aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorLuka Perkov <luka@openwrt.org>2012-11-11 20:03:58 +0000
committerLuka Perkov <luka@openwrt.org>2012-11-11 20:03:58 +0000
commit37b69da0ca297e3f6dc61320cb1f88f3de348b34 (patch)
tree570397989f27e1a242d600cc148d73d40d1c065f
parent80a28570bd1c0e616645e6f93765e083909968bf (diff)
downloadupstream-37b69da0ca297e3f6dc61320cb1f88f3de348b34.tar.gz
upstream-37b69da0ca297e3f6dc61320cb1f88f3de348b34.tar.bz2
upstream-37b69da0ca297e3f6dc61320cb1f88f3de348b34.zip
cns3xxx: convert dwc_otg patches to files
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@34162 3c298f89-4303-0410-b956-a3cf2f4a3e73
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/Kconfig44
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/Makefile26
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_attr.c886
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_attr.h67
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil.c3831
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil.h1106
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil_intr.c852
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_driver.c965
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_driver.h62
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.c2752
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.h652
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_intr.c1828
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_queue.c794
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd.c2502
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd.h292
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd_intr.c3682
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_plat.h266
-rw-r--r--target/linux/cns3xxx/files/drivers/usb/dwc/otg_regs.h2059
-rw-r--r--target/linux/cns3xxx/patches-3.3/200-dwc_otg.patch22807
-rw-r--r--target/linux/cns3xxx/patches-3.3/800-cns3xxx-dwc_otg.patch69
20 files changed, 22735 insertions, 22807 deletions
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/Kconfig b/target/linux/cns3xxx/files/drivers/usb/dwc/Kconfig
new file mode 100644
index 0000000000..be1b7f6fb7
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/Kconfig
@@ -0,0 +1,44 @@
+#
+# USB Dual Role (OTG-ready) Controller Drivers
+# for silicon based on Synopsys DesignWare IP
+#
+
+comment "Enable Host or Gadget support for DesignWare OTG controller"
+depends on !USB && USB_GADGET=n
+
+config USB_DWC_OTG
+ tristate "Synopsys DWC OTG Controller"
+ depends on USB
+ help
+ This driver provides USB Device Controller support for the
+ Synopsys DesignWare USB OTG Core used on the Cavium CNS34xx SOC.
+
+config DWC_DEBUG
+ bool "Enable DWC Debugging"
+ depends on USB_DWC_OTG
+ default n
+ help
+ Enable DWC driver debugging
+
+choice
+ prompt "DWC Mode Selection"
+ depends on USB_DWC_OTG
+ default DWC_HOST_ONLY
+ help
+ Select the DWC Core in OTG, Host only, or Device only mode.
+
+config DWC_HOST_ONLY
+ bool "DWC Host Only Mode"
+
+config DWC_OTG_MODE
+ bool "DWC OTG Mode"
+ select USB_GADGET
+ select USB_GADGET_SELECTED
+
+config DWC_DEVICE_ONLY
+ bool "DWC Device Only Mode"
+ select USB_GADGET
+ select USB_GADGET_SELECTED
+
+endchoice
+
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/Makefile b/target/linux/cns3xxx/files/drivers/usb/dwc/Makefile
new file mode 100644
index 0000000000..58f3db75c7
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/Makefile
@@ -0,0 +1,26 @@
+#
+# Makefile for DWC_otg Highspeed USB controller driver
+#
+
+EXTRA_CFLAGS += -DDWC_HS_ELECT_TST
+#EXTRA_CFLAGS += -Dlinux -DDWC_HS_ELECT_TST
+#EXTRA_CFLAGS += -DDWC_EN_ISOC
+
+ifneq ($(CONFIG_DWC_HOST_ONLY),)
+EXTRA_CFLAGS += -DDWC_HOST_ONLY
+endif
+
+ifneq ($(CONFIG_DWC_DEVICE_ONLY),)
+EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
+endif
+
+ifneq ($(CONFIG_DWC_DEBUG),)
+EXTRA_CFLAGS += -DDEBUG
+endif
+
+obj-$(CONFIG_USB_DWC_OTG) := dwc_otg.o
+
+dwc_otg-objs := otg_driver.o otg_attr.o
+dwc_otg-objs += otg_cil.o otg_cil_intr.o
+dwc_otg-objs += otg_pcd.o otg_pcd_intr.o
+dwc_otg-objs += otg_hcd.o otg_hcd_intr.o otg_hcd_queue.o
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_attr.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_attr.c
new file mode 100644
index 0000000000..343acd2517
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_attr.c
@@ -0,0 +1,886 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
+ * $Revision: #31 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064918 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+/** @file
+ *
+ * The diagnostic interface will provide access to the controller for
+ * bringing up the hardware and testing. The Linux driver attributes
+ * feature will be used to provide the Linux Diagnostic
+ * Interface. These attributes are accessed through sysfs.
+ */
+
+/** @page "Linux Module Attributes"
+ *
+ * The Linux module attributes feature is used to provide the Linux
+ * Diagnostic Interface. These attributes are accessed through sysfs.
+ * The diagnostic interface will provide access to the controller for
+ * bringing up the hardware and testing.
+
+
+ The following table shows the attributes.
+ <table>
+ <tr>
+ <td><b> Name</b></td>
+ <td><b> Description</b></td>
+ <td><b> Access</b></td>
+ </tr>
+
+ <tr>
+ <td> mode </td>
+ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hnpcapable </td>
+ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
+ Read returns the current value.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> srpcapable </td>
+ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
+ Read returns the current value.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> hnp </td>
+ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> srp </td>
+ <td> Initiates the Session Request Protocol. Read returns the status.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> buspower </td>
+ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> bussuspend </td>
+ <td> Suspends the USB bus.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> busconnected </td>
+ <td> Gets the connection status of the bus</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> gotgctl </td>
+ <td> Gets or sets the Core Control Status Register.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> gusbcfg </td>
+ <td> Gets or sets the Core USB Configuration Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> grxfsiz </td>
+ <td> Gets or sets the Receive FIFO Size Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> gnptxfsiz </td>
+ <td> Gets or sets the non-periodic Transmit Size Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> gpvndctl </td>
+ <td> Gets or sets the PHY Vendor Control Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> ggpio </td>
+ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
+ or sets the upper 16 bits.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> guid </td>
+ <td> Gets or sets the value of the User ID Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> gsnpsid </td>
+ <td> Gets the value of the Synopsys ID Regester</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> devspeed </td>
+ <td> Gets or sets the device speed setting in the DCFG register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> enumspeed </td>
+ <td> Gets the device enumeration Speed.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hptxfsiz </td>
+ <td> Gets the value of the Host Periodic Transmit FIFO</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hprt0 </td>
+ <td> Gets or sets the value in the Host Port Control and Status Register</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> regoffset </td>
+ <td> Sets the register offset for the next Register Access</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> regvalue </td>
+ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> remote_wakeup </td>
+ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
+ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
+ Wakeup signalling bit in the Device Control Register is set for 1
+ milli-second.</td>
+ <td> Read/Write</td>
+ </tr>
+
+ <tr>
+ <td> regdump </td>
+ <td> Dumps the contents of core registers.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> spramdump </td>
+ <td> Dumps the contents of core registers.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hcddump </td>
+ <td> Dumps the current HCD state.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> hcd_frrem </td>
+ <td> Shows the average value of the Frame Remaining
+ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
+ occurs. This can be used to determine the average interrupt latency. Also
+ shows the average Frame Remaining value for start_transfer and the "a" and
+ "b" sample points. The "a" and "b" sample points may be used during debugging
+ bto determine how long it takes to execute a section of the HCD code.</td>
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> rd_reg_test </td>
+ <td> Displays the time required to read the GNPTXFSIZ register many times
+ (the output shows the number of times the register is read).
+ <td> Read</td>
+ </tr>
+
+ <tr>
+ <td> wr_reg_test </td>
+ <td> Displays the time required to write the GNPTXFSIZ register many times
+ (the output shows the number of times the register is written).
+ <td> Read</td>
+ </tr>
+
+ </table>
+
+ Example usage:
+ To get the current mode:
+ cat /sys/devices/lm0/mode
+
+ To power down the USB:
+ echo 0 > /sys/devices/lm0/buspower
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/errno.h>
+#include <linux/types.h>
+#include <linux/stat.h> /* permission constants */
+#include <linux/version.h>
+
+#include <asm/sizes.h>
+#include <asm/io.h>
+#include <asm/sizes.h>
+
+#include "otg_plat.h"
+#include "otg_attr.h"
+#include "otg_driver.h"
+#include "otg_pcd.h"
+#include "otg_hcd.h"
+
+/*
+ * MACROs for defining sysfs attribute
+ */
+#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
+{ \
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t val; \
+ val = dwc_read_reg32 (_addr_); \
+ val = (val & (_mask_)) >> _shift_; \
+ return sprintf (buf, "%s = 0x%x\n", _string_, val); \
+}
+#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
+ const char *buf, size_t count) \
+{ \
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t set = simple_strtoul(buf, NULL, 16); \
+ uint32_t clear = set; \
+ clear = ((~clear) << _shift_) & _mask_; \
+ set = (set << _shift_) & _mask_; \
+ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
+ dwc_modify_reg32(_addr_, clear, set); \
+ return count; \
+}
+
+/*
+ * MACROs for defining sysfs attribute for 32-bit registers
+ */
+#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
+static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
+{ \
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t val; \
+ val = dwc_read_reg32 (_addr_); \
+ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
+}
+#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
+static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
+ const char *buf, size_t count) \
+{ \
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t val = simple_strtoul(buf, NULL, 16); \
+ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
+ dwc_write_reg32(_addr_, val); \
+ return count; \
+}
+
+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
+
+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
+DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
+
+#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
+DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
+DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
+DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
+
+#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
+DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
+DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
+
+
+/** @name Functions for Show/Store of Attributes */
+/**@{*/
+
+/**
+ * Show the register offset of the Register Access.
+ */
+static ssize_t regoffset_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
+}
+
+/**
+ * Set the register offset for the next Register Access Read/Write
+ */
+static ssize_t regoffset_store( struct device *_dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count )
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t offset = simple_strtoul(buf, NULL, 16);
+ //dev_dbg(_dev, "Offset=0x%08x\n", offset);
+ if (offset < SZ_256K ) {
+ otg_dev->reg_offset = offset;
+ }
+ else {
+ dev_err( _dev, "invalid offset\n" );
+ }
+
+ return count;
+}
+DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store);
+
+
+/**
+ * Show the value of the register at the offset in the reg_offset
+ * attribute.
+ */
+static ssize_t regvalue_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t val;
+ volatile uint32_t *addr;
+
+ if (otg_dev->reg_offset != 0xFFFFFFFF &&
+ 0 != otg_dev->base) {
+ /* Calculate the address */
+ addr = (uint32_t*)(otg_dev->reg_offset +
+ (uint8_t*)otg_dev->base);
+ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
+ val = dwc_read_reg32( addr );
+ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
+ "Reg@0x%06x = 0x%08x\n",
+ otg_dev->reg_offset, val);
+ }
+ else {
+ dev_err(_dev, "Invalid offset (0x%0x)\n",
+ otg_dev->reg_offset);
+ return sprintf(buf, "invalid offset\n" );
+ }
+}
+
+/**
+ * Store the value in the register at the offset in the reg_offset
+ * attribute.
+ *
+ */
+static ssize_t regvalue_store( struct device *_dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count )
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ volatile uint32_t * addr;
+ uint32_t val = simple_strtoul(buf, NULL, 16);
+ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
+ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
+ /* Calculate the address */
+ addr = (uint32_t*)(otg_dev->reg_offset +
+ (uint8_t*)otg_dev->base);
+ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
+ dwc_write_reg32( addr, val );
+ }
+ else {
+ dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
+ otg_dev->reg_offset);
+ }
+ return count;
+}
+DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
+
+/*
+ * Attributes
+ */
+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
+
+//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
+//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
+
+DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
+DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
+DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
+DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
+DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
+DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
+DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
+DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
+
+DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
+DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
+
+
+/**
+ * @todo Add code to initiate the HNP.
+ */
+/**
+ * Show the HNP status bit
+ */
+static ssize_t hnp_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ gotgctl_data_t val;
+ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
+ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
+}
+
+/**
+ * Set the HNP Request bit
+ */
+static ssize_t hnp_store( struct device *_dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count )
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t in = simple_strtoul(buf, NULL, 16);
+ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
+ gotgctl_data_t mem;
+ mem.d32 = dwc_read_reg32(addr);
+ mem.b.hnpreq = in;
+ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
+ dwc_write_reg32(addr, mem.d32);
+ return count;
+}
+DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
+
+/**
+ * @todo Add code to initiate the SRP.
+ */
+/**
+ * Show the SRP status bit
+ */
+static ssize_t srp_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+#ifndef DWC_HOST_ONLY
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ gotgctl_data_t val;
+ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
+ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
+#else
+ return sprintf(buf, "Host Only Mode!\n");
+#endif
+}
+
+
+
+/**
+ * Set the SRP Request bit
+ */
+static ssize_t srp_store( struct device *_dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count )
+{
+#ifndef DWC_HOST_ONLY
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ dwc_otg_pcd_initiate_srp(otg_dev->pcd);
+#endif
+ return count;
+}
+DEVICE_ATTR(srp, 0644, srp_show, srp_store);
+
+/**
+ * @todo Need to do more for power on/off?
+ */
+/**
+ * Show the Bus Power status
+ */
+static ssize_t buspower_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ hprt0_data_t val;
+ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
+ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
+}
+
+
+/**
+ * Set the Bus Power status
+ */
+static ssize_t buspower_store( struct device *_dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count )
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t on = simple_strtoul(buf, NULL, 16);
+ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
+ hprt0_data_t mem;
+
+ mem.d32 = dwc_read_reg32(addr);
+ mem.b.prtpwr = on;
+
+ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
+ dwc_write_reg32(addr, mem.d32);
+
+ return count;
+}
+DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
+
+/**
+ * @todo Need to do more for suspend?
+ */
+/**
+ * Show the Bus Suspend status
+ */
+static ssize_t bussuspend_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ hprt0_data_t val;
+ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
+ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
+}
+
+/**
+ * Set the Bus Suspend status
+ */
+static ssize_t bussuspend_store( struct device *_dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count )
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t in = simple_strtoul(buf, NULL, 16);
+ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
+ hprt0_data_t mem;
+ mem.d32 = dwc_read_reg32(addr);
+ mem.b.prtsusp = in;
+ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
+ dwc_write_reg32(addr, mem.d32);
+ return count;
+}
+DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
+
+/**
+ * Show the status of Remote Wakeup.
+ */
+static ssize_t remote_wakeup_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+#ifndef DWC_HOST_ONLY
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ dctl_data_t val;
+ val.d32 =
+ dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
+ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
+ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
+#else
+ return sprintf(buf, "Host Only Mode!\n");
+#endif
+}
+/**
+ * Initiate a remote wakeup of the host. The Device control register
+ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
+ * flag is set.
+ *
+ */
+static ssize_t remote_wakeup_store( struct device *_dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count )
+{
+#ifndef DWC_HOST_ONLY
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t val = simple_strtoul(buf, NULL, 16);
+ if (val&1) {
+ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
+ }
+ else {
+ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
+ }
+#endif
+ return count;
+}
+DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
+ remote_wakeup_store);
+
+/**
+ * Dump global registers and either host or device registers (depending on the
+ * current mode of the core).
+ */
+static ssize_t regdump_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ dwc_otg_dump_global_registers( otg_dev->core_if);
+ if (dwc_otg_is_host_mode(otg_dev->core_if)) {
+ dwc_otg_dump_host_registers( otg_dev->core_if);
+ } else {
+ dwc_otg_dump_dev_registers( otg_dev->core_if);
+
+ }
+ return sprintf( buf, "Register Dump\n" );
+}
+
+DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
+
+/**
+ * Dump global registers and either host or device registers (depending on the
+ * current mode of the core).
+ */
+static ssize_t spramdump_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ dwc_otg_dump_spram( otg_dev->core_if);
+
+ return sprintf( buf, "SPRAM Dump\n" );
+}
+
+DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0);
+
+/**
+ * Dump the current hcd state.
+ */
+static ssize_t hcddump_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+#ifndef DWC_DEVICE_ONLY
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ dwc_otg_hcd_dump_state(otg_dev->hcd);
+#endif
+ return sprintf( buf, "HCD Dump\n" );
+}
+
+DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
+
+/**
+ * Dump the average frame remaining at SOF. This can be used to
+ * determine average interrupt latency. Frame remaining is also shown for
+ * start transfer and two additional sample points.
+ */
+static ssize_t hcd_frrem_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+#ifndef DWC_DEVICE_ONLY
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ dwc_otg_hcd_dump_frrem(otg_dev->hcd);
+#endif
+ return sprintf( buf, "HCD Dump Frame Remaining\n" );
+}
+
+DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
+
+/**
+ * Displays the time required to read the GNPTXFSIZ register many times (the
+ * output shows the number of times the register is read).
+ */
+#define RW_REG_COUNT 10000000
+#define MSEC_PER_JIFFIE 1000/HZ
+static ssize_t rd_reg_test_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ int i;
+ int time;
+ int start_jiffies;
+
+ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
+ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
+ start_jiffies = jiffies;
+ for (i = 0; i < RW_REG_COUNT; i++) {
+ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
+ }
+ time = jiffies - start_jiffies;
+ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
+ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
+}
+
+DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
+
+/**
+ * Displays the time required to write the GNPTXFSIZ register many times (the
+ * output shows the number of times the register is written).
+ */
+static ssize_t wr_reg_test_show( struct device *_dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
+ uint32_t reg_val;
+ int i;
+ int time;
+ int start_jiffies;
+
+ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
+ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
+ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
+ start_jiffies = jiffies;
+ for (i = 0; i < RW_REG_COUNT; i++) {
+ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
+ }
+ time = jiffies - start_jiffies;
+ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
+ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
+}
+
+DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
+/**@}*/
+
+/**
+ * Create the device files
+ */
+void dwc_otg_attr_create (struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ int error;
+
+ error = device_create_file(dev, &dev_attr_regoffset);
+ error = device_create_file(dev, &dev_attr_regvalue);
+ error = device_create_file(dev, &dev_attr_mode);
+ error = device_create_file(dev, &dev_attr_hnpcapable);
+ error = device_create_file(dev, &dev_attr_srpcapable);
+ error = device_create_file(dev, &dev_attr_hnp);
+ error = device_create_file(dev, &dev_attr_srp);
+ error = device_create_file(dev, &dev_attr_buspower);
+ error = device_create_file(dev, &dev_attr_bussuspend);
+ error = device_create_file(dev, &dev_attr_busconnected);
+ error = device_create_file(dev, &dev_attr_gotgctl);
+ error = device_create_file(dev, &dev_attr_gusbcfg);
+ error = device_create_file(dev, &dev_attr_grxfsiz);
+ error = device_create_file(dev, &dev_attr_gnptxfsiz);
+ error = device_create_file(dev, &dev_attr_gpvndctl);
+ error = device_create_file(dev, &dev_attr_ggpio);
+ error = device_create_file(dev, &dev_attr_guid);
+ error = device_create_file(dev, &dev_attr_gsnpsid);
+ error = device_create_file(dev, &dev_attr_devspeed);
+ error = device_create_file(dev, &dev_attr_enumspeed);
+ error = device_create_file(dev, &dev_attr_hptxfsiz);
+ error = device_create_file(dev, &dev_attr_hprt0);
+ error = device_create_file(dev, &dev_attr_remote_wakeup);
+ error = device_create_file(dev, &dev_attr_regdump);
+ error = device_create_file(dev, &dev_attr_spramdump);
+ error = device_create_file(dev, &dev_attr_hcddump);
+ error = device_create_file(dev, &dev_attr_hcd_frrem);
+ error = device_create_file(dev, &dev_attr_rd_reg_test);
+ error = device_create_file(dev, &dev_attr_wr_reg_test);
+}
+
+/**
+ * Remove the device files
+ */
+void dwc_otg_attr_remove (struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+
+ device_remove_file(dev, &dev_attr_regoffset);
+ device_remove_file(dev, &dev_attr_regvalue);
+ device_remove_file(dev, &dev_attr_mode);
+ device_remove_file(dev, &dev_attr_hnpcapable);
+ device_remove_file(dev, &dev_attr_srpcapable);
+ device_remove_file(dev, &dev_attr_hnp);
+ device_remove_file(dev, &dev_attr_srp);
+ device_remove_file(dev, &dev_attr_buspower);
+ device_remove_file(dev, &dev_attr_bussuspend);
+ device_remove_file(dev, &dev_attr_busconnected);
+ device_remove_file(dev, &dev_attr_gotgctl);
+ device_remove_file(dev, &dev_attr_gusbcfg);
+ device_remove_file(dev, &dev_attr_grxfsiz);
+ device_remove_file(dev, &dev_attr_gnptxfsiz);
+ device_remove_file(dev, &dev_attr_gpvndctl);
+ device_remove_file(dev, &dev_attr_ggpio);
+ device_remove_file(dev, &dev_attr_guid);
+ device_remove_file(dev, &dev_attr_gsnpsid);
+ device_remove_file(dev, &dev_attr_devspeed);
+ device_remove_file(dev, &dev_attr_enumspeed);
+ device_remove_file(dev, &dev_attr_hptxfsiz);
+ device_remove_file(dev, &dev_attr_hprt0);
+ device_remove_file(dev, &dev_attr_remote_wakeup);
+ device_remove_file(dev, &dev_attr_regdump);
+ device_remove_file(dev, &dev_attr_spramdump);
+ device_remove_file(dev, &dev_attr_hcddump);
+ device_remove_file(dev, &dev_attr_hcd_frrem);
+ device_remove_file(dev, &dev_attr_rd_reg_test);
+ device_remove_file(dev, &dev_attr_wr_reg_test);
+}
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_attr.h b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_attr.h
new file mode 100644
index 0000000000..b970dc0f73
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_attr.h
@@ -0,0 +1,67 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $
+ * $Revision: #7 $
+ * $Date: 2005/03/28 $
+ * $Change: 477051 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#if !defined(__DWC_OTG_ATTR_H__)
+#define __DWC_OTG_ATTR_H__
+
+/** @file
+ * This file contains the interface to the Linux device attributes.
+ */
+extern struct device_attribute dev_attr_regoffset;
+extern struct device_attribute dev_attr_regvalue;
+
+extern struct device_attribute dev_attr_mode;
+extern struct device_attribute dev_attr_hnpcapable;
+extern struct device_attribute dev_attr_srpcapable;
+extern struct device_attribute dev_attr_hnp;
+extern struct device_attribute dev_attr_srp;
+extern struct device_attribute dev_attr_buspower;
+extern struct device_attribute dev_attr_bussuspend;
+extern struct device_attribute dev_attr_busconnected;
+extern struct device_attribute dev_attr_gotgctl;
+extern struct device_attribute dev_attr_gusbcfg;
+extern struct device_attribute dev_attr_grxfsiz;
+extern struct device_attribute dev_attr_gnptxfsiz;
+extern struct device_attribute dev_attr_gpvndctl;
+extern struct device_attribute dev_attr_ggpio;
+extern struct device_attribute dev_attr_guid;
+extern struct device_attribute dev_attr_gsnpsid;
+extern struct device_attribute dev_attr_devspeed;
+extern struct device_attribute dev_attr_enumspeed;
+extern struct device_attribute dev_attr_hptxfsiz;
+extern struct device_attribute dev_attr_hprt0;
+
+void dwc_otg_attr_create (struct platform_device *pdev);
+void dwc_otg_attr_remove (struct platform_device *pdev);
+
+#endif
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil.c
new file mode 100644
index 0000000000..42983afb8c
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil.c
@@ -0,0 +1,3831 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $
+ * $Revision: #147 $
+ * $Date: 2008/10/16 $
+ * $Change: 1117667 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+/** @file
+ *
+ * The Core Interface Layer provides basic services for accessing and
+ * managing the DWC_otg hardware. These services are used by both the
+ * Host Controller Driver and the Peripheral Controller Driver.
+ *
+ * The CIL manages the memory map for the core so that the HCD and PCD
+ * don't have to do this separately. It also handles basic tasks like
+ * reading/writing the registers and data FIFOs in the controller.
+ * Some of the data access functions provide encapsulation of several
+ * operations required to perform a task, such as writing multiple
+ * registers to start a transfer. Finally, the CIL performs basic
+ * services that are not specific to either the host or device modes
+ * of operation. These services include management of the OTG Host
+ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
+ * Diagnostic API is also provided to allow testing of the controller
+ * hardware.
+ *
+ * The Core Interface Layer has the following requirements:
+ * - Provides basic controller operations.
+ * - Minimal use of OS services.
+ * - The OS services used will be abstracted by using inline functions
+ * or macros.
+ *
+ */
+#include <asm/unaligned.h>
+#include <linux/dma-mapping.h>
+#ifdef DEBUG
+#include <linux/jiffies.h>
+#endif
+
+#include "otg_plat.h"
+#include "otg_regs.h"
+#include "otg_cil.h"
+#include "otg_pcd.h"
+
+
+/**
+ * This function is called to initialize the DWC_otg CSR data
+ * structures. The register addresses in the device and host
+ * structures are initialized from the base address supplied by the
+ * caller. The calling function must make the OS calls to get the
+ * base address of the DWC_otg controller registers. The core_params
+ * argument holds the parameters that specify how the core should be
+ * configured.
+ *
+ * @param[in] reg_base_addr Base address of DWC_otg core registers
+ * @param[in] core_params Pointer to the core configuration parameters
+ *
+ */
+dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr,
+ dwc_otg_core_params_t *core_params)
+{
+ dwc_otg_core_if_t *core_if = 0;
+ dwc_otg_dev_if_t *dev_if = 0;
+ dwc_otg_host_if_t *host_if = 0;
+ uint8_t *reg_base = (uint8_t *)reg_base_addr;
+ int i = 0;
+
+ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params);
+
+ core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL);
+
+ if (core_if == 0) {
+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
+ return 0;
+ }
+
+ memset(core_if, 0, sizeof(dwc_otg_core_if_t));
+
+ core_if->core_params = core_params;
+ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
+
+ /*
+ * Allocate the Device Mode structures.
+ */
+ dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
+
+ if (dev_if == 0) {
+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
+ kfree(core_if);
+ return 0;
+ }
+
+ dev_if->dev_global_regs =
+ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
+
+ for (i=0; i<MAX_EPS_CHANNELS; i++)
+ {
+ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
+ (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
+ (i * DWC_EP_REG_OFFSET));
+
+ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
+ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
+ (i * DWC_EP_REG_OFFSET));
+ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
+ i, &dev_if->in_ep_regs[i]->diepctl);
+ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
+ i, &dev_if->out_ep_regs[i]->doepctl);
+ }
+
+ dev_if->speed = 0; // unknown
+
+ core_if->dev_if = dev_if;
+
+ /*
+ * Allocate the Host Mode structures.
+ */
+ host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL);
+
+ if (host_if == 0) {
+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
+ kfree(dev_if);
+ kfree(core_if);
+ return 0;
+ }
+
+ host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
+ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
+
+ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
+
+ for (i=0; i<MAX_EPS_CHANNELS; i++)
+ {
+ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
+ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
+ (i * DWC_OTG_CHAN_REGS_OFFSET));
+ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
+ i, &host_if->hc_regs[i]->hcchar);
+ }
+
+ host_if->num_host_channels = MAX_EPS_CHANNELS;
+ core_if->host_if = host_if;
+
+ for (i=0; i<MAX_EPS_CHANNELS; i++)
+ {
+ core_if->data_fifo[i] =
+ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
+ (i * DWC_OTG_DATA_FIFO_SIZE));
+ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
+ i, (unsigned)core_if->data_fifo[i]);
+ }
+
+ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
+
+ /*
+ * Store the contents of the hardware configuration registers here for
+ * easy access later.
+ */
+ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
+ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
+ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
+ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
+
+ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
+ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
+ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
+ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
+
+ core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
+ core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
+
+ DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32);
+ DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32);
+
+ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
+ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
+ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
+ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
+ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
+ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
+ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
+
+ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
+ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
+
+ /*
+ * Set the SRP sucess bit for FS-I2c
+ */
+ core_if->srp_success = 0;
+ core_if->srp_timer_started = 0;
+
+
+ /*
+ * Create new workqueue and init works
+ */
+ core_if->wq_otg = create_singlethread_workqueue("dwc_otg");
+ if(core_if->wq_otg == 0) {
+ DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n");
+ kfree(host_if);
+ kfree(dev_if);
+ kfree(core_if);
+ return 0 * HZ;
+ }
+ INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change);
+ INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected);
+
+ return core_if;
+}
+
+/**
+ * This function frees the structures allocated by dwc_otg_cil_init().
+ *
+ * @param[in] core_if The core interface pointer returned from
+ * dwc_otg_cil_init().
+ *
+ */
+void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if)
+{
+ /* Disable all interrupts */
+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
+ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
+
+ if (core_if->wq_otg) {
+ destroy_workqueue(core_if->wq_otg);
+ }
+ if (core_if->dev_if) {
+ kfree(core_if->dev_if);
+ }
+ if (core_if->host_if) {
+ kfree(core_if->host_if);
+ }
+ kfree(core_if);
+}
+
+/**
+ * This function enables the controller's Global Interrupt in the AHB Config
+ * register.
+ *
+ * @param[in] core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if)
+{
+ gahbcfg_data_t ahbcfg = { .d32 = 0};
+ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
+}
+
+/**
+ * This function disables the controller's Global Interrupt in the AHB Config
+ * register.
+ *
+ * @param[in] core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if)
+{
+ gahbcfg_data_t ahbcfg = { .d32 = 0};
+ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
+}
+
+/**
+ * This function initializes the commmon interrupts, used in both
+ * device and host modes.
+ *
+ * @param[in] core_if Programming view of the DWC_otg controller
+ *
+ */
+static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if)
+{
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+ gintmsk_data_t intr_mask = { .d32 = 0};
+
+ /* Clear any pending OTG Interrupts */
+ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
+
+ /* Clear any pending interrupts */
+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+ /*
+ * Enable the interrupts in the GINTMSK.
+ */
+ intr_mask.b.modemismatch = 1;
+ intr_mask.b.otgintr = 1;
+
+ if (!core_if->dma_enable) {
+ intr_mask.b.rxstsqlvl = 1;
+ }
+
+ intr_mask.b.conidstschng = 1;
+ intr_mask.b.wkupintr = 1;
+ intr_mask.b.disconnect = 1;
+ intr_mask.b.usbsuspend = 1;
+ intr_mask.b.sessreqintr = 1;
+ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
+}
+
+/**
+ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
+ * type.
+ */
+static void init_fslspclksel(dwc_otg_core_if_t *core_if)
+{
+ uint32_t val;
+ hcfg_data_t hcfg;
+
+ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
+ (core_if->core_params->ulpi_fs_ls)) ||
+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
+ /* Full speed PHY */
+ val = DWC_HCFG_48_MHZ;
+ }
+ else {
+ /* High speed PHY running at full speed or high speed */
+ val = DWC_HCFG_30_60_MHZ;
+ }
+
+ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
+ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
+ hcfg.b.fslspclksel = val;
+ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
+}
+
+/**
+ * Initializes the DevSpd field of the DCFG register depending on the PHY type
+ * and the enumeration speed of the device.
+ */
+static void init_devspd(dwc_otg_core_if_t *core_if)
+{
+ uint32_t val;
+ dcfg_data_t dcfg;
+
+ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
+ (core_if->core_params->ulpi_fs_ls)) ||
+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
+ /* Full speed PHY */
+ val = 0x3;
+ }
+ else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
+ /* High speed PHY running at full speed */
+ val = 0x1;
+ }
+ else {
+ /* High speed PHY running at high speed */
+ val = 0x0;
+ }
+
+ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
+
+ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
+ dcfg.b.devspd = val;
+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
+}
+
+/**
+ * This function calculates the number of IN EPS
+ * using GHWCFG1 and GHWCFG2 registers values
+ *
+ * @param core_if Programming view of the DWC_otg controller
+ */
+static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if)
+{
+ uint32_t num_in_eps = 0;
+ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
+ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3;
+ uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
+ int i;
+
+
+ for(i = 0; i < num_eps; ++i)
+ {
+ if(!(hwcfg1 & 0x1))
+ num_in_eps++;
+
+ hwcfg1 >>= 2;
+ }
+
+ if(core_if->hwcfg4.b.ded_fifo_en) {
+ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
+ }
+
+ return num_in_eps;
+}
+
+
+/**
+ * This function calculates the number of OUT EPS
+ * using GHWCFG1 and GHWCFG2 registers values
+ *
+ * @param core_if Programming view of the DWC_otg controller
+ */
+static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if)
+{
+ uint32_t num_out_eps = 0;
+ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
+ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2;
+ int i;
+
+ for(i = 0; i < num_eps; ++i)
+ {
+ if(!(hwcfg1 & 0x2))
+ num_out_eps++;
+
+ hwcfg1 >>= 2;
+ }
+ return num_out_eps;
+}
+/**
+ * This function initializes the DWC_otg controller registers and
+ * prepares the core for device mode or host mode operation.
