide data bus (default) ++ - 1: double data rate ULPI interface with 4 bit wide data bus ++ </td></tr> ++ ++ <tr> ++ <td>i2c_enable</td> ++ <td>Specifies whether to use the I2C interface for full speed PHY. This ++ parameter is only applicable if PHY_TYPE is FS. ++ - 0: Disabled (default) ++ - 1: Enabled ++ </td></tr> ++ ++*/ +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_plat.h b/drivers/usb/host/dwc_otg/dwc_otg_plat.h +new file mode 100644 +index 0000000..93ef282 +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_plat.h +@@ -0,0 +1,236 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_PLAT_H__) ++#define __DWC_OTG_PLAT_H__ ++ ++#include <linux/types.h> ++#include <linux/slab.h> ++#include <linux/list.h> ++#include <linux/delay.h> ++#include <linux/device.h> ++#include <linux/io.h> ++ ++#include <asm/octeon/octeon.h> ++#include <asm/octeon/cvmx-usbnx-defs.h> ++ ++#define SZ_256K 0x00040000 ++#ifndef CONFIG_64BIT ++#define OCTEON_USB_BASE_ADDRESS 0x80016F0010000000ull ++#endif ++ ++/** ++ * @file ++ * ++ * This file contains the Platform Specific constants, interfaces ++ * (functions and macros) for Linux. ++ * ++ */ ++ ++/** ++ * Reads the content of a register. ++ * ++ * @_reg: address of register to read. ++ * Returns contents of the register. ++ * ++ ++ * Usage:<br> ++ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code> ++ */ ++static inline uint32_t dwc_read_reg32(uint32_t *_reg) ++{ ++ uint32_t result; ++ /* USB device registers on Octeon are 32bit address swapped */ ++#ifdef CONFIG_64BIT ++ uint64_t address = (unsigned long)_reg ^ 4; ++#else ++ uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4); ++#endif ++ result = cvmx_read64_uint32(address); ++ return result; ++}; ++ ++/** ++ * Writes a register with a 32 bit value. ++ * ++ * @_reg: address of register to read. ++ * @_value: to write to _reg. ++ * ++ * Usage:<br> ++ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code> ++ */ ++static inline void dwc_write_reg32(uint32_t *_reg, ++ const uint32_t _value) ++{ ++ /* USB device registers on Octeon are 32bit address swapped */ ++#ifdef CONFIG_64BIT ++ uint64_t address = (unsigned long)_reg ^ 4; ++#else ++ uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4); ++#endif ++ wmb(); ++ cvmx_write64_uint32(address, _value); ++ ++#ifdef CONFIG_CPU_CAVIUM_OCTEON ++ /* O2P/O1P pass 1 bug workaround: A read must occur for at least ++ every 3rd write to insure that the writes do not overrun the ++ USBN. */ ++ if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN30XX)) { ++ extern int dwc_errata_write_count; ++ if (++dwc_errata_write_count > 2) { ++ cvmx_read_csr(CVMX_USBNX_DMA0_INB_CHN0(0)); ++ dwc_errata_write_count = 0; ++ } ++ } ++#endif ++}; ++ ++/** ++ * This function modifies bit values in a register. Using the ++ * algorithm: (reg_contents & ~clear_mask) | set_mask. ++ * ++ * @_reg: address of register to read. ++ * @_clear_mask: bit mask to be cleared. ++ * @_set_mask: bit mask to be set. ++ * ++ * Usage:<br> ++ * <code> // Clear the SOF Interrupt Mask bit and <br> ++ * // set the OTG Interrupt mask bit, leaving all others as they were. ++ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code> ++ */ ++static inline void dwc_modify_reg32(uint32_t *_reg, ++ const uint32_t _clear_mask, ++ const uint32_t _set_mask) ++{ ++ uint32_t value = dwc_read_reg32(_reg); ++ value &= ~_clear_mask; ++ value |= _set_mask; ++ dwc_write_reg32(_reg, value); ++}; ++ ++/* ++ * Debugging support vanishes in non-debug builds. ++ */ ++ ++/** ++ * The Debug Level bit-mask variable. ++ */ ++extern uint32_t g_dbg_lvl; ++/** ++ * Set the Debug Level variable. ++ */ ++static inline uint32_t SET_DEBUG_LEVEL(const uint32_t _new) ++{ ++ uint32_t old = g_dbg_lvl; ++ g_dbg_lvl = _new; ++ return old; ++} ++ ++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */ ++#define DBG_CIL (0x2) ++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug ++ * messages */ ++#define DBG_CILV (0x20) ++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug ++ * messages */ ++#define DBG_PCD (0x4) ++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug ++ * messages */ ++#define DBG_PCDV (0x40) ++/** When debug level has the DBG_HCD bit set, display Host debug messages */ ++#define DBG_HCD (0x8) ++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug ++ * messages */ ++#define DBG_HCDV (0x80) ++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host ++ * mode. */ ++#define DBG_HCD_URB (0x800) ++ ++/** When debug level has any bit set, display debug messages */ ++#define DBG_ANY (0xFF) ++ ++/** All debug messages off */ ++#define DBG_OFF 0 ++ ++/** Prefix string for DWC_DEBUG print macros. */ ++#define USB_DWC "DWC_otg: " ++ ++/** ++ * Print a debug message when the Global debug level variable contains ++ * the bit defined in <code>lvl</code>. ++ * ++ * @lvl: - Debug level, use one of the DBG_ constants above. ++ * @x: - like printf ++ * ++ * Example:<p> ++ * <code> ++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr); ++ * </code> ++ * <br> ++ * results in:<br> ++ * <code> ++ * usb-DWC_otg: dwc_otg_cil_init(ca867000) ++ * </code> ++ */ ++#ifdef DEBUG ++ ++# define DWC_DEBUGPL(lvl, x...) \ ++ do { \ ++ if ((lvl)&g_dbg_lvl) \ ++ printk(KERN_DEBUG USB_DWC x); \ ++ } while (0) ++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x) ++ ++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl) ++ ++#else ++ ++# define DWC_DEBUGPL(lvl, x...) do { } while (0) ++# define DWC_DEBUGP(x...) ++ ++# define CHK_DEBUG_LEVEL(level) (0) ++ ++#endif /*DEBUG*/ ++/* ++ * Print an Error message. ++ */ ++#define DWC_ERROR(x...) printk(KERN_ERR USB_DWC x) ++/* ++ * Print a Warning message. ++ */ ++#define DWC_WARN(x...) printk(KERN_WARNING USB_DWC x) ++/* ++ * Print a notice (normal but significant message). ++ */ ++#define DWC_NOTICE(x...) printk(KERN_NOTICE USB_DWC x) ++/* ++ * Basic message printing. ++ */ ++#define DWC_PRINT(x...) printk(KERN_INFO USB_DWC x) ++#endif +diff --git a/drivers/usb/host/dwc_otg/dwc_otg_regs.h b/drivers/usb/host/dwc_otg/dwc_otg_regs.h +new file mode 100644 +index 0000000..34cc4f7 +--- /dev/null ++++ b/drivers/usb/host/dwc_otg/dwc_otg_regs.h +@@ -0,0 +1,2355 @@ ++/* ========================================================================== ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#ifndef __DWC_OTG_REGS_H__ ++#define __DWC_OTG_REGS_H__ ++ ++/* ++ * ++ * This file contains the data structures for accessing the DWC_otg ++ * core registers. ++ * ++ * The application interfaces with the HS OTG core by reading from and ++ * writing to the Control and Status Register (CSR) space through the ++ * AHB Slave interface. These registers are 32 bits wide, and the ++ * addresses are 32-bit-block aligned. ++ * CSRs are classified as follows: ++ * - Core Global Registers ++ * - Device Mode Registers ++ * - Device Global Registers ++ * - Device Endpoint Specific Registers ++ * - Host Mode Registers ++ * - Host Global Registers ++ * - Host Port CSRs ++ * - Host Channel Specific Registers ++ * ++ * Only the Core Global registers can be accessed in both Device and ++ * Host modes. When the HS OTG core is operating in one mode, either ++ * Device or Host, the application must not access registers from the ++ * other mode. When the core switches from one mode to another, the ++ * registers in the new mode of operation must be reprogrammed as they ++ * would be after a power-on reset. ++ */ ++ ++/****************************************************************************/ ++/* DWC_otg Core registers . ++ * The dwc_otg_core_global_regs structure defines the size ++ * and relative field offsets for the Core Global registers. ++ */ ++struct dwc_otg_core_global_regs { ++ /* OTG Control and Status Register. Offset: 000h */ ++ uint32_t gotgctl; ++ /* OTG Interrupt Register. Offset: 004h */ ++ uint32_t gotgint; ++ /* Core AHB Configuration Register. Offset: 008h */ ++ uint32_t gahbcfg; ++#define DWC_GLBINTRMASK 0x0001 ++#define DWC_DMAENABLE 0x0020 ++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080 ++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000 ++#define DWC_PTXEMPTYLVL_EMPTY 0x0100 ++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000 ++ ++ /* Core USB Configuration Register. Offset: 00Ch */ ++ uint32_t gusbcfg; ++ /* Core Reset Register. Offset: 010h */ ++ uint32_t grstctl; ++ /* Core Interrupt Register. Offset: 014h */ ++ uint32_t gintsts; ++ /* Core Interrupt Mask Register. Offset: 018h */ ++ uint32_t gintmsk; ++ /* Receive Status Queue Read Register (Read Only). Offset: 01Ch */ ++ uint32_t grxstsr; ++ /* Receive Status Queue Read & POP Register (Read Only). Offset: 020h*/ ++ uint32_t grxstsp; ++ /* Receive FIFO Size Register. Offset: 024h */ ++ uint32_t grxfsiz; ++ /* Non Periodic Transmit FIFO Size Register. Offset: 028h */ ++ uint32_t gnptxfsiz; ++ /* ++ *Non Periodic Transmit FIFO/Queue Status Register (Read ++ * Only). Offset: 02Ch ++ */ ++ uint32_t gnptxsts; ++ /* I2C Access Register. Offset: 030h */ ++ uint32_t gi2cctl; ++ /* PHY Vendor Control Register. Offset: 034h */ ++ uint32_t gpvndctl; ++ /* General Purpose Input/Output Register. Offset: 038h */ ++ uint32_t ggpio; ++ /* User ID Register. Offset: 03Ch */ ++ uint32_t guid; ++ /* Synopsys ID Register (Read Only). Offset: 040h */ ++ uint32_t gsnpsid; ++ /* User HW Config1 Register (Read Only). Offset: 044h */ ++ uint32_t ghwcfg1; ++ /* User HW Config2 Register (Read Only). Offset: 048h */ ++ uint32_t ghwcfg2; ++#define DWC_SLAVE_ONLY_ARCH 0 ++#define DWC_EXT_DMA_ARCH 1 ++#define DWC_INT_DMA_ARCH 2 ++ ++#define DWC_MODE_HNP_SRP_CAPABLE 0 ++#define DWC_MODE_SRP_ONLY_CAPABLE 1 ++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2 ++#define DWC_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6 ++ ++ /* User HW Config3 Register (Read Only). Offset: 04Ch */ ++ uint32_t ghwcfg3; ++ /* User HW Config4 Register (Read Only). Offset: 050h*/ ++ uint32_t ghwcfg4; ++ /* Reserved Offset: 054h-0FFh */ ++ uint32_t reserved[43]; ++ /* Host Periodic Transmit FIFO Size Register. Offset: 100h */ ++ uint32_t hptxfsiz; ++ /* ++ * Device Periodic Transmit FIFO#n Register. ++ * Offset: 104h + (FIFO_Number-1)*04h, ++ * 1 <= FIFO Number <= 15 (1<=n<=15). ++ */ ++ uint32_t dptxfsiz[15]; ++}; ++ ++/* ++ * This union represents the bit fields of the Core OTG Control ++ * and Status Register (GOTGCTL). Set the bits using the bit ++ * fields then write the d32 value to the register. ++ */ ++union gotgctl_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved21_31:11; ++ unsigned currmod:1; ++ unsigned bsesvld:1; ++ unsigned asesvld:1; ++ unsigned reserved17:1; ++ unsigned conidsts:1; ++ unsigned reserved12_15:4; ++ unsigned devhnpen:1; ++ unsigned hstsethnpen:1; ++ unsigned hnpreq:1; ++ unsigned hstnegscs:1; ++ unsigned reserved2_7:6; ++ unsigned sesreq:1; ++ unsigned sesreqscs:1; ++#else ++ unsigned sesreqscs:1; ++ unsigned sesreq:1; ++ unsigned reserved2_7:6; ++ unsigned hstnegscs:1; ++ unsigned hnpreq:1; ++ unsigned hstsethnpen:1; ++ unsigned devhnpen:1; ++ unsigned reserved12_15:4; ++ unsigned conidsts:1; ++ unsigned reserved17:1; ++ unsigned asesvld:1; ++ unsigned bsesvld:1; ++ unsigned currmod:1; ++ unsigned reserved21_31:11; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields of the Core OTG Interrupt Register ++ * (GOTGINT). Set/clear the bits using the bit fields then write the d32 ++ * value to the register. ++ */ ++union gotgint_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved31_20:12; ++ unsigned debdone:1; ++ unsigned adevtoutchng:1; ++ unsigned hstnegdet:1; ++ unsigned reserver10_16:7; ++ unsigned hstnegsucstschng:1; ++ unsigned sesreqsucstschng:1; ++ unsigned reserved3_7:5; ++ unsigned sesenddet:1; ++ unsigned reserved0_1:2; ++#else ++ ++ /* Current Mode */ ++ unsigned reserved0_1:2; ++ ++ /* Session End Detected */ ++ unsigned sesenddet:1; ++ ++ unsigned reserved3_7:5; ++ ++ /* Session Request Success Status Change */ ++ unsigned sesreqsucstschng:1; ++ /* Host Negotiation Success Status Change */ ++ unsigned hstnegsucstschng:1; ++ ++ unsigned reserver10_16:7; ++ ++ /* Host Negotiation Detected */ ++ unsigned hstnegdet:1; ++ /* A-Device Timeout Change */ ++ unsigned adevtoutchng:1; ++ /* Debounce Done */ ++ unsigned debdone:1; ++ ++ unsigned reserved31_20:12; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields of the Core AHB Configuration ++ * Register (GAHBCFG). Set/clear the bits using the bit fields then ++ * write the d32 value to the register. ++ */ ++union gahbcfg_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0 ++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1 ++#define DWC_GAHBCFG_DMAENABLE 1 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1 ++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0 ++#define DWC_GAHBCFG_GLBINT_ENABLE 1 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved9_31:23; ++ unsigned ptxfemplvl:1; ++ unsigned nptxfemplvl:1; ++ unsigned reserved:1; ++ unsigned dmaenable:1; ++ unsigned hburstlen:4; ++ unsigned glblintrmsk:1; ++#else ++ unsigned glblintrmsk:1; ++ unsigned hburstlen:4; ++ unsigned dmaenable:1; ++ unsigned reserved:1; ++ unsigned nptxfemplvl:1; ++ unsigned ptxfemplvl:1; ++ unsigned reserved9_31:23; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields of the Core USB Configuration ++ * Register (GUSBCFG). Set the bits using the bit fields then write ++ * the d32 value to the register. ++ */ ++union gusbcfg_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:9; ++ unsigned term_sel_dl_pulse:1; ++ unsigned ulpi_int_vbus_indicator:1; ++ unsigned ulpi_ext_vbus_drv:1; ++ unsigned ulpi_clk_sus_m:1; ++ unsigned ulpi_auto_res:1; ++ unsigned ulpi_fsls:1; ++ unsigned otgutmifssel:1; ++ unsigned phylpwrclksel:1; ++ unsigned nptxfrwnden:1; ++ unsigned usbtrdtim:4; ++ unsigned hnpcap:1; ++ unsigned srpcap:1; ++ unsigned ddrsel:1; ++ unsigned physel:1; ++ unsigned fsintf:1; ++ unsigned ulpi_utmi_sel:1; ++ unsigned phyif:1; ++ unsigned toutcal:3; ++#else ++ unsigned toutcal:3; ++ unsigned phyif:1; ++ unsigned ulpi_utmi_sel:1; ++ unsigned fsintf:1; ++ unsigned physel:1; ++ unsigned ddrsel:1; ++ unsigned srpcap:1; ++ unsigned hnpcap:1; ++ unsigned usbtrdtim:4; ++ unsigned nptxfrwnden:1; ++ unsigned phylpwrclksel:1; ++ unsigned otgutmifssel:1; ++ unsigned ulpi_fsls:1; ++ unsigned ulpi_auto_res:1; ++ unsigned ulpi_clk_sus_m:1; ++ unsigned ulpi_ext_vbus_drv:1; ++ unsigned ulpi_int_vbus_indicator:1; ++ unsigned term_sel_dl_pulse:1; ++ unsigned reserved:9; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields of the Core Reset Register ++ * (GRSTCTL). Set/clear the bits using the bit fields then write the ++ * d32 value to the register. ++ */ ++union grstctl_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned ahbidle:1; ++ unsigned dmareq:1; ++ unsigned reserved11_29:19; ++ unsigned txfnum:5; ++ unsigned txfflsh:1; ++ unsigned rxfflsh:1; ++ unsigned intknqflsh:1; ++ unsigned hstfrm:1; ++ unsigned