+ *
+ * @param core_if Programming view of the DWC_otg controller
+ *
+ */
+void dwc_otg_core_init(dwc_otg_core_if_t *core_if)
+{
+ int i = 0;
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ gahbcfg_data_t ahbcfg = { .d32 = 0 };
+ gusbcfg_data_t usbcfg = { .d32 = 0 };
+ gi2cctl_data_t i2cctl = { .d32 = 0 };
+
+ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
+
+ /* Common Initialization */
+
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+
+// usbcfg.b.tx_end_delay = 1;
+ /* Program the ULPI External VBUS bit if needed */
+ usbcfg.b.ulpi_ext_vbus_drv =
+ (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
+
+ /* Set external TS Dline pulsing */
+ usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0;
+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
+
+
+ /* Reset the Controller */
+ dwc_otg_core_reset(core_if);
+
+ /* Initialize parameters from Hardware configuration registers. */
+ dev_if->num_in_eps = calc_num_in_eps(core_if);
+ dev_if->num_out_eps = calc_num_out_eps(core_if);
+
+
+ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep);
+
+ for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
+ {
+ dev_if->perio_tx_fifo_size[i] =
+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
+ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
+ i, dev_if->perio_tx_fifo_size[i]);
+ }
+
+ for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++)
+ {
+ dev_if->tx_fifo_size[i] =
+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
+ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n",
+ i, dev_if->perio_tx_fifo_size[i]);
+ }
+
+ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
+ core_if->rx_fifo_size =
+ dwc_read_reg32(&global_regs->grxfsiz);
+ core_if->nperio_tx_fifo_size =
+ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
+
+ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size);
+
+ /* This programming sequence needs to happen in FS mode before any other
+ * programming occurs */
+ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
+ /* If FS mode with FS PHY */
+
+ /* core_init() is now called on every switch so only call the
+ * following for the first time through. */
+ if (!core_if->phy_init_done) {
+ core_if->phy_init_done = 1;
+ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ usbcfg.b.physel = 1;
+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Reset after a PHY select */
+ dwc_otg_core_reset(core_if);
+ }
+
+ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
+ * do this on HNP Dev/Host mode switches (done in dev_init and
+ * host_init). */
+ if (dwc_otg_is_host_mode(core_if)) {
+ init_fslspclksel(core_if);
+ }
+ else {
+ init_devspd(core_if);
+ }
+
+ if (core_if->core_params->i2c_enable) {
+ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
+ /* Program GUSBCFG.OtgUtmifsSel to I2C */
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ usbcfg.b.otgutmifssel = 1;
+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Program GI2CCTL.I2CEn */
+ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
+ i2cctl.b.i2cdevaddr = 1;
+ i2cctl.b.i2cen = 0;
+ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
+ i2cctl.b.i2cen = 1;
+ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
+ }
+
+ } /* endif speed == DWC_SPEED_PARAM_FULL */
+
+ else {
+ /* High speed PHY. */
+ if (!core_if->phy_init_done) {
+ core_if->phy_init_done = 1;
+ /* HS PHY parameters. These parameters are preserved
+ * during soft reset so only program the first time. Do
+ * a soft reset immediately after setting phyif. */
+ usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type;
+ if (usbcfg.b.ulpi_utmi_sel == 1) {
+ /* ULPI interface */
+ usbcfg.b.phyif = 0;
+ usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr;
+ }
+ else {
+ /* UTMI+ interface */
+ if (core_if->core_params->phy_utmi_width == 16) {
+ usbcfg.b.phyif = 1;
+ }
+ else {
+ usbcfg.b.phyif = 0;
+ }
+ }
+
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Reset after setting the PHY parameters */
+ dwc_otg_core_reset(core_if);
+ }
+ }
+
+ if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
+ (core_if->core_params->ulpi_fs_ls)) {
+ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ usbcfg.b.ulpi_fsls = 1;
+ usbcfg.b.ulpi_clk_sus_m = 1;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+ }
+ else {
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ usbcfg.b.ulpi_fsls = 0;
+ usbcfg.b.ulpi_clk_sus_m = 0;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+ }
+
+ /* Program the GAHBCFG Register.*/
+ switch (core_if->hwcfg2.b.architecture) {
+
+ case DWC_SLAVE_ONLY_ARCH:
+ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
+ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
+ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
+ core_if->dma_enable = 0;
+ core_if->dma_desc_enable = 0;
+ break;
+
+ case DWC_EXT_DMA_ARCH:
+ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
+ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
+ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
+ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
+ break;
+
+ case DWC_INT_DMA_ARCH:
+ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
+ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
+ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
+ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
+ break;
+
+ }
+ ahbcfg.b.dmaenable = core_if->dma_enable;
+ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
+
+ core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
+
+ core_if->pti_enh_enable = core_if->core_params->pti_enable != 0;
+ core_if->multiproc_int_enable = core_if->core_params->mpi_enable;
+ DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled"));
+ DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled"));
+
+ /*
+ * Program the GUSBCFG register.
+ */
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+
+ switch (core_if->hwcfg2.b.op_mode) {
+ case DWC_MODE_HNP_SRP_CAPABLE:
+ usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
+ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+ break;
+
+ case DWC_MODE_SRP_ONLY_CAPABLE:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+ break;
+
+ case DWC_MODE_NO_HNP_SRP_CAPABLE:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = 0;
+ break;
+
+ case DWC_MODE_SRP_CAPABLE_DEVICE:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+ break;
+
+ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = 0;
+ break;
+
+ case DWC_MODE_SRP_CAPABLE_HOST:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+ break;
+
+ case DWC_MODE_NO_SRP_CAPABLE_HOST:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = 0;
+ break;
+ }
+
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Enable common interrupts */
+ dwc_otg_enable_common_interrupts(core_if);
+
+ /* Do device or host intialization based on mode during PCD
+ * and HCD initialization */
+ if (dwc_otg_is_host_mode(core_if)) {
+ DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
+ core_if->op_state = A_HOST;
+ }
+ else {
+ DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
+ core_if->op_state = B_PERIPHERAL;
+#ifdef DWC_DEVICE_ONLY
+ dwc_otg_core_dev_init(core_if);
+#endif
+ }
+}
+
+
+/**
+ * This function enables the Device mode interrupts.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ */
+void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if)
+{
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+
+ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
+
+ /* Disable all interrupts. */
+ dwc_write_reg32(&global_regs->gintmsk, 0);
+
+ /* Clear any pending interrupts */
+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+ /* Enable the common interrupts */
+ dwc_otg_enable_common_interrupts(core_if);
+
+ /* Enable interrupts */
+ intr_mask.b.usbreset = 1;
+ intr_mask.b.enumdone = 1;
+
+ if(!core_if->multiproc_int_enable) {
+ intr_mask.b.inepintr = 1;
+ intr_mask.b.outepintr = 1;
+ }
+
+ intr_mask.b.erlysuspend = 1;
+
+ if(core_if->en_multiple_tx_fifo == 0) {
+ intr_mask.b.epmismatch = 1;
+ }
+
+
+#ifdef DWC_EN_ISOC
+ if(core_if->dma_enable) {
+ if(core_if->dma_desc_enable == 0) {
+ if(core_if->pti_enh_enable) {
+ dctl_data_t dctl = { .d32 = 0 };
+ dctl.b.ifrmnum = 1;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
+ } else {
+ intr_mask.b.incomplisoin = 1;
+ intr_mask.b.incomplisoout = 1;
+ }
+ }
+ } else {
+ intr_mask.b.incomplisoin = 1;
+ intr_mask.b.incomplisoout = 1;
+ }
+#endif // DWC_EN_ISOC
+
+/** @todo NGS: Should this be a module parameter? */
+#ifdef USE_PERIODIC_EP
+ intr_mask.b.isooutdrop = 1;
+ intr_mask.b.eopframe = 1;
+ intr_mask.b.incomplisoin = 1;
+ intr_mask.b.incomplisoout = 1;
+#endif
+
+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
+
+ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
+ dwc_read_reg32(&global_regs->gintmsk));
+}
+
+/**
+ * This function initializes the DWC_otg controller registers for
+ * device mode.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ *
+ */
+void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if)
+{
+ int i,size;
+ u_int32_t *default_value_array;
+
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ dwc_otg_core_params_t *params = core_if->core_params;
+ dcfg_data_t dcfg = { .d32 = 0};
+ grstctl_t resetctl = { .d32 = 0 };
+ uint32_t rx_fifo_size;
+ fifosize_data_t nptxfifosize;
+ fifosize_data_t txfifosize;
+ dthrctl_data_t dthrctl;
+
+ /* Restart the Phy Clock */
+ dwc_write_reg32(core_if->pcgcctl, 0);
+
+ /* Device configuration register */
+ init_devspd(core_if);
+ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
+ dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0;
+ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
+
+ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
+
+ /* Configure data FIFO sizes */
+ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
+ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size);
+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
+
+ /* Rx FIFO */
+ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
+ dwc_read_reg32(&global_regs->grxfsiz));
+
+ rx_fifo_size = params->dev_rx_fifo_size;
+ dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
+
+ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
+ dwc_read_reg32(&global_regs->grxfsiz));
+
+ /** Set Periodic Tx FIFO Mask all bits 0 */
+ core_if->p_tx_msk = 0;
+
+ /** Set Tx FIFO Mask all bits 0 */
+ core_if->tx_msk = 0;
+
+ /* Non-periodic Tx FIFO */
+ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
+ dwc_read_reg32(&global_regs->gnptxfsiz));
+
+ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
+ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
+
+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
+
+ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
+ dwc_read_reg32(&global_regs->gnptxfsiz));
+
+ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
+ if(core_if->en_multiple_tx_fifo == 0) {
+ //core_if->hwcfg4.b.ded_fifo_en==0
+
+ /**@todo NGS: Fix Periodic FIFO Sizing! */
+ /*
+ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
+ * Indexes of the FIFO size module parameters in the
+ * dev_perio_tx_fifo_size array and the FIFO size registers in
+ * the dptxfsiz array run from 0 to 14.
+ */
+ /** @todo Finish debug of this */
+ size=core_if->hwcfg4.b.num_dev_perio_in_ep;
+ default_value_array=params->dev_perio_tx_fifo_size;
+
+ }
+ else {
+ //core_if->hwcfg4.b.ded_fifo_en==1
+ /*
+ * Tx FIFOs These FIFOs are numbered from 1 to 15.
+ * Indexes of the FIFO size module parameters in the
+ * dev_tx_fifo_size array and the FIFO size registers in
+ * the dptxfsiz_dieptxf array run from 0 to 14.
+ */
+
+ size=core_if->hwcfg4.b.num_in_eps;
+ default_value_array=params->dev_tx_fifo_size;
+
+ }
+ for (i=0; i < size; i++)
+ {
+
+ txfifosize.b.depth = default_value_array[i];
+ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i,
+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
+ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],
+ txfifosize.d32);
+ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i,
+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
+ txfifosize.b.startaddr += txfifosize.b.depth;
+ }
+ }
+ /* Flush the FIFOs */
+ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
+ dwc_otg_flush_rx_fifo(core_if);
+
+ /* Flush the Learning Queue. */
+ resetctl.b.intknqflsh = 1;
+ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
+
+ /* Clear all pending Device Interrupts */
+
+ if(core_if->multiproc_int_enable) {
+ }
+
+ /** @todo - if the condition needed to be checked
+ * or in any case all pending interrutps should be cleared?
+ */
+ if(core_if->multiproc_int_enable) {
+ for(i = 0; i < core_if->dev_if->num_in_eps; ++i) {
+ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0);
+ }
+
+ for(i = 0; i < core_if->dev_if->num_out_eps; ++i) {
+ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0);
+ }
+
+ dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF);
+ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0);
+ } else {
+ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
+ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
+ dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
+ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
+ }
+
+ for (i=0; i <= dev_if->num_in_eps; i++)
+ {
+ depctl_data_t depctl;
+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
+ if (depctl.b.epena) {
+ depctl.d32 = 0;
+ depctl.b.epdis = 1;
+ depctl.b.snak = 1;
+ }
+ else {
+ depctl.d32 = 0;
+ }
+
+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
+
+
+ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
+ }
+
+ for (i=0; i <= dev_if->num_out_eps; i++)
+ {
+ depctl_data_t depctl;
+ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
+ if (depctl.b.epena) {
+ depctl.d32 = 0;
+ depctl.b.epdis = 1;
+ depctl.b.snak = 1;
+ }
+ else {
+ depctl.d32 = 0;
+ }
+
+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
+
+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
+ }
+
+ if(core_if->en_multiple_tx_fifo && core_if->dma_enable) {
+ dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1;
+ dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1;
+ dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1;
+
+ dev_if->rx_thr_length = params->rx_thr_length;
+ dev_if->tx_thr_length = params->tx_thr_length;
+
+ dev_if->setup_desc_index = 0;
+
+ dthrctl.d32 = 0;
+ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
+ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
+ dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
+ dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
+ dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
+
+ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32);
+
+ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
+ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len);
+
+ }
+
+ dwc_otg_enable_device_interrupts(core_if);
+
+ {
+ diepmsk_data_t msk = { .d32 = 0 };
+ msk.b.txfifoundrn = 1;
+ if(core_if->multiproc_int_enable) {
+ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32);
+ } else {
+ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32);
+ }
+ }
+
+
+ if(core_if->multiproc_int_enable) {
+ /* Set NAK on Babble */
+ dctl_data_t dctl = { .d32 = 0};
+ dctl.b.nakonbble = 1;
+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
+ }
+}
+
+/**
+ * This function enables the Host mode interrupts.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ */
+void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if)
+{
+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+ gintmsk_data_t intr_mask = { .d32 = 0 };
+
+ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
+
+ /* Disable all interrupts. */
+ dwc_write_reg32(&global_regs->gintmsk, 0);
+
+ /* Clear any pending interrupts. */
+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+ /* Enable the common interrupts */
+ dwc_otg_enable_common_interrupts(core_if);
+
+ /*
+ * Enable host mode interrupts without disturbing common
+ * interrupts.
+ */
+ intr_mask.b.sofintr = 1;
+ intr_mask.b.portintr = 1;
+ intr_mask.b.hcintr = 1;
+
+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
+}
+
+/**
+ * This function disables the Host Mode interrupts.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ */
+void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if)
+{
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+ gintmsk_data_t intr_mask = { .d32 = 0 };
+
+ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
+
+ /*
+ * Disable host mode interrupts without disturbing common
+ * interrupts.
+ */
+ intr_mask.b.sofintr = 1;
+ intr_mask.b.portintr = 1;
+ intr_mask.b.hcintr = 1;
+ intr_mask.b.ptxfempty = 1;
+ intr_mask.b.nptxfempty = 1;
+
+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
+}
+
+/**
+ * This function initializes the DWC_otg controller registers for
+ * host mode.
+ *
+ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
+ * request queues. Host channels are reset to ensure that they are ready for
+ * performing transfers.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ *
+ */
+void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if)
+{
+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+ dwc_otg_host_if_t *host_if = core_if->host_if;
+ dwc_otg_core_params_t *params = core_if->core_params;
+ hprt0_data_t hprt0 = { .d32 = 0 };
+ fifosize_data_t nptxfifosize;
+ fifosize_data_t ptxfifosize;
+ int i;
+ hcchar_data_t hcchar;
+ hcfg_data_t hcfg;
+ dwc_otg_hc_regs_t *hc_regs;
+ int num_channels;
+ gotgctl_data_t gotgctl = { .d32 = 0 };
+
+ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if);
+
+ /* Restart the Phy Clock */
+ dwc_write_reg32(core_if->pcgcctl, 0);
+
+ /* Initialize Host Configuration Register */
+ init_fslspclksel(core_if);
+ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL)
+ {
+ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
+ hcfg.b.fslssupp = 1;
+ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
+ }
+
+ /* Configure data FIFO sizes */
+ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
+ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size);
+ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
+ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
+ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
+
+ /* Rx FIFO */
+ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
+ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
+ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
+
+ /* Non-periodic Tx FIFO */
+ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
+ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
+ nptxfifosize.b.startaddr = params->host_rx_fifo_size;
+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
+ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
+
+ /* Periodic Tx FIFO */
+ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
+ ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
+ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
+ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
+ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
+ }
+
+ /* Clear Host Set HNP Enable in the OTG Control Register */
+ gotgctl.b.hstsethnpen = 1;
+ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
+
+ /* Make sure the FIFOs are flushed. */
+ dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */);
+ dwc_otg_flush_rx_fifo(core_if);
+
+ /* Flush out any leftover queued requests. */
+ num_channels = core_if->core_params->host_channels;
+ for (i = 0; i < num_channels; i++)
+ {
+ hc_regs = core_if->host_if->hc_regs[i];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.chen = 0;
+ hcchar.b.chdis = 1;
+ hcchar.b.epdir = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ }
+
+ /* Halt all channels to put them into a known state. */
+ for (i = 0; i < num_channels; i++)
+ {
+ int count = 0;
+ hc_regs = core_if->host_if->hc_regs[i];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 1;
+ hcchar.b.epdir = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
+ do {
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (++count > 1000)
+ {
+ DWC_ERROR("%s: Unable to clear halt on channel %d\n",
+ __func__, i);
+ break;
+ }
+ }
+ while (hcchar.b.chen);
+ }
+
+ /* Turn on the vbus power. */
+ DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
+ if (core_if->op_state == A_HOST) {
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
+ if (hprt0.b.prtpwr == 0) {
+ hprt0.b.prtpwr = 1;
+ dwc_write_reg32(host_if->hprt0, hprt0.d32);
+ }
+ }
+
+ dwc_otg_enable_host_interrupts(core_if);
+}
+
+/**
+ * Prepares a host channel for transferring packets to/from a specific
+ * endpoint. The HCCHARn register is set up with the characteristics specified
+ * in _hc. Host channel interrupts that may need to be serviced while this
+ * transfer is in progress are enabled.
+ *
+ * @param core_if Programming view of DWC_otg controller
+ * @param hc Information needed to initialize the host channel
+ */
+void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+ uint32_t intr_enable;
+ hcintmsk_data_t hc_intr_mask;
+ gintmsk_data_t gintmsk = { .d32 = 0 };
+ hcchar_data_t hcchar;
+ hcsplt_data_t hcsplt;
+
+ uint8_t hc_num = hc->hc_num;
+ dwc_otg_host_if_t *host_if = core_if->host_if;
+ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
+
+ /* Clear old interrupt conditions for this host channel. */
+ hc_intr_mask.d32 = 0xFFFFFFFF;
+ hc_intr_mask.b.reserved = 0;
+ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
+
+ /* Enable channel interrupts required for this transfer. */
+ hc_intr_mask.d32 = 0;
+ hc_intr_mask.b.chhltd = 1;
+ if (core_if->dma_enable) {
+ hc_intr_mask.b.ahberr = 1;
+ if (hc->error_state && !hc->do_split &&
+ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
+ hc_intr_mask.b.ack = 1;
+ if (hc->ep_is_in) {
+ hc_intr_mask.b.datatglerr = 1;
+ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
+ hc_intr_mask.b.nak = 1;
+ }
+ }
+ }
+ }
+ else {
+ switch (hc->ep_type) {
+ case DWC_OTG_EP_TYPE_CONTROL:
+ case DWC_OTG_EP_TYPE_BULK:
+ hc_intr_mask.b.xfercompl = 1;
+ hc_intr_mask.b.stall = 1;
+ hc_intr_mask.b.xacterr = 1;
+ hc_intr_mask.b.datatglerr = 1;
+ if (hc->ep_is_in) {
+ hc_intr_mask.b.bblerr = 1;
+ }
+ else {
+ hc_intr_mask.b.nak = 1;
+ hc_intr_mask.b.nyet = 1;
+ if (hc->do_ping) {
+ hc_intr_mask.b.ack = 1;
+ }
+ }
+
+ if (hc->do_split) {
+ hc_intr_mask.b.nak = 1;
+ if (hc->complete_split) {
+ hc_intr_mask.b.nyet = 1;
+ }
+ else {
+ hc_intr_mask.b.ack = 1;
+ }
+ }
+
+ if (hc->error_state) {
+ hc_intr_mask.b.ack = 1;
+ }
+ break;
+ case DWC_OTG_EP_TYPE_INTR:
+ hc_intr_mask.b.xfercompl = 1;
+ hc_intr_mask.b.nak = 1;
+ hc_intr_mask.b.stall = 1;
+ hc_intr_mask.b.xacterr = 1;
+ hc_intr_mask.b.datatglerr = 1;
+ hc_intr_mask.b.frmovrun = 1;
+
+ if (hc->ep_is_in) {
+ hc_intr_mask.b.bblerr = 1;
+ }
+ if (hc->error_state) {
+ hc_intr_mask.b.ack = 1;
+ }
+ if (hc->do_split) {
+ if (hc->complete_split) {
+ hc_intr_mask.b.nyet = 1;
+ }
+ else {
+ hc_intr_mask.b.ack = 1;
+ }
+ }
+ break;
+ case DWC_OTG_EP_TYPE_ISOC:
+ hc_intr_mask.b.xfercompl = 1;
+ hc_intr_mask.b.frmovrun = 1;
+ hc_intr_mask.b.ack = 1;
+
+ if (hc->ep_is_in) {
+ hc_intr_mask.b.xacterr = 1;
+ hc_intr_mask.b.bblerr = 1;
+ }
+ break;
+ }
+ }
+ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
+
+// if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in)
+// hc->max_packet = 512;
+ /* Enable the top level host channel interrupt. */
+ intr_enable = (1 << hc_num);
+ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
+
+ /* Make sure host channel interrupts are enabled. */
+ gintmsk.b.hcintr = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
+
+ /*
+ * Program the HCCHARn register with the endpoint characteristics for
+ * the current transfer.
+ */
+ hcchar.d32 = 0;
+ hcchar.b.devaddr = hc->dev_addr;
+ hcchar.b.epnum = hc->ep_num;
+ hcchar.b.epdir = hc->ep_is_in;
+ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
+ hcchar.b.eptype = hc->ep_type;
+ hcchar.b.mps = hc->max_packet;
+
+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
+
+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
+ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
+ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
+ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
+ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
+ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
+ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
+
+ /*
+ * Program the HCSPLIT register for SPLITs
+ */
+ hcsplt.d32 = 0;
+ if (hc->do_split) {
+ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num,
+ hc->complete_split ? "CSPLIT" : "SSPLIT");
+ hcsplt.b.compsplt = hc->complete_split;
+ hcsplt.b.xactpos = hc->xact_pos;
+ hcsplt.b.hubaddr = hc->hub_addr;
+ hcsplt.b.prtaddr = hc->port_addr;
+ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split);
+ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos);
+ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr);
+ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr);
+ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in);
+ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
+ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len);
+ }
+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
+
+}
+
+/**
+ * Attempts to halt a host channel. This function should only be called in
+ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
+ * normal circumstances in DMA mode, the controller halts the channel when the
+ * transfer is complete or a condition occurs that requires application
+ * intervention.
+ *
+ * In slave mode, checks for a free request queue entry, then sets the Channel
+ * Enable and Channel Disable bits of the Host Channel Characteristics
+ * register of the specified channel to intiate the halt. If there is no free
+ * request queue entry, sets only the Channel Disable bit of the HCCHARn
+ * register to flush requests for this channel. In the latter case, sets a
+ * flag to indicate that the host channel needs to be halted when a request
+ * queue slot is open.
+ *
+ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
+ * HCCHARn register. The controller ensures there is space in the request
+ * queue before submitting the halt request.
+ *
+ * Some time may elapse before the core flushes any posted requests for this
+ * host channel and halts. The Channel Halted interrupt handler completes the
+ * deactivation of the host channel.
+ *
+ * @param core_if Controller register interface.
+ * @param hc Host channel to halt.
+ * @param halt_status Reason for halting the channel.
+ */
+void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if,
+ dwc_hc_t *hc,
+ dwc_otg_halt_status_e halt_status)
+{
+ gnptxsts_data_t nptxsts;
+ hptxsts_data_t hptxsts;
+ hcchar_data_t hcchar;
+ dwc_otg_hc_regs_t *hc_regs;
+ dwc_otg_core_global_regs_t *global_regs;
+ dwc_otg_host_global_regs_t *host_global_regs;
+
+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+ global_regs = core_if->core_global_regs;
+ host_global_regs = core_if->host_if->host_global_regs;
+
+ WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
+
+ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
+ halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
+ /*
+ * Disable all channel interrupts except Ch Halted. The QTD
+ * and QH state associated with this transfer has been cleared
+ * (in the case of URB_DEQUEUE), so the channel needs to be
+ * shut down carefully to prevent crashes.
+ */
+ hcintmsk_data_t hcintmsk;
+ hcintmsk.d32 = 0;
+ hcintmsk.b.chhltd = 1;
+ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
+
+ /*
+ * Make sure no other interrupts besides halt are currently
+ * pending. Handling another interrupt could cause a crash due
+ * to the QTD and QH state.
+ */
+ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
+
+ /*
+ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
+ * even if the channel was already halted for some other
+ * reason.
+ */
+ hc->halt_status = halt_status;
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (hcchar.b.chen == 0) {
+ /*
+ * The channel is either already halted or it hasn't
+ * started yet. In DMA mode, the transfer may halt if
+ * it finishes normally or a condition occurs that
+ * requires driver intervention. Don't want to halt
+ * the channel again. In either Slave or DMA mode,
+ * it's possible that the transfer has been assigned
+ * to a channel, but not started yet when an URB is
+ * dequeued. Don't want to halt a channel that hasn't
+ * started yet.
+ */
+ return;
+ }
+ }
+
+ if (hc->halt_pending) {
+ /*
+ * A halt has already been issued for this channel. This might
+ * happen when a transfer is aborted by a higher level in
+ * the stack.
+ */
+#ifdef DEBUG
+ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
+ __func__, hc->hc_num);
+
+/* dwc_otg_dump_global_registers(core_if); */
+/* dwc_otg_dump_host_registers(core_if); */
+#endif
+ return;
+ }
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 1;
+
+ if (!core_if->dma_enable) {
+ /* Check for space in the request queue to issue the halt. */
+ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
+ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+ if (nptxsts.b.nptxqspcavail == 0) {
+ hcchar.b.chen = 0;
+ }
+ }
+ else {
+ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
+ if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) {
+ hcchar.b.chen = 0;
+ }
+ }
+ }
+
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ hc->halt_status = halt_status;
+
+ if (hcchar.b.chen) {
+ hc->halt_pending = 1;
+ hc->halt_on_queue = 0;
+ }
+ else {
+ hc->halt_on_queue = 1;
+ }
+
+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
+ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
+ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
+ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
+
+ return;
+}
+
+/**
+ * Clears the transfer state for a host channel. This function is normally
+ * called after a transfer is done and the host channel is being released.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param hc Identifies the host channel to clean up.
+ */
+void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+ dwc_otg_hc_regs_t *hc_regs;
+
+ hc->xfer_started = 0;
+
+ /*
+ * Clear channel interrupt enables and any unhandled channel interrupt
+ * conditions.
+ */
+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+ dwc_write_reg32(&hc_regs->hcintmsk, 0);
+ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
+
+#ifdef DEBUG
+ del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
+ {
+ hcchar_data_t hcchar;
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (hcchar.b.chdis) {
+ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
+ __func__, hc->hc_num, hcchar.d32);
+ }
+ }
+#endif
+}
+
+/**
+ * Sets the channel property that indicates in which frame a periodic transfer
+ * should occur. This is always set to the _next_ frame. This function has no
+ * effect on non-periodic transfers.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param hc Identifies the host channel to set up and its properties.
+ * @param hcchar Current value of the HCCHAR register for the specified host
+ * channel.
+ */
+static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if,
+ dwc_hc_t *hc,
+ hcchar_data_t *hcchar)
+{
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ hfnum_data_t hfnum;
+ hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
+
+ /* 1 if _next_ frame is odd, 0 if it's even */
+ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
+#ifdef DEBUG
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) {
+ switch (hfnum.b.frnum & 0x7) {
+ case 7:
+ core_if->hfnum_7_samples++;
+ core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
+ break;
+ case 0:
+ core_if->hfnum_0_samples++;
+ core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
+ break;
+ default:
+ core_if->hfnum_other_samples++;
+ core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
+ break;
+ }
+ }
+#endif
+ }
+}
+
+#ifdef DEBUG
+static void hc_xfer_timeout(unsigned long ptr)
+{
+ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr;
+ int hc_num = xfer_info->hc->hc_num;
+ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
+ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
+}
+#endif
+
+/*
+ * This function does the setup for a data transfer for a host channel and
+ * starts the transfer. May be called in either Slave mode or DMA mode. In
+ * Slave mode, the caller must ensure that there is sufficient space in the
+ * request queue and Tx Data FIFO.
+ *
+ * For an OUT transfer in Slave mode, it loads a data packet into the
+ * appropriate FIFO. If necessary, additional data packets will be loaded in
+ * the Host ISR.
+ *
+ * For an IN transfer in Slave mode, a data packet is requested. The data
+ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
+ * additional data packets are requested in the Host ISR.
+ *
+ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
+ * register along with a packet count of 1 and the channel is enabled. This
+ * causes a single PING transaction to occur. Other fields in HCTSIZ are
+ * simply set to 0 since no data transfer occurs in this case.
+ *
+ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
+ * all the information required to perform the subsequent data transfer. In
+ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
+ * controller performs the entire PING protocol, then starts the data
+ * transfer.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param hc Information needed to initialize the host channel. The xfer_len
+ * value may be reduced to accommodate the max widths of the XferSize and
+ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
+ * to reflect the final xfer_len value.
+ */
+void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+ hcchar_data_t hcchar;
+ hctsiz_data_t hctsiz;
+ uint16_t num_packets;
+ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
+ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
+ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+
+ hctsiz.d32 = 0;
+
+ if (hc->do_ping) {
+ if (!core_if->dma_enable) {
+ dwc_otg_hc_do_ping(core_if, hc);
+ hc->xfer_started = 1;
+ return;
+ }
+ else {
+ hctsiz.b.dopng = 1;
+ }
+ }
+
+ if (hc->do_split) {
+ num_packets = 1;
+
+ if (hc->complete_split && !hc->ep_is_in) {
+ /* For CSPLIT OUT Transfer, set the size to 0 so the
+ * core doesn't expect any data written to the FIFO */
+ hc->xfer_len = 0;
+ }
+ else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
+ hc->xfer_len = hc->max_packet;
+ }
+ else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
+ hc->xfer_len = 188;
+ }
+
+ hctsiz.b.xfersize = hc->xfer_len;
+ }
+ else {
+ /*
+ * Ensure that the transfer length and packet count will fit
+ * in the widths allocated for them in the HCTSIZn register.
+ */
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ /*
+ * Make sure the transfer size is no larger than one
+ * (micro)frame's worth of data. (A check was done
+ * when the periodic transfer was accepted to ensure
+ * that a (micro)frame's worth of data can be
+ * programmed into a channel.)
+ */
+ uint32_t max_periodic_len = hc->multi_count * hc->max_packet;
+ if (hc->xfer_len > max_periodic_len) {
+ hc->xfer_len = max_periodic_len;
+ }
+ else {
+ }
+ }
+ else if (hc->xfer_len > max_hc_xfer_size) {
+ /* Make sure that xfer_len is a multiple of max packet size. */
+ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
+ }
+
+ if (hc->xfer_len > 0) {
+ num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet;
+ if (num_packets > max_hc_pkt_count) {
+ num_packets = max_hc_pkt_count;
+ hc->xfer_len = num_packets * hc->max_packet;
+ }
+ }
+ else {
+ /* Need 1 packet for transfer length of 0. */
+ num_packets = 1;
+ }
+
+#if 0
+//host testusb item 10, would do series of Control transfer
+//with URB_SHORT_NOT_OK set in transfer_flags ,
+//changing the xfer_len would cause the test fail
+ if (hc->ep_is_in) {
+ /* Always program an integral # of max packets for IN transfers. */
+ hc->xfer_len = num_packets * hc->max_packet;
+ }
+#endif
+
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ /*
+ * Make sure that the multi_count field matches the
+ * actual transfer length.
+ */
+ hc->multi_count = num_packets;
+ }
+
+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ /* Set up the initial PID for the transfer. */
+ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
+ if (hc->ep_is_in) {
+ if (hc->multi_count == 1) {
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+ }
+ else if (hc->multi_count == 2) {
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
+ }
+ else {
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
+ }
+ }
+ else {
+ if (hc->multi_count == 1) {
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+ }
+ else {
+ hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
+ }
+ }
+ }
+ else {
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+ }
+ }
+
+ hctsiz.b.xfersize = hc->xfer_len;
+ }
+
+ hc->start_pkt_count = num_packets;
+ hctsiz.b.pktcnt = num_packets;
+ hctsiz.b.pid = hc->data_pid_start;
+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
+ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
+ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
+
+ if (core_if->dma_enable) {
+ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff);
+ }
+
+ /* Start the split */
+ if (hc->do_split) {
+ hcsplt_data_t hcsplt;
+ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
+ hcsplt.b.spltena = 1;
+ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
+ }
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.multicnt = hc->multi_count;
+ hc_set_even_odd_frame(core_if, hc, &hcchar);
+#ifdef DEBUG
+ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
+ if (hcchar.b.chdis) {
+ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
+ __func__, hc->hc_num, hcchar.d32);
+ }
+#endif
+
+ /* Set host channel enable after all other setup is complete. */
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ hc->xfer_started = 1;
+ hc->requests++;
+
+ if (!core_if->dma_enable &&
+ !hc->ep_is_in && hc->xfer_len > 0) {
+ /* Load OUT packet into the appropriate Tx FIFO. */
+ dwc_otg_hc_write_packet(core_if, hc);
+ }
+
+#ifdef DEBUG
+ /* Start a timer for this transfer. */
+ core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
+ core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
+ core_if->hc_xfer_info[hc->hc_num].hc = hc;
+ core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
+ core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10);
+ add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
+#endif
+}
+
+/**
+ * This function continues a data transfer that was started by previous call
+ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
+ * sufficient space in the request queue and Tx Data FIFO. This function
+ * should only be called in Slave mode. In DMA mode, the controller acts
+ * autonomously to complete transfers programmed to a host channel.
+ *
+ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
+ * if there is any data remaining to be queued. For an IN transfer, another
+ * data packet is always requested. For the SETUP phase of a control transfer,
+ * this function does nothing.
+ *
+ * @return 1 if a new request is queued, 0 if no more requests are required
+ * for this transfer.
+ */
+int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+
+ if (hc->do_split) {
+ /* SPLITs always queue just once per channel */
+ return 0;
+ }
+ else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
+ /* SETUPs are queued only once since they can't be NAKed. */
+ return 0;
+ }
+ else if (hc->ep_is_in) {
+ /*
+ * Always queue another request for other IN transfers. If
+ * back-to-back INs are issued and NAKs are received for both,
+ * the driver may still be processing the first NAK when the
+ * second NAK is received. When the interrupt handler clears
+ * the NAK interrupt for the first NAK, the second NAK will
+ * not be seen. So we can't depend on the NAK interrupt
+ * handler to requeue a NAKed request. Instead, IN requests
+ * are issued each time this function is called. When the
+ * transfer completes, the extra requests for the channel will
+ * be flushed.
+ */
+ hcchar_data_t hcchar;
+ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hc_set_even_odd_frame(core_if, hc, &hcchar);
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 0;
+ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ hc->requests++;
+ return 1;
+ }
+ else {
+ /* OUT transfers. */
+ if (hc->xfer_count < hc->xfer_len) {
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ hcchar_data_t hcchar;
+ dwc_otg_hc_regs_t *hc_regs;
+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hc_set_even_odd_frame(core_if, hc, &hcchar);
+ }
+
+ /* Load OUT packet into the appropriate Tx FIFO. */
+ dwc_otg_hc_write_packet(core_if, hc);
+ hc->requests++;
+ return 1;
+ }
+ else {
+ return 0;
+ }
+ }
+}
+
+/**
+ * Starts a PING transfer. This function should only be called in Slave mode.
+ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
+ */
+void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+ hcchar_data_t hcchar;
+ hctsiz_data_t hctsiz;
+ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+
+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
+
+ hctsiz.d32 = 0;
+ hctsiz.b.dopng = 1;
+ hctsiz.b.pktcnt = 1;
+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+}
+
+/*
+ * This function writes a packet into the Tx FIFO associated with the Host
+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
+ * Tx FIFO is written. For a channel associated with a periodic EP, the
+ * periodic Tx FIFO is written. This function should only be called in Slave
+ * mode.
+ *
+ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
+ * then number of bytes written to the Tx FIFO.
+ */
+void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
+{
+ uint32_t i;
+ uint32_t remaining_count;
+ uint32_t byte_count;
+ uint32_t dword_count;
+
+ uint32_t *data_buff = (uint32_t *)(hc->xfer_buff);
+ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
+
+ remaining_count = hc->xfer_len - hc->xfer_count;
+ if (remaining_count > hc->max_packet) {
+ byte_count = hc->max_packet;
+ }
+ else {
+ byte_count = remaining_count;
+ }
+
+ dword_count = (byte_count + 3) / 4;
+
+ if ((((unsigned long)data_buff) & 0x3) == 0) {
+ /* xfer_buff is DWORD aligned. */
+ for (i = 0; i < dword_count; i++, data_buff++)
+ {
+ dwc_write_reg32(data_fifo, *data_buff);
+ }
+ }
+ else {
+ /* xfer_buff is not DWORD aligned. */
+ for (i = 0; i < dword_count; i++, data_buff++)
+ {
+ dwc_write_reg32(data_fifo, get_unaligned(data_buff));
+ }
+ }
+
+ hc->xfer_count += byte_count;
+ hc->xfer_buff += byte_count;
+}
+
+/**
+ * Gets the current USB frame number. This is the frame number from the last
+ * SOF packet.
+ */
+uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if)
+{
+ dsts_data_t dsts;
+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+ /* read current frame/microframe number from DSTS register */
+ return dsts.b.soffn;
+}
+
+/**
+ * This function reads a setup packet from the Rx FIFO into the destination
+ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
+ * Interrupt routine when a SETUP packet has been received in Slave mode.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dest Destination buffer for packet data.
+ */
+void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest)
+{
+ /* Get the 8 bytes of a setup transaction data */
+
+ /* Pop 2 DWORDS off the receive data FIFO into memory */
+ dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
+ dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
+}
+
+
+/**
+ * This function enables EP0 OUT to receive SETUP packets and configures EP0
+ * IN for transmitting packets. It is normally called when the
+ * "Enumeration Done" interrupt occurs.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP0 data.
+ */
+void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ dsts_data_t dsts;
+ depctl_data_t diepctl;
+ depctl_data_t doepctl;
+ dctl_data_t dctl = { .d32 = 0 };
+
+ /* Read the Device Status and Endpoint 0 Control registers */
+ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
+ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
+ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
+
+ /* Set the MPS of the IN EP based on the enumeration speed */
+ switch (dsts.b.enumspd) {
+ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
+ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
+ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
+ diepctl.b.mps = DWC_DEP0CTL_MPS_64;
+ break;
+ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
+ diepctl.b.mps = DWC_DEP0CTL_MPS_8;
+ break;
+ }
+
+ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
+
+ /* Enable OUT EP for receive */
+ doepctl.b.epena = 1;
+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
+
+#ifdef VERBOSE
+ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
+ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
+ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
+ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
+#endif
+ dctl.b.cgnpinnak = 1;
+
+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
+ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
+ dwc_read_reg32(&dev_if->dev_global_regs->dctl));
+}
+
+/**
+ * This function activates an EP. The Device EP control register for
+ * the EP is configured as defined in the ep structure. Note: This
+ * function is not used for EP0.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to activate.
+ */
+void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ depctl_data_t depctl;
+ volatile uint32_t *addr;
+ daint_data_t daintmsk = { .d32 = 0 };
+
+ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
+ (ep->is_in?"IN":"OUT"));
+
+ /* Read DEPCTLn register */
+ if (ep->is_in == 1) {
+ addr = &dev_if->in_ep_regs[ep->num]->diepctl;
+ daintmsk.ep.in = 1<<ep->num;
+ }
+ else {
+ addr = &dev_if->out_ep_regs[ep->num]->doepctl;
+ daintmsk.ep.out = 1<<ep->num;
+ }
+
+ /* If the EP is already active don't change the EP Control
+ * register. */
+ depctl.d32 = dwc_read_reg32(addr);
+ if (!depctl.b.usbactep) {
+ depctl.b.mps = ep->maxpacket;
+ depctl.b.eptype = ep->type;
+ depctl.b.txfnum = ep->tx_fifo_num;
+
+ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
+ depctl.b.setd0pid = 1; // ???
+ }
+ else {
+ depctl.b.setd0pid = 1;
+ }
+ depctl.b.usbactep = 1;
+
+ dwc_write_reg32(addr, depctl.d32);
+ DWC_DEBUGPL(DBG_PCDV,"DEPCTL(%.8x)=%08x\n",(u32)addr, dwc_read_reg32(addr));
+ }
+
+ /* Enable the Interrupt for this EP */
+ if(core_if->multiproc_int_enable) {
+ if (ep->is_in == 1) {
+ diepmsk_data_t diepmsk = { .d32 = 0};
+ diepmsk.b.xfercompl = 1;
+ diepmsk.b.timeout = 1;
+ diepmsk.b.epdisabled = 1;
+ diepmsk.b.ahberr = 1;
+ diepmsk.b.intknepmis = 1;
+ diepmsk.b.txfifoundrn = 1; //?????
+
+
+ if(core_if->dma_desc_enable) {
+ diepmsk.b.bna = 1;
+ }
+/*
+ if(core_if->dma_enable) {
+ doepmsk.b.nak = 1;
+ }
+*/
+ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32);
+
+ } else {
+ doepmsk_data_t doepmsk = { .d32 = 0};
+ doepmsk.b.xfercompl = 1;
+ doepmsk.b.ahberr = 1;
+ doepmsk.b.epdisabled = 1;
+
+
+ if(core_if->dma_desc_enable) {
+ doepmsk.b.bna = 1;
+ }
+/*
+ doepmsk.b.babble = 1;
+ doepmsk.b.nyet = 1;
+ doepmsk.b.nak = 1;
+*/
+ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32);
+ }
+ dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk,
+ 0, daintmsk.d32);
+ } else {
+ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
+ 0, daintmsk.d32);
+ }
+
+ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
+ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
+
+ ep->stall_clear_flag = 0;
+ return;
+}
+
+/**
+ * This function deactivates an EP. This is done by clearing the USB Active
+ * EP bit in the Device EP control register. Note: This function is not used
+ * for EP0. EP0 cannot be deactivated.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to deactivate.
+ */
+void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ depctl_data_t depctl = { .d32 = 0 };
+ volatile uint32_t *addr;
+ daint_data_t daintmsk = { .d32 = 0};
+
+ /* Read DEPCTLn register */
+ if (ep->is_in == 1) {
+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
+ daintmsk.ep.in = 1<<ep->num;
+ }
+ else {
+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
+ daintmsk.ep.out = 1<<ep->num;
+ }
+
+ //disabled ep only when ep is enabled
+ //or got halt in the loop in test in cv9
+ depctl.d32=dwc_read_reg32(addr);
+ if(depctl.b.epena){
+ if (ep->is_in == 1) {
+ diepint_data_t diepint;
+ dwc_otg_dev_in_ep_regs_t *in_reg=core_if->dev_if->in_ep_regs[ep->num];
+
+ //Set ep nak
+ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
+ depctl.b.snak=1;
+ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
+
+ //wait for diepint.b.inepnakeff
+ diepint.d32=dwc_read_reg32(&in_reg->diepint);
+ while(!diepint.b.inepnakeff){
+ udelay(1);
+ diepint.d32=dwc_read_reg32(&in_reg->diepint);
+ }
+ diepint.d32=0;
+ diepint.b.inepnakeff=1;
+ dwc_write_reg32(&in_reg->diepint,diepint.d32);
+
+ //set ep disable and snak
+ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
+ depctl.b.snak=1;
+ depctl.b.epdis=1;
+ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
+
+ //wait for diepint.b.epdisabled
+ diepint.d32=dwc_read_reg32(&in_reg->diepint);
+ while(!diepint.b.epdisabled){
+ udelay(1);
+ diepint.d32=dwc_read_reg32(&in_reg->diepint);
+ }
+ diepint.d32=0;
+ diepint.b.epdisabled=1;
+ dwc_write_reg32(&in_reg->diepint,diepint.d32);
+
+ //clear ep enable and disable bit
+ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
+ depctl.b.epena=0;
+ depctl.b.epdis=0;
+ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
+
+ }
+#if 0
+//following DWC OTG DataBook v2.72a, 6.4.2.1.3 Disabling an OUT Endpoint,
+//but this doesn't work, the old code do.
+ else {
+ doepint_data_t doepint;
+ dwc_otg_dev_out_ep_regs_t *out_reg=core_if->dev_if->out_ep_regs[ep->num];
+ dctl_data_t dctl;
+ gintsts_data_t gintsts;
+
+ //set dctl global out nak
+ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
+ dctl.b.sgoutnak=1;
+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl,dctl.d32);
+
+ //wait for gintsts.goutnakeff
+ gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
+ while(!gintsts.b.goutnakeff){
+ udelay(1);
+ gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
+ }
+ gintsts.d32=0;
+ gintsts.b.goutnakeff=1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ //set ep disable and snak
+ depctl.d32=dwc_read_reg32(&out_reg->doepctl);
+ depctl.b.snak=1;
+ depctl.b.epdis=1;
+ dwc_write_reg32(&out_reg->doepctl,depctl.d32);
+
+ //wait for diepint.b.epdisabled
+ doepint.d32=dwc_read_reg32(&out_reg->doepint);
+ while(!doepint.b.epdisabled){
+ udelay(1);
+ doepint.d32=dwc_read_reg32(&out_reg->doepint);
+ }
+ doepint.d32=0;
+ doepint.b.epdisabled=1;
+ dwc_write_reg32(&out_reg->doepint,doepint.d32);
+
+ //clear ep enable and disable bit
+ depctl.d32=dwc_read_reg32(&out_reg->doepctl);
+ depctl.b.epena=0;
+ depctl.b.epdis=0;
+ dwc_write_reg32(&out_reg->doepctl,depctl.d32);
+ }
+#endif
+
+ depctl.d32=0;
+ depctl.b.usbactep = 0;
+
+ if (ep->is_in == 0) {
+ if(core_if->dma_enable||core_if->dma_desc_enable)
+ depctl.b.epdis = 1;
+ }
+
+ dwc_write_reg32(addr, depctl.d32);
+ }
+
+ /* Disable the Interrupt for this EP */
+ if(core_if->multiproc_int_enable) {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk,
+ daintmsk.d32, 0);
+
+ if (ep->is_in == 1) {
+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0);
+ } else {
+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0);
+ }
+ } else {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
+ daintmsk.d32, 0);
+ }
+
+ if (ep->is_in == 1) {
+ DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
+ (u32)&core_if->dev_if->in_ep_regs[ep->num]->diepctl,
+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepctl),
+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz),
+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepint),
+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepdma),
+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts));
+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
+ }
+ else {
+ DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
+ (u32)&core_if->dev_if->out_ep_regs[ep->num]->doepctl,
+ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl),
+ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz),
+ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepint),
+ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepdma));
+
+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
+ }
+
+}
+
+/**
+ * This function does the setup for a data transfer for an EP and
+ * starts the transfer. For an IN transfer, the packets will be
+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ */
+static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ dwc_otg_dma_desc_t* dma_desc;
+ uint32_t offset;
+ uint32_t xfer_est;
+ int i;
+
+ ep->desc_cnt = ( ep->total_len / ep->maxxfer) +
+ ((ep->total_len % ep->maxxfer) ? 1 : 0);
+ if(!ep->desc_cnt)
+ ep->desc_cnt = 1;
+
+ dma_desc = ep->desc_addr;
+ xfer_est = ep->total_len;
+ offset = 0;
+ for( i = 0; i < ep->desc_cnt; ++i) {
+ /** DMA Descriptor Setup */
+ if(xfer_est > ep->maxxfer) {
+ dma_desc->status.b.bs = BS_HOST_BUSY;
+ dma_desc->status.b.l = 0;
+ dma_desc->status.b.ioc = 0;
+ dma_desc->status.b.sp = 0;
+ dma_desc->status.b.bytes = ep->maxxfer;
+ dma_desc->buf = ep->dma_addr + offset;
+ dma_desc->status.b.bs = BS_HOST_READY;
+
+ xfer_est -= ep->maxxfer;
+ offset += ep->maxxfer;
+ } else {
+ dma_desc->status.b.bs = BS_HOST_BUSY;
+ dma_desc->status.b.l = 1;
+ dma_desc->status.b.ioc = 1;
+ if(ep->is_in) {
+ dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ?
+ 1 : ((ep->sent_zlp) ? 1 : 0);
+ dma_desc->status.b.bytes = xfer_est;
+ } else {
+ dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ;
+ }
+
+ dma_desc->buf = ep->dma_addr + offset;
+ dma_desc->status.b.bs = BS_HOST_READY;
+ }
+ dma_desc ++;
+ }
+}
+
+/**
+ * This function does the setup for a data transfer for an EP and
+ * starts the transfer. For an IN transfer, the packets will be
+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ */
+
+void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ depctl_data_t depctl;
+ deptsiz_data_t deptsiz;
+ gintmsk_data_t intr_mask = { .d32 = 0};
+
+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
+
+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
+ "xfer_buff=%p start_xfer_buff=%p\n",
+ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
+ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
+
+ /* IN endpoint */
+ if (ep->is_in == 1) {
+ dwc_otg_dev_in_ep_regs_t *in_regs =
+ core_if->dev_if->in_ep_regs[ep->num];
+
+ gnptxsts_data_t gtxstatus;
+
+ gtxstatus.d32 =
+ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
+
+ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
+#ifdef DEBUG
+ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
+#endif
+ return;
+ }
+
+ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
+ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
+
+ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
+ ep->maxxfer : (ep->total_len - ep->xfer_len);
+
+ /* Zero Length Packet? */
+ if ((ep->xfer_len - ep->xfer_count) == 0) {
+ deptsiz.b.xfersize = 0;
+ deptsiz.b.pktcnt = 1;
+ }
+ else {
+ /* Program the transfer size and packet count
+ * as follows: xfersize = N * maxpacket +
+ * short_packet pktcnt = N + (short_packet
+ * exist ? 1 : 0)
+ */
+ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
+ deptsiz.b.pktcnt =
+ (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) /
+ ep->maxpacket;
+ }
+
+
+ /* Write the DMA register */
+ if (core_if->dma_enable) {
+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+ }
+ DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ep->num, ep->dma_addr);
+
+ if (core_if->dma_desc_enable == 0) {
+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+ dwc_write_reg32 (&(in_regs->diepdma),
+ (uint32_t)ep->dma_addr);
+ }
+ else {
+ init_dma_desc_chain(core_if, ep);
+ /** DIEPDMAn Register write */
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
+ dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr);
+ }
+ }
+ else
+ {
+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+ if(ep->type != DWC_OTG_EP_TYPE_ISOC) {
+ /**
+ * Enable the Non-Periodic Tx FIFO empty interrupt,
+ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
+ * the data will be written into the fifo by the ISR.
+ */
+ if(core_if->en_multiple_tx_fifo == 0) {
+ intr_mask.b.nptxfempty = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+ intr_mask.d32, intr_mask.d32);
+ }
+ else {
+ /* Enable the Tx FIFO Empty Interrupt for this EP */
+ if(ep->xfer_len > 0) {
+ uint32_t fifoemptymsk = 0;
+ fifoemptymsk = 1 << ep->num;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+ 0, fifoemptymsk);
+
+ }
+ }
+ }
+ }
+
+ /* EP enable, IN data in FIFO */
+ depctl.b.cnak = 1;
+ depctl.b.epena = 1;
+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
+
+ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
+ depctl.b.nextep = ep->num;
+ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
+
+ DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
+ (u32)&in_regs->diepctl,
+ dwc_read_reg32(&in_regs->diepctl),
+ dwc_read_reg32(&in_regs->dieptsiz),
+ dwc_read_reg32(&in_regs->diepint),
+ dwc_read_reg32(&in_regs->diepdma),
+ dwc_read_reg32(&in_regs->dtxfsts));
+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
+
+ }
+ else {
+ /* OUT endpoint */
+ dwc_otg_dev_out_ep_regs_t *out_regs =
+ core_if->dev_if->out_ep_regs[ep->num];
+
+ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
+ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
+
+ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
+ ep->maxxfer : (ep->total_len - ep->xfer_len);
+
+ /* Program the transfer size and packet count as follows:
+ *
+ * pktcnt = N
+ * xfersize = N * maxpacket
+ */
+ if ((ep->xfer_len - ep->xfer_count) == 0) {
+ /* Zero Length Packet */
+ deptsiz.b.xfersize = ep->maxpacket;
+ deptsiz.b.pktcnt = 1;
+ }
+ else {
+ deptsiz.b.pktcnt =
+ (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) /
+ ep->maxpacket;
+ ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count;
+ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
+ }
+
+ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
+ ep->num,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
+
+ if (core_if->dma_enable) {
+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+ }
+ DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n",
+ ep->num,
+ ep->dma_addr);
+ if (!core_if->dma_desc_enable) {
+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+ dwc_write_reg32 (&(out_regs->doepdma),
+ (uint32_t)ep->dma_addr);
+ }
+ else {
+ init_dma_desc_chain(core_if, ep);
+
+ /** DOEPDMAn Register write */
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
+ dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr);
+ }
+ }
+ else {
+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+ }
+
+ /* EP enable */
+ depctl.b.cnak = 1;
+ depctl.b.epena = 1;
+
+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
+
+ DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
+ (u32)&out_regs->doepctl,
+ dwc_read_reg32(&out_regs->doepctl),
+ dwc_read_reg32(&out_regs->doeptsiz),
+ dwc_read_reg32(&out_regs->doepint),
+ dwc_read_reg32(&out_regs->doepdma));
+
+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
+ }
+}
+
+/**
+ * This function setup a zero length transfer in Buffer DMA and
+ * Slave modes for usb requests with zero field set
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+
+ depctl_data_t depctl;
+ deptsiz_data_t deptsiz;
+ gintmsk_data_t intr_mask = { .d32 = 0};
+
+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
+
+ /* IN endpoint */
+ if (ep->is_in == 1) {
+ dwc_otg_dev_in_ep_regs_t *in_regs =
+ core_if->dev_if->in_ep_regs[ep->num];
+
+ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
+ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
+
+ deptsiz.b.xfersize = 0;
+ deptsiz.b.pktcnt = 1;
+
+
+ /* Write the DMA register */
+ if (core_if->dma_enable) {
+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+ }
+ if (core_if->dma_desc_enable == 0) {
+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+ dwc_write_reg32 (&(in_regs->diepdma),
+ (uint32_t)ep->dma_addr);
+ }
+ }
+ else {
+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+ /**
+ * Enable the Non-Periodic Tx FIFO empty interrupt,
+ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
+ * the data will be written into the fifo by the ISR.
+ */
+ if(core_if->en_multiple_tx_fifo == 0) {
+ intr_mask.b.nptxfempty = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+ intr_mask.d32, intr_mask.d32);
+ }
+ else {
+ /* Enable the Tx FIFO Empty Interrupt for this EP */
+ if(ep->xfer_len > 0) {
+ uint32_t fifoemptymsk = 0;
+ fifoemptymsk = 1 << ep->num;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+ 0, fifoemptymsk);
+ }
+ }
+ }
+
+ /* EP enable, IN data in FIFO */
+ depctl.b.cnak = 1;
+ depctl.b.epena = 1;
+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
+
+ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
+ depctl.b.nextep = ep->num;
+ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
+
+ }
+ else {
+ /* OUT endpoint */
+ dwc_otg_dev_out_ep_regs_t *out_regs =
+ core_if->dev_if->out_ep_regs[ep->num];
+
+ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
+ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
+
+ /* Zero Length Packet */
+ deptsiz.b.xfersize = ep->maxpacket;
+ deptsiz.b.pktcnt = 1;
+
+ if (core_if->dma_enable) {
+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+ }
+ if (!core_if->dma_desc_enable) {
+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+ dwc_write_reg32 (&(out_regs->doepdma),
+ (uint32_t)ep->dma_addr);
+ }
+ }
+ else {
+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+ }
+
+ /* EP enable */
+ depctl.b.cnak = 1;
+ depctl.b.epena = 1;
+
+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
+
+ }
+}
+
+/**
+ * This function does the setup for a data transfer for EP0 and starts
+ * the transfer. For an IN transfer, the packets will be loaded into
+ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
+ * unloaded from the Rx FIFO in the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP0 data.
+ */
+void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ depctl_data_t depctl;
+ deptsiz0_data_t deptsiz;
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ dwc_otg_dma_desc_t* dma_desc;
+
+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
+ "xfer_buff=%p start_xfer_buff=%p, dma_addr=%.8x\n",
+ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
+ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,ep->dma_addr);
+
+ ep->total_len = ep->xfer_len;
+
+ /* IN endpoint */
+ if (ep->is_in == 1) {
+ dwc_otg_dev_in_ep_regs_t *in_regs =
+ core_if->dev_if->in_ep_regs[0];
+
+ gnptxsts_data_t gtxstatus;
+
+ gtxstatus.d32 =
+ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
+
+ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
+#ifdef DEBUG
+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
+ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
+ dwc_read_reg32(&in_regs->diepctl));
+ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
+ deptsiz.d32,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
+ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
+ gtxstatus.d32);
+#endif
+ return;
+ }
+
+
+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
+
+ /* Zero Length Packet? */
+ if (ep->xfer_len == 0) {
+ deptsiz.b.xfersize = 0;
+ deptsiz.b.pktcnt = 1;
+ }
+ else {
+ /* Program the transfer size and packet count
+ * as follows: xfersize = N * maxpacket +
+ * short_packet pktcnt = N + (short_packet
+ * exist ? 1 : 0)
+ */
+ if (ep->xfer_len > ep->maxpacket) {
+ ep->xfer_len = ep->maxpacket;
+ deptsiz.b.xfersize = ep->maxpacket;
+ }
+ else {
+ deptsiz.b.xfersize = ep->xfer_len;
+ }
+ deptsiz.b.pktcnt = 1;
+
+ }
+ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
+ ep->xfer_len,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
+ /* Write the DMA register */
+ if (core_if->dma_enable) {
+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+ }
+ if(core_if->dma_desc_enable == 0) {
+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+ dwc_write_reg32 (&(in_regs->diepdma),
+ (uint32_t)ep->dma_addr);
+ }
+ else {
+ dma_desc = core_if->dev_if->in_desc_addr;
+
+ /** DMA Descriptor Setup */
+ dma_desc->status.b.bs = BS_HOST_BUSY;
+ dma_desc->status.b.l = 1;
+ dma_desc->status.b.ioc = 1;
+ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
+ dma_desc->status.b.bytes = ep->xfer_len;
+ dma_desc->buf = ep->dma_addr;
+ dma_desc->status.b.bs = BS_HOST_READY;
+
+ /** DIEPDMA0 Register write */
+
+ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
+ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
+ }
+ }
+ else {
+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+ }
+
+ /* EP enable, IN data in FIFO */
+ depctl.b.cnak = 1;
+ depctl.b.epena = 1;
+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
+
+ /**
+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
+ * data will be written into the fifo by the ISR.
+ */
+ if (!core_if->dma_enable) {
+ if(core_if->en_multiple_tx_fifo == 0) {
+ intr_mask.b.nptxfempty = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+ intr_mask.d32, intr_mask.d32);
+ }
+ else {
+ /* Enable the Tx FIFO Empty Interrupt for this EP */
+ if(ep->xfer_len > 0) {
+ uint32_t fifoemptymsk = 0;
+ fifoemptymsk |= 1 << ep->num;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+ 0, fifoemptymsk);
+ }
+ }
+ }
+ }
+ else {
+ /* OUT endpoint */
+ dwc_otg_dev_out_ep_regs_t *out_regs =
+ core_if->dev_if->out_ep_regs[0];
+
+ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
+ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
+
+ /* Program the transfer size and packet count as follows:
+ * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
+ * pktcnt = N */
+ /* Zero Length Packet */
+ deptsiz.b.xfersize = ep->maxpacket;
+ deptsiz.b.pktcnt = 1;
+
+ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
+ ep->xfer_len,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
+
+ if (core_if->dma_enable) {
+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
+ }
+ if(!core_if->dma_desc_enable) {
+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+ dwc_write_reg32 (&(out_regs->doepdma),
+ (uint32_t)ep->dma_addr);
+ }
+ else {
+ dma_desc = core_if->dev_if->out_desc_addr;
+
+ /** DMA Descriptor Setup */
+ dma_desc->status.b.bs = BS_HOST_BUSY;
+ dma_desc->status.b.l = 1;
+ dma_desc->status.b.ioc = 1;
+ dma_desc->status.b.bytes = ep->maxpacket;
+ dma_desc->buf = ep->dma_addr;
+ dma_desc->status.b.bs = BS_HOST_READY;
+
+ /** DOEPDMA0 Register write */
+ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
+ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
+ }
+ }
+ else {
+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+ }
+
+ /* EP enable */
+ depctl.b.cnak = 1;
+ depctl.b.epena = 1;
+ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
+ }
+}
+
+/**
+ * This function continues control IN transfers started by
+ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
+ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
+ * bit for the packet count.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP0 data.
+ */
+void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ depctl_data_t depctl;
+ deptsiz0_data_t deptsiz;
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ dwc_otg_dma_desc_t* dma_desc;
+
+ if (ep->is_in == 1) {
+ dwc_otg_dev_in_ep_regs_t *in_regs =
+ core_if->dev_if->in_ep_regs[0];
+ gnptxsts_data_t tx_status = { .d32 = 0 };
+
+ tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
+ /** @todo Should there be check for room in the Tx
+ * Status Queue. If not remove the code above this comment. */
+
+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
+
+ /* Program the transfer size and packet count
+ * as follows: xfersize = N * maxpacket +
+ * short_packet pktcnt = N + (short_packet
+ * exist ? 1 : 0)
+ */
+
+
+ if(core_if->dma_desc_enable == 0) {
+ deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
+ (ep->total_len - ep->xfer_count);
+ deptsiz.b.pktcnt = 1;
+ if(core_if->dma_enable == 0) {
+ ep->xfer_len += deptsiz.b.xfersize;
+ } else {
+ ep->xfer_len = deptsiz.b.xfersize;
+ }
+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
+ }
+ else {
+ ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
+ (ep->total_len - ep->xfer_count);
+
+ dma_desc = core_if->dev_if->in_desc_addr;
+
+ /** DMA Descriptor Setup */
+ dma_desc->status.b.bs = BS_HOST_BUSY;
+ dma_desc->status.b.l = 1;
+ dma_desc->status.b.ioc = 1;
+ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
+ dma_desc->status.b.bytes = ep->xfer_len;
+ dma_desc->buf = ep->dma_addr;
+ dma_desc->status.b.bs = BS_HOST_READY;
+
+
+ /** DIEPDMA0 Register write */
+ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
+ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
+ }
+
+
+ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
+ ep->xfer_len,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
+
+ /* Write the DMA register */
+ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
+ if(core_if->dma_desc_enable == 0){
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+ dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr);
+ }
+ }
+
+ /* EP enable, IN data in FIFO */
+ depctl.b.cnak = 1;
+ depctl.b.epena = 1;
+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
+
+ /**
+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
+ * data will be written into the fifo by the ISR.
+ */
+ if (!core_if->dma_enable) {
+ if(core_if->en_multiple_tx_fifo == 0) {
+ /* First clear it from GINTSTS */
+ intr_mask.b.nptxfempty = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+ intr_mask.d32, intr_mask.d32);
+
+ }
+ else {
+ /* Enable the Tx FIFO Empty Interrupt for this EP */
+ if(ep->xfer_len > 0) {
+ uint32_t fifoemptymsk = 0;
+ fifoemptymsk |= 1 << ep->num;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+ 0, fifoemptymsk);
+ }
+ }
+ }
+ }
+ else {
+ dwc_otg_dev_out_ep_regs_t *out_regs =
+ core_if->dev_if->out_ep_regs[0];
+
+
+ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
+ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
+
+ /* Program the transfer size and packet count
+ * as follows: xfersize = N * maxpacket +
+ * short_packet pktcnt = N + (short_packet
+ * exist ? 1 : 0)
+ */
+ deptsiz.b.xfersize = ep->maxpacket;
+ deptsiz.b.pktcnt = 1;
+
+
+ if(core_if->dma_desc_enable == 0) {
+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
+ }
+ else {
+ dma_desc = core_if->dev_if->out_desc_addr;
+
+ /** DMA Descriptor Setup */
+ dma_desc->status.b.bs = BS_HOST_BUSY;
+ dma_desc->status.b.l = 1;
+ dma_desc->status.b.ioc = 1;
+ dma_desc->status.b.bytes = ep->maxpacket;
+ dma_desc->buf = ep->dma_addr;
+ dma_desc->status.b.bs = BS_HOST_READY;
+
+ /** DOEPDMA0 Register write */
+ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
+ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
+ }
+
+
+ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
+ ep->xfer_len,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
+
+ /* Write the DMA register */
+ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
+ if(core_if->dma_desc_enable == 0){
+
+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
+ dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr);
+ }
+ }
+
+ /* EP enable, IN data in FIFO */
+ depctl.b.cnak = 1;
+ depctl.b.epena = 1;
+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
+
+ }
+}
+
+#ifdef DEBUG
+void dump_msg(const u8 *buf, unsigned int length)
+{
+ unsigned int start, num, i;
+ char line[52], *p;
+
+ if (length >= 512)
+ return;
+ start = 0;
+ while (length > 0) {
+ num = min(length, 16u);
+ p = line;
+ for (i = 0; i < num; ++i)
+ {
+ if (i == 8)
+ *p++ = ' ';
+ sprintf(p, " %02x", buf[i]);
+ p += 3;
+ }
+ *p = 0;
+ DWC_PRINT("%6x: %s\n", start, line);
+ buf += num;
+ start += num;
+ length -= num;
+ }
+}
+#else
+static inline void dump_msg(const u8 *buf, unsigned int length)
+{
+}
+#endif
+
+/**
+ * This function writes a packet into the Tx FIFO associated with the
+ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
+ * periodic EPs the periodic Tx FIFO associated with the EP is written
+ * with all packets for the next micro-frame.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to write packet for.
+ * @param dma Indicates if DMA is being used.
+ */
+void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma)
+{
+ /**
+ * The buffer is padded to DWORD on a per packet basis in
+ * slave/dma mode if the MPS is not DWORD aligned. The last
+ * packet, if short, is also padded to a multiple of DWORD.
+ *
+ * ep->xfer_buff always starts DWORD aligned in memory and is a
+ * multiple of DWORD in length
+ *
+ * ep->xfer_len can be any number of bytes
+ *
+ * ep->xfer_count is a multiple of ep->maxpacket until the last
+ * packet
+ *
+ * FIFO access is DWORD */
+
+ uint32_t i;
+ uint32_t byte_count;
+ uint32_t dword_count;
+ uint32_t *fifo;
+ uint32_t *data_buff = (uint32_t *)ep->xfer_buff;
+
+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep);
+ if (ep->xfer_count >= ep->xfer_len) {
+ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
+ return;
+ }
+
+ /* Find the byte length of the packet either short packet or MPS */
+ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) {
+ byte_count = ep->xfer_len - ep->xfer_count;
+ }
+ else {
+ byte_count = ep->maxpacket;
+ }
+
+ /* Find the DWORD length, padded by extra bytes as neccessary if MPS
+ * is not a multiple of DWORD */
+ dword_count = (byte_count + 3) / 4;
+
+#ifdef VERBOSE
+ dump_msg(ep->xfer_buff, byte_count);
+#endif
+
+ /**@todo NGS Where are the Periodic Tx FIFO addresses
+ * intialized? What should this be? */
+
+ fifo = core_if->data_fifo[ep->num];
+
+
+ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count);
+
+ if (!dma) {
+ for (i=0; i<dword_count; i++, data_buff++) {
+ dwc_write_reg32(fifo, *data_buff);
+ }
+ }
+
+ ep->xfer_count += byte_count;
+ ep->xfer_buff += byte_count;
+ ep->dma_addr += byte_count;
+}
+
+/**
+ * Set the EP STALL.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to set the stall on.
+ */
+void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ depctl_data_t depctl;
+ volatile uint32_t *depctl_addr;
+
+ DWC_DEBUGPL(DBG_PCDV, "%s ep%d-%s1\n", __func__, ep->num,
+ (ep->is_in?"IN":"OUT"));
+
+ DWC_PRINT("%s ep%d-%s\n", __func__, ep->num,
+ (ep->is_in?"in":"out"));
+
+ if (ep->is_in == 1) {
+ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
+ depctl.d32 = dwc_read_reg32(depctl_addr);
+
+ /* set the disable and stall bits */
+#if 0
+//epdis is set here but not cleared at latter dwc_otg_ep_clear_stall,
+//which cause the testusb item 13 failed(Host:pc, device: otg device)
+ if (depctl.b.epena) {
+ depctl.b.epdis = 1;
+ }
+#endif
+ depctl.b.stall = 1;
+ dwc_write_reg32(depctl_addr, depctl.d32);
+ }
+ else {
+ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
+ depctl.d32 = dwc_read_reg32(depctl_addr);
+
+ /* set the stall bit */
+ depctl.b.stall = 1;
+ dwc_write_reg32(depctl_addr, depctl.d32);
+ }
+
+ DWC_DEBUGPL(DBG_PCDV,"%s: DEPCTL(%.8x)=%0x\n",__func__,(u32)depctl_addr,dwc_read_reg32(depctl_addr));
+
+ return;
+}
+
+/**
+ * Clear the EP STALL.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to clear stall from.