hsftrst:1; ++ unsigned csftrst:1; ++#else ++ ++ /* ++ * Core Soft Reset (CSftRst) (Device and Host) ++ * ++ * The application can flush the control logic in the ++ * entire core using this bit. This bit resets the ++ * pipelines in the AHB Clock domain as well as the ++ * PHY Clock domain. ++ * ++ * The state machines are reset to an IDLE state, the ++ * control bits in the CSRs are cleared, all the ++ * transmit FIFOs and the receive FIFO are flushed. ++ * ++ * The status mask bits that control the generation of ++ * the interrupt, are cleared, to clear the ++ * interrupt. The interrupt status bits are not ++ * cleared, so the application can get the status of ++ * any events that occurred in the core after it has ++ * set this bit. ++ * ++ * Any transactions on the AHB are terminated as soon ++ * as possible following the protocol. Any ++ * transactions on the USB are terminated immediately. ++ * ++ * The configuration settings in the CSRs are ++ * unchanged, so the software doesn't have to ++ * reprogram these registers (Device ++ * Configuration/Host Configuration/Core System ++ * Configuration/Core PHY Configuration). ++ * ++ * The application can write to this bit, any time it ++ * wants to reset the core. This is a self clearing ++ * bit and the core clears this bit after all the ++ * necessary logic is reset in the core, which may ++ * take several clocks, depending on the current state ++ * of the core. ++ */ ++ unsigned csftrst:1; ++ /* ++ * Hclk Soft Reset ++ * ++ * The application uses this bit to reset the control logic in ++ * the AHB clock domain. Only AHB clock domain pipelines are ++ * reset. ++ */ ++ unsigned hsftrst:1; ++ /* ++ * Host Frame Counter Reset (Host Only)<br> ++ * ++ * The application can reset the (micro)frame number ++ * counter inside the core, using this bit. When the ++ * (micro)frame counter is reset, the subsequent SOF ++ * sent out by the core, will have a (micro)frame ++ * number of 0. ++ */ ++ unsigned hstfrm:1; ++ /* ++ * In Token Sequence Learning Queue Flush ++ * (INTknQFlsh) (Device Only) ++ */ ++ unsigned intknqflsh:1; ++ /* ++ * RxFIFO Flush (RxFFlsh) (Device and Host) ++ * ++ * The application can flush the entire Receive FIFO ++ * using this bit. <p>The application must first ++ * ensure that the core is not in the middle of a ++ * transaction. <p>The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is reading from the RxFIFO nor the MAC ++ * is writing the data in to the FIFO. <p>The ++ * application should wait until the bit is cleared ++ * before performing any other operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned rxfflsh:1; ++ /* ++ * TxFIFO Flush (TxFFlsh) (Device and Host). ++ * ++ * This bit is used to selectively flush a single or ++ * all transmit FIFOs. The application must first ++ * ensure that the core is not in the middle of a ++ * transaction. <p>The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is writing into the TxFIFO nor the MAC ++ * is reading the data out of the FIFO. <p>The ++ * application should wait until the core clears this ++ * bit, before performing any operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned txfflsh:1; ++ ++ /* ++ * TxFIFO Number (TxFNum) (Device and Host). ++ * ++ * This is the FIFO number which needs to be flushed, ++ * using the TxFIFO Flush bit. This field should not ++ * be changed until the TxFIFO Flush bit is cleared by ++ * the core. ++ * - 0x0:Non Periodic TxFIFO Flush ++ * - 0x1:Periodic TxFIFO #1 Flush in device mode ++ * or Periodic TxFIFO in host mode ++ * - 0x2:Periodic TxFIFO #2 Flush in device mode. ++ * - ... ++ * - 0xF:Periodic TxFIFO #15 Flush in device mode ++ * - 0x10: Flush all the Transmit NonPeriodic and ++ * Transmit Periodic FIFOs in the core ++ */ ++ unsigned txfnum:5; ++ /* Reserved */ ++ unsigned reserved11_29:19; ++ /* ++ * DMA Request Signal. Indicated DMA request is in ++ * probress. Used for debug purpose. ++ */ ++ unsigned dmareq:1; ++ /* ++ * AHB Master Idle. Indicates the AHB Master State ++ * Machine is in IDLE condition. ++ */ ++ unsigned ahbidle:1; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields of the Core Interrupt Mask ++ * Register (GINTMSK). Set/clear the bits using the bit fields then ++ * write the d32 value to the register. ++ */ ++union gintmsk_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned wkupintr:1; ++ unsigned sessreqintr:1; ++ unsigned disconnect:1; ++ unsigned conidstschng:1; ++ unsigned reserved27:1; ++ unsigned ptxfempty:1; ++ unsigned hcintr:1; ++ unsigned portintr:1; ++ unsigned reserved22_23:2; ++ unsigned incomplisoout:1; ++ unsigned incomplisoin:1; ++ unsigned outepintr:1; ++ unsigned inepintr:1; ++ unsigned epmismatch:1; ++ unsigned reserved16:1; ++ unsigned eopframe:1; ++ unsigned isooutdrop:1; ++ unsigned enumdone:1; ++ unsigned usbreset:1; ++ unsigned usbsuspend:1; ++ unsigned erlysuspend:1; ++ unsigned i2cintr:1; ++ unsigned reserved8:1; ++ unsigned goutnakeff:1; ++ unsigned ginnakeff:1; ++ unsigned nptxfempty:1; ++ unsigned rxstsqlvl:1; ++ unsigned sofintr:1; ++ unsigned otgintr:1; ++ unsigned modemismatch:1; ++ unsigned reserved0:1; ++#else ++ unsigned reserved0:1; ++ unsigned modemismatch:1; ++ unsigned otgintr:1; ++ unsigned sofintr:1; ++ unsigned rxstsqlvl:1; ++ unsigned nptxfempty:1; ++ unsigned ginnakeff:1; ++ unsigned goutnakeff:1; ++ unsigned reserved8:1; ++ unsigned i2cintr:1; ++ unsigned erlysuspend:1; ++ unsigned usbsuspend:1; ++ unsigned usbreset:1; ++ unsigned enumdone:1; ++ unsigned isooutdrop:1; ++ unsigned eopframe:1; ++ unsigned reserved16:1; ++ unsigned epmismatch:1; ++ unsigned inepintr:1; ++ unsigned outepintr:1; ++ unsigned incomplisoin:1; ++ unsigned incomplisoout:1; ++ unsigned reserved22_23:2; ++ unsigned portintr:1; ++ unsigned hcintr:1; ++ unsigned ptxfempty:1; ++ unsigned reserved27:1; ++ unsigned conidstschng:1; ++ unsigned disconnect:1; ++ unsigned sessreqintr:1; ++ unsigned wkupintr:1; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields of the Core Interrupt Register ++ * (GINTSTS). Set/clear the bits using the bit fields then write the ++ * d32 value to the register. ++ */ ++union gintsts_data { ++ /* raw register data */ ++ uint32_t d32; ++#define DWC_SOF_INTR_MASK 0x0008 ++ ++ /* register bits */ ++ struct { ++#define DWC_HOST_MODE 1 ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned wkupintr:1; ++ unsigned sessreqintr:1; ++ unsigned disconnect:1; ++ unsigned conidstschng:1; ++ unsigned reserved27:1; ++ unsigned ptxfempty:1; ++ unsigned hcintr:1; ++ unsigned portintr:1; ++ unsigned reserved22_23:2; ++ unsigned incomplisoout:1; ++ unsigned incomplisoin:1; ++ unsigned outepintr:1; ++ unsigned inepint:1; ++ unsigned epmismatch:1; ++ unsigned intokenrx:1; ++ unsigned eopframe:1; ++ unsigned isooutdrop:1; ++ unsigned enumdone:1; ++ unsigned usbreset:1; ++ unsigned usbsuspend:1; ++ unsigned erlysuspend:1; ++ unsigned i2cintr:1; ++ unsigned reserved8:1; ++ unsigned goutnakeff:1; ++ unsigned ginnakeff:1; ++ unsigned nptxfempty:1; ++ unsigned rxstsqlvl:1; ++ unsigned sofintr:1; ++ unsigned otgintr:1; ++ unsigned modemismatch:1; ++ unsigned curmode:1; ++#else ++ unsigned curmode:1; ++ unsigned modemismatch:1; ++ unsigned otgintr:1; ++ unsigned sofintr:1; ++ unsigned rxstsqlvl:1; ++ unsigned nptxfempty:1; ++ unsigned ginnakeff:1; ++ unsigned goutnakeff:1; ++ unsigned reserved8:1; ++ unsigned i2cintr:1; ++ unsigned erlysuspend:1; ++ unsigned usbsuspend:1; ++ unsigned usbreset:1; ++ unsigned enumdone:1; ++ unsigned isooutdrop:1; ++ unsigned eopframe:1; ++ unsigned intokenrx:1; ++ unsigned epmismatch:1; ++ unsigned inepint:1; ++ unsigned outepintr:1; ++ unsigned incomplisoin:1; ++ unsigned incomplisoout:1; ++ unsigned reserved22_23:2; ++ unsigned portintr:1; ++ unsigned hcintr:1; ++ unsigned ptxfempty:1; ++ unsigned reserved27:1; ++ unsigned conidstschng:1; ++ unsigned disconnect:1; ++ unsigned sessreqintr:1; ++ unsigned wkupintr:1; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the Device Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32 ++ * element then read out the bits using the bit elements. ++ */ ++union device_grxsts_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#define DWC_DSTS_SETUP_UPDT 0x6 /* SETUP Packet */ ++#define DWC_DSTS_SETUP_COMP 0x4 /* Setup Phase Complete */ ++#define DWC_DSTS_GOUT_NAK 0x1 /* Global OUT NAK */ ++#define DWC_STS_XFER_COMP 0x3 /* OUT Data Transfer Complete */ ++#define DWC_STS_DATA_UPDT 0x2 /* OUT Data Packet */ ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:7; ++ unsigned fn:4; ++ unsigned pktsts:4; ++ unsigned dpid:2; ++ unsigned bcnt:11; ++ unsigned epnum:4; ++#else ++ unsigned epnum:4; ++ unsigned bcnt:11; ++ unsigned dpid:2; ++ unsigned pktsts:4; ++ unsigned fn:4; ++ unsigned reserved:7; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the Host Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32 ++ * element then read out the bits using the bit elements. ++ */ ++union host_grxsts_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7 ++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5 ++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3 ++#define DWC_GRXSTS_PKTSTS_IN 0x2 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:11; ++ unsigned pktsts:4; ++ unsigned dpid:2; ++ unsigned bcnt:11; ++ unsigned chnum:4; ++#else ++ unsigned chnum:4; ++ unsigned bcnt:11; ++ unsigned dpid:2; ++ unsigned pktsts:4; ++ unsigned reserved:11; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ, ++ * GNPTXFSIZ, DPTXFSIZn). Read the register into the d32 element then ++ * read out the bits using the bit elements. ++ */ ++union fifosize_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned depth:16; ++ unsigned startaddr:16; ++#else ++ unsigned startaddr:16; ++ unsigned depth:16; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the Non-Periodic Transmit ++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the ++ * d32 element then read out the bits using the bit ++ * elements. ++ */ ++union gnptxsts_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:1; ++ unsigned nptxqtop_chnep:4; ++ unsigned nptxqtop_token:2; ++ unsigned nptxqtop_terminate:1; ++ unsigned nptxqspcavail:8; ++ unsigned nptxfspcavail:16; ++#else ++ unsigned nptxfspcavail:16; ++ unsigned nptxqspcavail:8; ++ /* ++ * Top of the Non-Periodic Transmit Request Queue ++ * - bit 24 - Terminate (Last entry for the selected ++ * channel/EP) ++ * - bits 26:25 - Token Type ++ * - 2'b00 - IN/OUT ++ * - 2'b01 - Zero Length OUT ++ * - 2'b10 - PING/Complete Split ++ * - 2'b11 - Channel Halt ++ * - bits 30:27 - Channel/EP Number ++ */ ++ unsigned nptxqtop_terminate:1; ++ unsigned nptxqtop_token:2; ++ unsigned nptxqtop_chnep:4; ++ unsigned reserved:1; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the I2C Control Register ++ * (I2CCTL). Read the register into the d32 element then read out the ++ * bits using the bit elements. ++ */ ++union gi2cctl_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned bsydne:1; ++ unsigned rw:1; ++ unsigned reserved:2; ++ unsigned i2cdevaddr:2; ++ unsigned i2csuspctl:1; ++ unsigned ack:1; ++ unsigned i2cen:1; ++ unsigned addr:7; ++ unsigned regaddr:8; ++ unsigned rwdata:8; ++#else ++ unsigned rwdata:8; ++ unsigned regaddr:8; ++ unsigned addr:7; ++ unsigned i2cen:1; ++ unsigned ack:1; ++ unsigned i2csuspctl:1; ++ unsigned i2cdevaddr:2; ++ unsigned reserved:2; ++ unsigned rw:1; ++ unsigned bsydne:1; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the User HW Config1 ++ * Register. Read the register into the d32 element then read ++ * out the bits using the bit elements. ++ */ ++union hwcfg1_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned ep_dir15:2; ++ unsigned ep_dir14:2; ++ unsigned ep_dir13:2; ++ unsigned ep_dir12:2; ++ unsigned ep_dir11:2; ++ unsigned ep_dir10:2; ++ unsigned ep_dir9:2; ++ unsigned ep_dir8:2; ++ unsigned ep_dir7:2; ++ unsigned ep_dir6:2; ++ unsigned ep_dir5:2; ++ unsigned ep_dir4:2; ++ unsigned ep_dir3:2; ++ unsigned ep_dir2:2; ++ unsigned ep_dir1:2; ++ unsigned ep_dir0:2; ++#else ++ unsigned ep_dir0:2; ++ unsigned ep_dir1:2; ++ unsigned ep_dir2:2; ++ unsigned ep_dir3:2; ++ unsigned ep_dir4:2; ++ unsigned ep_dir5:2; ++ unsigned ep_dir6:2; ++ unsigned ep_dir7:2; ++ unsigned ep_dir8:2; ++ unsigned ep_dir9:2; ++ unsigned ep_dir10:2; ++ unsigned ep_dir11:2; ++ unsigned ep_dir12:2; ++ unsigned ep_dir13:2; ++ unsigned ep_dir14:2; ++ unsigned ep_dir15:2; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the User HW Config2 ++ * Register. Read the register into the d32 element then read ++ * out the bits using the bit elements. ++ */ ++union hwcfg2_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3 ++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1 ++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2 ++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1 ++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved31:1; ++ unsigned dev_token_q_depth:5; ++ unsigned host_perio_tx_q_depth:2; ++ unsigned nonperio_tx_q_depth:2; ++ unsigned rx_status_q_depth:2; ++ unsigned dynamic_fifo:1; ++ unsigned perio_ep_supported:1; ++ unsigned num_host_chan:4; ++ unsigned num_dev_ep:4; ++ unsigned fs_phy_type:2; ++ unsigned hs_phy_type:2; ++ unsigned point2point:1; ++ unsigned architecture:2; ++ unsigned op_mode:3; ++#else ++ unsigned op_mode:3; ++ unsigned architecture:2; ++ unsigned point2point:1; ++ unsigned hs_phy_type:2; ++ unsigned fs_phy_type:2; ++ unsigned num_dev_ep:4; ++ unsigned num_host_chan:4; ++ unsigned perio_ep_supported:1; ++ unsigned dynamic_fifo:1; ++ unsigned rx_status_q_depth:2; ++ unsigned nonperio_tx_q_depth:2; ++ unsigned host_perio_tx_q_depth:2; ++ unsigned dev_token_q_depth:5; ++ unsigned reserved31:1; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the User HW Config3 ++ * Register. Read the register into the d32 element then read ++ * out the bits using the bit elements. ++ */ ++union hwcfg3_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++ /* GHWCFG3 */ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned dfifo_depth:16; ++ unsigned reserved15_13:3; ++ unsigned ahb_phy_clock_synch:1; ++ unsigned synch_reset_type:1; ++ unsigned optional_features:1; ++ unsigned vendor_ctrl_if:1; ++ unsigned i2c:1; ++ unsigned otg_func:1; ++ unsigned packet_size_cntr_width:3; ++ unsigned xfer_size_cntr_width:4; ++#else ++ unsigned xfer_size_cntr_width:4; ++ unsigned packet_size_cntr_width:3; ++ unsigned otg_func:1; ++ unsigned i2c:1; ++ unsigned vendor_ctrl_if:1; ++ unsigned optional_features:1; ++ unsigned synch_reset_type:1; ++ unsigned ahb_phy_clock_synch:1; ++ unsigned reserved15_13:3; ++ unsigned dfifo_depth:16; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the User HW Config4 ++ * Register. Read the register into the d32 element then read ++ * out the bits using the bit elements. ++ */ ++union hwcfg4_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved31_25:7; ++ unsigned session_end_filt_en:1; ++ unsigned b_valid_filt_en:1; ++ unsigned a_valid_filt_en:1; ++ unsigned vbus_valid_filt_en:1; ++ unsigned iddig_filt_en:1; ++ unsigned num_dev_mode_ctrl_ep:4; ++ unsigned utmi_phy_data_width:2; ++ unsigned min_ahb_freq:9; ++ unsigned power_optimiz:1; ++ unsigned num_dev_perio_in_ep:4; ++#else ++ unsigned num_dev_perio_in_ep:4; ++ unsigned power_optimiz:1; ++ unsigned min_ahb_freq:9; ++ unsigned utmi_phy_data_width:2; ++ unsigned num_dev_mode_ctrl_ep:4; ++ unsigned iddig_filt_en:1; ++ unsigned vbus_valid_filt_en:1; ++ unsigned a_valid_filt_en:1; ++ unsigned b_valid_filt_en:1; ++ unsigned session_end_filt_en:1; ++ unsigned reserved31_25:7; ++#endif ++ } b; ++}; ++ ++ ++/* ++ * Device Global Registers. Offsets 800h-BFFh ++ * ++ * The following structures define the size and relative field offsets ++ * for the Device Mode Registers. ++ * ++ * These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown. ++ */ ++struct dwc_otg_dev_global_regs { ++ /* Device Configuration Register. Offset 800h */ ++ uint32_t dcfg; ++ /* Device Control Register. Offset: 804h */ ++ uint32_t dctl; ++ /* Device Status Register (Read Only). Offset: 808h */ ++ uint32_t dsts; ++ /* Reserved. Offset: 80Ch */ ++ uint32_t unused; ++ /* ++ * Device IN Endpoint Common Interrupt Mask Register. Offset: 810h ++ */ ++ uint32_t diepmsk; ++ /* ++ * Device OUT Endpoint Common Interrupt Mask ++ * Register. Offset: 814h ++ */ ++ uint32_t doepmsk; ++ /* ++ * Device All Endpoints Interrupt Register. Offset: 818h ++ */ ++ uint32_t daint; ++ /* ++ * Device All Endpoints Interrupt Mask Register. Offset: ++ * 81Ch ++ */ ++ uint32_t daintmsk; ++ /* ++ * Device IN Token Queue Read Register-1 (Read Only). ++ * Offset: 820h ++ */ ++ uint32_t dtknqr1; ++ /* ++ * Device IN Token Queue Read Register-2 (Read Only). ++ * Offset: 824h ++ */ ++ uint32_t dtknqr2; ++ /* ++ * Device VBUS discharge Register. Offset: 828h ++ */ ++ uint32_t dvbusdis; ++ /* ++ * Device VBUS Pulse Register. Offset: 82Ch ++ */ ++ uint32_t dvbuspulse; ++ /* ++ * Device IN Token Queue Read Register-3 (Read Only). ++ * Offset: 830h ++ */ ++ uint32_t dtknqr3; ++ /* ++ * Device IN Token Queue Read Register-4 (Read Only). ++ * Offset: 834h ++ */ ++ uint32_t dtknqr4; ++}; ++ ++/* ++ * This union represents the bit fields in the Device Configuration ++ * Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. Write the ++ * d32 member to the dcfg register. ++ */ ++union dcfg_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#define DWC_DCFG_FRAME_INTERVAL_95 3 ++#define DWC_DCFG_FRAME_INTERVAL_90 2 ++#define DWC_DCFG_FRAME_INTERVAL_85 1 ++#define DWC_DCFG_FRAME_INTERVAL_80 0 ++#define DWC_DCFG_SEND_STALL 1 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved9:10; ++ unsigned epmscnt:4; ++ unsigned reserved13_17:5; ++ unsigned perfrint:2; ++ unsigned devaddr:7; ++ unsigned reserved3:1; ++ unsigned nzstsouthshk:1; ++ unsigned devspd:2; ++#else ++ ++ /* Device Speed */ ++ unsigned devspd:2; ++ /* Non Zero Length Status OUT Handshake */ ++ unsigned nzstsouthshk:1; ++ unsigned reserved3:1; ++ /* Device Addresses */ ++ unsigned devaddr:7; ++ /* Periodic Frame Interval */ ++ unsigned perfrint:2; ++ unsigned reserved13_17:5; ++ /* In Endpoint Mis-match count */ ++ unsigned epmscnt:4; ++ unsigned reserved9:10; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Device Control ++ * Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++union dctl_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:21; ++ unsigned cgoutnak:1; ++ unsigned sgoutnak:1; ++ unsigned cgnpinnak:1; ++ unsigned sgnpinnak:1; ++ unsigned tstctl:3; ++ unsigned goutnaksts:1; ++ unsigned gnpinnaksts:1; ++ unsigned sftdiscon:1; ++ unsigned rmtwkupsig:1; ++#else ++ ++ /* Remote Wakeup */ ++ unsigned rmtwkupsig:1; ++ /* Soft Disconnect */ ++ unsigned sftdiscon:1; ++ /* Global Non-Periodic IN NAK Status */ ++ unsigned gnpinnaksts:1; ++ /* Global OUT NAK Status */ ++ unsigned goutnaksts:1; ++ /* Test Control */ ++ unsigned tstctl:3; ++ /* Set Global Non-Periodic IN NAK */ ++ unsigned sgnpinnak:1; ++ /* Clear Global Non-Periodic IN NAK */ ++ unsigned cgnpinnak:1; ++ /* Set Global OUT NAK */ ++ unsigned sgoutnak:1; ++ /* Clear Global OUT NAK */ ++ unsigned cgoutnak:1; ++ ++ unsigned reserved:21; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the Device Status ++ * Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++union dsts_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3 ++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2 ++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1 ++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved22_31:10; ++ unsigned soffn:14; ++ unsigned reserved4_7:4; ++ unsigned errticerr:1; ++ unsigned enumspd:2; ++ unsigned suspsts:1; ++#else ++ ++ /* Suspend Status */ ++ unsigned suspsts:1; ++ /* Enumerated Speed */ ++ unsigned enumspd:2; ++ /* Erratic Error */ ++ unsigned errticerr:1; ++ unsigned reserved4_7:4; ++ /* Frame or Microframe Number of the received SOF */ ++ unsigned soffn:14; ++ unsigned reserved22_31:10; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Device IN EP Interrupt ++ * Register and the Device IN EP Common Mask Register. ++ * ++ * It also represents the bit fields in the Device IN EP Common ++ * Interrupt Mask Register. ++ ++ * - Read the register into the d32 member then set/clear the ++ * bits using the bit elements. ++ */ ++union diepint_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved07_31:25; ++ unsigned inepnakeff:1; ++ unsigned intknepmis:1; ++ unsigned intktxfemp:1; ++ unsigned timeout:1; ++ unsigned ahberr:1; ++ unsigned epdisabled:1; ++ unsigned xfercompl:1; ++#else ++ ++y /* Transfer complete mask */ ++ unsigned xfercompl:1; ++ /* Endpoint disable mask */ ++ unsigned epdisabled:1; ++ /* AHB Error mask */ ++ unsigned ahberr:1; ++ /* TimeOUT Handshake mask (non-ISOC EPs) */ ++ unsigned timeout:1; ++ /* IN Token received with TxF Empty mask */ ++ unsigned intktxfemp:1; ++ /* IN Token Received with EP mismatch mask */ ++ unsigned intknepmis:1; ++ /* IN Endpoint HAK Effective mask */ ++ unsigned inepnakeff:1; ++ unsigned reserved07_31:25; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Device OUT EP Interrupt ++ * Registerand Device OUT EP Common Interrupt Mask Register. ++ * ++ * It also represents the bit fields in the Device OUT EP Common ++ * Interrupt Mask Register. ++ * ++ * - Read the register into the d32 member then set/clear the ++ * bits using the bit elements. ++ */ ++union doepint_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved04_31:28; ++ unsigned setup:1; ++ unsigned ahberr:1; ++ unsigned epdisabled:1; ++ unsigned xfercompl:1; ++#else ++ ++ /* Transfer complete */ ++ unsigned xfercompl:1; ++ /* Endpoint disable */ ++ unsigned epdisabled:1; ++ /* AHB Error */ ++ unsigned ahberr:1; ++ /* Setup Phase Done (contorl EPs) */ ++ unsigned setup:1; ++ unsigned reserved04_31:28; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the Device All EP Interrupt ++ * and Mask Registers. ++ * - Read the register into the d32 member then set/clear the ++ * bits using the bit elements. ++ */ ++union daint_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned out:16; ++ unsigned in:16; ++#else ++ ++ /* IN Endpoint bits */ ++ unsigned in:16; ++ /* OUT Endpoint bits */ ++ unsigned out:16; ++#endif ++ } ep; ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned outep15:1; ++ unsigned outep14:1; ++ unsigned outep13:1; ++ unsigned outep12:1; ++ unsigned outep11:1; ++ unsigned outep10:1; ++ unsigned outep9:1; ++ unsigned outep8:1; ++ unsigned outep7:1; ++ unsigned outep6:1; ++ unsigned outep5:1; ++ unsigned outep4:1; ++ unsigned outep3:1; ++ unsigned outep2:1; ++ unsigned outep1:1; ++ unsigned outep0:1; ++ unsigned inep15:1; ++ unsigned inep14:1; ++ unsigned inep13:1; ++ unsigned inep12:1; ++ unsigned inep11:1; ++ unsigned inep10:1; ++ unsigned inep9:1; ++ unsigned inep8:1; ++ unsigned inep7:1; ++ unsigned inep6:1; ++ unsigned inep5:1; ++ unsigned inep4:1; ++ unsigned inep3:1; ++ unsigned inep2:1; ++ unsigned inep1:1; ++ unsigned inep0:1; ++#else ++ ++ /* IN Endpoint bits */ ++ unsigned inep0:1; ++ unsigned inep1:1; ++ unsigned inep2:1; ++ unsigned inep3:1; ++ unsigned inep4:1; ++ unsigned inep5:1; ++ unsigned inep6:1; ++ unsigned inep7:1; ++ unsigned inep8:1; ++ unsigned inep9:1; ++ unsigned inep10:1; ++ unsigned inep11:1; ++ unsigned inep12:1; ++ unsigned inep13:1; ++ unsigned inep14:1; ++ unsigned inep15:1; ++ /* OUT Endpoint bits */ ++ unsigned outep0:1; ++ unsigned outep1:1; ++ unsigned outep2:1; ++ unsigned outep3:1; ++ unsigned outep4:1; ++ unsigned outep5:1; ++ unsigned outep6:1; ++ unsigned outep7:1; ++ unsigned outep8:1; ++ unsigned outep9:1; ++ unsigned outep10:1; ++ unsigned outep11:1; ++ unsigned outep12:1; ++ unsigned outep13:1; ++ unsigned outep14:1; ++ unsigned outep15:1; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the Device IN Token Queue ++ * Read Registers. ++ * - Read the register into the d32 member. ++ * - READ-ONLY Register ++ */ ++union dtknq1_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned epnums0_5:24; ++ unsigned wrap_bit:1; ++ unsigned reserved05_06:2; ++ unsigned intknwptr:5; ++#else ++ ++ /* In Token Queue Write Pointer */ ++ unsigned intknwptr:5; ++ /* Reserved */ ++ unsigned reserved05_06:2; ++ /* write pointer has wrapped. */ ++ unsigned wrap_bit:1; ++ /* EP Numbers of IN Tokens 0 ... 4 */ ++ unsigned epnums0_5:24; ++#endif ++ } b; ++}; ++ ++/* ++ * Device Logical IN Endpoint-Specific Registers. Offsets ++ * 900h-AFCh ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown. ++ */ ++struct dwc_otg_dev_in_ep_regs { ++ /* ++ * Device IN Endpoint Control Register. Offset:900h + ++ * (ep_num * 20h) + 00h ++ */ ++ uint32_t diepctl; ++ /* Reserved. Offset:900h + (ep_num * 20h) + 04h */ ++ uint32_t reserved04; ++ /* ++ * Device IN Endpoint Interrupt Register. Offset:900h + ++ * (ep_num * 20h) + 08h ++ */ ++ uint32_t diepint; ++ /* Reserved. Offset:900h + (ep_num * 20h) + 0Ch */ ++ uint32_t reserved0C; ++ /* ++ * Device IN Endpoint Transfer Size ++ * Register. Offset:900h + (ep_num * 20h) + 10h ++ */ ++ uint32_t dieptsiz; ++ /* ++ * Device IN Endpoint DMA Address Register. Offset:900h + ++ * (ep_num * 20h) + 14h ++ */ ++ uint32_t diepdma; ++ /* ++ * Reserved. Offset:900h + (ep_num * 20h) + 18h - 900h + ++ * (ep_num * 20h) + 1Ch ++ */ ++ uint32_t reserved18[2]; ++}; ++ ++/** ++ * Device Logical OUT Endpoint-Specific Registers. Offsets: ++ * B00h-CFCh ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown. ++ */ ++struct dwc_otg_dev_out_ep_regs { ++ /* ++ * Device OUT Endpoint Control Register. Offset:B00h + ++ * (ep_num * 20h) + 00h ++ */ ++ uint32_t doepctl; ++ /* ++ * Device OUT Endpoint Frame number Register. Offset: ++ * B00h + (ep_num * 20h) + 04h ++ */ ++ uint32_t doepfn; ++ /* ++ * Device OUT Endpoint Interrupt Register. Offset:B00h + ++ * (ep_num * 20h) + 08h ++ */ ++ uint32_t doepint; ++ /* ++ * Reserved. Offset:B00h + (ep_num * 20h) + 0Ch */ ++ uint32_t reserved0C; ++ /* ++ * Device OUT Endpoint Transfer Size Register. Offset: ++ * B00h + (ep_num * 20h) + 10h ++ */ ++ uint32_t doeptsiz; ++ /* ++ * Device OUT Endpoint DMA Address Register. Offset:B00h ++ * + (ep_num * 20h) + 14h ++ */ ++ uint32_t doepdma; ++ /* ++ * Reserved. Offset:B00h + (ep_num * 20h) + 18h - B00h + ++ * (ep_num * 20h) + 1Ch ++ */ ++ uint32_t unused[2]; ++}; ++ ++/* ++ * This union represents the bit fields in the Device EP Control ++ * Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++union depctl_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#define DWC_DEP0CTL_MPS_64 0 ++#define DWC_DEP0CTL_MPS_32 1 ++#define DWC_DEP0CTL_MPS_16 2 ++#define DWC_DEP0CTL_MPS_8 3 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned mps:11; ++ unsigned epena:1; ++ unsigned epdis:1; ++ unsigned setd1pid:1; ++ unsigned setd0pid:1; ++ unsigned snak:1; ++ unsigned cnak:1; ++ unsigned txfnum:4; ++ unsigned stall:1; ++ unsigned snp:1; ++ unsigned eptype:2; ++ unsigned naksts:1; ++ unsigned dpid:1; ++ unsigned usbactep:1; ++ unsigned nextep:4; ++#else ++ ++ /* ++ * Maximum Packet Size ++ * IN/OUT EPn ++ * IN/OUT EP0 - 2 bits ++ * 2'b00: 64 Bytes ++ * 2'b01: 32 ++ * 2'b10: 16 ++ * 2'b11: 8 ++ */ ++ unsigned mps:11; ++ /* ++ * Next Endpoint ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved ++ */ ++ unsigned nextep:4; ++ ++ /* USB Active Endpoint */ ++ unsigned usbactep:1; ++ ++ /* ++ * Endpoint DPID (INTR/Bulk IN and OUT endpoints) ++ * This field contains the PID of the packet going to ++ * be received or transmitted on this endpoint. The ++ * application should program the PID of the first ++ * packet going to be received or transmitted on this ++ * endpoint , after the endpoint is ++ * activated. Application use the SetD1PID and ++ * SetD0PID fields of this register to program either ++ * D0 or D1 PID. ++ * ++ * The encoding for this field is ++ * - 0: D0 ++ * - 1: D1 ++ */ ++ unsigned dpid:1; ++ ++ /* NAK Status */ ++ unsigned naksts:1; ++ ++ /* ++ * Endpoint Type ++ * 2'b00: Control ++ * 2'b01: Isochronous ++ * 2'b10: Bulk ++ * 2'b11: Interrupt ++ */ ++ unsigned eptype:2; ++ ++ /* ++ * Snoop Mode ++ * OUT EPn/OUT EP0 ++ * IN EPn/IN EP0 - reserved ++ */ ++ unsigned snp:1; ++ ++ /* Stall Handshake */ ++ unsigned stall:1; ++ ++ /* ++ * Tx Fifo Number ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved ++ */ ++ unsigned txfnum:4; ++ ++ /* Clear NAK */ ++ unsigned cnak:1; ++ /* Set NAK */ ++ unsigned snak:1; ++ /* ++ * Set DATA0 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA0. Set Even ++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to even (micro) ++ * frame. ++ */ ++ unsigned setd0pid:1; ++ /* ++ * Set DATA1 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA1 Set Odd ++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to odd (micro) frame. ++ */ ++ unsigned setd1pid:1; ++ ++ /* Endpoint Disable */ ++ unsigned epdis:1; ++ /* Endpoint Enable */ ++ unsigned epena:1; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the Device EP Transfer ++ * Size Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++union deptsiz_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:1; ++ unsigned mc:2; ++ unsigned pktcnt:10; ++ unsigned xfersize:19; ++#else ++ ++ /* Transfer size */ ++ unsigned xfersize:19; ++ /* Packet Count */ ++ unsigned pktcnt:10; ++ /* Multi Count - Periodic IN endpoints */ ++ unsigned mc:2; ++ unsigned reserved:1; ++#endif ++ } b; ++}; ++ ++/* ++ * This union represents the bit fields in the Device EP 0 Transfer ++ * Size Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++union deptsiz0_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved31:1; ++ unsigned supcnt:2; ++ unsigned reserved20_28:9; ++ unsigned pktcnt:1; ++ unsigned reserved7_18:12; ++ unsigned xfersize:7; ++#else ++ ++ /* Transfer size */ ++ unsigned xfersize:7; ++ /* Reserved */ ++ unsigned reserved7_18:12; ++ /* Packet Count */ ++ unsigned pktcnt:1; ++ /* Reserved */ ++ unsigned reserved20_28:9; ++ /* Setup Packet Count (DOEPTSIZ0 Only) */ ++ unsigned supcnt:2; ++ unsigned reserved31:1; ++#endif ++ } b; ++}; ++ ++/** Maximum number of Periodic FIFOs */ ++#define MAX_PERIO_FIFOS 15 ++ ++/** Maximum number of Endpoints/HostChannels */ ++#define MAX_EPS_CHANNELS 16 ++ ++/* ++ * The dwc_otg_dev_if structure contains information needed to manage ++ * the DWC_otg controller acting in device mode. It represents the ++ * programming view of the device-specific aspects of the controller. ++ */ ++struct dwc_otg_dev_if { ++ /* ++ * Pointer to device Global registers. ++ * Device Global Registers starting at offset 800h ++ */ ++ struct dwc_otg_dev_global_regs *dev_global_regs; ++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800 ++ ++ /* ++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh ++ */ ++ struct dwc_otg_dev_in_ep_regs *in_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_IN_EP_REG_OFFSET 0x900 ++#define DWC_EP_REG_OFFSET 0x20 ++ ++ /* Device Logical OUT Endpoint-Specific Registers B00h-CFCh */ ++ struct dwc_otg_dev_out_ep_regs *out_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00 ++ ++ /* Device configuration information */ ++ uint8_t speed; /* Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */ ++ uint8_t num_eps; /* Number of EPs range: 1-16 (includes EP0) */ ++ uint8_t num_perio_eps; /* # of Periodic EP range: 0-15 */ ++ ++ /* Size of periodic FIFOs (Bytes) */ ++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++ ++}; ++ ++ ++/* Host Mode Register Structures */ ++ ++/* ++ * The Host Global Registers structure defines the size and relative ++ * field offsets for the Host Mode Global Registers. Host Global ++ * Registers offsets 400h-7FFh. ++ */ ++struct dwc_otg_host_global_regs { ++ /* Host Configuration Register. Offset: 400h */ ++ uint32_t hcfg; ++ /* Host Frame Interval Register. Offset: 404h */ ++ uint32_t hfir; ++ /* Host Frame Number / Frame Remaining Register. Offset: 408h */ ++ uint32_t hfnum; ++ /* Reserved. Offset: 40Ch */ ++ uint32_t reserved40C; ++ /* Host Periodic Transmit FIFO/ Queue Status Register. Offset: 410h */ ++ uint32_t hptxsts; ++ /* Host All Channels Interrupt Register. Offset: 414h */ ++ uint32_t haint; ++ /* Host All Channels Interrupt Mask Register. Offset: 418h */ ++ uint32_t haintmsk; ++}; ++ ++/* ++ * This union represents the bit fields in the Host Configuration Register. ++ * Read the register into the d32 member then set/clear the bits using ++ * the bit elements. Write the d32 member to the hcfg register. ++ */ ++union hcfg_data { ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++#define DWC_HCFG_6_MHZ 2 ++#define DWC_HCFG_48_MHZ 1 ++#define DWC_HCFG_30_60_MHZ 0 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:29; ++ unsigned fslssupp:1; ++ unsigned fslspclksel:2; ++#else ++ ++ /* FS/LS Phy Clock Select */ ++ unsigned fslspclksel:2; ++ /* FS/LS Only Support */ ++ unsigned fslssupp:1; ++ unsigned reserved:29; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++union hfir_data { ++ /* raw register data */ ++ uint32_t d32; ++ ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:16; ++ unsigned frint:16; ++#else ++ unsigned frint:16; ++ unsigned reserved:16; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++union hfnum_data { ++ /* raw register data */ ++ uint32_t d32; ++ ++ /* register bits */ ++ struct { ++#define DWC_HFNUM_MAX_FRNUM 0x3FFF ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned frrem:16; ++ unsigned frnum:16; ++#else ++ unsigned frnum:16; ++ unsigned frrem:16; ++#endif ++ } b; ++}; ++ ++union hptxsts_data { ++ /* raw register data */ ++ uint32_t d32; ++ ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned ptxqtop_odd:1; ++ unsigned ptxqtop_chnum:4; ++ unsigned ptxqtop_token:2; ++ unsigned ptxqtop_terminate:1; ++ unsigned ptxqspcavail:8; ++ unsigned ptxfspcavail:16; ++#else ++ unsigned ptxfspcavail:16; ++ unsigned ptxqspcavail:8; ++ /* ++ * Top of the Periodic Transmit Request Queue ++ * - bit 24 - Terminate (last entry for the selected channel) ++ * - bits 26:25 - Token Type ++ * - 2'b00 - Zero length ++ * - 2'b01 - Ping ++ * - 2'b10 - Disable ++ * - bits 30:27 - Channel Number ++ * - bit 31 - Odd/even microframe ++ */ ++ unsigned ptxqtop_terminate:1; ++ unsigned ptxqtop_token:2; ++ unsigned ptxqtop_chnum:4; ++ unsigned ptxqtop_odd:1; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Host Port Control and Status ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. Write the d32 member to the ++ * hprt0 register. ++ */ ++union hprt0_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2 ++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1 ++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved19_31:13; ++ unsigned prtspd:2; ++ unsigned prttstctl:4; ++ unsigned prtpwr:1; ++ unsigned prtlnsts:2; ++ unsigned reserved9:1; ++ unsigned prtrst:1; ++ unsigned prtsusp:1; ++ unsigned prtres:1; ++ unsigned prtovrcurrchng:1; ++ unsigned prtovrcurract:1; ++ unsigned prtenchng:1; ++ unsigned prtena:1; ++ unsigned prtconndet:1; ++ unsigned prtconnsts:1; ++#else ++ unsigned prtconnsts:1; ++ unsigned prtconndet:1; ++ unsigned prtena:1; ++ unsigned prtenchng:1; ++ unsigned prtovrcurract:1; ++ unsigned prtovrcurrchng:1; ++ unsigned prtres:1; ++ unsigned prtsusp:1; ++ unsigned prtrst:1; ++ unsigned reserved9:1; ++ unsigned prtlnsts:2; ++ unsigned prtpwr:1; ++ unsigned prttstctl:4; ++ unsigned prtspd:2; ++ unsigned reserved19_31:13; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++union haint_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:16; ++ unsigned ch15:1; ++ unsigned ch14:1; ++ unsigned ch13:1; ++ unsigned ch12:1; ++ unsigned ch11:1; ++ unsigned ch10:1; ++ unsigned ch9:1; ++ unsigned ch8:1; ++ unsigned ch7:1; ++ unsigned ch6:1; ++ unsigned ch5:1; ++ unsigned ch4:1; ++ unsigned ch3:1; ++ unsigned ch2:1; ++ unsigned ch1:1; ++ unsigned ch0:1; ++#else ++ unsigned ch0:1; ++ unsigned ch1:1; ++ unsigned ch2:1; ++ unsigned ch3:1; ++ unsigned ch4:1; ++ unsigned ch5:1; ++ unsigned ch6:1; ++ unsigned ch7:1; ++ unsigned ch8:1; ++ unsigned ch9:1; ++ unsigned ch10:1; ++ unsigned ch11:1; ++ unsigned ch12:1; ++ unsigned ch13:1; ++ unsigned ch14:1; ++ unsigned ch15:1; ++ unsigned reserved:16; ++#endif ++ } b; ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:16; ++ unsigned chint:16; ++#else ++ unsigned chint:16; ++ unsigned reserved:16; ++#endif ++ } b2; ++}; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++union haintmsk_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:16; ++ unsigned ch15:1; ++ unsigned ch14:1; ++ unsigned ch13:1; ++ unsigned ch12:1; ++ unsigned ch11:1; ++ unsigned ch10:1; ++ unsigned ch9:1; ++ unsigned ch8:1; ++ unsigned ch7:1; ++ unsigned ch6:1; ++ unsigned ch5:1; ++ unsigned ch4:1; ++ unsigned ch3:1; ++ unsigned ch2:1; ++ unsigned ch1:1; ++ unsigned ch0:1; ++#else ++ unsigned ch0:1; ++ unsigned ch1:1; ++ unsigned ch2:1; ++ unsigned ch3:1; ++ unsigned ch4:1; ++ unsigned ch5:1; ++ unsigned ch6:1; ++ unsigned ch7:1; ++ unsigned ch8:1; ++ unsigned ch9:1; ++ unsigned ch10:1; ++ unsigned ch11:1; ++ unsigned ch12:1; ++ unsigned ch13:1; ++ unsigned ch14:1; ++ unsigned ch15:1; ++ unsigned reserved:16; ++#endif ++ } b; ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:16; ++ unsigned chint:16; ++#else ++ unsigned chint:16; ++ unsigned reserved:16; ++#endif ++ } b2; ++}; ++ ++/* ++ * Host Channel Specific Registers. 