+ */
+void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ depctl_data_t depctl;
+ volatile uint32_t *depctl_addr;
+
+ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
+ (ep->is_in?"IN":"OUT"));
+
+ if (ep->is_in == 1) {
+ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
+ }
+ else {
+ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
+ }
+
+ depctl.d32 = dwc_read_reg32(depctl_addr);
+
+ /* clear the stall bits */
+ depctl.b.stall = 0;
+
+ /*
+ * USB Spec 9.4.5: For endpoints using data toggle, regardless
+ * of whether an endpoint has the Halt feature set, a
+ * ClearFeature(ENDPOINT_HALT) request always results in the
+ * data toggle being reinitialized to DATA0.
+ */
+ if (ep->type == DWC_OTG_EP_TYPE_INTR ||
+ ep->type == DWC_OTG_EP_TYPE_BULK) {
+ depctl.b.setd0pid = 1; /* DATA0 */
+ }
+
+ dwc_write_reg32(depctl_addr, depctl.d32);
+ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
+ return;
+}
+
+/**
+ * This function reads a packet from the Rx FIFO into the destination
+ * buffer. To read SETUP data use dwc_otg_read_setup_packet.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dest Destination buffer for the packet.
+ * @param bytes Number of bytes to copy to the destination.
+ */
+void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
+ uint8_t *dest,
+ uint16_t bytes)
+{
+ int i;
+ int word_count = (bytes + 3) / 4;
+
+ volatile uint32_t *fifo = core_if->data_fifo[0];
+ uint32_t *data_buff = (uint32_t *)dest;
+
+ /**
+ * @todo Account for the case where _dest is not dword aligned. This
+ * requires reading data from the FIFO into a uint32_t temp buffer,
+ * then moving it into the data buffer.
+ */
+
+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
+ core_if, dest, bytes);
+
+ for (i=0; i<word_count; i++, data_buff++)
+ {
+ *data_buff = dwc_read_reg32(fifo);
+ }
+
+ return;
+}
+
+
+
+/**
+ * This functions reads the device registers and prints them
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if)
+{
+ int i;
+ volatile uint32_t *addr;
+
+ DWC_PRINT("Device Global Registers\n");
+ addr=&core_if->dev_if->dev_global_regs->dcfg;
+ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->dev_global_regs->dctl;
+ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->dev_global_regs->dsts;
+ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->dev_global_regs->diepmsk;
+ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->dev_global_regs->doepmsk;
+ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->dev_global_regs->daint;
+ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->dev_global_regs->daintmsk;
+ DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->dev_global_regs->dtknqr1;
+ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
+ addr=&core_if->dev_if->dev_global_regs->dtknqr2;
+ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
+ (uint32_t)addr,dwc_read_reg32(addr));
+ }
+
+ addr=&core_if->dev_if->dev_global_regs->dvbusdis;
+ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+ addr=&core_if->dev_if->dev_global_regs->dvbuspulse;
+ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
+ (uint32_t)addr,dwc_read_reg32(addr));
+
+ if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
+ addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
+ DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n",
+ (uint32_t)addr, dwc_read_reg32(addr));
+ }
+/*
+ if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
+ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
+ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n",
+ (uint32_t)addr, dwc_read_reg32(addr));
+ }
+*/
+ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
+ DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr));
+
+ addr=&core_if->dev_if->dev_global_regs->deachint;
+ DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->dev_global_regs->deachintmsk;
+ DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+ for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
+ addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i];
+ DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
+ }
+
+
+ for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
+ addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i];
+ DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
+ }
+
+ for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
+ DWC_PRINT("Device IN EP %d Registers\n", i);
+ addr=&core_if->dev_if->in_ep_regs[i]->diepctl;
+ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->in_ep_regs[i]->diepint;
+ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz;
+ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->in_ep_regs[i]->diepdma;
+ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts;
+ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ //reading depdmab in non desc dma mode would halt the ahb bus...
+ if(core_if->dma_desc_enable){
+ addr=&core_if->dev_if->in_ep_regs[i]->diepdmab;
+ DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ }
+ }
+
+
+ for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
+ DWC_PRINT("Device OUT EP %d Registers\n", i);
+ addr=&core_if->dev_if->out_ep_regs[i]->doepctl;
+ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->out_ep_regs[i]->doepfn;
+ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->out_ep_regs[i]->doepint;
+ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz;
+ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->dev_if->out_ep_regs[i]->doepdma;
+ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+ //reading depdmab in non desc dma mode would halt the ahb bus...
+ if(core_if->dma_desc_enable){
+ addr=&core_if->dev_if->out_ep_regs[i]->doepdmab;
+ DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ }
+
+ }
+
+
+
+ return;
+}
+
+/**
+ * This functions reads the SPRAM and prints its content
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if)
+{
+ volatile uint8_t *addr, *start_addr, *end_addr;
+
+ DWC_PRINT("SPRAM Data:\n");
+ start_addr = (void*)core_if->core_global_regs;
+ DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr);
+ start_addr += 0x00028000;
+ end_addr=(void*)core_if->core_global_regs;
+ end_addr += 0x000280e0;
+
+ for(addr = start_addr; addr < end_addr; addr+=16)
+ {
+ DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr,
+ addr[0],
+ addr[1],
+ addr[2],
+ addr[3],
+ addr[4],
+ addr[5],
+ addr[6],
+ addr[7],
+ addr[8],
+ addr[9],
+ addr[10],
+ addr[11],
+ addr[12],
+ addr[13],
+ addr[14],
+ addr[15]
+ );
+ }
+
+ return;
+}
+/**
+ * This function reads the host registers and prints them
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if)
+{
+ int i;
+ volatile uint32_t *addr;
+
+ DWC_PRINT("Host Global Registers\n");
+ addr=&core_if->host_if->host_global_regs->hcfg;
+ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->host_global_regs->hfir;
+ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->host_global_regs->hfnum;
+ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->host_global_regs->hptxsts;
+ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->host_global_regs->haint;
+ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->host_global_regs->haintmsk;
+ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=core_if->host_if->hprt0;
+ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+ for (i=0; i<core_if->core_params->host_channels; i++)
+ {
+ DWC_PRINT("Host Channel %d Specific Registers\n", i);
+ addr=&core_if->host_if->hc_regs[i]->hcchar;
+ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->hc_regs[i]->hcsplt;
+ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->hc_regs[i]->hcint;
+ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->hc_regs[i]->hcintmsk;
+ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->hc_regs[i]->hctsiz;
+ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->host_if->hc_regs[i]->hcdma;
+ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ }
+ return;
+}
+
+/**
+ * This function reads the core global registers and prints them
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if)
+{
+ int i,size;
+ char* str;
+ volatile uint32_t *addr;
+
+ DWC_PRINT("Core Global Registers\n");
+ addr=&core_if->core_global_regs->gotgctl;
+ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gotgint;
+ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gahbcfg;
+ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gusbcfg;
+ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->grstctl;
+ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gintsts;
+ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gintmsk;
+ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->grxstsr;
+ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ //addr=&core_if->core_global_regs->grxstsp;
+ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->grxfsiz;
+ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gnptxfsiz;
+ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gnptxsts;
+ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gi2cctl;
+ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gpvndctl;
+ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->ggpio;
+ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->guid;
+ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->gsnpsid;
+ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->ghwcfg1;
+ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->ghwcfg2;
+ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->ghwcfg3;
+ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->ghwcfg4;
+ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+ addr=&core_if->core_global_regs->hptxfsiz;
+ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
+
+ size=(core_if->hwcfg4.b.ded_fifo_en)?
+ core_if->hwcfg4.b.num_in_eps:core_if->hwcfg4.b.num_dev_perio_in_ep;
+ str=(core_if->hwcfg4.b.ded_fifo_en)?"DIEPTXF":"DPTXFSIZ";
+ for (i=0; i<size; i++)
+ {
+ addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i];
+ DWC_PRINT("%s[%d] @0x%08X : 0x%08X\n",str,i,(uint32_t)addr,dwc_read_reg32(addr));
+ }
+}
+
+/**
+ * Flush a Tx FIFO.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param num Tx FIFO to flush.
+ */
+void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if,
+ const int num)
+{
+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+ volatile grstctl_t greset = { .d32 = 0};
+ int count = 0;
+
+ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num);
+
+ greset.b.txfflsh = 1;
+ greset.b.txfnum = num;
+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
+
+ do {
+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+ if (++count > 10000) {
+ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
+ __func__, greset.d32,
+ dwc_read_reg32(&global_regs->gnptxsts));
+ break;
+ }
+ }
+ while (greset.b.txfflsh == 1);
+
+ /* Wait for 3 PHY Clocks*/
+ UDELAY(1);
+}
+
+/**
+ * Flush Rx FIFO.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if)
+{
+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+ volatile grstctl_t greset = { .d32 = 0};
+ int count = 0;
+
+ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
+ /*
+ *
+ */
+ greset.b.rxfflsh = 1;
+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
+
+ do {
+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+ if (++count > 10000) {
+ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
+ greset.d32);
+ break;
+ }
+ }
+ while (greset.b.rxfflsh == 1);
+
+ /* Wait for 3 PHY Clocks*/
+ UDELAY(1);
+}
+
+/**
+ * Do core a soft reset of the core. Be careful with this because it
+ * resets all the internal state machines of the core.
+ */
+void dwc_otg_core_reset(dwc_otg_core_if_t *core_if)
+{
+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+ volatile grstctl_t greset = { .d32 = 0};
+ int count = 0;
+
+ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
+ /* Wait for AHB master IDLE state. */
+ do {
+ UDELAY(10);
+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+ if (++count > 100000) {
+ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
+ greset.d32);
+ return;
+ }
+ }
+ while (greset.b.ahbidle == 0);
+
+ /* Core Soft Reset */
+ count = 0;
+ greset.b.csftrst = 1;
+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
+ do {
+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+ if (++count > 10000) {
+ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
+ greset.d32);
+ break;
+ }
+ }
+ while (greset.b.csftrst == 1);
+
+ /* Wait for 3 PHY Clocks*/
+ MDELAY(100);
+
+ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
+ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
+ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
+
+}
+
+
+
+/**
+ * Register HCD callbacks. The callbacks are used to start and stop
+ * the HCD for interrupt processing.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param cb the HCD callback structure.
+ * @param p pointer to be passed to callback function (usb_hcd*).
+ */
+void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if,
+ dwc_otg_cil_callbacks_t *cb,
+ void *p)
+{
+ core_if->hcd_cb = cb;
+ cb->p = p;
+}
+
+/**
+ * Register PCD callbacks. The callbacks are used to start and stop
+ * the PCD for interrupt processing.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param cb the PCD callback structure.
+ * @param p pointer to be passed to callback function (pcd*).
+ */
+void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if,
+ dwc_otg_cil_callbacks_t *cb,
+ void *p)
+{
+ core_if->pcd_cb = cb;
+ cb->p = p;
+}
+
+#ifdef DWC_EN_ISOC
+
+/**
+ * This function writes isoc data per 1 (micro)frame into tx fifo
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ dwc_otg_dev_in_ep_regs_t *ep_regs;
+ dtxfsts_data_t txstatus = {.d32 = 0};
+ uint32_t len = 0;
+ uint32_t dwords;
+
+ ep->xfer_len = ep->data_per_frame;
+ ep->xfer_count = 0;
+
+ ep_regs = core_if->dev_if->in_ep_regs[ep->num];
+
+ len = ep->xfer_len - ep->xfer_count;
+
+ if (len > ep->maxpacket) {
+ len = ep->maxpacket;
+ }
+
+ dwords = (len + 3)/4;
+
+ /* While there is space in the queue and space in the FIFO and
+ * More data to tranfer, Write packets to the Tx FIFO */
+ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
+ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32);
+
+ while (txstatus.b.txfspcavail > dwords &&
+ ep->xfer_count < ep->xfer_len &&
+ ep->xfer_len != 0) {
+ /* Write the FIFO */
+ dwc_otg_ep_write_packet(core_if, ep, 0);
+
+ len = ep->xfer_len - ep->xfer_count;
+ if (len > ep->maxpacket) {
+ len = ep->maxpacket;
+ }
+
+ dwords = (len + 3)/4;
+ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
+ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32);
+ }
+}
+
+
+/**
+ * This function initializes a descriptor chain for Isochronous transfer
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ deptsiz_data_t deptsiz = { .d32 = 0 };
+ depctl_data_t depctl = { .d32 = 0 };
+ dsts_data_t dsts = { .d32 = 0 };
+ volatile uint32_t *addr;
+
+ if(ep->is_in) {
+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
+ } else {
+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
+ }
+
+ ep->xfer_len = ep->data_per_frame;
+ ep->xfer_count = 0;
+ ep->xfer_buff = ep->cur_pkt_addr;
+ ep->dma_addr = ep->cur_pkt_dma_addr;
+
+ if(ep->is_in) {
+ /* Program the transfer size and packet count
+ * as follows: xfersize = N * maxpacket +
+ * short_packet pktcnt = N + (short_packet
+ * exist ? 1 : 0)
+ */
+ deptsiz.b.xfersize = ep->xfer_len;
+ deptsiz.b.pktcnt =
+ (ep->xfer_len - 1 + ep->maxpacket) /
+ ep->maxpacket;
+ deptsiz.b.mc = deptsiz.b.pktcnt;
+ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
+
+ /* Write the DMA register */
+ if (core_if->dma_enable) {
+ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
+ }
+ } else {
+ deptsiz.b.pktcnt =
+ (ep->xfer_len + (ep->maxpacket - 1)) /
+ ep->maxpacket;
+ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
+
+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
+
+ if (core_if->dma_enable) {
+ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma),
+ (uint32_t)ep->dma_addr);
+ }
+ }
+
+
+ /** Enable endpoint, clear nak */
+
+ depctl.d32 = 0;
+ if(ep->bInterval == 1) {
+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+ ep->next_frame = dsts.b.soffn + ep->bInterval;
+
+ if(ep->next_frame & 0x1) {
+ depctl.b.setd1pid = 1;
+ } else {
+ depctl.b.setd0pid = 1;
+ }
+ } else {
+ ep->next_frame += ep->bInterval;
+
+ if(ep->next_frame & 0x1) {
+ depctl.b.setd1pid = 1;
+ } else {
+ depctl.b.setd0pid = 1;
+ }
+ }
+ depctl.b.epena = 1;
+ depctl.b.cnak = 1;
+
+ dwc_modify_reg32(addr, 0, depctl.d32);
+ depctl.d32 = dwc_read_reg32(addr);
+
+ if(ep->is_in && core_if->dma_enable == 0) {
+ write_isoc_frame_data(core_if, ep);
+ }
+
+}
+
+#endif //DWC_EN_ISOC
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil.h b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil.h
new file mode 100644
index 0000000000..463214b845
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil.h
@@ -0,0 +1,1106 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $
+ * $Revision: #91 $
+ * $Date: 2008/09/19 $
+ * $Change: 1099526 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#if !defined(__DWC_CIL_H__)
+#define __DWC_CIL_H__
+
+#include <linux/workqueue.h>
+#include <linux/version.h>
+#include <asm/param.h>
+//#include <asm/arch/regs-irq.h>
+
+#include "otg_plat.h"
+#include "otg_regs.h"
+#ifdef DEBUG
+#include "linux/timer.h"
+#endif
+
+/**
+ * @file
+ * This file contains the interface to the Core Interface Layer.
+ */
+
+
+/** Macros defined for DWC OTG HW Release verison */
+#define OTG_CORE_REV_2_00 0x4F542000
+#define OTG_CORE_REV_2_60a 0x4F54260A
+#define OTG_CORE_REV_2_71a 0x4F54271A
+#define OTG_CORE_REV_2_72a 0x4F54272A
+
+/**
+*/
+typedef struct iso_pkt_info
+{
+ uint32_t offset;
+ uint32_t length;
+ int32_t status;
+} iso_pkt_info_t;
+/**
+ * The <code>dwc_ep</code> structure represents the state of a single
+ * endpoint when acting in device mode. It contains the data items
+ * needed for an endpoint to be activated and transfer packets.
+ */
+typedef struct dwc_ep
+{
+ /** EP number used for register address lookup */
+ uint8_t num;
+ /** EP direction 0 = OUT */
+ unsigned is_in : 1;
+ /** EP active. */
+ unsigned active : 1;
+
+ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
+ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
+ unsigned tx_fifo_num : 4;
+ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
+ unsigned type : 2;
+#define DWC_OTG_EP_TYPE_CONTROL 0
+#define DWC_OTG_EP_TYPE_ISOC 1
+#define DWC_OTG_EP_TYPE_BULK 2
+#define DWC_OTG_EP_TYPE_INTR 3
+
+ /** DATA start PID for INTR and BULK EP */
+ unsigned data_pid_start : 1;
+ /** Frame (even/odd) for ISOC EP */
+ unsigned even_odd_frame : 1;
+ /** Max Packet bytes */
+ unsigned maxpacket : 11;
+
+ /** Max Transfer size */
+ unsigned maxxfer : 16;
+
+ /** @name Transfer state */
+ /** @{ */
+
+ /**
+ * Pointer to the beginning of the transfer buffer -- do not modify
+ * during transfer.
+ */
+
+ uint32_t dma_addr;
+
+ uint32_t dma_desc_addr;
+ dwc_otg_dma_desc_t* desc_addr;
+
+
+ uint8_t *start_xfer_buff;
+ /** pointer to the transfer buffer */
+ uint8_t *xfer_buff;
+ /** Number of bytes to transfer */
+ unsigned xfer_len : 19;
+ /** Number of bytes transferred. */
+ unsigned xfer_count : 19;
+ /** Sent ZLP */
+ unsigned sent_zlp : 1;
+ /** Total len for control transfer */
+ unsigned total_len : 19;
+
+ /** stall clear flag */
+ unsigned stall_clear_flag : 1;
+
+ /** Allocated DMA Desc count */
+ uint32_t desc_cnt;
+
+ uint32_t aligned_dma_addr;
+ uint32_t aligned_buf_size;
+ uint8_t *aligned_buf;
+
+
+#ifdef DWC_EN_ISOC
+ /**
+ * Variables specific for ISOC EPs
+ *
+ */
+ /** DMA addresses of ISOC buffers */
+ uint32_t dma_addr0;
+ uint32_t dma_addr1;
+
+ uint32_t iso_dma_desc_addr;
+ dwc_otg_dma_desc_t* iso_desc_addr;
+
+ /** pointer to the transfer buffers */
+ uint8_t *xfer_buff0;
+ uint8_t *xfer_buff1;
+
+ /** number of ISOC Buffer is processing */
+ uint32_t proc_buf_num;
+ /** Interval of ISOC Buffer processing */
+ uint32_t buf_proc_intrvl;
+ /** Data size for regular frame */
+ uint32_t data_per_frame;
+
+ /* todo - pattern data support is to be implemented in the future */
+ /** Data size for pattern frame */
+ uint32_t data_pattern_frame;
+ /** Frame number of pattern data */
+ uint32_t sync_frame;
+
+ /** bInterval */
+ uint32_t bInterval;
+ /** ISO Packet number per frame */
+ uint32_t pkt_per_frm;
+ /** Next frame num for which will be setup DMA Desc */
+ uint32_t next_frame;
+ /** Number of packets per buffer processing */
+ uint32_t pkt_cnt;
+ /** Info for all isoc packets */
+ iso_pkt_info_t *pkt_info;
+ /** current pkt number */
+ uint32_t cur_pkt;
+ /** current pkt number */
+ uint8_t *cur_pkt_addr;
+ /** current pkt number */
+ uint32_t cur_pkt_dma_addr;
+#endif //DWC_EN_ISOC
+/** @} */
+} dwc_ep_t;
+
+/*
+ * Reasons for halting a host channel.
+ */
+typedef enum dwc_otg_halt_status
+{
+ DWC_OTG_HC_XFER_NO_HALT_STATUS,
+ DWC_OTG_HC_XFER_COMPLETE,
+ DWC_OTG_HC_XFER_URB_COMPLETE,
+ DWC_OTG_HC_XFER_ACK,
+ DWC_OTG_HC_XFER_NAK,
+ DWC_OTG_HC_XFER_NYET,
+ DWC_OTG_HC_XFER_STALL,
+ DWC_OTG_HC_XFER_XACT_ERR,
+ DWC_OTG_HC_XFER_FRAME_OVERRUN,
+ DWC_OTG_HC_XFER_BABBLE_ERR,
+ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
+ DWC_OTG_HC_XFER_AHB_ERR,
+ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
+ DWC_OTG_HC_XFER_URB_DEQUEUE
+} dwc_otg_halt_status_e;
+
+/**
+ * Host channel descriptor. This structure represents the state of a single
+ * host channel when acting in host mode. It contains the data items needed to
+ * transfer packets to an endpoint via a host channel.
+ */
+typedef struct dwc_hc
+{
+ /** Host channel number used for register address lookup */
+ uint8_t hc_num;
+
+ /** Device to access */
+ unsigned dev_addr : 7;
+
+ /** EP to access */
+ unsigned ep_num : 4;
+
+ /** EP direction. 0: OUT, 1: IN */
+ unsigned ep_is_in : 1;
+
+ /**
+ * EP speed.
+ * One of the following values:
+ * - DWC_OTG_EP_SPEED_LOW
+ * - DWC_OTG_EP_SPEED_FULL
+ * - DWC_OTG_EP_SPEED_HIGH
+ */
+ unsigned speed : 2;
+#define DWC_OTG_EP_SPEED_LOW 0
+#define DWC_OTG_EP_SPEED_FULL 1
+#define DWC_OTG_EP_SPEED_HIGH 2
+
+ /**
+ * Endpoint type.
+ * One of the following values:
+ * - DWC_OTG_EP_TYPE_CONTROL: 0
+ * - DWC_OTG_EP_TYPE_ISOC: 1
+ * - DWC_OTG_EP_TYPE_BULK: 2
+ * - DWC_OTG_EP_TYPE_INTR: 3
+ */
+ unsigned ep_type : 2;
+
+ /** Max packet size in bytes */
+ unsigned max_packet : 11;
+
+ /**
+ * PID for initial transaction.
+ * 0: DATA0,<br>
+ * 1: DATA2,<br>
+ * 2: DATA1,<br>
+ * 3: MDATA (non-Control EP),
+ * SETUP (Control EP)
+ */
+ unsigned data_pid_start : 2;
+#define DWC_OTG_HC_PID_DATA0 0
+#define DWC_OTG_HC_PID_DATA2 1
+#define DWC_OTG_HC_PID_DATA1 2
+#define DWC_OTG_HC_PID_MDATA 3
+#define DWC_OTG_HC_PID_SETUP 3
+
+ /** Number of periodic transactions per (micro)frame */
+ unsigned multi_count: 2;
+
+ /** @name Transfer State */
+ /** @{ */
+
+ /** Pointer to the current transfer buffer position. */
+ uint8_t *xfer_buff;
+ /** Total number of bytes to transfer. */
+ uint32_t xfer_len;
+ /** Number of bytes transferred so far. */
+ uint32_t xfer_count;
+ /** Packet count at start of transfer.*/
+ uint16_t start_pkt_count;
+
+ /**
+ * Flag to indicate whether the transfer has been started. Set to 1 if
+ * it has been started, 0 otherwise.
+ */
+ uint8_t xfer_started;
+
+ /**
+ * Set to 1 to indicate that a PING request should be issued on this
+ * channel. If 0, process normally.
+ */
+ uint8_t do_ping;
+
+ /**
+ * Set to 1 to indicate that the error count for this transaction is
+ * non-zero. Set to 0 if the error count is 0.
+ */
+ uint8_t error_state;
+
+ /**
+ * Set to 1 to indicate that this channel should be halted the next
+ * time a request is queued for the channel. This is necessary in
+ * slave mode if no request queue space is available when an attempt
+ * is made to halt the channel.
+ */
+ uint8_t halt_on_queue;
+
+ /**
+ * Set to 1 if the host channel has been halted, but the core is not
+ * finished flushing queued requests. Otherwise 0.
+ */
+ uint8_t halt_pending;
+
+ /**
+ * Reason for halting the host channel.
+ */
+ dwc_otg_halt_status_e halt_status;
+
+ /*
+ * Split settings for the host channel
+ */
+ uint8_t do_split; /**< Enable split for the channel */
+ uint8_t complete_split; /**< Enable complete split */
+ uint8_t hub_addr; /**< Address of high speed hub */
+
+ uint8_t port_addr; /**< Port of the low/full speed device */
+ /** Split transaction position
+ * One of the following values:
+ * - DWC_HCSPLIT_XACTPOS_MID
+ * - DWC_HCSPLIT_XACTPOS_BEGIN
+ * - DWC_HCSPLIT_XACTPOS_END
+ * - DWC_HCSPLIT_XACTPOS_ALL */
+ uint8_t xact_pos;
+
+ /** Set when the host channel does a short read. */
+ uint8_t short_read;
+
+ /**
+ * Number of requests issued for this channel since it was assigned to
+ * the current transfer (not counting PINGs).
+ */
+ uint8_t requests;
+
+ /**
+ * Queue Head for the transfer being processed by this channel.
+ */
+ struct dwc_otg_qh *qh;
+
+ /** @} */
+
+ /** Entry in list of host channels. */
+ struct list_head hc_list_entry;
+} dwc_hc_t;
+
+/**
+ * The following parameters may be specified when starting the module. These
+ * parameters define how the DWC_otg controller should be configured.
+ * Parameter values are passed to the CIL initialization function
+ * dwc_otg_cil_init.
+ */
+typedef struct dwc_otg_core_params
+{
+ int32_t opt;
+#define dwc_param_opt_default 1
+
+ /**
+ * Specifies the OTG capabilities. The driver will automatically
+ * detect the value for this parameter if none is specified.
+ * 0 - HNP and SRP capable (default)
+ * 1 - SRP Only capable
+ * 2 - No HNP/SRP capable
+ */
+ int32_t otg_cap;
+#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
+#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
+#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
+//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
+#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
+
+ /**
+ * Specifies whether to use slave or DMA mode for accessing the data
+ * FIFOs. The driver will automatically detect the value for this
+ * parameter if none is specified.
+ * 0 - Slave
+ * 1 - DMA (default, if available)
+ */
+ int32_t dma_enable;
+#define dwc_param_dma_enable_default 1
+
+ /**
+ * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data
+ * FIFOs in device mode. The driver will automatically detect the value for this
+ * parameter if none is specified.
+ * 0 - address DMA
+ * 1 - DMA Descriptor(default, if available)
+ */
+ int32_t dma_desc_enable;
+#define dwc_param_dma_desc_enable_default 0
+ /** The DMA Burst size (applicable only for External DMA
+ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
+ */
+ int32_t dma_burst_size; /* Translate this to GAHBCFG values */
+//#define dwc_param_dma_burst_size_default 32
+#define dwc_param_dma_burst_size_default 1
+
+ /**
+ * Specifies the maximum speed of operation in host and device mode.
+ * The actual speed depends on the speed of the attached device and
+ * the value of phy_type. The actual speed depends on the speed of the
+ * attached device.
+ * 0 - High Speed (default)
+ * 1 - Full Speed
+ */
+ int32_t speed;
+#define dwc_param_speed_default 0
+#define DWC_SPEED_PARAM_HIGH 0
+#define DWC_SPEED_PARAM_FULL 1
+
+ /** Specifies whether low power mode is supported when attached
+ * to a Full Speed or Low Speed device in host mode.
+ * 0 - Don't support low power mode (default)
+ * 1 - Support low power mode
+ */
+ int32_t host_support_fs_ls_low_power;
+#define dwc_param_host_support_fs_ls_low_power_default 0
+
+ /** Specifies the PHY clock rate in low power mode when connected to a
+ * Low Speed device in host mode. This parameter is applicable only if
+ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
+ * then defaults to 6 MHZ otherwise 48 MHZ.
+ *
+ * 0 - 48 MHz
+ * 1 - 6 MHz
+ */
+ int32_t host_ls_low_power_phy_clk;
+#define dwc_param_host_ls_low_power_phy_clk_default 0
+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
+
+ /**
+ * 0 - Use cC FIFO size parameters
+ * 1 - Allow dynamic FIFO sizing (default)
+ */
+ int32_t enable_dynamic_fifo;
+#define dwc_param_enable_dynamic_fifo_default 1
+
+ /** Total number of 4-byte words in the data FIFO memory. This
+ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
+ * Tx FIFOs.
+ * 32 to 32768 (default 8192)
+ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
+ */
+ int32_t data_fifo_size;
+#define dwc_param_data_fifo_size_default 8192
+
+ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
+ * FIFO sizing is enabled.
+ * 16 to 32768 (default 1064)
+ */
+ int32_t dev_rx_fifo_size;
+//#define dwc_param_dev_rx_fifo_size_default 1064
+#define dwc_param_dev_rx_fifo_size_default 0x100
+
+ /**
+ * Specifies whether dedicated transmit FIFOs are
+ * enabled for non periodic IN endpoints in device mode
+ * 0 - No
+ * 1 - Yes
+ */
+ int32_t en_multiple_tx_fifo;
+#define dwc_param_en_multiple_tx_fifo_default 1
+
+ /** Number of 4-byte words in each of the Tx FIFOs in device
+ * mode when dynamic FIFO sizing is enabled.
+ * 4 to 768 (default 256)
+ */
+ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
+//#define dwc_param_dev_tx_fifo_size_default 256
+#define dwc_param_dev_tx_fifo_size_default 0x80
+
+ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
+ * when dynamic FIFO sizing is enabled.
+ * 16 to 32768 (default 1024)
+ */
+ int32_t dev_nperio_tx_fifo_size;
+//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
+#define dwc_param_dev_nperio_tx_fifo_size_default 0x80
+
+ /** Number of 4-byte words in each of the periodic Tx FIFOs in device
+ * mode when dynamic FIFO sizing is enabled.
+ * 4 to 768 (default 256)
+ */
+ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
+//#define dwc_param_dev_perio_tx_fifo_size_default 256
+#define dwc_param_dev_perio_tx_fifo_size_default 0x80
+
+ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
+ * FIFO sizing is enabled.
+ * 16 to 32768 (default 1024)
+ */
+ int32_t host_rx_fifo_size;
+//#define dwc_param_host_rx_fifo_size_default 1024
+#define dwc_param_host_rx_fifo_size_default 0x292
+
+ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
+ * when Dynamic FIFO sizing is enabled in the core.
+ * 16 to 32768 (default 1024)
+ */
+ int32_t host_nperio_tx_fifo_size;
+//#define dwc_param_host_nperio_tx_fifo_size_default 1024
+//#define dwc_param_host_nperio_tx_fifo_size_default 0x292
+#define dwc_param_host_nperio_tx_fifo_size_default 0x80
+
+ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
+ * FIFO sizing is enabled.
+ * 16 to 32768 (default 1024)
+ */
+ int32_t host_perio_tx_fifo_size;
+//#define dwc_param_host_perio_tx_fifo_size_default 1024
+#define dwc_param_host_perio_tx_fifo_size_default 0x292
+
+ /** The maximum transfer size supported in bytes.
+ * 2047 to 65,535 (default 65,535)
+ */
+ int32_t max_transfer_size;
+#define dwc_param_max_transfer_size_default 65535
+
+ /** The maximum number of packets in a transfer.
+ * 15 to 511 (default 511)
+ */
+ int32_t max_packet_count;
+#define dwc_param_max_packet_count_default 511
+
+ /** The number of host channel registers to use.
+ * 1 to 16 (default 12)
+ * Note: The FPGA configuration supports a maximum of 12 host channels.
+ */
+ int32_t host_channels;
+//#define dwc_param_host_channels_default 12
+#define dwc_param_host_channels_default 16
+
+ /** The number of endpoints in addition to EP0 available for device
+ * mode operations.
+ * 1 to 15 (default 6 IN and OUT)
+ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
+ * endpoints in addition to EP0.
+ */
+ int32_t dev_endpoints;
+//#define dwc_param_dev_endpoints_default 6
+#define dwc_param_dev_endpoints_default 8
+
+ /**
+ * Specifies the type of PHY interface to use. By default, the driver
+ * will automatically detect the phy_type.
+ *
+ * 0 - Full Speed PHY
+ * 1 - UTMI+ (default)
+ * 2 - ULPI
+ */
+ int32_t phy_type;
+#define DWC_PHY_TYPE_PARAM_FS 0
+#define DWC_PHY_TYPE_PARAM_UTMI 1
+#define DWC_PHY_TYPE_PARAM_ULPI 2
+#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
+
+ /**
+ * Specifies the UTMI+ Data Width. This parameter is
+ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
+ * PHY_TYPE, this parameter indicates the data width between
+ * the MAC and the ULPI Wrapper.) Also, this parameter is
+ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
+ * to "8 and 16 bits", meaning that the core has been
+ * configured to work at either data path width.
+ *
+ * 8 or 16 bits (default 16)
+ */
+ int32_t phy_utmi_width;
+#define dwc_param_phy_utmi_width_default 16
+
+ /**
+ * Specifies whether the ULPI operates at double or single
+ * data rate. This parameter is only applicable if PHY_TYPE is
+ * ULPI.
+ *
+ * 0 - single data rate ULPI interface with 8 bit wide data
+ * bus (default)
+ * 1 - double data rate ULPI interface with 4 bit wide data
+ * bus
+ */
+ int32_t phy_ulpi_ddr;
+#define dwc_param_phy_ulpi_ddr_default 0
+
+ /**
+ * Specifies whether to use the internal or external supply to
+ * drive the vbus with a ULPI phy.
+ */
+ int32_t phy_ulpi_ext_vbus;
+#define DWC_PHY_ULPI_INTERNAL_VBUS 0
+#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
+#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
+
+ /**
+ * Specifies whether to use the I2Cinterface for full speed PHY. This
+ * parameter is only applicable if PHY_TYPE is FS.
+ * 0 - No (default)
+ * 1 - Yes
+ */
+ int32_t i2c_enable;
+#define dwc_param_i2c_enable_default 0
+
+ int32_t ulpi_fs_ls;
+#define dwc_param_ulpi_fs_ls_default 0
+
+ int32_t ts_dline;
+#define dwc_param_ts_dline_default 0
+
+ /** Thresholding enable flag-
+ * bit 0 - enable non-ISO Tx thresholding
+ * bit 1 - enable ISO Tx thresholding
+ * bit 2 - enable Rx thresholding
+ */
+ uint32_t thr_ctl;
+#define dwc_param_thr_ctl_default 0
+
+ /** Thresholding length for Tx
+ * FIFOs in 32 bit DWORDs
+ */
+ uint32_t tx_thr_length;
+#define dwc_param_tx_thr_length_default 64
+
+ /** Thresholding length for Rx
+ * FIFOs in 32 bit DWORDs
+ */
+ uint32_t rx_thr_length;
+#define dwc_param_rx_thr_length_default 64
+
+ /** Per Transfer Interrupt
+ * mode enable flag
+ * 1 - Enabled
+ * 0 - Disabled
+ */
+ uint32_t pti_enable;
+#define dwc_param_pti_enable_default 0
+
+ /** Molti Processor Interrupt
+ * mode enable flag
+ * 1 - Enabled
+ * 0 - Disabled
+ */
+ uint32_t mpi_enable;
+#define dwc_param_mpi_enable_default 0
+
+} dwc_otg_core_params_t;
+
+#ifdef DEBUG
+struct dwc_otg_core_if;
+typedef struct hc_xfer_info
+{
+ struct dwc_otg_core_if *core_if;
+ dwc_hc_t *hc;
+} hc_xfer_info_t;
+#endif
+
+/**
+ * The <code>dwc_otg_core_if</code> structure contains information needed to manage
+ * the DWC_otg controller acting in either host or device mode. It
+ * represents the programming view of the controller as a whole.
+ */
+typedef struct dwc_otg_core_if
+{
+ /** Parameters that define how the core should be configured.*/
+ dwc_otg_core_params_t *core_params;
+
+ /** Core Global registers starting at offset 000h. */
+ dwc_otg_core_global_regs_t *core_global_regs;
+
+ /** Device-specific information */
+ dwc_otg_dev_if_t *dev_if;
+ /** Host-specific information */
+ dwc_otg_host_if_t *host_if;
+
+ /** Value from SNPSID register */
+ uint32_t snpsid;
+
+ /*
+ * Set to 1 if the core PHY interface bits in USBCFG have been
+ * initialized.
+ */
+ uint8_t phy_init_done;
+
+ /*
+ * SRP Success flag, set by srp success interrupt in FS I2C mode
+ */
+ uint8_t srp_success;
+ uint8_t srp_timer_started;
+
+ /* Common configuration information */
+ /** Power and Clock Gating Control Register */
+ volatile uint32_t *pcgcctl;
+#define DWC_OTG_PCGCCTL_OFFSET 0xE00
+
+ /** Push/pop addresses for endpoints or host channels.*/
+ uint32_t *data_fifo[MAX_EPS_CHANNELS];
+#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
+#define DWC_OTG_DATA_FIFO_SIZE 0x1000
+
+ /** Total RAM for FIFOs (Bytes) */
+ uint16_t total_fifo_size;
+ /** Size of Rx FIFO (Bytes) */
+ uint16_t rx_fifo_size;
+ /** Size of Non-periodic Tx FIFO (Bytes) */
+ uint16_t nperio_tx_fifo_size;
+
+
+ /** 1 if DMA is enabled, 0 otherwise. */
+ uint8_t dma_enable;
+
+ /** 1 if Descriptor DMA mode is enabled, 0 otherwise. */
+ uint8_t dma_desc_enable;
+
+ /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
+ uint8_t pti_enh_enable;
+
+ /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
+ uint8_t multiproc_int_enable;
+
+ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
+ uint8_t en_multiple_tx_fifo;
+
+ /** Set to 1 if multiple packets of a high-bandwidth transfer is in
+ * process of being queued */
+ uint8_t queuing_high_bandwidth;
+
+ /** Hardware Configuration -- stored here for convenience.*/
+ hwcfg1_data_t hwcfg1;
+ hwcfg2_data_t hwcfg2;
+ hwcfg3_data_t hwcfg3;
+ hwcfg4_data_t hwcfg4;
+
+ /** Host and Device Configuration -- stored here for convenience.*/
+ hcfg_data_t hcfg;
+ dcfg_data_t dcfg;
+
+ /** The operational State, during transations
+ * (a_host>>a_peripherial and b_device=>b_host) this may not
+ * match the core but allows the software to determine
+ * transitions.
+ */
+ uint8_t op_state;
+
+ /**
+ * Set to 1 if the HCD needs to be restarted on a session request
+ * interrupt. This is required if no connector ID status change has
+ * occurred since the HCD was last disconnected.
+ */
+ uint8_t restart_hcd_on_session_req;
+
+ /** HCD callbacks */
+ /** A-Device is a_host */
+#define A_HOST (1)
+ /** A-Device is a_suspend */
+#define A_SUSPEND (2)
+ /** A-Device is a_peripherial */
+#define A_PERIPHERAL (3)
+ /** B-Device is operating as a Peripheral. */
+#define B_PERIPHERAL (4)
+ /** B-Device is operating as a Host. */
+#define B_HOST (5)
+
+ /** HCD callbacks */
+ struct dwc_otg_cil_callbacks *hcd_cb;
+ /** PCD callbacks */
+ struct dwc_otg_cil_callbacks *pcd_cb;
+
+ /** Device mode Periodic Tx FIFO Mask */
+ uint32_t p_tx_msk;
+ /** Device mode Periodic Tx FIFO Mask */
+ uint32_t tx_msk;
+
+ /** Workqueue object used for handling several interrupts */
+ struct workqueue_struct *wq_otg;
+
+ /** Work object used for handling "Connector ID Status Change" Interrupt */
+ struct work_struct w_conn_id;
+
+ /** Work object used for handling "Wakeup Detected" Interrupt */
+ struct delayed_work w_wkp;
+
+#ifdef DEBUG
+ uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
+
+ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
+ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
+
+ uint32_t hfnum_7_samples;
+ uint64_t hfnum_7_frrem_accum;
+ uint32_t hfnum_0_samples;
+ uint64_t hfnum_0_frrem_accum;
+ uint32_t hfnum_other_samples;
+ uint64_t hfnum_other_frrem_accum;
+#endif
+
+
+} dwc_otg_core_if_t;
+
+/*We must clear S3C24XX_EINTPEND external interrupt register
+ * because after clearing in this register trigerred IRQ from
+ * H/W core in kernel interrupt can be occured again before OTG
+ * handlers clear all IRQ sources of Core registers because of
+ * timing latencies and Low Level IRQ Type.
+ */
+
+#ifdef CONFIG_MACH_IPMATE
+#define S3C2410X_CLEAR_EINTPEND() \
+do { \
+ if (!dwc_otg_read_core_intr(core_if)) { \
+ __raw_writel(1UL << 11,S3C24XX_EINTPEND); \
+ } \
+} while (0)
+#else
+#define S3C2410X_CLEAR_EINTPEND() do { } while (0)
+#endif
+
+/*
+ * The following functions are functions for works
+ * using during handling some interrupts
+ */
+extern void w_conn_id_status_change(struct work_struct *p);
+extern void w_wakeup_detected(struct work_struct *p);
+
+
+/*
+ * The following functions support initialization of the CIL driver component
+ * and the DWC_otg controller.
+ */
+extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
+ dwc_otg_core_params_t *_core_params);
+extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
+extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
+
+/** @name Device CIL Functions
+ * The following functions support managing the DWC_otg controller in device
+ * mode.
+ */
+/**@{*/
+extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
+extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
+extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
+extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if);
+#ifdef DWC_EN_ISOC
+extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
+extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
+#endif //DWC_EN_ISOC
+/**@}*/
+
+/** @name Host CIL Functions
+ * The following functions support managing the DWC_otg controller in host
+ * mode.
+ */
+/**@{*/
+extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
+ dwc_hc_t *_hc,
+ dwc_otg_halt_status_e _halt_status);
+extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
+extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
+extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
+
+/**
+ * This function Reads HPRT0 in preparation to modify. It keeps the
+ * WC bits 0 so that if they are read as 1, they won't clear when you
+ * write it back
+ */
+static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
+{
+ hprt0_data_t hprt0;
+ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
+ hprt0.b.prtena = 0;
+ hprt0.b.prtconndet = 0;
+ hprt0.b.prtenchng = 0;
+ hprt0.b.prtovrcurrchng = 0;
+ return hprt0.d32;
+}
+
+extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
+/**@}*/
+
+/** @name Common CIL Functions
+ * The following functions support managing the DWC_otg controller in either
+ * device or host mode.
+ */
+/**@{*/
+
+extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
+ uint8_t *dest,
+ uint16_t bytes);
+
+extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
+
+extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
+ const int _num );
+extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
+extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
+
+extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count);
+extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count);
+
+/**
+ * This function returns the Core Interrupt register.
+ */
+static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if)
+{
+ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
+ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
+}
+
+/**
+ * This function returns the OTG Interrupt register.
+ */
+static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if)
+{
+ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
+}
+
+/**
+ * This function reads the Device All Endpoints Interrupt register and
+ * returns the IN endpoint interrupt bits.
+ */
+static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if)
+{
+ uint32_t v;
+
+ if(core_if->multiproc_int_enable) {
+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
+ } else {
+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
+ }
+ return (v & 0xffff);
+
+}
+
+/**
+ * This function reads the Device All Endpoints Interrupt register and
+ * returns the OUT endpoint interrupt bits.
+ */
+static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if)
+{
+ uint32_t v;
+
+ if(core_if->multiproc_int_enable) {
+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
+ } else {
+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
+ }
+
+ return ((v & 0xffff0000) >> 16);
+}
+
+/**
+ * This function returns the Device IN EP Interrupt register
+ */
+static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if,
+ dwc_ep_t *ep)
+{
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ uint32_t v, msk, emp;
+
+ if(core_if->multiproc_int_enable) {
+ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]);
+ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
+ msk |= ((emp >> ep->num) & 0x1) << 7;
+ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
+ } else {
+ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
+ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
+ msk |= ((emp >> ep->num) & 0x1) << 7;
+ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
+ }
+
+
+ return v;
+}
+/**
+ * This function returns the Device OUT EP Interrupt register
+ */
+static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
+ dwc_ep_t *_ep)
+{
+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
+ uint32_t v;
+ doepmsk_data_t msk = { .d32 = 0 };
+
+ if(_core_if->multiproc_int_enable) {
+ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]);
+ if(_core_if->pti_enh_enable) {
+ msk.b.pktdrpsts = 1;
+ }
+ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
+ } else {
+ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
+ if(_core_if->pti_enh_enable) {
+ msk.b.pktdrpsts = 1;
+ }
+ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
+ }
+ return v;
+}
+
+/**
+ * This function returns the Host All Channel Interrupt register
+ */
+static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
+{
+ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
+}
+
+static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
+{
+ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
+}
+
+
+/**
+ * This function returns the mode of the operation, host or device.
+ *
+ * @return 0 - Device Mode, 1 - Host Mode
+ */
+static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if)
+{
+ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
+}
+
+static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
+{
+ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
+}
+static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
+{
+ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
+}
+
+extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
+
+
+/**@}*/
+
+/**
+ * DWC_otg CIL callback structure. This structure allows the HCD and
+ * PCD to register functions used for starting and stopping the PCD
+ * and HCD for role change on for a DRD.
+ */
+typedef struct dwc_otg_cil_callbacks
+{
+ /** Start function for role change */
+ int (*start) (void *_p);
+ /** Stop Function for role change */
+ int (*stop) (void *_p);
+ /** Disconnect Function for role change */
+ int (*disconnect) (void *_p);
+ /** Resume/Remote wakeup Function */
+ int (*resume_wakeup) (void *_p);
+ /** Suspend function */
+ int (*suspend) (void *_p);
+ /** Session Start (SRP) */
+ int (*session_start) (void *_p);
+ /** Pointer passed to start() and stop() */
+ void *p;
+} dwc_otg_cil_callbacks_t;
+
+extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
+ dwc_otg_cil_callbacks_t *_cb,
+ void *_p);
+extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
+ dwc_otg_cil_callbacks_t *_cb,
+ void *_p);
+#ifndef warn
+#define warn printk
+#endif
+
+#endif
+
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil_intr.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil_intr.c
new file mode 100644
index 0000000000..a40489380e
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_cil_intr.c
@@ -0,0 +1,852 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $
+ * $Revision: #10 $
+ * $Date: 2008/07/16 $
+ * $Change: 1065567 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+/** @file
+ *
+ * The Core Interface Layer provides basic services for accessing and
+ * managing the DWC_otg hardware. These services are used by both the
+ * Host Controller Driver and the Peripheral Controller Driver.
+ *
+ * This file contains the Common Interrupt handlers.
+ */
+#include "otg_plat.h"
+#include "otg_regs.h"
+#include "otg_cil.h"
+#include "otg_pcd.h"
+
+#ifdef DEBUG
+inline const char *op_state_str(dwc_otg_core_if_t *core_if)
+{
+ return (core_if->op_state==A_HOST?"a_host":
+ (core_if->op_state==A_SUSPEND?"a_suspend":
+ (core_if->op_state==A_PERIPHERAL?"a_peripheral":
+ (core_if->op_state==B_PERIPHERAL?"b_peripheral":
+ (core_if->op_state==B_HOST?"b_host":
+ "unknown")))));
+}
+#endif
+
+/** This function will log a debug message
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if)
+{
+ gintsts_data_t gintsts;
+ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
+ dwc_otg_mode(core_if) ? "Host" : "Device");
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.modemismatch = 1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+ return 1;
+}
+
+/** Start the HCD. Helper function for using the HCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void hcd_start(dwc_otg_core_if_t *core_if)
+{
+ if (core_if->hcd_cb && core_if->hcd_cb->start) {
+ core_if->hcd_cb->start(core_if->hcd_cb->p);
+ }
+}
+/** Stop the HCD. Helper function for using the HCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void hcd_stop(dwc_otg_core_if_t *core_if)
+{
+ if (core_if->hcd_cb && core_if->hcd_cb->stop) {
+ core_if->hcd_cb->stop(core_if->hcd_cb->p);
+ }
+}
+/** Disconnect the HCD. Helper function for using the HCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void hcd_disconnect(dwc_otg_core_if_t *core_if)
+{
+ if (core_if->hcd_cb && core_if->hcd_cb->disconnect) {
+ core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
+ }
+}
+/** Inform the HCD the a New Session has begun. Helper function for
+ * using the HCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void hcd_session_start(dwc_otg_core_if_t *core_if)
+{
+ if (core_if->hcd_cb && core_if->hcd_cb->session_start) {
+ core_if->hcd_cb->session_start(core_if->hcd_cb->p);
+ }
+}
+
+/** Start the PCD. Helper function for using the PCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void pcd_start(dwc_otg_core_if_t *core_if)
+{
+ if (core_if->pcd_cb && core_if->pcd_cb->start) {
+ core_if->pcd_cb->start(core_if->pcd_cb->p);
+ }
+}
+/** Stop the PCD. Helper function for using the PCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void pcd_stop(dwc_otg_core_if_t *core_if)
+{
+ if (core_if->pcd_cb && core_if->pcd_cb->stop) {
+ core_if->pcd_cb->stop(core_if->pcd_cb->p);
+ }
+}
+/** Suspend the PCD. Helper function for using the PCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void pcd_suspend(dwc_otg_core_if_t *core_if)
+{
+ if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
+ core_if->pcd_cb->suspend(core_if->pcd_cb->p);
+ }
+}
+/** Resume the PCD. Helper function for using the PCD callbacks.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static inline void pcd_resume(dwc_otg_core_if_t *core_if)
+{
+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
+ }
+}
+
+/**
+ * This function handles the OTG Interrupts. It reads the OTG
+ * Interrupt Register (GOTGINT) to determine what interrupt has
+ * occurred.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if)
+{
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+ gotgint_data_t gotgint;
+ gotgctl_data_t gotgctl;
+ gintmsk_data_t gintmsk;
+ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
+ op_state_str(core_if));
+ //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32);
+
+ if (gotgint.b.sesenddet) {
+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+ "Session End Detected++ (%s)\n",
+ op_state_str(core_if));
+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+
+ if (core_if->op_state == B_HOST) {
+
+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_start(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ core_if->op_state = B_PERIPHERAL;
+ } else {
+ dwc_otg_pcd_t *pcd;
+
+ /* If not B_HOST and Device HNP still set. HNP
+ * Did not succeed!*/
+ if (gotgctl.b.devhnpen) {
+ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
+ DWC_ERROR("Device Not Connected/Responding!\n");
+ }
+
+ /* If Session End Detected the B-Cable has
+ * been disconnected. */
+ /* Reset PCD and Gadget driver to a
+ * clean state. */
+
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_stop(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ }
+ gotgctl.d32 = 0;
+ gotgctl.b.devhnpen = 1;
+ dwc_modify_reg32(&global_regs->gotgctl,
+ gotgctl.d32, 0);
+ }
+ if (gotgint.b.sesreqsucstschng) {
+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+ "Session Reqeust Success Status Change++\n");
+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+ if (gotgctl.b.sesreqscs) {
+ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
+ (core_if->core_params->i2c_enable)) {
+ core_if->srp_success = 1;
+ }
+ else {
+ dwc_otg_pcd_t *pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_resume(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ /* Clear Session Request */
+ gotgctl.d32 = 0;
+ gotgctl.b.sesreq = 1;
+ dwc_modify_reg32(&global_regs->gotgctl,
+ gotgctl.d32, 0);
+ }
+ }
+ }
+ if (gotgint.b.hstnegsucstschng) {
+ /* Print statements during the HNP interrupt handling
+ * can cause it to fail.*/
+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+ if (gotgctl.b.hstnegscs) {
+ if (dwc_otg_is_host_mode(core_if)) {
+ dwc_otg_pcd_t *pcd;
+
+ core_if->op_state = B_HOST;
+ /*
+ * Need to disable SOF interrupt immediately.
+ * When switching from device to host, the PCD
+ * interrupt handler won't handle the
+ * interrupt if host mode is already set. The
+ * HCD interrupt handler won't get called if
+ * the HCD state is HALT. This means that the
+ * interrupt does not get handled and Linux
+ * complains loudly.
+ */
+ gintmsk.d32 = 0;
+ gintmsk.b.sofintr = 1;
+ dwc_modify_reg32(&global_regs->gintmsk,
+ gintmsk.d32, 0);
+
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_stop(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ /*
+ * Initialize the Core for Host mode.
+ */
+ hcd_start(core_if);
+ core_if->op_state = B_HOST;
+ }
+ } else {
+ gotgctl.d32 = 0;
+ gotgctl.b.hnpreq = 1;
+ gotgctl.b.devhnpen = 1;
+ dwc_modify_reg32(&global_regs->gotgctl,
+ gotgctl.d32, 0);
+ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
+ DWC_ERROR("Device Not Connected/Responding\n");
+ }
+ }
+ if (gotgint.b.hstnegdet) {
+ /* The disconnect interrupt is set at the same time as
+ * Host Negotiation Detected. During the mode
+ * switch all interrupts are cleared so the disconnect
+ * interrupt handler will not get executed.
+ */
+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+ "Host Negotiation Detected++ (%s)\n",
+ (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
+ if (dwc_otg_is_device_mode(core_if)){
+ dwc_otg_pcd_t *pcd;
+
+ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state);
+ hcd_disconnect(core_if);
+
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_start(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ core_if->op_state = A_PERIPHERAL;
+ } else {
+ dwc_otg_pcd_t *pcd;
+
+ /*
+ * Need to disable SOF interrupt immediately. When
+ * switching from device to host, the PCD interrupt
+ * handler won't handle the interrupt if host mode is
+ * already set. The HCD interrupt handler won't get
+ * called if the HCD state is HALT. This means that
+ * the interrupt does not get handled and Linux
+ * complains loudly.
+ */
+ gintmsk.d32 = 0;
+ gintmsk.b.sofintr = 1;
+ dwc_modify_reg32(&global_regs->gintmsk,
+ gintmsk.d32, 0);
+
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_stop(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ hcd_start(core_if);
+ core_if->op_state = A_HOST;
+ }
+ }
+ if (gotgint.b.adevtoutchng) {
+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+ "A-Device Timeout Change++\n");
+ }
+ if (gotgint.b.debdone) {
+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
+ "Debounce Done++\n");
+ }
+
+ /* Clear GOTGINT */
+ dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32);
+
+ return 1;
+}
+
+
+void w_conn_id_status_change(struct work_struct *p)
+{
+ dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id);
+
+ uint32_t count = 0;
+ gotgctl_data_t gotgctl = { .d32 = 0 };
+
+ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
+ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
+ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
+
+ /* B-Device connector (Device Mode) */
+ if (gotgctl.b.conidsts) {
+ dwc_otg_pcd_t *pcd;
+
+ /* Wait for switch to device mode. */
+ while (!dwc_otg_is_device_mode(core_if)){
+ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
+ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
+ MDELAY(100);
+ if (++count > 10000) *(uint32_t*)NULL=0;
+ }
+ core_if->op_state = B_PERIPHERAL;
+ dwc_otg_core_init(core_if);
+ dwc_otg_enable_global_interrupts(core_if);
+
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_start(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ } else {
+ /* A-Device connector (Host Mode) */
+ while (!dwc_otg_is_host_mode(core_if)) {
+ DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
+ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
+ MDELAY(100);
+ if (++count > 10000) *(uint32_t*)NULL=0;
+ }
+ core_if->op_state = A_HOST;
+ /*
+ * Initialize the Core for Host mode.
+ */
+ dwc_otg_core_init(core_if);
+ dwc_otg_enable_global_interrupts(core_if);
+ hcd_start(core_if);
+ }
+}
+
+
+/**
+ * This function handles the Connector ID Status Change Interrupt. It
+ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
+ * is a Device to Host Mode transition or a Host Mode to Device
+ * Transition.
+ *
+ * This only occurs when the cable is connected/removed from the PHY
+ * connector.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if)
+{
+
+ /*
+ * Need to disable SOF interrupt immediately. If switching from device
+ * to host, the PCD interrupt handler won't handle the interrupt if
+ * host mode is already set. The HCD interrupt handler won't get
+ * called if the HCD state is HALT. This means that the interrupt does
+ * not get handled and Linux complains loudly.
+ */
+ gintmsk_data_t gintmsk = { .d32 = 0 };
+ gintsts_data_t gintsts = { .d32 = 0 };
+
+ gintmsk.b.sofintr = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
+
+ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
+ (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
+
+ /*
+ * Need to schedule a work, as there are possible DELAY function calls
+ */
+ queue_work(core_if->wq_otg, &core_if->w_conn_id);
+
+ /* Set flag and clear interrupt */
+ gintsts.b.conidstschng = 1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * This interrupt indicates that a device is initiating the Session
+ * Request Protocol to request the host to turn on bus power so a new
+ * session can begin. The handler responds by turning on bus power. If
+ * the DWC_otg controller is in low power mode, the handler brings the
+ * controller out of low power mode before turning on bus power.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if)
+{
+ hprt0_data_t hprt0;
+ gintsts_data_t gintsts;
+
+#ifndef DWC_HOST_ONLY
+ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
+
+ if (dwc_otg_is_device_mode(core_if)) {
+ DWC_PRINT("SRP: Device mode\n");
+ } else {
+ DWC_PRINT("SRP: Host mode\n");
+
+ /* Turn on the port power bit. */
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtpwr = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+ /* Start the Connection timer. So a message can be displayed
+ * if connect does not occur within 10 seconds. */
+ hcd_session_start(core_if);
+ }
+#endif
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.sessreqintr = 1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+
+void w_wakeup_detected(struct work_struct *p)
+{
+ struct delayed_work *dw = container_of(p, struct delayed_work, work);
+ dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp);
+
+ /*
+ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
+ * so that OPT tests pass with all PHYs).
+ */
+ hprt0_data_t hprt0 = {.d32=0};
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
+// MDELAY(70);
+ hprt0.b.prtres = 0; /* Resume */
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0));
+}
+/**
+ * This interrupt indicates that the DWC_otg controller has detected a
+ * resume or remote wakeup sequence. If the DWC_otg controller is in
+ * low power mode, the handler must brings the controller out of low
+ * power mode. The controller automatically begins resume
+ * signaling. The handler schedules a time to stop resume signaling.
+ */
+int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if)
+{
+ gintsts_data_t gintsts;
+
+ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
+
+ if (dwc_otg_is_device_mode(core_if)) {
+ dctl_data_t dctl = {.d32=0};
+ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts));
+#ifdef PARTIAL_POWER_DOWN
+ if (core_if->hwcfg4.b.power_optimiz) {
+ pcgcctl_data_t power = {.d32=0};
+
+ power.d32 = dwc_read_reg32(core_if->pcgcctl);
+ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
+
+ power.b.stoppclk = 0;
+ dwc_write_reg32(core_if->pcgcctl, power.d32);
+
+ power.b.pwrclmp = 0;
+ dwc_write_reg32(core_if->pcgcctl, power.d32);
+
+ power.b.rstpdwnmodule = 0;
+ dwc_write_reg32(core_if->pcgcctl, power.d32);
+ }
+#endif
+ /* Clear the Remote Wakeup Signalling */
+ dctl.b.rmtwkupsig = 1;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
+ dctl.d32, 0);
+
+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
+ }
+
+ } else {
+ pcgcctl_data_t pcgcctl = {.d32=0};
+
+ /* Restart the Phy Clock */
+ pcgcctl.b.stoppclk = 1;
+ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
+
+ queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1));
+ }
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.wkupintr = 1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * This interrupt indicates that a device has been disconnected from
+ * the root port.
+ */
+int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if)
+{
+ gintsts_data_t gintsts;
+
+ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
+ (dwc_otg_is_host_mode(core_if)?"Host":"Device"),
+ op_state_str(core_if));
+
+/** @todo Consolidate this if statement. */
+#ifndef DWC_HOST_ONLY
+ if (core_if->op_state == B_HOST) {
+ dwc_otg_pcd_t *pcd;
+
+ /* If in device mode Disconnect and stop the HCD, then
+ * start the PCD. */
+ hcd_disconnect(core_if);
+
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_start(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ core_if->op_state = B_PERIPHERAL;
+ } else if (dwc_otg_is_device_mode(core_if)) {
+ gotgctl_data_t gotgctl = { .d32 = 0 };
+ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
+ if (gotgctl.b.hstsethnpen==1) {
+ /* Do nothing, if HNP in process the OTG
+ * interrupt "Host Negotiation Detected"
+ * interrupt will do the mode switch.
+ */
+ } else if (gotgctl.b.devhnpen == 0) {
+ dwc_otg_pcd_t *pcd;
+
+ /* If in device mode Disconnect and stop the HCD, then
+ * start the PCD. */
+ hcd_disconnect(core_if);
+
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_start(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+
+ core_if->op_state = B_PERIPHERAL;
+ } else {
+ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
+ }
+ } else {
+ if (core_if->op_state == A_HOST) {
+ /* A-Cable still connected but device disconnected. */
+ hcd_disconnect(core_if);
+ }
+ }
+#endif
+
+ gintsts.d32 = 0;
+ gintsts.b.disconnect = 1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+ return 1;
+}
+/**
+ * This interrupt indicates that SUSPEND state has been detected on
+ * the USB.
+ *
+ * For HNP the USB Suspend interrupt signals the change from
+ * "a_peripheral" to "a_host".
+ *
+ * When power management is enabled the core will be put in low power
+ * mode.
+ */
+int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if)
+{
+ dsts_data_t dsts;
+ gintsts_data_t gintsts;
+
+ DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
+
+ if (dwc_otg_is_device_mode(core_if)) {
+ dwc_otg_pcd_t *pcd;
+
+ /* Check the Device status register to determine if the Suspend
+ * state is active. */
+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
+ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
+ "HWCFG4.power Optimize=%d\n",
+ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
+
+
+#ifdef PARTIAL_POWER_DOWN
+/** @todo Add a module parameter for power management. */
+ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
+ pcgcctl_data_t power = {.d32=0};
+ DWC_DEBUGPL(DBG_CIL, "suspend\n");
+
+ power.b.pwrclmp = 1;
+ dwc_write_reg32(core_if->pcgcctl, power.d32);
+
+ power.b.rstpdwnmodule = 1;
+ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
+
+ power.b.stoppclk = 1;
+ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
+ } else {
+ DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
+ }
+#endif
+ /* PCD callback for suspend. */
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_suspend(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+ } else {
+ if (core_if->op_state == A_PERIPHERAL) {
+ dwc_otg_pcd_t *pcd;
+
+ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
+ /* Clear the a_peripheral flag, back to a_host. */
+
+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
+ if(unlikely(!pcd)) {
+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
+ BUG();
+ }
+ SPIN_LOCK(&pcd->lock);
+
+ pcd_stop(core_if);
+
+ SPIN_UNLOCK(&pcd->lock);
+
+ hcd_start(core_if);
+ core_if->op_state = A_HOST;
+ }
+ }
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.usbsuspend = 1;
+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+
+/**
+ * This function returns the Core Interrupt register.
+ */
+static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if)
+{
+ gintsts_data_t gintsts;
+ gintmsk_data_t gintmsk;
+ gintmsk_data_t gintmsk_common = {.d32=0};
+ gintmsk_common.b.wkupintr = 1;
+ gintmsk_common.b.sessreqintr = 1;
+ gintmsk_common.b.conidstschng = 1;
+ gintmsk_common.b.otgintr = 1;
+ gintmsk_common.b.modemismatch = 1;
+ gintmsk_common.b.disconnect = 1;
+ gintmsk_common.b.usbsuspend = 1;
+ /** @todo: The port interrupt occurs while in device
+ * mode. Added code to CIL to clear the interrupt for now!
+ */
+ gintmsk_common.b.portintr = 1;
+
+ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
+ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
+#ifdef DEBUG
+ /* if any common interrupts set */
+ if (gintsts.d32 & gintmsk_common.d32) {
+ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
+ gintsts.d32, gintmsk.d32);
+ }
+#endif
+
+ return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
+
+}
+
+/**
+ * Common interrupt handler.
+ *
+ * The common interrupts are those that occur in both Host and Device mode.
+ * This handler handles the following interrupts:
+ * - Mode Mismatch Interrupt
+ * - Disconnect Interrupt
+ * - OTG Interrupt
+ * - Connector ID Status Change Interrupt
+ * - Session Request Interrupt.
+ * - Resume / Remote Wakeup Detected Interrupt.
+ *
+ */
+int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if)
+{
+ int retval = 0;
+ gintsts_data_t gintsts;
+
+ gintsts.d32 = dwc_otg_read_common_intr(core_if);
+
+ if (gintsts.b.modemismatch) {
+ retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
+ }
+ if (gintsts.b.otgintr) {
+ retval |= dwc_otg_handle_otg_intr(core_if);
+ }
+ if (gintsts.b.conidstschng) {
+ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
+ }
+ if (gintsts.b.disconnect) {
+ retval |= dwc_otg_handle_disconnect_intr(core_if);
+ }
+ if (gintsts.b.sessreqintr) {
+ retval |= dwc_otg_handle_session_req_intr(core_if);
+ }
+ if (gintsts.b.wkupintr) {
+ retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
+ }
+ if (gintsts.b.usbsuspend) {
+ retval |= dwc_otg_handle_usb_suspend_intr(core_if);
+ }
+ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
+ /* The port interrupt occurs while in device mode with HPRT0
+ * Port Enable/Disable.
+ */
+ gintsts.d32 = 0;
+ gintsts.b.portintr = 1;
+ dwc_write_reg32(&core_if->core_global_regs->gintsts,
+ gintsts.d32);
+ retval |= 1;
+
+ }
+
+ S3C2410X_CLEAR_EINTPEND();
+
+ return retval;
+}
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_driver.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_driver.c
new file mode 100644
index 0000000000..002c394797
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_driver.c
@@ -0,0 +1,965 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.c $
+ * $Revision: #63 $
+ * $Date: 2008/09/24 $
+ * $Change: 1101777 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+/** @file
+ * The dwc_otg_driver module provides the initialization and cleanup entry
+ * points for the DWC_otg driver. This module will be dynamically installed
+ * after Linux is booted using the insmod command. When the module is
+ * installed, the dwc_otg_driver_init function is called. When the module is
+ * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
+ *
+ * This module also defines a data structure for the dwc_otg_driver, which is
+ * used in conjunction with the standard ARM lm_device structure. These
+ * structures allow the OTG driver to comply with the standard Linux driver
+ * model in which devices and drivers are registered with a bus driver. This
+ * has the benefit that Linux can expose attributes of the driver and device
+ * in its special sysfs file system. Users can then read or write files in
+ * this file system to perform diagnostics on the driver components or the
+ * device.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/errno.h>
+#include <linux/types.h>
+#include <linux/stat.h> /* permission constants */
+#include <linux/version.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <asm/io.h>
+
+#include <asm/sizes.h>
+#include <mach/pm.h>
+
+#include "otg_plat.h"
+#include "otg_attr.h"
+#include "otg_driver.h"
+#include "otg_cil.h"
+#include "otg_pcd.h"
+#include "otg_hcd.h"
+
+#define DWC_DRIVER_VERSION "2.72a 24-JUN-2008"
+#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
+
+static const char dwc_driver_name[] = "dwc_otg";
+
+/*-------------------------------------------------------------------------*/
+/* Encapsulate the module parameter settings */
+
+static dwc_otg_core_params_t dwc_otg_module_params = {
+ .opt = -1,
+ .otg_cap = -1,
+ .dma_enable = -1,
+ .dma_desc_enable = -1,
+ .dma_burst_size = -1,
+ .speed = -1,
+ .host_support_fs_ls_low_power = -1,
+ .host_ls_low_power_phy_clk = -1,
+ .enable_dynamic_fifo = -1,
+ .data_fifo_size = -1,
+ .dev_rx_fifo_size = -1,
+ .dev_nperio_tx_fifo_size = -1,
+ .dev_perio_tx_fifo_size = {
+ /* dev_perio_tx_fifo_size_1 */
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1
+ /* 15 */
+ },
+ .host_rx_fifo_size = -1,
+ .host_nperio_tx_fifo_size = -1,
+ .host_perio_tx_fifo_size = -1,
+ .max_transfer_size = -1,
+ .max_packet_count = -1,
+ .host_channels = -1,
+ .dev_endpoints = -1,
+ .phy_type = -1,
+ .phy_utmi_width = -1,
+ .phy_ulpi_ddr = -1,
+ .phy_ulpi_ext_vbus = -1,
+ .i2c_enable = -1,
+ .ulpi_fs_ls = -1,
+ .ts_dline = -1,
+ .en_multiple_tx_fifo = -1,
+ .dev_tx_fifo_size = {
+ /* dev_tx_fifo_size */
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1
+ /* 15 */
+ },
+ .thr_ctl = -1,
+ .tx_thr_length = -1,
+ .rx_thr_length = -1,
+ .pti_enable = -1,
+ .mpi_enable = -1,
+};
+
+/**
+ * Global Debug Level Mask.