500h-5FCh ++ */ ++struct dwc_otg_hc_regs { ++ /* ++ * Host Channel 0 Characteristic Register. ++ * Offset: 500h + (chan_num * 20h) + 00h ++ */ ++ uint32_t hcchar; ++ /* ++ * Host Channel 0 Split Control Register. ++ * Offset: 500h + (chan_num * 20h) + 04h ++ */ ++ uint32_t hcsplt; ++ /* ++ * Host Channel 0 Interrupt Register. ++ * Offset: 500h + (chan_num * 20h) + 08h ++ */ ++ uint32_t hcint; ++ /* ++ * Host Channel 0 Interrupt Mask Register. ++ * Offset: 500h + (chan_num * 20h) + 0Ch ++ */ ++ uint32_t hcintmsk; ++ /* ++ * Host Channel 0 Transfer Size Register. ++ * Offset: 500h + (chan_num * 20h) + 10h ++ */ ++ uint32_t hctsiz; ++ /* ++ * Host Channel 0 DMA Address Register. ++ * Offset: 500h + (chan_num * 20h) + 14h ++ */ ++ uint32_t hcdma; ++ /* ++ * Reserved. ++ * Offset: 500h + (chan_num * 20h) + 18h - ++ * 500h + (chan_num * 20h) + 1Ch ++ */ ++ uint32_t reserved[2]; ++}; ++ ++/** ++ * This union represents the bit fields in the Host Channel Characteristics ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. Write the d32 member to the ++ * hcchar register. ++ */ ++union hcchar_data { ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned chen:1; ++ unsigned chdis:1; ++ unsigned oddfrm:1; ++ unsigned devaddr:7; ++ unsigned multicnt:2; ++ unsigned eptype:2; ++ unsigned lspddev:1; ++ unsigned reserved:1; ++ unsigned epdir:1; ++ unsigned epnum:4; ++ unsigned mps:11; ++#else ++ ++ /* Maximum packet size in bytes */ ++ unsigned mps:11; ++ ++ /* Endpoint number */ ++ unsigned epnum:4; ++ ++ /* 0: OUT, 1: IN */ ++ unsigned epdir:1; ++ ++ unsigned reserved:1; ++ ++ /* 0: Full/high speed device, 1: Low speed device */ ++ unsigned lspddev:1; ++ ++ /* 0: Control, 1: Isoc, 2: Bulk, 3: Intr */ ++ unsigned eptype:2; ++ ++ /* Packets per frame for periodic transfers. 0 is reserved. */ ++ unsigned multicnt:2; ++ ++ /* Device address */ ++ unsigned devaddr:7; ++ ++ /* ++ * Frame to transmit periodic transaction. ++ * 0: even, 1: odd ++ */ ++ unsigned oddfrm:1; ++ ++ /* Channel disable */ ++ unsigned chdis:1; ++ ++ /* Channel enable */ ++ unsigned chen:1; ++#endif ++ } b; ++}; ++ ++union hcsplt_data { ++ /* raw register data */ ++ uint32_t d32; ++ ++ /* register bits */ ++ struct { ++#define DWC_HCSPLIT_XACTPOS_ALL 3 ++#define DWC_HCSPLIT_XACTPOS_BEGIN 2 ++#define DWC_HCSPLIT_XACTPOS_END 1 ++#define DWC_HCSPLIT_XACTPOS_MID 0 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned spltena:1; ++ unsigned reserved:14; ++ unsigned compsplt:1; ++ unsigned xactpos:2; ++ unsigned hubaddr:7; ++ unsigned prtaddr:7; ++#else ++ ++ /* Port Address */ ++ unsigned prtaddr:7; ++ ++ /* Hub Address */ ++ unsigned hubaddr:7; ++ ++ /* Transaction Position */ ++ unsigned xactpos:2; ++ ++ /* Do Complete Split */ ++ unsigned compsplt:1; ++ ++ /* Reserved */ ++ unsigned reserved:14; ++ ++ /* Split Enble */ ++ unsigned spltena:1; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++union hcint_data { ++ /* raw register data */ ++ uint32_t d32; ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:21; ++ unsigned datatglerr:1; ++ unsigned frmovrun:1; ++ unsigned bblerr:1; ++ unsigned xacterr:1; ++ unsigned nyet:1; ++ unsigned ack:1; ++ unsigned nak:1; ++ unsigned stall:1; ++ unsigned ahberr:1; ++ unsigned chhltd:1; ++ unsigned xfercomp:1; ++#else ++ ++ /* Transfer Complete */ ++ unsigned xfercomp:1; ++ /* Channel Halted */ ++ unsigned chhltd:1; ++ /* AHB Error */ ++ unsigned ahberr:1; ++ /* STALL Response Received */ ++ unsigned stall:1; ++ /* NAK Response Received */ ++ unsigned nak:1; ++ /* ACK Response Received */ ++ unsigned ack:1; ++ /* NYET Response Received */ ++ unsigned nyet:1; ++ /* Transaction Err */ ++ unsigned xacterr:1; ++ /* Babble Error */ ++ unsigned bblerr:1; ++ /* Frame Overrun */ ++ unsigned frmovrun:1; ++ /* Data Toggle Error */ ++ unsigned datatglerr:1; ++ /* Reserved */ ++ unsigned reserved:21; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Host Channel Transfer Size ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. Write the d32 member to the ++ * hcchar register. ++ */ ++union hctsiz_data { ++ /* raw register data */ ++ uint32_t d32; ++ ++ /* register bits */ ++ struct { ++#define DWC_HCTSIZ_SETUP 3 ++#define DWC_HCTSIZ_MDATA 3 ++#define DWC_HCTSIZ_DATA2 1 ++#define DWC_HCTSIZ_DATA1 2 ++#define DWC_HCTSIZ_DATA0 0 ++ ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned dopng:1; ++ unsigned pid:2; ++ unsigned pktcnt:10; ++ unsigned xfersize:19; ++#else ++ ++ /* Total transfer size in bytes */ ++ unsigned xfersize:19; ++ ++ /* Data packets to transfer */ ++ unsigned pktcnt:10; ++ ++ /* ++ * Packet ID for next data packet ++ * 0: DATA0 ++ * 1: DATA2 ++ * 2: DATA1 ++ * 3: MDATA (non-Control), SETUP (Control) ++ */ ++ unsigned pid:2; ++ ++ /* Do PING protocol when 1 */ ++ unsigned dopng:1; ++#endif ++ } b; ++}; ++ ++/** ++ * This union represents the bit fields in the Host Channel Interrupt Mask ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. Write the d32 member to the ++ * hcintmsk register. ++ */ ++union hcintmsk_data { ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:21; ++ unsigned datatglerr:1; ++ unsigned frmovrun:1; ++ unsigned bblerr:1; ++ unsigned xacterr:1; ++ unsigned nyet:1; ++ unsigned ack:1; ++ unsigned nak:1; ++ unsigned stall:1; ++ unsigned ahberr:1; ++ unsigned chhltd:1; ++ unsigned xfercompl:1; ++#else ++ unsigned xfercompl:1; ++ unsigned chhltd:1; ++ unsigned ahberr:1; ++ unsigned stall:1; ++ unsigned nak:1; ++ unsigned ack:1; ++ unsigned nyet:1; ++ unsigned xacterr:1; ++ unsigned bblerr:1; ++ unsigned frmovrun:1; ++ unsigned datatglerr:1; ++ unsigned reserved:21; ++#endif ++ } b; ++}; ++ ++/** OTG Host Interface Structure. ++ * ++ * The OTG Host Interface Structure structure contains information ++ * needed to manage the DWC_otg controller acting in host mode. It ++ * represents the programming view of the host-specific aspects of the ++ * controller. ++ */ ++struct dwc_otg_host_if { ++ /* Host Global Registers starting at offset 400h.*/ ++ struct dwc_otg_host_global_regs *host_global_regs; ++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400 ++ ++ /* Host Port 0 Control and Status Register */ ++ uint32_t *hprt0; ++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440 ++ ++ /* Host Channel Specific Registers at offsets 500h-5FCh. */ ++ struct dwc_otg_hc_regs *hc_regs[MAX_EPS_CHANNELS]; ++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500 ++#define DWC_OTG_CHAN_REGS_OFFSET 0x20 ++ ++ /* Host configuration information */ ++ /* Number of Host Channels (range: 1-16) */ ++ uint8_t num_host_channels; ++ /* Periodic EPs supported (0: no, 1: yes) */ ++ uint8_t perio_eps_supported; ++ /* Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */ ++ uint16_t perio_tx_fifo_size; ++ ++}; ++ ++/** ++ * This union represents the bit fields in the Power and Clock Gating Control ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. ++ */ ++union pcgcctl_data { ++ /* raw register data */ ++ uint32_t d32; ++ ++ /* register bits */ ++ struct { ++#ifdef __BIG_ENDIAN_BITFIELD ++ unsigned reserved:27; ++ unsigned physuspended:1; ++ unsigned rstpdwnmodule:1; ++ unsigned pwrclmp:1; ++ unsigned gatehclk:1; ++ unsigned stoppclk:1; ++#else ++ ++ /* Stop Pclk */ ++ unsigned stoppclk:1; ++ /* Gate Hclk */ ++ unsigned gatehclk:1; ++ /* Power Clamp */ ++ unsigned pwrclmp:1; ++ /* Reset Power Down Modules */ ++ unsigned rstpdwnmodule:1; ++ /* PHY Suspended */ ++ unsigned physuspended:1; ++ ++ unsigned reserved:27; ++#endif ++ } b; ++}; ++ ++#endif +-- +1.6.0.6 + |