+ */
+uint32_t g_dbg_lvl = 0; /* OFF */
+
+/**
+ * This function is called during module intialization to verify that
+ * the module parameters are in a valid state.
+ */
+static int check_parameters(dwc_otg_core_if_t *core_if)
+{
+ int i;
+ int retval = 0;
+
+/* Checks if the parameter is outside of its valid range of values */
+#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
+ ((dwc_otg_module_params._param_ < (_low_)) || \
+ (dwc_otg_module_params._param_ > (_high_)))
+
+/* If the parameter has been set by the user, check that the parameter value is
+ * within the value range of values. If not, report a module error. */
+#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
+ do { \
+ if (dwc_otg_module_params._param_ != -1) { \
+ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
+ DWC_ERROR("`%d' invalid for parameter `%s'\n", \
+ dwc_otg_module_params._param_, _string_); \
+ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
+ retval++; \
+ } \
+ } \
+ } while (0)
+
+ DWC_OTG_PARAM_ERR(opt,0,1,"opt");
+ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
+ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
+ DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable");
+ DWC_OTG_PARAM_ERR(speed,0,1,"speed");
+ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
+ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
+ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
+ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
+ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
+ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
+ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
+ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
+ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
+ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
+ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
+ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
+ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
+ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
+ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
+ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
+ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
+ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
+ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
+
+ if (dwc_otg_module_params.dma_burst_size != -1) {
+ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) {
+ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
+ dwc_otg_module_params.dma_burst_size);
+ dwc_otg_module_params.dma_burst_size = 32;
+ retval++;
+ }
+
+ {
+ uint8_t brst_sz = 0;
+ while(dwc_otg_module_params.dma_burst_size > 1) {
+ brst_sz ++;
+ dwc_otg_module_params.dma_burst_size >>= 1;
+ }
+ dwc_otg_module_params.dma_burst_size = brst_sz;
+ }
+ }
+
+ if (dwc_otg_module_params.phy_utmi_width != -1) {
+ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
+ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
+ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
+ dwc_otg_module_params.phy_utmi_width);
+ dwc_otg_module_params.phy_utmi_width = 16;
+ retval++;
+ }
+ }
+
+ for (i = 0; i < 15; i++) {
+ /** @todo should be like above */
+ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size");
+ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
+ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) {
+ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
+ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
+ retval++;
+ }
+ }
+ }
+
+ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
+
+ for (i = 0; i < 15; i++) {
+ /** @todo should be like above */
+ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size");
+ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
+ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
+ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
+ dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i);
+ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
+ retval++;
+ }
+ }
+ }
+
+ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
+ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
+ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
+
+ DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable");
+ DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable");
+
+ /* At this point, all module parameters that have been set by the user
+ * are valid, and those that have not are left unset. Now set their
+ * default values and/or check the parameters against the hardware
+ * configurations of the OTG core. */
+
+/* This sets the parameter to the default value if it has not been set by the
+ * user */
+#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
+ ({ \
+ int changed = 1; \
+ if (dwc_otg_module_params._param_ == -1) { \
+ changed = 0; \
+ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
+ } \
+ changed; \
+ })
+
+/* This checks the macro agains the hardware configuration to see if it is
+ * valid. It is possible that the default value could be invalid. In this
+ * case, it will report a module error if the user touched the parameter.
+ * Otherwise it will adjust the value without any error. */
+#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
+ ({ \
+ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
+ int error = 0; \
+ if (!(_is_valid_)) { \
+ if (changed) { \
+ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
+ error = 1; \
+ } \
+ dwc_otg_module_params._param_ = (_set_valid_); \
+ } \
+ error; \
+ })
+
+ /* OTG Cap */
+ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap",
+ ({
+ int valid;
+ valid = 1;
+ switch (dwc_otg_module_params.otg_cap) {
+ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
+ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
+ valid = 0;
+ break;
+ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
+ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
+ valid = 0;
+ }
+ break;
+ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
+ /* always valid */
+ break;
+ }
+ valid;
+ }),
+ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
+ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable",
+ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
+ 0);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable",
+ ((dwc_otg_module_params.dma_desc_enable == 1) &&
+ ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1,
+ 0);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0);
+
+ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
+ "host_support_fs_ls_low_power",
+ 1, 0);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
+ "enable_dynamic_fifo",
+ ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
+ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
+ "data_fifo_size",
+ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
+ core_if->hwcfg3.b.dfifo_depth);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
+ "dev_rx_fifo_size",
+ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
+ "dev_nperio_tx_fifo_size",
+ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
+ "host_rx_fifo_size",
+ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
+ "host_nperio_tx_fifo_size",
+ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
+ "host_perio_tx_fifo_size",
+ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
+ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
+ "max_transfer_size",
+ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
+ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
+ "max_packet_count",
+ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
+ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
+ "host_channels",
+ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
+ (core_if->hwcfg2.b.num_host_chan + 1));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
+ "dev_endpoints",
+ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
+ core_if->hwcfg2.b.num_dev_ep);
+
+/*
+ * Define the following to disable the FS PHY Hardware checking. This is for
+ * internal testing only.
+ *
+ * #define NO_FS_PHY_HW_CHECKS
+ */
+
+#ifdef NO_FS_PHY_HW_CHECKS
+ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
+ "phy_type", 1, 0);
+#else
+ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
+ "phy_type",
+ ({
+ int valid = 0;
+ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
+ ((core_if->hwcfg2.b.hs_phy_type == 1) ||
+ (core_if->hwcfg2.b.hs_phy_type == 3))) {
+ valid = 1;
+ }
+ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
+ ((core_if->hwcfg2.b.hs_phy_type == 2) ||
+ (core_if->hwcfg2.b.hs_phy_type == 3))) {
+ valid = 1;
+ }
+ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
+ (core_if->hwcfg2.b.fs_phy_type == 1)) {
+ valid = 1;
+ }
+ valid;
+ }),
+ ({
+ int set = DWC_PHY_TYPE_PARAM_FS;
+ if (core_if->hwcfg2.b.hs_phy_type) {
+ if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
+ (core_if->hwcfg2.b.hs_phy_type == 1)) {
+ set = DWC_PHY_TYPE_PARAM_UTMI;
+ }
+ else {
+ set = DWC_PHY_TYPE_PARAM_ULPI;
+ }
+ }
+ set;
+ }));
+#endif
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed",
+ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
+ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
+ "host_ls_low_power_phy_clk",
+ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
+ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
+
+ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
+ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
+ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
+ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
+ DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
+
+#ifdef NO_FS_PHY_HW_CHECKS
+ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
+#else
+ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
+ "i2c_enable",
+ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
+ 0);
+#endif
+
+ for (i = 0; i < 15; i++) {
+ int changed = 1;
+ int error = 0;
+
+ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
+ changed = 0;
+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
+ }
+ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
+ if (changed) {
+ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i);
+ error = 1;
+ }
+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
+ }
+ retval += error;
+ }
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo",
+ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1,
+ 0);
+
+ for (i = 0; i < 15; i++) {
+ int changed = 1;
+ int error = 0;
+
+ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
+ changed = 0;
+ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
+ }
+ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
+ if (changed) {
+ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i);
+ error = 1;
+ }
+ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
+ }
+ retval += error;
+ }
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl",
+ ((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1,
+ 0);
+
+ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
+ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable",
+ ((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0,
+ 0);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable",
+ ((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0,
+ 0);
+ return retval;
+}
+
+/**
+ * This function is the top level interrupt handler for the Common
+ * (Device and host modes) interrupts.
+ */
+static irqreturn_t dwc_otg_common_irq(int irq, void *dev)
+{
+ dwc_otg_device_t *otg_dev = dev;
+ int32_t retval = IRQ_NONE;
+
+ retval = dwc_otg_handle_common_intr(otg_dev->core_if);
+ return IRQ_RETVAL(retval);
+}
+
+/**
+ * This function is called when a lm_device is unregistered with the
+ * dwc_otg_driver. This happens, for example, when the rmmod command is
+ * executed. The device may or may not be electrically present. If it is
+ * present, the driver stops device processing. Any resources used on behalf
+ * of this device are freed.
+ *
+ * @param[in] lmdev
+ */
+static int dwc_otg_driver_cleanup(struct platform_device *pdev)
+{
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev);
+
+ if (!otg_dev) {
+ /* Memory allocation for the dwc_otg_device failed. */
+ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
+ return 0;
+ }
+
+ /*
+ * Free the IRQ
+ */
+ if (otg_dev->common_irq_installed) {
+ free_irq(otg_dev->irq, otg_dev);
+ }
+
+#ifndef DWC_DEVICE_ONLY
+ if (otg_dev->hcd) {
+ dwc_otg_hcd_remove(pdev);
+ } else {
+ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
+ return 0;
+ }
+#endif
+
+#ifndef DWC_HOST_ONLY
+ if (otg_dev->pcd) {
+ dwc_otg_pcd_remove(pdev);
+ }
+#endif
+ if (otg_dev->core_if) {
+ dwc_otg_cil_remove(otg_dev->core_if);
+ }
+
+ /*
+ * Remove the device attributes
+ */
+ dwc_otg_attr_remove(pdev);
+
+ /*
+ * Return the memory.
+ */
+ if (otg_dev->base) {
+ iounmap(otg_dev->base);
+ }
+ kfree(otg_dev);
+
+ /*
+ * Clear the drvdata pointer.
+ */
+ platform_set_drvdata(pdev, 0);
+
+ return 0;
+}
+
+/**
+ * This function is called when an lm_device is bound to a
+ * dwc_otg_driver. It creates the driver components required to
+ * control the device (CIL, HCD, and PCD) and it initializes the
+ * device. The driver components are stored in a dwc_otg_device
+ * structure. A reference to the dwc_otg_device is saved in the
+ * lm_device. This allows the driver to access the dwc_otg_device
+ * structure on subsequent calls to driver methods for this device.
+ *
+ * @param[in] lmdev lm_device definition
+ */
+static int __devinit dwc_otg_driver_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ int retval = 0;
+ uint32_t snpsid;
+ dwc_otg_device_t *dwc_otg_device;
+ struct resource *res;
+
+ dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", pdev);
+
+ dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
+
+ if (!dwc_otg_device) {
+ dev_err(dev, "kmalloc of dwc_otg_device failed\n");
+ retval = -ENOMEM;
+ goto fail;
+ }
+
+ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
+ dwc_otg_device->reg_offset = 0xFFFFFFFF;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res) {
+ dev_err(dev, "Found OTG with no register addr.\n");
+ retval = -ENODEV;
+ goto fail;
+ }
+ dwc_otg_device->rsrc_start = res->start;
+ dwc_otg_device->rsrc_len = res->end - res->start + 1;
+
+ dwc_otg_device->base = ioremap(dwc_otg_device->rsrc_start, dwc_otg_device->rsrc_len);
+
+ if (!dwc_otg_device->base) {
+ dev_err(dev, "ioremap() failed\n");
+ retval = -ENOMEM;
+ goto fail;
+ }
+ dev_dbg(dev, "base=0x%08x\n", (unsigned)dwc_otg_device->base);
+
+ /*
+ * Attempt to ensure this device is really a DWC_otg Controller.
+ * Read and verify the SNPSID register contents. The value should be
+ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
+ */
+ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
+
+ if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) {
+ dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
+ retval = -EINVAL;
+ goto fail;
+ }
+
+ DWC_PRINT("Core Release: %x.%x%x%x\n",
+ (snpsid >> 12 & 0xF),
+ (snpsid >> 8 & 0xF),
+ (snpsid >> 4 & 0xF),
+ (snpsid & 0xF));
+
+ /*
+ * Initialize driver data to point to the global DWC_otg
+ * Device structure.
+ */
+ platform_set_drvdata(pdev, dwc_otg_device);
+
+ dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
+
+ dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
+ &dwc_otg_module_params);
+
+ dwc_otg_device->core_if->snpsid = snpsid;
+
+ if (!dwc_otg_device->core_if) {
+ dev_err(dev, "CIL initialization failed!\n");
+ retval = -ENOMEM;
+ goto fail;
+ }
+
+ /*
+ * Validate parameter values.
+ */
+ if (check_parameters(dwc_otg_device->core_if)) {
+ retval = -EINVAL;
+ goto fail;
+ }
+
+ /*
+ * Create Device Attributes in sysfs
+ */
+ dwc_otg_attr_create(pdev);
+
+ /*
+ * Disable the global interrupt until all the interrupt
+ * handlers are installed.
+ */
+ dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
+
+ /*
+ * Install the interrupt handler for the common interrupts before
+ * enabling common interrupts in core_init below.
+ */
+ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+ if (!res) {
+ dev_err(dev, "Fount OTG with to IRQ.\n");
+ retval = -ENODEV;
+ goto fail;
+ }
+ dwc_otg_device->irq = res->start;
+
+ retval = request_irq(res->start, dwc_otg_common_irq,
+ IRQF_SHARED, "dwc_otg", dwc_otg_device);
+ if (retval) {
+ DWC_ERROR("request of irq%d failed\n", res->start);
+ retval = -EBUSY;
+ goto fail;
+ } else {
+ dwc_otg_device->common_irq_installed = 1;
+ }
+
+ /*
+ * Initialize the DWC_otg core.
+ */
+ dwc_otg_core_init(dwc_otg_device->core_if);
+
+#ifndef DWC_HOST_ONLY
+ /*
+ * Initialize the PCD
+ */
+ retval = dwc_otg_pcd_init(pdev);
+ if (retval != 0) {
+ DWC_ERROR("dwc_otg_pcd_init failed\n");
+ dwc_otg_device->pcd = NULL;
+ goto fail;
+ }
+#endif
+#ifndef DWC_DEVICE_ONLY
+ /*
+ * Initialize the HCD
+ */
+ retval = dwc_otg_hcd_init(pdev);
+ if (retval != 0) {
+ DWC_ERROR("dwc_otg_hcd_init failed\n");
+ dwc_otg_device->hcd = NULL;
+ goto fail;
+ }
+#endif
+
+ /*
+ * Enable the global interrupt after all the interrupt
+ * handlers are installed.
+ */
+ dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
+
+ return 0;
+
+ fail:
+ dwc_otg_driver_cleanup(pdev);
+ return retval;
+}
+
+static int __devexit dwc_otg_driver_remove(struct platform_device *pdev)
+{
+ return dwc_otg_driver_cleanup(pdev);
+}
+
+static struct platform_driver dwc_otg_platform_driver = {
+ .driver.name = "dwc_otg",
+ .probe = dwc_otg_driver_probe,
+ .remove = __devexit_p(dwc_otg_driver_remove),
+};
+
+static int __init dwc_otg_init_module(void)
+{
+ return platform_driver_register(&dwc_otg_platform_driver);
+}
+
+static void __exit dwc_otg_cleanup_module(void)
+{
+ platform_driver_unregister(&dwc_otg_platform_driver);
+}
+
+module_init(dwc_otg_init_module);
+module_exit(dwc_otg_cleanup_module);
+
+/**
+ * This function is called when the driver is removed from the kernel
+ * with the rmmod command. The driver unregisters itself with its bus
+ * driver.
+ *
+ */
+
+MODULE_DESCRIPTION(DWC_DRIVER_DESC);
+MODULE_AUTHOR("Synopsys Inc.");
+MODULE_LICENSE("GPL");
+
+module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
+MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
+module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
+MODULE_PARM_DESC(opt, "OPT Mode");
+module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
+MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
+
+module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444);
+MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled");
+
+module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
+MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
+module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
+MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
+module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
+MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
+module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
+MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
+module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
+MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
+module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
+MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
+module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
+MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
+module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
+MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
+module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
+module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
+MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
+module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
+MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
+module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
+MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
+module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
+/** @todo Set the max to 512K, modify checks */
+MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
+module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
+MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
+module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
+MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
+module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
+MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
+module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
+MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
+module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
+MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
+module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
+MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
+module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
+MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
+module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
+MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
+module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
+MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
+module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
+MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
+module_param_named(debug, g_dbg_lvl, int, 0444);
+MODULE_PARM_DESC(debug, "");
+
+module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
+MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
+module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
+
+module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
+MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
+module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
+MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
+module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
+MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
+
+module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444);
+MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled");
+
+module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444);
+MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled");
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_driver.h b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_driver.h
new file mode 100644
index 0000000000..2f56a26c4b
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_driver.h
@@ -0,0 +1,62 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $
+ * $Revision: #12 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064918 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#ifndef __DWC_OTG_DRIVER_H__
+#define __DWC_OTG_DRIVER_H__
+
+/** @file
+ * This file contains the interface to the Linux driver.
+ */
+#include "otg_cil.h"
+
+/* Type declarations */
+struct dwc_otg_pcd;
+struct dwc_otg_hcd;
+
+/**
+ * This structure is a wrapper that encapsulates the driver components used to
+ * manage a single DWC_otg controller.
+ */
+typedef struct dwc_otg_device {
+ void *base;
+ dwc_otg_core_if_t *core_if;
+ uint32_t reg_offset;
+ struct dwc_otg_pcd *pcd;
+ struct dwc_otg_hcd *hcd;
+ uint8_t common_irq_installed;
+ int irq;
+ uint32_t rsrc_start;
+ uint32_t rsrc_len;
+} dwc_otg_device_t;
+
+#endif
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.c
new file mode 100644
index 0000000000..e51b8c8d29
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.c
@@ -0,0 +1,2752 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
+ * $Revision: #75 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064940 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_DEVICE_ONLY
+
+/**
+ * @file
+ *
+ * This file contains the implementation of the HCD. In Linux, the HCD
+ * implements the hc_driver API.
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/errno.h>
+#include <linux/list.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/dma-mapping.h>
+#include <linux/version.h>
+
+#include <mach/irqs.h>
+
+#include "otg_driver.h"
+#include "otg_hcd.h"
+#include "otg_regs.h"
+
+static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
+
+static const struct hc_driver dwc_otg_hc_driver = {
+
+ .description = dwc_otg_hcd_name,
+ .product_desc = "DWC OTG Controller",
+ .hcd_priv_size = sizeof(dwc_otg_hcd_t),
+ .irq = dwc_otg_hcd_irq,
+ .flags = HCD_MEMORY | HCD_USB2,
+ .start = dwc_otg_hcd_start,
+ .stop = dwc_otg_hcd_stop,
+ .urb_enqueue = dwc_otg_hcd_urb_enqueue,
+ .urb_dequeue = dwc_otg_hcd_urb_dequeue,
+ .endpoint_disable = dwc_otg_hcd_endpoint_disable,
+ .get_frame_number = dwc_otg_hcd_get_frame_number,
+ .hub_status_data = dwc_otg_hcd_hub_status_data,
+ .hub_control = dwc_otg_hcd_hub_control,
+};
+
+/**
+ * Work queue function for starting the HCD when A-Cable is connected.
+ * The dwc_otg_hcd_start() must be called in a process context.
+ */
+static void hcd_start_func(struct work_struct *_work)
+{
+ struct delayed_work *dw = container_of(_work, struct delayed_work, work);
+ struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
+ struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
+ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
+ if (usb_hcd) {
+ dwc_otg_hcd_start(usb_hcd);
+ }
+}
+
+/**
+ * HCD Callback function for starting the HCD when A-Cable is
+ * connected.
+ *
+ * @param p void pointer to the <code>struct usb_hcd</code>
+ */
+static int32_t dwc_otg_hcd_start_cb(void *p)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
+ hprt0_data_t hprt0;
+
+ if (core_if->op_state == B_HOST) {
+ /*
+ * Reset the port. During a HNP mode switch the reset
+ * needs to occur within 1ms and have a duration of at
+ * least 50ms.
+ */
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtrst = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ ((struct usb_hcd *)p)->self.is_b_host = 1;
+ } else {
+ ((struct usb_hcd *)p)->self.is_b_host = 0;
+ }
+
+ /* Need to start the HCD in a non-interrupt context. */
+// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
+ INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
+// schedule_work(&dwc_otg_hcd->start_work);
+ queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);
+
+ return 1;
+}
+
+/**
+ * HCD Callback function for stopping the HCD.
+ *
+ * @param p void pointer to the <code>struct usb_hcd</code>
+ */
+static int32_t dwc_otg_hcd_stop_cb(void *p)
+{
+ struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
+ dwc_otg_hcd_stop(usb_hcd);
+ return 1;
+}
+
+static void del_xfer_timers(dwc_otg_hcd_t *hcd)
+{
+#ifdef DEBUG
+ int i;
+ int num_channels = hcd->core_if->core_params->host_channels;
+ for (i = 0; i < num_channels; i++) {
+ del_timer(&hcd->core_if->hc_xfer_timer[i]);
+ }
+#endif
+}
+
+static void del_timers(dwc_otg_hcd_t *hcd)
+{
+ del_xfer_timers(hcd);
+ del_timer(&hcd->conn_timer);
+}
+
+/**
+ * Processes all the URBs in a single list of QHs. Completes them with
+ * -ETIMEDOUT and frees the QTD.
+ */
+static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
+{
+ struct list_head *qh_item;
+ dwc_otg_qh_t *qh;
+ struct list_head *qtd_item;
+ dwc_otg_qtd_t *qtd;
+ unsigned long flags;
+
+ SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
+ list_for_each(qh_item, qh_list) {
+ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
+ for (qtd_item = qh->qtd_list.next;
+ qtd_item != &qh->qtd_list;
+ qtd_item = qh->qtd_list.next) {
+ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
+ if (qtd->urb != NULL) {
+ dwc_otg_hcd_complete_urb(hcd, qtd->urb,
+ -ETIMEDOUT);
+ }
+ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
+ }
+ }
+ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
+}
+
+/**
+ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
+ * and periodic schedules. The QTD associated with each URB is removed from
+ * the schedule and freed. This function may be called when a disconnect is
+ * detected or when the HCD is being stopped.
+ */
+static void kill_all_urbs(dwc_otg_hcd_t *hcd)
+{
+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
+}
+
+/**
+ * HCD Callback function for disconnect of the HCD.
+ *
+ * @param p void pointer to the <code>struct usb_hcd</code>
+ */
+static int32_t dwc_otg_hcd_disconnect_cb(void *p)
+{
+ gintsts_data_t intr;
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
+
+ //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
+
+ /*
+ * Set status flags for the hub driver.
+ */
+ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
+ dwc_otg_hcd->flags.b.port_connect_status = 0;
+
+ /*
+ * Shutdown any transfers in process by clearing the Tx FIFO Empty
+ * interrupt mask and status bits and disabling subsequent host
+ * channel interrupts.
+ */
+ intr.d32 = 0;
+ intr.b.nptxfempty = 1;
+ intr.b.ptxfempty = 1;
+ intr.b.hcintr = 1;
+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
+
+ del_timers(dwc_otg_hcd);
+
+ /*
+ * Turn off the vbus power only if the core has transitioned to device
+ * mode. If still in host mode, need to keep power on to detect a
+ * reconnection.
+ */
+ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
+ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
+ hprt0_data_t hprt0 = { .d32=0 };
+ DWC_PRINT("Disconnect: PortPower off\n");
+ hprt0.b.prtpwr = 0;
+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
+ }
+
+ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
+ }
+
+ /* Respond with an error status to all URBs in the schedule. */
+ kill_all_urbs(dwc_otg_hcd);
+
+ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
+ /* Clean up any host channels that were in use. */
+ int num_channels;
+ int i;
+ dwc_hc_t *channel;
+ dwc_otg_hc_regs_t *hc_regs;
+ hcchar_data_t hcchar;
+
+ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
+
+ if (!dwc_otg_hcd->core_if->dma_enable) {
+ /* Flush out any channel requests in slave mode. */
+ for (i = 0; i < num_channels; i++) {
+ channel = dwc_otg_hcd->hc_ptr_array[i];
+ if (list_empty(&channel->hc_list_entry)) {
+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (hcchar.b.chen) {
+ hcchar.b.chen = 0;
+ hcchar.b.chdis = 1;
+ hcchar.b.epdir = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ }
+ }
+ }
+ }
+
+ for (i = 0; i < num_channels; i++) {
+ channel = dwc_otg_hcd->hc_ptr_array[i];
+ if (list_empty(&channel->hc_list_entry)) {
+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (hcchar.b.chen) {
+ /* Halt the channel. */
+ hcchar.b.chdis = 1;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ }
+
+ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
+ list_add_tail(&channel->hc_list_entry,
+ &dwc_otg_hcd->free_hc_list);
+ }
+ }
+ }
+
+ /* A disconnect will end the session so the B-Device is no
+ * longer a B-host. */
+ ((struct usb_hcd *)p)->self.is_b_host = 0;
+ return 1;
+}
+
+/**
+ * Connection timeout function. An OTG host is required to display a
+ * message if the device does not connect within 10 seconds.
+ */
+void dwc_otg_hcd_connect_timeout(unsigned long ptr)
+{
+ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
+ DWC_PRINT("Connect Timeout\n");
+ DWC_ERROR("Device Not Connected/Responding\n");
+}
+
+/**
+ * Start the connection timer. An OTG host is required to display a
+ * message if the device does not connect within 10 seconds. The
+ * timer is deleted if a port connect interrupt occurs before the
+ * timer expires.
+ */
+static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
+{
+ init_timer(&hcd->conn_timer);
+ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
+ hcd->conn_timer.data = 0;
+ hcd->conn_timer.expires = jiffies + (HZ * 10);
+ add_timer(&hcd->conn_timer);
+}
+
+/**
+ * HCD Callback function for disconnect of the HCD.
+ *
+ * @param p void pointer to the <code>struct usb_hcd</code>
+ */
+static int32_t dwc_otg_hcd_session_start_cb(void *p)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
+ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
+ return 1;
+}
+
+/**
+ * HCD Callback structure for handling mode switching.
+ */
+static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
+ .start = dwc_otg_hcd_start_cb,
+ .stop = dwc_otg_hcd_stop_cb,
+ .disconnect = dwc_otg_hcd_disconnect_cb,
+ .session_start = dwc_otg_hcd_session_start_cb,
+ .p = 0,
+};
+
+/**
+ * Reset tasklet function
+ */
+static void reset_tasklet_func(unsigned long data)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
+ hprt0_data_t hprt0;
+
+ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
+
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtrst = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ mdelay(60);
+
+ hprt0.b.prtrst = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ dwc_otg_hcd->flags.b.port_reset_change = 1;
+}
+
+static struct tasklet_struct reset_tasklet = {
+ .next = NULL,
+ .state = 0,
+ .count = ATOMIC_INIT(0),
+ .func = reset_tasklet_func,
+ .data = 0,
+};
+
+/**
+ * Initializes the HCD. This function allocates memory for and initializes the
+ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
+ * USB bus with the core and calls the hc_driver->start() function. It returns
+ * a negative error on failure.
+ */
+int dwc_otg_hcd_init(struct platform_device *pdev)
+{
+ struct usb_hcd *hcd = NULL;
+ dwc_otg_hcd_t *dwc_otg_hcd = NULL;
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+
+ int num_channels;
+ int i;
+ dwc_hc_t *channel;
+
+ int retval = 0;
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
+
+ /* Set device flags indicating whether the HCD supports DMA. */
+ if (otg_dev->core_if->dma_enable) {
+ DWC_PRINT("Using DMA mode\n");
+
+ if (otg_dev->core_if->dma_desc_enable) {
+ DWC_PRINT("Device using Descriptor DMA mode\n");
+ } else {
+ DWC_PRINT("Device using Buffer DMA mode\n");
+ }
+ }
+ /*
+ * Allocate memory for the base HCD plus the DWC OTG HCD.
+ * Initialize the base HCD.
+ */
+
+ hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget");
+ if (!hcd) {
+ retval = -ENOMEM;
+ goto error1;
+ }
+
+ hcd->regs = otg_dev->base;
+ hcd->self.otg_port = 1;
+
+ /* Integrate TT in root hub, by default this is disbled. */
+ hcd->has_tt = 1;
+
+ /* Initialize the DWC OTG HCD. */
+ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ dwc_otg_hcd->core_if = otg_dev->core_if;
+ otg_dev->hcd = dwc_otg_hcd;
+ init_hcd_usecs(dwc_otg_hcd);
+
+ /* */
+ spin_lock_init(&dwc_otg_hcd->lock);
+
+ /* Register the HCD CIL Callbacks */
+ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
+ &hcd_cil_callbacks, hcd);
+
+ /* Initialize the non-periodic schedule. */
+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
+
+ /* Initialize the periodic schedule. */
+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
+
+ /*
+ * Create a host channel descriptor for each host channel implemented
+ * in the controller. Initialize the channel descriptor array.
+ */
+ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
+ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
+ memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
+ for (i = 0; i < num_channels; i++) {
+ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
+ if (channel == NULL) {
+ retval = -ENOMEM;
+ DWC_ERROR("%s: host channel allocation failed\n", __func__);
+ goto error2;
+ }
+ memset(channel, 0, sizeof(dwc_hc_t));
+ channel->hc_num = i;
+ dwc_otg_hcd->hc_ptr_array[i] = channel;
+#ifdef DEBUG
+ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
+#endif
+ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
+ }
+
+ /* Initialize the Connection timeout timer. */
+ init_timer(&dwc_otg_hcd->conn_timer);
+
+ /* Initialize reset tasklet. */
+ reset_tasklet.data = (unsigned long) dwc_otg_hcd;
+ dwc_otg_hcd->reset_tasklet = &reset_tasklet;
+
+ /*
+ * Finish generic HCD initialization and start the HCD. This function
+ * allocates the DMA buffer pool, registers the USB bus, requests the
+ * IRQ line, and calls dwc_otg_hcd_start method.
+ */
+ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
+ if (retval < 0) {
+ goto error2;
+ }
+
+ /*
+ * Allocate space for storing data on status transactions. Normally no
+ * data is sent, but this space acts as a bit bucket. This must be
+ * done after usb_add_hcd since that function allocates the DMA buffer
+ * pool.
+ */
+ if (otg_dev->core_if->dma_enable) {
+ dwc_otg_hcd->status_buf =
+ dma_alloc_coherent(&pdev->dev,
+ DWC_OTG_HCD_STATUS_BUF_SIZE,
+ &dwc_otg_hcd->status_buf_dma,
+ GFP_KERNEL | GFP_DMA);
+ } else {
+ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
+ GFP_KERNEL);
+ }
+ if (!dwc_otg_hcd->status_buf) {
+ retval = -ENOMEM;
+ DWC_ERROR("%s: status_buf allocation failed\n", __func__);
+ goto error3;
+ }
+
+ dwc_otg_hcd->otg_dev = otg_dev;
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
+ hcd->self.busnum);
+ return 0;
+
+ /* Error conditions */
+ error3:
+ usb_remove_hcd(hcd);
+ error2:
+ dwc_otg_hcd_free(hcd);
+ usb_put_hcd(hcd);
+ error1:
+ return retval;
+}
+
+/**
+ * Removes the HCD.
+ * Frees memory and resources associated with the HCD and deregisters the bus.
+ */
+void dwc_otg_hcd_remove(struct platform_device *pdev)
+{
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+ dwc_otg_hcd_t *dwc_otg_hcd;
+ struct usb_hcd *hcd;
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
+
+ if (!otg_dev) {
+ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
+ return;
+ }
+
+ dwc_otg_hcd = otg_dev->hcd;
+
+ if (!dwc_otg_hcd) {
+ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
+ return;
+ }
+
+ hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
+
+ if (!hcd) {
+ DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
+ return;
+ }
+
+ /* Turn off all interrupts */
+ dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
+
+ usb_remove_hcd(hcd);
+ dwc_otg_hcd_free(hcd);
+ usb_put_hcd(hcd);
+}
+
+/* =========================================================================
+ * Linux HC Driver Functions
+ * ========================================================================= */
+
+/**
+ * Initializes dynamic portions of the DWC_otg HCD state.
+ */
+static void hcd_reinit(dwc_otg_hcd_t *hcd)
+{
+ struct list_head *item;
+ int num_channels;
+ int i;
+ dwc_hc_t *channel;
+
+ hcd->flags.d32 = 0;
+
+ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
+ hcd->non_periodic_channels = 0;
+ hcd->periodic_channels = 0;
+
+ /*
+ * Put all channels in the free channel list and clean up channel
+ * states.
+ */
+ item = hcd->free_hc_list.next;
+ while (item != &hcd->free_hc_list) {
+ list_del(item);
+ item = hcd->free_hc_list.next;
+ }
+ num_channels = hcd->core_if->core_params->host_channels;
+ for (i = 0; i < num_channels; i++) {
+ channel = hcd->hc_ptr_array[i];
+ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
+ dwc_otg_hc_cleanup(hcd->core_if, channel);
+ }
+
+ /* Initialize the DWC core for host mode operation. */
+ dwc_otg_core_host_init(hcd->core_if);
+}
+
+/** Initializes the DWC_otg controller and its root hub and prepares it for host
+ * mode operation. Activates the root port. Returns 0 on success and a negative
+ * error code on failure. */
+int dwc_otg_hcd_start(struct usb_hcd *hcd)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
+ struct usb_bus *bus;
+
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
+
+ bus = hcd_to_bus(hcd);
+
+ /* Initialize the bus state. If the core is in Device Mode
+ * HALT the USB bus and return. */
+ if (dwc_otg_is_device_mode(core_if)) {
+ hcd->state = HC_STATE_RUNNING;
+ return 0;
+ }
+ hcd->state = HC_STATE_RUNNING;
+
+ /* Initialize and connect root hub if one is not already attached */
+ if (bus->root_hub) {
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
+ /* Inform the HUB driver to resume. */
+ usb_hcd_resume_root_hub(hcd);
+ }
+ else {
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
+ }
+
+ hcd_reinit(dwc_otg_hcd);
+
+ return 0;
+}
+
+static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
+{
+ struct list_head *item;
+ dwc_otg_qh_t *qh;
+ unsigned long flags;
+
+ if (!qh_list->next) {
+ /* The list hasn't been initialized yet. */
+ return;
+ }
+
+ /* Ensure there are no QTDs or URBs left. */
+ kill_urbs_in_qh_list(hcd, qh_list);
+
+ SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
+ for (item = qh_list->next; item != qh_list; item = qh_list->next) {
+ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
+ dwc_otg_hcd_qh_remove_and_free(hcd, qh);
+ }
+ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
+}
+
+/**
+ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
+ * stopped.
+ */
+void dwc_otg_hcd_stop(struct usb_hcd *hcd)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ hprt0_data_t hprt0 = { .d32=0 };
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
+
+ /* Turn off all host-specific interrupts. */
+ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
+
+ /*
+ * The root hub should be disconnected before this function is called.
+ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
+ * and the QH lists (via ..._hcd_endpoint_disable).
+ */
+
+ /* Turn off the vbus power */
+ DWC_PRINT("PortPower off\n");
+ hprt0.b.prtpwr = 0;
+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
+}
+
+/** Returns the current frame number. */
+int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ hfnum_data_t hfnum;
+
+ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
+ host_if->host_global_regs->hfnum);
+
+#ifdef DEBUG_SOF
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
+#endif
+ return hfnum.b.frnum;
+}
+
+/**
+ * Frees secondary storage associated with the dwc_otg_hcd structure contained
+ * in the struct usb_hcd field.
+ */
+void dwc_otg_hcd_free(struct usb_hcd *hcd)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ int i;
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
+
+ del_timers(dwc_otg_hcd);
+
+ /* Free memory for QH/QTD lists */
+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
+
+ /* Free memory for the host channels. */
+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
+ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
+ if (hc != NULL) {
+ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
+ kfree(hc);
+ }
+ }
+
+ if (dwc_otg_hcd->core_if->dma_enable) {
+ if (dwc_otg_hcd->status_buf_dma) {
+ dma_free_coherent(hcd->self.controller,
+ DWC_OTG_HCD_STATUS_BUF_SIZE,
+ dwc_otg_hcd->status_buf,
+ dwc_otg_hcd->status_buf_dma);
+ }
+ } else if (dwc_otg_hcd->status_buf != NULL) {
+ kfree(dwc_otg_hcd->status_buf);
+ }
+}
+
+#ifdef DEBUG
+static void dump_urb_info(struct urb *urb, char* fn_name)
+{
+ DWC_PRINT("%s, urb %p\n", fn_name, urb);
+ DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
+ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
+ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
+ DWC_PRINT(" Endpoint type: %s\n",
+ ({char *pipetype;
+ switch (usb_pipetype(urb->pipe)) {
+ case PIPE_CONTROL: pipetype = "CONTROL"; break;
+ case PIPE_BULK: pipetype = "BULK"; break;
+ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
+ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
+ default: pipetype = "UNKNOWN"; break;
+ }; pipetype;}));
+ DWC_PRINT(" Speed: %s\n",
+ ({char *speed;
+ switch (urb->dev->speed) {
+ case USB_SPEED_HIGH: speed = "HIGH"; break;
+ case USB_SPEED_FULL: speed = "FULL"; break;
+ case USB_SPEED_LOW: speed = "LOW"; break;
+ default: speed = "UNKNOWN"; break;
+ }; speed;}));
+ DWC_PRINT(" Max packet size: %d\n",
+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
+ DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
+ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
+ urb->transfer_buffer, (void *)urb->transfer_dma);
+ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
+ urb->setup_packet, (void *)urb->setup_dma);
+ DWC_PRINT(" Interval: %d\n", urb->interval);
+ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
+ int i;
+ for (i = 0; i < urb->number_of_packets; i++) {
+ DWC_PRINT(" ISO Desc %d:\n", i);
+ DWC_PRINT(" offset: %d, length %d\n",
+ urb->iso_frame_desc[i].offset,
+ urb->iso_frame_desc[i].length);
+ }
+ }
+}
+
+static void dump_channel_info(dwc_otg_hcd_t *hcd,
+ dwc_otg_qh_t *qh)
+{
+ if (qh->channel != NULL) {
+ dwc_hc_t *hc = qh->channel;
+ struct list_head *item;
+ dwc_otg_qh_t *qh_item;
+ int num_channels = hcd->core_if->core_params->host_channels;
+ int i;
+
+ dwc_otg_hc_regs_t *hc_regs;
+ hcchar_data_t hcchar;
+ hcsplt_data_t hcsplt;
+ hctsiz_data_t hctsiz;
+ uint32_t hcdma;
+
+ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+ hcdma = dwc_read_reg32(&hc_regs->hcdma);
+
+ DWC_PRINT(" Assigned to channel %p:\n", hc);
+ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
+ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
+ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
+ hc->dev_addr, hc->ep_num, hc->ep_is_in);
+ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
+ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
+ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
+ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
+ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
+ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
+ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
+ DWC_PRINT(" qh: %p\n", hc->qh);
+ DWC_PRINT(" NP inactive sched:\n");
+ list_for_each(item, &hcd->non_periodic_sched_inactive) {
+ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
+ DWC_PRINT(" %p\n", qh_item);
+ }
+ DWC_PRINT(" NP active sched:\n");
+ list_for_each(item, &hcd->non_periodic_sched_active) {
+ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
+ DWC_PRINT(" %p\n", qh_item);
+ }
+ DWC_PRINT(" Channels: \n");
+ for (i = 0; i < num_channels; i++) {
+ dwc_hc_t *hc = hcd->hc_ptr_array[i];
+ DWC_PRINT(" %2d: %p\n", i, hc);
+ }
+ }
+}
+#endif
+
+
+//OTG host require the DMA addr is DWORD-aligned,
+//patch it if the buffer is not DWORD-aligned
+inline
+void hcd_check_and_patch_dma_addr(struct urb *urb){
+
+ if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff)
+ return;
+
+ if(((u32)urb->transfer_buffer)& 0x3){
+ /*
+ printk("%s: "
+ "urb(%.8x) "
+ "transfer_buffer=%.8x, "
+ "transfer_dma=%.8x, "
+ "transfer_buffer_length=%d, "
+ "actual_length=%d(%x), "
+ "\n",
+ ((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN",
+ urb,
+ urb->transfer_buffer,
+ urb->transfer_dma,
+ urb->transfer_buffer_length,
+ urb->actual_length,urb->actual_length
+ );
+ */
+ if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){
+ urb->aligned_transfer_buffer_length=urb->transfer_buffer_length;
+ if(urb->aligned_transfer_buffer) {
+ kfree(urb->aligned_transfer_buffer);
+ }
+ urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
+ urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE);
+ if(!urb->aligned_transfer_buffer){
+ DWC_ERROR("Cannot alloc required buffer!!\n");
+ BUG();
+ }
+ //printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length);
+ }
+ urb->transfer_dma=urb->aligned_transfer_dma;
+ if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) {
+ memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length);
+ dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE);
+ }
+ }
+}
+
+
+
+/** Starts processing a USB transfer request specified by a USB Request Block
+ * (URB). mem_flags indicates the type of memory allocation to use while
+ * processing this URB. */
+int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
+// struct usb_host_endpoint *ep,
+ struct urb *urb,
+ gfp_t mem_flags
+ )
+{
+ int retval = 0;
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ dwc_otg_qtd_t *qtd;
+
+#ifdef DEBUG
+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
+ dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
+ }
+#endif
+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
+ /* No longer connected. */
+ return -ENODEV;
+ }
+
+ hcd_check_and_patch_dma_addr(urb);
+ qtd = dwc_otg_hcd_qtd_create(urb);
+ if (qtd == NULL) {
+ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
+ return -ENOMEM;
+ }
+
+ retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
+ if (retval < 0) {
+ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
+ "Error status %d\n", retval);
+ dwc_otg_hcd_qtd_free(qtd);
+ }
+
+ return retval;
+}
+
+/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
+ * success. */
+int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
+ struct urb *urb, int status)
+{
+ unsigned long flags;
+ dwc_otg_hcd_t *dwc_otg_hcd;
+ dwc_otg_qtd_t *urb_qtd;
+ dwc_otg_qh_t *qh;
+ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
+
+ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+
+ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
+
+ urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
+ qh = (dwc_otg_qh_t *)ep->hcpriv;
+
+ if (urb_qtd == NULL) {
+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+ return 0;
+ }
+#ifdef DEBUG
+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
+ dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
+ if (urb_qtd == qh->qtd_in_process) {
+ dump_channel_info(dwc_otg_hcd, qh);
+ }
+ }
+#endif
+
+ if (urb_qtd == qh->qtd_in_process) {
+ /* The QTD is in process (it has been assigned to a channel). */
+
+ if (dwc_otg_hcd->flags.b.port_connect_status) {
+ /*
+ * If still connected (i.e. in host mode), halt the
+ * channel so it can be used for other transfers. If
+ * no longer connected, the host registers can't be
+ * written to halt the channel since the core is in
+ * device mode.
+ */
+ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
+ DWC_OTG_HC_XFER_URB_DEQUEUE);
+ }
+ }
+
+ /*
+ * Free the QTD and clean up the associated QH. Leave the QH in the
+ * schedule if it has any remaining QTDs.
+ */
+ dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
+ if (urb_qtd == qh->qtd_in_process) {
+ /* Note that dwc_otg_hcd_qh_deactivate() locks the spin_lock again */
+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
+ qh->channel = NULL;
+ qh->qtd_in_process = NULL;
+ } else {
+ if (list_empty(&qh->qtd_list))
+ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+ }
+
+ urb->hcpriv = NULL;
+
+ /* Higher layer software sets URB status. */
+ usb_hcd_giveback_urb(hcd, urb, status);
+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
+ DWC_PRINT("Called usb_hcd_giveback_urb()\n");
+ DWC_PRINT(" urb->status = %d\n", urb->status);
+ }
+
+ return 0;
+}
+
+/** Frees resources in the DWC_otg controller related to a given endpoint. Also
+ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
+ * must already be dequeued. */
+void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
+ struct usb_host_endpoint *ep)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ dwc_otg_qh_t *qh;
+
+ unsigned long flags;
+ int retry = 0;
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
+ "endpoint=%d\n", ep->desc.bEndpointAddress,
+ dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
+
+rescan:
+ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
+ qh = (dwc_otg_qh_t *)(ep->hcpriv);
+ if (!qh)
+ goto done;
+
+ /** Check that the QTD list is really empty */
+ if (!list_empty(&qh->qtd_list)) {
+ if (retry++ < 250) {
+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+ schedule_timeout_uninterruptible(1);
+ goto rescan;
+ }
+
+ DWC_WARN("DWC OTG HCD EP DISABLE:"
+ " QTD List for this endpoint is not empty\n");
+ }
+
+ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
+ ep->hcpriv = NULL;
+done:
+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+}
+
+/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
+ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
+ * interrupt.
+ *
+ * This function is called by the USB core when an interrupt occurs */
+irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
+{
+ int retVal = 0;
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
+ if (dwc_otg_hcd->flags.b.port_connect_status_change == 1)
+ usb_hcd_poll_rh_status(hcd);
+ return IRQ_RETVAL(retVal);
+}
+
+/** Creates Status Change bitmap for the root hub and root port. The bitmap is
+ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
+ * is the status change indicator for the single root port. Returns 1 if either
+ * change indicator is 1, otherwise returns 0. */
+int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
+{
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+
+ buf[0] = 0;
+ buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
+ dwc_otg_hcd->flags.b.port_reset_change ||
+ dwc_otg_hcd->flags.b.port_enable_change ||
+ dwc_otg_hcd->flags.b.port_suspend_change ||
+ dwc_otg_hcd->flags.b.port_over_current_change) << 1;
+
+#ifdef DEBUG
+ if (buf[0]) {
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
+ " Root port status changed\n");
+ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
+ dwc_otg_hcd->flags.b.port_connect_status_change);
+ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
+ dwc_otg_hcd->flags.b.port_reset_change);
+ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
+ dwc_otg_hcd->flags.b.port_enable_change);
+ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
+ dwc_otg_hcd->flags.b.port_suspend_change);
+ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
+ dwc_otg_hcd->flags.b.port_over_current_change);
+ }
+#endif
+ return (buf[0] != 0);
+}
+
+#ifdef DWC_HS_ELECT_TST
+/*
+ * Quick and dirty hack to implement the HS Electrical Test
+ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
+ *
+ * This code was copied from our userspace app "hset". It sends a
+ * Get Device Descriptor control sequence in two parts, first the
+ * Setup packet by itself, followed some time later by the In and
+ * Ack packets. Rather than trying to figure out how to add this
+ * functionality to the normal driver code, we just hijack the
+ * hardware, using these two function to drive the hardware
+ * directly.
+ */
+
+dwc_otg_core_global_regs_t *global_regs;
+dwc_otg_host_global_regs_t *hc_global_regs;
+dwc_otg_hc_regs_t *hc_regs;
+uint32_t *data_fifo;
+
+static void do_setup(void)
+{
+ gintsts_data_t gintsts;
+ hctsiz_data_t hctsiz;
+ hcchar_data_t hcchar;
+ haint_data_t haint;
+ hcint_data_t hcint;
+
+ /* Enable HAINTs */
+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
+
+ /* Enable HCINTs */
+ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+ /*
+ * Send Setup packet (Get Device Descriptor)
+ */
+
+ /* Make sure channel is disabled */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (hcchar.b.chen) {
+ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
+ hcchar.b.chdis = 1;
+// hcchar.b.chen = 1;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ //sleep(1);
+ mdelay(1000);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //if (hcchar.b.chen) {
+ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
+ //}
+ }
+
+ /* Set HCTSIZ */
+ hctsiz.d32 = 0;
+ hctsiz.b.xfersize = 8;
+ hctsiz.b.pktcnt = 1;
+ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+ /* Set HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
+ hcchar.b.epdir = 0;
+ hcchar.b.epnum = 0;
+ hcchar.b.mps = 8;
+ hcchar.b.chen = 1;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ /* Fill FIFO with Setup data for Get Device Descriptor */
+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
+ dwc_write_reg32(data_fifo++, 0x01000680);
+ dwc_write_reg32(data_fifo++, 0x00080000);
+
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Wait for host channel interrupt */
+ do {
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ } while (gintsts.b.hcintr == 0);
+
+ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Disable HCINTs */
+ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
+
+ /* Disable HAINTs */
+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+}
+
+static void do_in_ack(void)
+{
+ gintsts_data_t gintsts;
+ hctsiz_data_t hctsiz;
+ hcchar_data_t hcchar;
+ haint_data_t haint;
+ hcint_data_t hcint;
+ host_grxsts_data_t grxsts;
+
+ /* Enable HAINTs */
+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
+
+ /* Enable HCINTs */
+ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+ /*
+ * Receive Control In packet
+ */
+
+ /* Make sure channel is disabled */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (hcchar.b.chen) {
+ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
+ hcchar.b.chdis = 1;
+ hcchar.b.chen = 1;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ //sleep(1);
+ mdelay(1000);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //if (hcchar.b.chen) {
+ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
+ //}
+ }
+
+ /* Set HCTSIZ */
+ hctsiz.d32 = 0;
+ hctsiz.b.xfersize = 8;
+ hctsiz.b.pktcnt = 1;
+ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+ /* Set HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
+ hcchar.b.epdir = 1;
+ hcchar.b.epnum = 0;
+ hcchar.b.mps = 8;
+ hcchar.b.chen = 1;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Wait for receive status queue interrupt */
+ do {
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ } while (gintsts.b.rxstsqlvl == 0);
+
+ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Read RXSTS */
+ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
+ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
+
+ /* Clear RXSTSQLVL in GINTSTS */
+ gintsts.d32 = 0;
+ gintsts.b.rxstsqlvl = 1;
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ switch (grxsts.b.pktsts) {
+ case DWC_GRXSTS_PKTSTS_IN:
+ /* Read the data into the host buffer */
+ if (grxsts.b.bcnt > 0) {
+ int i;
+ int word_count = (grxsts.b.bcnt + 3) / 4;
+
+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
+
+ for (i = 0; i < word_count; i++) {
+ (void)dwc_read_reg32(data_fifo++);
+ }
+ }
+
+ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
+ break;
+
+ default:
+ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
+ break;
+ }
+
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Wait for receive status queue interrupt */
+ do {
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ } while (gintsts.b.rxstsqlvl == 0);
+
+ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Read RXSTS */
+ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
+ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
+
+ /* Clear RXSTSQLVL in GINTSTS */
+ gintsts.d32 = 0;
+ gintsts.b.rxstsqlvl = 1;
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ switch (grxsts.b.pktsts) {
+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
+ break;
+
+ default:
+ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
+ break;
+ }
+
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Wait for host channel interrupt */
+ do {
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ } while (gintsts.b.hcintr == 0);
+
+ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+// usleep(100000);
+// mdelay(100);
+ mdelay(1);
+
+ /*
+ * Send handshake packet
+ */
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+ /* Make sure channel is disabled */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (hcchar.b.chen) {
+ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
+ hcchar.b.chdis = 1;
+ hcchar.b.chen = 1;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ //sleep(1);
+ mdelay(1000);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //if (hcchar.b.chen) {
+ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
+ //}
+ }
+
+ /* Set HCTSIZ */
+ hctsiz.d32 = 0;
+ hctsiz.b.xfersize = 0;
+ hctsiz.b.pktcnt = 1;
+ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+ /* Set HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
+ hcchar.b.epdir = 0;
+ hcchar.b.epnum = 0;
+ hcchar.b.mps = 8;
+ hcchar.b.chen = 1;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Wait for host channel interrupt */
+ do {
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ } while (gintsts.b.hcintr == 0);
+
+ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
+
+ /* Disable HCINTs */
+ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
+
+ /* Disable HAINTs */
+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
+
+ /* Read HAINT */
+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
+
+ /* Read HCINT */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
+
+ /* Read HCCHAR */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
+
+ /* Clear HCINT */
+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
+
+ /* Clear HAINT */
+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
+
+ /* Clear GINTSTS */
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+
+ /* Read GINTSTS */
+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
+}
+#endif /* DWC_HS_ELECT_TST */
+
+/** Handles hub class-specific requests. */
+int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
+ u16 typeReq,
+ u16 wValue,
+ u16 wIndex,
+ char *buf,
+ u16 wLength)
+{
+ int retval = 0;
+
+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
+ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
+ struct usb_hub_descriptor *desc;
+ hprt0_data_t hprt0 = {.d32 = 0};
+
+ uint32_t port_status;
+
+ switch (typeReq) {
+ case ClearHubFeature:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearHubFeature 0x%x\n", wValue);
+ switch (wValue) {
+ case C_HUB_LOCAL_POWER:
+ case C_HUB_OVER_CURRENT:
+ /* Nothing required here */
+ break;
+ default:
+ retval = -EINVAL;
+ DWC_ERROR("DWC OTG HCD - "
+ "ClearHubFeature request %xh unknown\n", wValue);
+ }
+ break;
+ case ClearPortFeature:
+ if (!wIndex || wIndex > 1)
+ goto error;
+
+ switch (wValue) {
+ case USB_PORT_FEAT_ENABLE:
+ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtena = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_SUSPEND:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtres = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ /* Clear Resume bit */
+ mdelay(100);
+ hprt0.b.prtres = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_POWER:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_POWER\n");
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtpwr = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_INDICATOR:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
+ /* Port inidicator not supported */
+ break;
+ case USB_PORT_FEAT_C_CONNECTION:
+ /* Clears drivers internal connect status change
+ * flag */
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
+ dwc_otg_hcd->flags.b.port_connect_status_change = 0;
+ break;
+ case USB_PORT_FEAT_C_RESET:
+ /* Clears the driver's internal Port Reset Change
+ * flag */
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
+ dwc_otg_hcd->flags.b.port_reset_change = 0;
+ break;
+ case USB_PORT_FEAT_C_ENABLE:
+ /* Clears the driver's internal Port
+ * Enable/Disable Change flag */
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
+ dwc_otg_hcd->flags.b.port_enable_change = 0;
+ break;
+ case USB_PORT_FEAT_C_SUSPEND:
+ /* Clears the driver's internal Port Suspend
+ * Change flag, which is set when resume signaling on
+ * the host port is complete */
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
+ dwc_otg_hcd->flags.b.port_suspend_change = 0;
+ break;
+ case USB_PORT_FEAT_C_OVER_CURRENT:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
+ dwc_otg_hcd->flags.b.port_over_current_change = 0;
+ break;
+ default:
+ retval = -EINVAL;
+ DWC_ERROR("DWC OTG HCD - "
+ "ClearPortFeature request %xh "
+ "unknown or unsupported\n", wValue);
+ }
+ break;
+ case GetHubDescriptor:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "GetHubDescriptor\n");
+ desc = (struct usb_hub_descriptor *)buf;
+ desc->bDescLength = 9;
+ desc->bDescriptorType = 0x29;
+ desc->bNbrPorts = 1;
+ desc->wHubCharacteristics = 0x08;
+ desc->bPwrOn2PwrGood = 1;
+ desc->bHubContrCurrent = 0;
+ desc->u.hs.DeviceRemovable[0] = 0;
+ desc->u.hs.DeviceRemovable[1] = 0xff;
+ break;
+ case GetHubStatus:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "GetHubStatus\n");
+ memset(buf, 0, 4);
+ break;
+ case GetPortStatus:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "GetPortStatus\n");
+
+ if (!wIndex || wIndex > 1)
+ goto error;
+
+ port_status = 0;
+
+ if (dwc_otg_hcd->flags.b.port_connect_status_change)
+ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
+
+ if (dwc_otg_hcd->flags.b.port_enable_change)
+ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
+
+ if (dwc_otg_hcd->flags.b.port_suspend_change)
+ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
+
+ if (dwc_otg_hcd->flags.b.port_reset_change)
+ port_status |= (1 << USB_PORT_FEAT_C_RESET);
+
+ if (dwc_otg_hcd->flags.b.port_over_current_change) {
+ DWC_ERROR("Device Not Supported\n");
+ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
+ }
+
+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
+ /*
+ * The port is disconnected, which means the core is
+ * either in device mode or it soon will be. Just
+ * return 0's for the remainder of the port status
+ * since the port register can't be read if the core
+ * is in device mode.
+ */
+ *((__le32 *) buf) = cpu_to_le32(port_status);
+ break;
+ }
+
+ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
+ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
+
+ if (hprt0.b.prtconnsts)
+ port_status |= (1 << USB_PORT_FEAT_CONNECTION);
+
+ if (hprt0.b.prtena)
+ port_status |= (1 << USB_PORT_FEAT_ENABLE);
+
+ if (hprt0.b.prtsusp)
+ port_status |= (1 << USB_PORT_FEAT_SUSPEND);
+
+ if (hprt0.b.prtovrcurract)
+ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
+
+ if (hprt0.b.prtrst)
+ port_status |= (1 << USB_PORT_FEAT_RESET);
+
+ if (hprt0.b.prtpwr)
+ port_status |= (1 << USB_PORT_FEAT_POWER);
+
+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
+ port_status |= (USB_PORT_STAT_HIGH_SPEED);
+ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
+ port_status |= (USB_PORT_STAT_LOW_SPEED);
+
+ if (hprt0.b.prttstctl)
+ port_status |= (1 << USB_PORT_FEAT_TEST);
+
+ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
+
+ *((__le32 *) buf) = cpu_to_le32(port_status);
+
+ break;
+ case SetHubFeature:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "SetHubFeature\n");
+ /* No HUB features supported */
+ break;
+ case SetPortFeature:
+ if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
+ goto error;
+
+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
+ /*
+ * The port is disconnected, which means the core is
+ * either in device mode or it soon will be. Just
+ * return without doing anything since the port
+ * register can't be written if the core is in device
+ * mode.
+ */
+ break;
+ }
+
+ switch (wValue) {
+ case USB_PORT_FEAT_SUSPEND:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
+ if (hcd->self.otg_port == wIndex &&
+ hcd->self.b_hnp_enable) {
+ gotgctl_data_t gotgctl = {.d32=0};
+ gotgctl.b.hstsethnpen = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
+ 0, gotgctl.d32);
+ core_if->op_state = A_SUSPEND;
+ }
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtsusp = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ //DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
+ /* Suspend the Phy Clock */
+ {
+ pcgcctl_data_t pcgcctl = {.d32=0};
+ pcgcctl.b.stoppclk = 1;
+ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
+ }
+
+ /* For HNP the bus must be suspended for at least 200ms. */
+ if (hcd->self.b_hnp_enable) {
+ mdelay(200);
+ //DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
+ }
+ break;
+ case USB_PORT_FEAT_POWER:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "SetPortFeature - USB_PORT_FEAT_POWER\n");
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtpwr = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_RESET:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "SetPortFeature - USB_PORT_FEAT_RESET\n");
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ /* When B-Host the Port reset bit is set in
+ * the Start HCD Callback function, so that
+ * the reset is started within 1ms of the HNP
+ * success interrupt. */
+ if (!hcd->self.is_b_host) {
+ hprt0.b.prtrst = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ }
+ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
+ MDELAY(60);
+ hprt0.b.prtrst = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+
+#ifdef DWC_HS_ELECT_TST
+ case USB_PORT_FEAT_TEST:
+ {
+ uint32_t t;
+ gintmsk_data_t gintmsk;
+
+ t = (wIndex >> 8); /* MSB wIndex USB */
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
+ warn("USB_PORT_FEAT_TEST %d\n", t);
+ if (t < 6) {
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prttstctl = t;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ } else {
+ /* Setup global vars with reg addresses (quick and
+ * dirty hack, should be cleaned up)
+ */
+ global_regs = core_if->core_global_regs;
+ hc_global_regs = core_if->host_if->host_global_regs;
+ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
+
+ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
+ /* Save current interrupt mask */
+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
+
+ /* Disable all interrupts while we muck with
+ * the hardware directly
+ */
+ dwc_write_reg32(&global_regs->gintmsk, 0);
+
+ /* 15 second delay per the test spec */
+ mdelay(15000);
+
+ /* Drive suspend on the root port */
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtsusp = 1;
+ hprt0.b.prtres = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+ /* 15 second delay per the test spec */
+ mdelay(15000);
+
+ /* Drive resume on the root port */
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtsusp = 0;
+ hprt0.b.prtres = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ mdelay(100);
+
+ /* Clear the resume bit */
+ hprt0.b.prtres = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+ /* Restore interrupts */
+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
+ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
+ /* Save current interrupt mask */
+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
+
+ /* Disable all interrupts while we muck with
+ * the hardware directly
+ */
+ dwc_write_reg32(&global_regs->gintmsk, 0);
+
+ /* 15 second delay per the test spec */
+ mdelay(15000);
+
+ /* Send the Setup packet */
+ do_setup();
+
+ /* 15 second delay so nothing else happens for awhile */
+ mdelay(15000);
+
+ /* Restore interrupts */
+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
+ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
+ /* Save current interrupt mask */
+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
+
+ /* Disable all interrupts while we muck with
+ * the hardware directly
+ */
+ dwc_write_reg32(&global_regs->gintmsk, 0);
+
+ /* Send the Setup packet */
+ do_setup();
+
+ /* 15 second delay so nothing else happens for awhile */
+ mdelay(15000);
+
+ /* Send the In and Ack packets */
+ do_in_ack();
+
+ /* 15 second delay so nothing else happens for awhile */
+ mdelay(15000);
+
+ /* Restore interrupts */
+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
+ }
+ }
+ break;
+ }
+#endif /* DWC_HS_ELECT_TST */
+
+ case USB_PORT_FEAT_INDICATOR:
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
+ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
+ /* Not supported */
+ break;
+ default:
+ retval = -EINVAL;
+ DWC_ERROR("DWC OTG HCD - "
+ "SetPortFeature request %xh "
+ "unknown or unsupported\n", wValue);
+ break;
+ }
+ break;
+ default:
+ error:
+ retval = -EINVAL;
+ DWC_WARN("DWC OTG HCD - "
+ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
+ typeReq, wIndex, wValue);
+ break;
+ }
+
+ return retval;
+}
+
+/**
+ * Assigns transactions from a QTD to a free host channel and initializes the
+ * host channel to perform the transactions. The host channel is removed from
+ * the free list.
+ *
+ * @param hcd The HCD state structure.
+ * @param qh Transactions from the first QTD for this QH are selected and
+ * assigned to a free host channel.
+ */
+static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ dwc_hc_t *hc;
+ dwc_otg_qtd_t *qtd;
+ struct urb *urb;
+
+ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh);
+
+ hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
+
+ /* Remove the host channel from the free list. */
+ list_del_init(&hc->hc_list_entry);
+
+ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
+ urb = qtd->urb;
+ qh->channel = hc;
+ qh->qtd_in_process = qtd;
+
+ /*
+ * Use usb_pipedevice to determine device address. This address is
+ * 0 before the SET_ADDRESS command and the correct address afterward.
+ */
+ hc->dev_addr = usb_pipedevice(urb->pipe);
+ hc->ep_num = usb_pipeendpoint(urb->pipe);
+
+ if (urb->dev->speed == USB_SPEED_LOW) {
+ hc->speed = DWC_OTG_EP_SPEED_LOW;
+ } else if (urb->dev->speed == USB_SPEED_FULL) {
+ hc->speed = DWC_OTG_EP_SPEED_FULL;
+ } else {
+ hc->speed = DWC_OTG_EP_SPEED_HIGH;
+ }
+
+ hc->max_packet = dwc_max_packet(qh->maxp);
+
+ hc->xfer_started = 0;
+ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
+ hc->error_state = (qtd->error_count > 0);
+ hc->halt_on_queue = 0;
+ hc->halt_pending = 0;
+ hc->requests = 0;
+
+ /*
+ * The following values may be modified in the transfer type section
+ * below. The xfer_len value may be reduced when the transfer is
+ * started to accommodate the max widths of the XferSize and PktCnt
+ * fields in the HCTSIZn register.
+ */
+ hc->do_ping = qh->ping_state;
+ hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
+ hc->data_pid_start = qh->data_toggle;
+ hc->multi_count = 1;
+
+ if (hcd->core_if->dma_enable) {
+ hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
+ } else {
+ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
+ }
+ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
+ hc->xfer_count = 0;
+
+ /*
+ * Set the split attributes
+ */
+ hc->do_split = 0;
+ if (qh->do_split) {
+ hc->do_split = 1;
+ hc->xact_pos = qtd->isoc_split_pos;
+ hc->complete_split = qtd->complete_split;
+ hc->hub_addr = urb->dev->tt->hub->devnum;
+ hc->port_addr = urb->dev->ttport;
+ }
+
+ switch (usb_pipetype(urb->pipe)) {
+ case PIPE_CONTROL:
+ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
+ switch (qtd->control_phase) {
+ case DWC_OTG_CONTROL_SETUP:
+ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
+ hc->do_ping = 0;
+ hc->ep_is_in = 0;
+ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
+ if (hcd->core_if->dma_enable) {
+ hc->xfer_buff = (uint8_t *)urb->setup_dma;
+ } else {
+ hc->xfer_buff = (uint8_t *)urb->setup_packet;
+ }
+ hc->xfer_len = 8;
+ break;
+ case DWC_OTG_CONTROL_DATA:
+ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
+ hc->data_pid_start = qtd->data_toggle;
+ break;
+ case DWC_OTG_CONTROL_STATUS:
+ /*
+ * Direction is opposite of data direction or IN if no
+ * data.
+ */
+ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
+ if (urb->transfer_buffer_length == 0) {
+ hc->ep_is_in = 1;
+ } else {
+ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
+ }
+ if (hc->ep_is_in) {
+ hc->do_ping = 0;
+ }
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
+ hc->xfer_len = 0;
+ if (hcd->core_if->dma_enable) {
+ hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
+ } else {
+ hc->xfer_buff = (uint8_t *)hcd->status_buf;
+ }
+ break;
+ }
+ break;
+ case PIPE_BULK:
+ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
+ break;
+ case PIPE_INTERRUPT:
+ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
+ break;
+ case PIPE_ISOCHRONOUS:
+ {
+ struct usb_iso_packet_descriptor *frame_desc;
+ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
+ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
+ if (hcd->core_if->dma_enable) {
+ hc->xfer_buff = (uint8_t *)urb->transfer_dma;
+ } else {
+ hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
+ }
+ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
+ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
+
+ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
+ if (hc->xfer_len <= 188) {
+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
+ }
+ else {
+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
+ }
+ }
+ }
+ break;
+ }
+
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ /*
+ * This value may be modified when the transfer is started to
+ * reflect the actual transfer length.
+ */
+ hc->multi_count = dwc_hb_mult(qh->maxp);
+ }
+
+ dwc_otg_hc_init(hcd->core_if, hc);
+ hc->qh = qh;
+}
+
+/**
+ * This function selects transactions from the HCD transfer schedule and
+ * assigns them to available host channels. It is called from HCD interrupt
+ * handler functions.
+ *
+ * @param hcd The HCD state structure.
+ *
+ * @return The types of new transactions that were assigned to host channels.
+ */
+dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
+{
+ struct list_head *qh_ptr;
+ dwc_otg_qh_t *qh;
+ int num_channels;
+ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
+
+#ifdef DEBUG_SOF
+ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
+#endif
+
+ spin_lock(&hcd->lock);
+ /* Process entries in the periodic ready list. */
+ qh_ptr = hcd->periodic_sched_ready.next;
+ while (qh_ptr != &hcd->periodic_sched_ready &&
+ !list_empty(&hcd->free_hc_list)) {
+
+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
+ assign_and_init_hc(hcd, qh);
+
+ /*
+ * Move the QH from the periodic ready schedule to the
+ * periodic assigned schedule.
+ */
+ qh_ptr = qh_ptr->next;
+ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
+
+ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
+ }
+
+ /*
+ * Process entries in the inactive portion of the non-periodic
+ * schedule. Some free host channels may not be used if they are
+ * reserved for periodic transfers.
+ */
+ qh_ptr = hcd->non_periodic_sched_inactive.next;
+ num_channels = hcd->core_if->core_params->host_channels;
+ while (qh_ptr != &hcd->non_periodic_sched_inactive &&
+ (hcd->non_periodic_channels <
+ num_channels - hcd->periodic_channels) &&
+ !list_empty(&hcd->free_hc_list)) {
+
+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
+ assign_and_init_hc(hcd, qh);
+
+ /*
+ * Move the QH from the non-periodic inactive schedule to the
+ * non-periodic active schedule.
+ */
+ qh_ptr = qh_ptr->next;
+ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
+
+ if (ret_val == DWC_OTG_TRANSACTION_NONE) {
+ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
+ } else {
+ ret_val = DWC_OTG_TRANSACTION_ALL;
+ }
+
+ hcd->non_periodic_channels++;
+ }
+ spin_unlock(&hcd->lock);
+
+ return ret_val;
+}
+
+/**
+ * Attempts to queue a single transaction request for a host channel
+ * associated with either a periodic or non-periodic transfer. This function
+ * assumes that there is space available in the appropriate request queue. For
+ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
+ * is available in the appropriate Tx FIFO.
+ *
+ * @param hcd The HCD state structure.
+ * @param hc Host channel descriptor associated with either a periodic or
+ * non-periodic transfer.
+ * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
+ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
+ * transfers.
+ *
+ * @return 1 if a request is queued and more requests may be needed to
+ * complete the transfer, 0 if no more requests are required for this
+ * transfer, -1 if there is insufficient space in the Tx FIFO.
+ */
+static int queue_transaction(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ uint16_t fifo_dwords_avail)
+{
+ int retval;
+
+ if (hcd->core_if->dma_enable) {
+ if (!hc->xfer_started) {
+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
+ hc->qh->ping_state = 0;
+ }
+ retval = 0;
+ } else if (hc->halt_pending) {
+ /* Don't queue a request if the channel has been halted. */
+ retval = 0;
+ } else if (hc->halt_on_queue) {
+ dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
+ retval = 0;
+ } else if (hc->do_ping) {
+ if (!hc->xfer_started) {
+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
+ }
+ retval = 0;
+ } else if (!hc->ep_is_in ||
+ hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
+ if ((fifo_dwords_avail * 4) >= hc->max_packet) {
+ if (!hc->xfer_started) {
+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
+ retval = 1;
+ } else {
+ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
+ }
+ } else {
+ retval = -1;
+ }
+ } else {
+ if (!hc->xfer_started) {
+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
+ retval = 1;
+ } else {
+ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
+ }
+ }
+
+ return retval;
+}
+
+/**
+ * Processes active non-periodic channels and queues transactions for these
+ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
+ * FIFO Empty interrupt is enabled if there are more transactions to queue as
+ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
+ * FIFO Empty interrupt is disabled.
+ */
+static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
+{
+ gnptxsts_data_t tx_status;
+ struct list_head *orig_qh_ptr;
+ dwc_otg_qh_t *qh;
+ int status;
+ int no_queue_space = 0;
+ int no_fifo_space = 0;
+ int more_to_do = 0;
+
+ dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;
+
+ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
+#ifdef DEBUG
+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
+ tx_status.b.nptxqspcavail);
+ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
+ tx_status.b.nptxfspcavail);
+#endif
+ /*
+ * Keep track of the starting point. Skip over the start-of-list
+ * entry.
+ */
+ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+ }
+ orig_qh_ptr = hcd->non_periodic_qh_ptr;
+
+ /*
+ * Process once through the active list or until no more space is
+ * available in the request queue or the Tx FIFO.
+ */
+ do {
+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+ if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
+ no_queue_space = 1;
+ break;
+ }
+
+ qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
+ status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);
+
+ if (status > 0) {
+ more_to_do = 1;
+ } else if (status < 0) {
+ no_fifo_space = 1;
+ break;
+ }
+
+ /* Advance to next QH, skipping start-of-list entry. */
+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+ }
+
+ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
+
+ if (!hcd->core_if->dma_enable) {
+ gintmsk_data_t intr_mask = {.d32 = 0};
+ intr_mask.b.nptxfempty = 1;
+
+#ifdef DEBUG
+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
+ tx_status.b.nptxqspcavail);
+ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
+ tx_status.b.nptxfspcavail);
+#endif
+ if (more_to_do || no_queue_space || no_fifo_space) {
+ /*
+ * May need to queue more transactions as the request
+ * queue or Tx FIFO empties. Enable the non-periodic
+ * Tx FIFO empty interrupt. (Always use the half-empty
+ * level to ensure that new requests are loaded as
+ * soon as possible.)
+ */
+ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
+ } else {
+ /*
+ * Disable the Tx FIFO empty interrupt since there are
+ * no more transactions that need to be queued right
+ * now. This function is called from interrupt
+ * handlers to queue more transactions as transfer
+ * states change.
+ */
+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
+ }
+ }
+}
+
+/**
+ * Processes periodic channels for the next frame and queues transactions for
+ * these channels to the DWC_otg controller. After queueing transactions, the
+ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
+ * to queue as Periodic Tx FIFO or request queue space becomes available.
+ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
+ */
+static void process_periodic_channels(dwc_otg_hcd_t *hcd)
+{
+ hptxsts_data_t tx_status;
+ struct list_head *qh_ptr;
+ dwc_otg_qh_t *qh;
+ int status;
+ int no_queue_space = 0;
+ int no_fifo_space = 0;
+
+ dwc_otg_host_global_regs_t *host_regs;
+ host_regs = hcd->core_if->host_if->host_global_regs;
+
+ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
+#ifdef DEBUG
+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
+ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
+ tx_status.b.ptxqspcavail);
+ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
+ tx_status.b.ptxfspcavail);
+#endif
+
+ qh_ptr = hcd->periodic_sched_assigned.next;
+ while (qh_ptr != &hcd->periodic_sched_assigned) {
+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
+ if (tx_status.b.ptxqspcavail == 0) {
+ no_queue_space = 1;
+ break;
+ }
+
+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
+
+ /*
+ * Set a flag if we're queuing high-bandwidth in slave mode.
+ * The flag prevents any halts to get into the request queue in
+ * the middle of multiple high-bandwidth packets getting queued.
+ */
+ if (!hcd->core_if->dma_enable &&
+ qh->channel->multi_count > 1)
+ {
+ hcd->core_if->queuing_high_bandwidth = 1;
+ }
+
+ status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
+ if (status < 0) {
+ no_fifo_space = 1;
+ break;
+ }
+
+ /*
+ * In Slave mode, stay on the current transfer until there is
+ * nothing more to do or the high-bandwidth request count is
+ * reached. In DMA mode, only need to queue one request. The
+ * controller automatically handles multiple packets for
+ * high-bandwidth transfers.
+ */
+ if (hcd->core_if->dma_enable || status == 0 ||
+ qh->channel->requests == qh->channel->multi_count) {
+ qh_ptr = qh_ptr->next;
+ /*
+ * Move the QH from the periodic assigned schedule to
+ * the periodic queued schedule.
+ */
+ list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);
+
+ /* done queuing high bandwidth */
+ hcd->core_if->queuing_high_bandwidth = 0;
+ }
+ }
+
+ if (!hcd->core_if->dma_enable) {
+ dwc_otg_core_global_regs_t *global_regs;
+ gintmsk_data_t intr_mask = {.d32 = 0};
+
+ global_regs = hcd->core_if->core_global_regs;
+ intr_mask.b.ptxfempty = 1;
+#ifdef DEBUG
+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
+ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
+ tx_status.b.ptxqspcavail);
+ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
+ tx_status.b.ptxfspcavail);
+#endif
+ if (!list_empty(&hcd->periodic_sched_assigned) ||
+ no_queue_space || no_fifo_space) {
+ /*
+ * May need to queue more transactions as the request
+ * queue or Tx FIFO empties. Enable the periodic Tx
+ * FIFO empty interrupt. (Always use the half-empty
+ * level to ensure that new requests are loaded as
+ * soon as possible.)
+ */
+ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
+ } else {
+ /*
+ * Disable the Tx FIFO empty interrupt since there are
+ * no more transactions that need to be queued right
+ * now. This function is called from interrupt
+ * handlers to queue more transactions as transfer
+ * states change.
+ */
+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
+ }
+ }
+}
+
+/**
+ * This function processes the currently active host channels and queues
+ * transactions for these channels to the DWC_otg controller. It is called
+ * from HCD interrupt handler functions.
+ *
+ * @param hcd The HCD state structure.
+ * @param tr_type The type(s) of transactions to queue (non-periodic,
+ * periodic, or both).
+ */
+void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
+ dwc_otg_transaction_type_e tr_type)
+{
+#ifdef DEBUG_SOF
+ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
+#endif
+ /* Process host channels associated with periodic transfers. */
+ if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
+ tr_type == DWC_OTG_TRANSACTION_ALL) &&
+ !list_empty(&hcd->periodic_sched_assigned)) {
+
+ process_periodic_channels(hcd);
+ }
+
+ /* Process host channels associated with non-periodic transfers. */
+ if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
+ tr_type == DWC_OTG_TRANSACTION_ALL) {
+ if (!list_empty(&hcd->non_periodic_sched_active)) {
+ process_non_periodic_channels(hcd);
+ } else {
+ /*
+ * Ensure NP Tx FIFO empty interrupt is disabled when
+ * there are no non-periodic transfers to process.
+ */
+ gintmsk_data_t gintmsk = {.d32 = 0};
+ gintmsk.b.nptxfempty = 1;
+ dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
+ gintmsk.d32, 0);
+ }
+ }
+}
+
+/**
+ * Sets the final status of an URB and returns it to the device driver. Any
+ * required cleanup of the URB is performed.
+ */
+void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
+{
+#ifdef DEBUG
+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
+ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
+ __func__, urb, usb_pipedevice(urb->pipe),
+ usb_pipeendpoint(urb->pipe),
+ usb_pipein(urb->pipe) ? "IN" : "OUT", status);
+ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
+ int i;
+ for (i = 0; i < urb->number_of_packets; i++) {
+ DWC_PRINT(" ISO Desc %d status: %d\n",
+ i, urb->iso_frame_desc[i].status);
+ }
+ }
+ }
+#endif
+
+ //if we use the aligned buffer instead of the original unaligned buffer,
+ //for IN data, we have to move the data to the original buffer
+ if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){
+ dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE);
+ memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length);
+ }
+
+
+ urb->status = status;
+ urb->hcpriv = NULL;
+ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
+}
+
+/*
+ * Returns the Queue Head for an URB.
+ */
+dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
+{
+ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
+ return (dwc_otg_qh_t *)ep->hcpriv;
+}
+
+#ifdef DEBUG
+void dwc_print_setup_data(uint8_t *setup)
+{
+ int i;
+ if (CHK_DEBUG_LEVEL(DBG_HCD)){
+ DWC_PRINT("Setup Data = MSB ");
+ for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
+ DWC_PRINT("\n");
+ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
+ DWC_PRINT(" bmRequestType Type = ");
+ switch ((setup[0] & 0x60) >> 5) {
+ case 0: DWC_PRINT("Standard\n"); break;
+ case 1: DWC_PRINT("Class\n"); break;
+ case 2: DWC_PRINT("Vendor\n"); break;
+ case 3: DWC_PRINT("Reserved\n"); break;
+ }
+ DWC_PRINT(" bmRequestType Recipient = ");
+ switch (setup[0] & 0x1f) {
+ case 0: DWC_PRINT("Device\n"); break;
+ case 1: DWC_PRINT("Interface\n"); break;
+ case 2: DWC_PRINT("Endpoint\n"); break;
+ case 3: DWC_PRINT("Other\n"); break;
+ default: DWC_PRINT("Reserved\n"); break;
+ }
+ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
+ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
+ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
+ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
+ }
+}
+#endif
+
+void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
+}
+
+void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
+{
+#ifdef DEBUG
+ int num_channels;
+ int i;
+ gnptxsts_data_t np_tx_status;
+ hptxsts_data_t p_tx_status;
+
+ num_channels = hcd->core_if->core_params->host_channels;
+ DWC_PRINT("\n");
+ DWC_PRINT("************************************************************\n");
+ DWC_PRINT("HCD State:\n");
+ DWC_PRINT(" Num channels: %d\n", num_channels);
+ for (i = 0; i < num_channels; i++) {
+ dwc_hc_t *hc = hcd->hc_ptr_array[i];
+ DWC_PRINT(" Channel %d:\n", i);
+ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
+ hc->dev_addr, hc->ep_num, hc->ep_is_in);
+ DWC_PRINT(" speed: %d\n", hc->speed);
+ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
+ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
+ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
+ DWC_PRINT(" multi_count: %d\n", hc->multi_count);
+ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
+ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
+ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
+ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
+ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
+ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
+ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
+ DWC_PRINT(" do_split: %d\n", hc->do_split);
+ DWC_PRINT(" complete_split: %d\n", hc->complete_split);
+ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
+ DWC_PRINT(" port_addr: %d\n", hc->port_addr);
+ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
+ DWC_PRINT(" requests: %d\n", hc->requests);
+ DWC_PRINT(" qh: %p\n", hc->qh);
+ if (hc->xfer_started) {
+ hfnum_data_t hfnum;
+ hcchar_data_t hcchar;
+ hctsiz_data_t hctsiz;
+ hcint_data_t hcint;
+ hcintmsk_data_t hcintmsk;
+ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
+ hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
+ hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
+ hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
+ hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
+ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
+ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
+ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
+ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
+ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
+ }
+ if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
+ dwc_otg_qtd_t *qtd;
+ struct urb *urb;
+ qtd = hc->qh->qtd_in_process;
+ urb = qtd->urb;
+ DWC_PRINT(" URB Info:\n");
+ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
+ if (urb) {
+ DWC_PRINT(" Dev: %d, EP: %d %s\n",
+ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
+ usb_pipein(urb->pipe) ? "IN" : "OUT");
+ DWC_PRINT(" Max packet size: %d\n",
+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
+ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
+ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
+ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
+ DWC_PRINT(" actual_length: %d\n", urb->actual_length);
+ }
+ }
+ }
+ DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
+ DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
+ DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
+ np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
+ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
+ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
+ p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
+ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
+ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
+ dwc_otg_hcd_dump_frrem(hcd);
+ dwc_otg_dump_global_registers(hcd->core_if);
+ dwc_otg_dump_host_registers(hcd->core_if);
+ DWC_PRINT("************************************************************\n");
+ DWC_PRINT("\n");
+#endif
+}
+#endif /* DWC_DEVICE_ONLY */
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.h b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.h
new file mode 100644
index 0000000000..935f353b92
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.h
@@ -0,0 +1,652 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
+ * $Revision: #45 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064918 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_DEVICE_ONLY
+#ifndef __DWC_HCD_H__
+#define __DWC_HCD_H__
+
+#include <linux/list.h>
+#include <linux/usb.h>
+#include <linux/usb/hcd.h>
+
+struct dwc_otg_device;
+
+#include "otg_cil.h"
+
+/**
+ * @file
+ *
+ * This file contains the structures, constants, and interfaces for
+ * the Host Contoller Driver (HCD).
+ *
+ * The Host Controller Driver (HCD) is responsible for translating requests
+ * from the USB Driver into the appropriate actions on the DWC_otg controller.
+ * It isolates the USBD from the specifics of the controller by providing an
+ * API to the USBD.
+ */
+
+/**
+ * Phases for control transfers.
+ */
+typedef enum dwc_otg_control_phase {
+ DWC_OTG_CONTROL_SETUP,
+ DWC_OTG_CONTROL_DATA,
+ DWC_OTG_CONTROL_STATUS
+} dwc_otg_control_phase_e;
+
+/** Transaction types. */
+typedef enum dwc_otg_transaction_type {
+ DWC_OTG_TRANSACTION_NONE,
+ DWC_OTG_TRANSACTION_PERIODIC,
+ DWC_OTG_TRANSACTION_NON_PERIODIC,
+ DWC_OTG_TRANSACTION_ALL
+} dwc_otg_transaction_type_e;
+
+/**
+ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
+ * interrupt, or isochronous transfer. A single QTD is created for each URB
+ * (of one of these types) submitted to the HCD. The transfer associated with
+ * a QTD may require one or multiple transactions.
+ *
+ * A QTD is linked to a Queue Head, which is entered in either the
+ * non-periodic or periodic schedule for execution. When a QTD is chosen for
+ * execution, some or all of its transactions may be executed. After
+ * execution, the state of the QTD is updated. The QTD may be retired if all
+ * its transactions are complete or if an error occurred. Otherwise, it
+ * remains in the schedule so more transactions can be executed later.
+ */
+typedef struct dwc_otg_qtd {
+ /**
+ * Determines the PID of the next data packet for the data phase of
+ * control transfers. Ignored for other transfer types.<br>
+ * One of the following values:
+ * - DWC_OTG_HC_PID_DATA0
+ * - DWC_OTG_HC_PID_DATA1
+ */
+ uint8_t data_toggle;
+
+ /** Current phase for control transfers (Setup, Data, or Status). */
+ dwc_otg_control_phase_e control_phase;
+
+ /** Keep track of the current split type
+ * for FS/LS endpoints on a HS Hub */
+ uint8_t complete_split;
+
+ /** How many bytes transferred during SSPLIT OUT */
+ uint32_t ssplit_out_xfer_count;
+
+ /**
+ * Holds the number of bus errors that have occurred for a transaction
+ * within this transfer.
+ */
+ uint8_t error_count;
+
+ /**
+ * Index of the next frame descriptor for an isochronous transfer. A
+ * frame descriptor describes the buffer position and length of the
+ * data to be transferred in the next scheduled (micro)frame of an
+ * isochronous transfer. It also holds status for that transaction.
+ * The frame index starts at 0.
+ */
+ int isoc_frame_index;
+
+ /** Position of the ISOC split on full/low speed */
+ uint8_t isoc_split_pos;
+
+ /** Position of the ISOC split in the buffer for the current frame */
+ uint16_t isoc_split_offset;
+
+ /** URB for this transfer */
+ struct urb *urb;
+
+ /** This list of QTDs */
+ struct list_head qtd_list_entry;
+
+} dwc_otg_qtd_t;
+
+/**
+ * A Queue Head (QH) holds the static characteristics of an endpoint and
+ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
+ * be entered in either the non-periodic or periodic schedule.
+ */
+typedef struct dwc_otg_qh {
+ /**
+ * Endpoint type.
+ * One of the following values:
+ * - USB_ENDPOINT_XFER_CONTROL
+ * - USB_ENDPOINT_XFER_ISOC
+ * - USB_ENDPOINT_XFER_BULK
+ * - USB_ENDPOINT_XFER_INT
+ */
+ uint8_t ep_type;
+ uint8_t ep_is_in;
+
+ /** wMaxPacketSize Field of Endpoint Descriptor. */
+ uint16_t maxp;
+
+ /**
+ * Determines the PID of the next data packet for non-control
+ * transfers. Ignored for control transfers.<br>
+ * One of the following values:
+ * - DWC_OTG_HC_PID_DATA0
+ * - DWC_OTG_HC_PID_DATA1
+ */
+ uint8_t data_toggle;
+
+ /** Ping state if 1. */
+ uint8_t ping_state;
+
+ /**
+ * List of QTDs for this QH.
+ */
+ struct list_head qtd_list;
+
+ /** Host channel currently processing transfers for this QH. */
+ dwc_hc_t *channel;
+
+ /** QTD currently assigned to a host channel for this QH. */
+ dwc_otg_qtd_t *qtd_in_process;
+
+ /** Full/low speed endpoint on high-speed hub requires split. */
+ uint8_t do_split;
+
+ /** @name Periodic schedule information */
+ /** @{ */
+
+ /** Bandwidth in microseconds per (micro)frame. */
+ uint8_t usecs;
+
+ /** Interval between transfers in (micro)frames. */
+ uint16_t interval;
+
+ /**
+ * (micro)frame to initialize a periodic transfer. The transfer
+ * executes in the following (micro)frame.
+ */
+ uint16_t sched_frame;
+
+ /** (micro)frame at which last start split was initialized. */
+ uint16_t start_split_frame;
+
+ u16 speed;
+ u16 frame_usecs[8];
+
+ /** @} */
+
+ /** Entry for QH in either the periodic or non-periodic schedule. */
+ struct list_head qh_list_entry;
+} dwc_otg_qh_t;
+
+/**
+ * This structure holds the state of the HCD, including the non-periodic and
+ * periodic schedules.
+ */
+typedef struct dwc_otg_hcd {
+ /** The DWC otg device pointer */
+ struct dwc_otg_device *otg_dev;
+
+ /** DWC OTG Core Interface Layer */
+ dwc_otg_core_if_t *core_if;
+
+ /** Internal DWC HCD Flags */
+ volatile union dwc_otg_hcd_internal_flags {
+ uint32_t d32;
+ struct {
+ unsigned port_connect_status_change : 1;
+ unsigned port_connect_status : 1;
+ unsigned port_reset_change : 1;
+ unsigned port_enable_change : 1;
+ unsigned port_suspend_change : 1;
+ unsigned port_over_current_change : 1;
+ unsigned reserved : 27;
+ } b;
+ } flags;
+
+ /**
+ * Inactive items in the non-periodic schedule. This is a list of
+ * Queue Heads. Transfers associated with these Queue Heads are not
+ * currently assigned to a host channel.
+ */
+ struct list_head non_periodic_sched_inactive;
+
+ /**
+ * Active items in the non-periodic schedule. This is a list of
+ * Queue Heads. Transfers associated with these Queue Heads are
+ * currently assigned to a host channel.
+ */
+ struct list_head non_periodic_sched_active;
+
+ /**
+ * Pointer to the next Queue Head to process in the active
+ * non-periodic schedule.
+ */
+ struct list_head *non_periodic_qh_ptr;
+
+ /**
+ * Inactive items in the periodic schedule. This is a list of QHs for
+ * periodic transfers that are _not_ scheduled for the next frame.
+ * Each QH in the list has an interval counter that determines when it
+ * needs to be scheduled for execution. This scheduling mechanism
+ * allows only a simple calculation for periodic bandwidth used (i.e.
+ * must assume that all periodic transfers may need to execute in the
+ * same frame). However, it greatly simplifies scheduling and should
+ * be sufficient for the vast majority of OTG hosts, which need to
+ * connect to a small number of peripherals at one time.
+ *
+ * Items move from this list to periodic_sched_ready when the QH
+ * interval counter is 0 at SOF.
+ */
+ struct list_head periodic_sched_inactive;
+
+ /**
+ * List of periodic QHs that are ready for execution in the next
+ * frame, but have not yet been assigned to host channels.
+ *
+ * Items move from this list to periodic_sched_assigned as host
+ * channels become available during the current frame.
+ */
+ struct list_head periodic_sched_ready;
+
+ /**
+ * List of periodic QHs to be executed in the next frame that are
+ * assigned to host channels.
+ *
+ * Items move from this list to periodic_sched_queued as the
+ * transactions for the QH are queued to the DWC_otg controller.
+ */
+ struct list_head periodic_sched_assigned;
+
+ /**
+ * List of periodic QHs that have been queued for execution.
+ *
+ * Items move from this list to either periodic_sched_inactive or
+ * periodic_sched_ready when the channel associated with the transfer
+ * is released. If the interval for the QH is 1, the item moves to
+ * periodic_sched_ready because it must be rescheduled for the next
+ * frame. Otherwise, the item moves to periodic_sched_inactive.
+ */
+ struct list_head periodic_sched_queued;
+
+ /**
+ * Total bandwidth claimed so far for periodic transfers. This value
+ * is in microseconds per (micro)frame. The assumption is that all
+ * periodic transfers may occur in the same (micro)frame.
+ */
+ uint16_t periodic_usecs;
+
+ /*
+ * Total bandwidth claimed so far for all periodic transfers
+ * in a frame.
+ * This will include a mixture of HS and FS transfers.
+ * Units are microseconds per (micro)frame.
+ * We have a budget per frame and have to schedule
+ * transactions accordingly.
+ * Watch out for the fact that things are actually scheduled for the
+ * "next frame".
+ */
+ u16 frame_usecs[8];
+
+ /**
+ * Frame number read from the core at SOF. The value ranges from 0 to
+ * DWC_HFNUM_MAX_FRNUM.
+ */
+ uint16_t frame_number;
+
+ /**
+ * Free host channels in the controller. This is a list of
+ * dwc_hc_t items.
+ */
+ struct list_head free_hc_list;
+
+ /**
+ * Number of host channels assigned to periodic transfers. Currently
+ * assuming that there is a dedicated host channel for each periodic
+ * transaction and at least one host channel available for
+ * non-periodic transactions.
+ */
+ int periodic_channels;
+
+ /**
+ * Number of host channels assigned to non-periodic transfers.
+ */
+ int non_periodic_channels;
+
+ /**
+ * Array of pointers to the host channel descriptors. Allows accessing
+ * a host channel descriptor given the host channel number. This is
+ * useful in interrupt handlers.
+ */
+ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
+
+ /**
+ * Buffer to use for any data received during the status phase of a
+ * control transfer. Normally no data is transferred during the status
+ * phase. This buffer is used as a bit bucket.
+ */
+ uint8_t *status_buf;
+
+ /**
+ * DMA address for status_buf.
+ */
+ dma_addr_t status_buf_dma;
+#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
+
+ /**
+ * Structure to allow starting the HCD in a non-interrupt context
+ * during an OTG role change.
+ */
+ struct delayed_work start_work;
+
+ /**
+ * Connection timer. An OTG host must display a message if the device
+ * does not connect. Started when the VBus power is turned on via
+ * sysfs attribute "buspower".
+ */
+ struct timer_list conn_timer;
+
+ /* Tasket to do a reset */
+ struct tasklet_struct *reset_tasklet;
+
+ /* */
+ spinlock_t lock;
+
+#ifdef DEBUG
+ uint32_t frrem_samples;
+ uint64_t frrem_accum;
+
+ uint32_t hfnum_7_samples_a;
+ uint64_t hfnum_7_frrem_accum_a;
+ uint32_t hfnum_0_samples_a;
+ uint64_t hfnum_0_frrem_accum_a;
+ uint32_t hfnum_other_samples_a;
+ uint64_t hfnum_other_frrem_accum_a;
+
+ uint32_t hfnum_7_samples_b;
+ uint64_t hfnum_7_frrem_accum_b;
+ uint32_t hfnum_0_samples_b;
+ uint64_t hfnum_0_frrem_accum_b;
+ uint32_t hfnum_other_samples_b;
+ uint64_t hfnum_other_frrem_accum_b;
+#endif
+} dwc_otg_hcd_t;
+
+/** Gets the dwc_otg_hcd from a struct usb_hcd */
+static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
+{
+ return (dwc_otg_hcd_t *)(hcd->hcd_priv);
+}
+
+/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
+static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
+}
+
+/** @name HCD Create/Destroy Functions */
+/** @{ */
+extern int dwc_otg_hcd_init(struct platform_device *pdev);
+extern void dwc_otg_hcd_remove(struct platform_device *pdev);
+/** @} */
+
+/** @name Linux HC Driver API Functions */
+/** @{ */
+
+extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
+extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
+extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
+extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
+extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
+ // struct usb_host_endpoint *ep,
+ struct urb *urb,
+ gfp_t mem_flags
+ );
+extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
+ struct urb *urb, int status);
+extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
+ struct usb_host_endpoint *ep);
+extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
+extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
+ char *buf);
+extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
+ u16 typeReq,
+ u16 wValue,
+ u16 wIndex,
+ char *buf,
+ u16 wLength);
+
+/** @} */
+
+/** @name Transaction Execution Functions */
+/** @{ */
+extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd);
+extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
+ dwc_otg_transaction_type_e tr_type);
+extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb,
+ int status);
+/** @} */
+
+/** @name Interrupt Handler Functions */
+/** @{ */
+extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num);
+extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd);
+/** @} */
+
+
+/** @name Schedule Queue Functions */
+/** @{ */
+
+/* Implemented in dwc_otg_hcd_queue.c */
+extern int init_hcd_usecs(dwc_otg_hcd_t *hcd);
+extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb);
+extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb);
+extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
+extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
+extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
+extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit);
+
+/** Remove and free a QH */
+static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd,
+ dwc_otg_qh_t *qh)
+{
+ dwc_otg_hcd_qh_remove(hcd, qh);
+ dwc_otg_hcd_qh_free(hcd, qh);
+}
+
+/** Allocates memory for a QH structure.
+ * @return Returns the memory allocate or NULL on error. */
+static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void)
+{
+ return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL);
+}
+
+extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb);
+extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb);
+extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
+
+/** Allocates memory for a QTD structure.
+ * @return Returns the memory allocate or NULL on error. */
+static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void)
+{
+ return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL);
+}
+
+/** Frees the memory for a QTD structure. QTD should already be removed from
+ * list.
+ * @param[in] qtd QTD to free.*/
+static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd)
+{
+ kfree(qtd);
+}
+
+/** Remove and free a QTD */
+static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
+{
+ list_del(&qtd->qtd_list_entry);
+ dwc_otg_hcd_qtd_free(qtd);
+}
+
+/** @} */
+
+
+/** @name Internal Functions */
+/** @{ */
+dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb);
+void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd);
+void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd);
+/** @} */
+
+/** Gets the usb_host_endpoint associated with an URB. */
+static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
+{
+ struct usb_device *dev = urb->dev;
+ int ep_num = usb_pipeendpoint(urb->pipe);
+
+ if (usb_pipein(urb->pipe))
+ return dev->ep_in[ep_num];
+ else
+ return dev->ep_out[ep_num];
+}
+
+/**
+ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
+ * qualified with its direction (possible 32 endpoints per device).
+ */
+#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
+ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
+
+/** Gets the QH that contains the list_head */
+#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
+
+/** Gets the QTD that contains the list_head */
+#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
+
+/** Check if QH is non-periodic */
+#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
+ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
+
+/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
+#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
+
+/** Packet size for any kind of endpoint descriptor */
+#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
+
+/**
+ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
+ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
+ * frame number when the max frame number is reached.
+ */
+static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
+{
+ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
+ (DWC_HFNUM_MAX_FRNUM >> 1);
+}
+
+/**
+ * Returns true if _frame1 is greater than _frame2. The comparison is done
+ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
+ * number when the max frame number is reached.
+ */
+static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
+{
+ return (frame1 != frame2) &&
+ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
+ (DWC_HFNUM_MAX_FRNUM >> 1));
+}
+
+/**
+ * Increments _frame by the amount specified by _inc. The addition is done
+ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
+ */
+static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
+{
+ return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
+}
+
+static inline uint16_t dwc_full_frame_num(uint16_t frame)
+{
+ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
+}
+
+static inline uint16_t dwc_micro_frame_num(uint16_t frame)
+{
+ return frame & 0x7;
+}
+
+#ifdef DEBUG
+/**
+ * Macro to sample the remaining PHY clocks left in the current frame. This
+ * may be used during debugging to determine the average time it takes to
+ * execute sections of code. There are two possible sample points, "a" and
+ * "b", so the _letter argument must be one of these values.
+ *
+ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
+ * example, "cat /sys/devices/lm0/hcd_frrem".
+ */
+#define dwc_sample_frrem(_hcd, _qh, _letter) \
+{ \
+ hfnum_data_t hfnum; \
+ dwc_otg_qtd_t *qtd; \
+ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
+ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
+ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
+ switch (hfnum.b.frnum & 0x7) { \
+ case 7: \
+ _hcd->hfnum_7_samples_##_letter++; \
+ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
+ break; \
+ case 0: \
+ _hcd->hfnum_0_samples_##_letter++; \
+ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
+ break; \
+ default: \
+ _hcd->hfnum_other_samples_##_letter++; \
+ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
+ break; \
+ } \
+ } \
+}
+#else
+#define dwc_sample_frrem(_hcd, _qh, _letter)
+#endif
+#endif
+#endif /* DWC_DEVICE_ONLY */
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_intr.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_intr.c
new file mode 100644
index 0000000000..e63b8630d2
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_intr.c
@@ -0,0 +1,1828 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
+ * $Revision: #70 $
+ * $Date: 2008/10/16 $
+ * $Change: 1117667 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_DEVICE_ONLY
+
+#include <linux/version.h>
+
+#include "otg_driver.h"
+#include "otg_hcd.h"
+#include "otg_regs.h"
+
+/** @file
+ * This file contains the implementation of the HCD Interrupt handlers.
+ */
+
+/** This function handles interrupts for the HCD. */
+int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+ int retval = 0;
+
+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
+ gintsts_data_t gintsts;
+#ifdef DEBUG
+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+#endif
+
+ /* Check if HOST Mode */
+ if (dwc_otg_is_host_mode(core_if)) {
+ gintsts.d32 = dwc_otg_read_core_intr(core_if);
+ if (!gintsts.d32) {
+ return 0;
+ }
+
+#ifdef DEBUG
+ /* Don't print debug message in the interrupt handler on SOF */
+# ifndef DEBUG_SOF
+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
+# endif
+ DWC_DEBUGPL(DBG_HCD, "\n");
+#endif
+
+#ifdef DEBUG
+# ifndef DEBUG_SOF
+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
+# endif
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
+#endif
+ if (gintsts.b.usbreset) {
+ DWC_PRINT("Usb Reset In Host Mode\n");
+ }
+ if (gintsts.b.sofintr) {
+ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
+ }
+ if (gintsts.b.rxstsqlvl) {
+ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
+ }
+ if (gintsts.b.nptxfempty) {
+ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
+ }
+ if (gintsts.b.i2cintr) {
+ /** @todo Implement i2cintr handler. */
+ }
+ if (gintsts.b.portintr) {
+ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
+ }
+ if (gintsts.b.hcintr) {
+ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
+ }
+ if (gintsts.b.ptxfempty) {
+ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd);
+ }
+#ifdef DEBUG
+# ifndef DEBUG_SOF
+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
+# endif
+ {
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
+ dwc_read_reg32(&global_regs->gintsts));
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
+ dwc_read_reg32(&global_regs->gintmsk));
+ }
+#endif
+
+#ifdef DEBUG
+# ifndef DEBUG_SOF
+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
+# endif
+ DWC_DEBUGPL(DBG_HCD, "\n");
+#endif
+
+ }
+ S3C2410X_CLEAR_EINTPEND();
+
+ return retval;
+}
+
+#ifdef DWC_TRACK_MISSED_SOFS
+#warning Compiling code to track missed SOFs
+#define FRAME_NUM_ARRAY_SIZE 1000
+/**
+ * This function is for debug only.
+ */
+static inline void track_missed_sofs(uint16_t curr_frame_number)
+{
+ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
+ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
+ static int frame_num_idx = 0;
+ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
+ static int dumped_frame_num_array = 0;
+
+ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
+ if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) {
+ frame_num_array[frame_num_idx] = curr_frame_number;
+ last_frame_num_array[frame_num_idx++] = last_frame_num;
+ }
+ } else if (!dumped_frame_num_array) {
+ int i;
+ printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
+ printk(KERN_EMERG USB_DWC "----- ----------\n");
+ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
+ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
+ frame_num_array[i], last_frame_num_array[i]);
+ }
+ dumped_frame_num_array = 1;
+ }
+ last_frame_num = curr_frame_number;
+}
+#endif
+
+/**
+ * Handles the start-of-frame interrupt in host mode. Non-periodic
+ * transactions may be queued to the DWC_otg controller for the current
+ * (micro)frame. Periodic transactions may be queued to the controller for the
+ * next (micro)frame.
+ */
+int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd)
+{
+ hfnum_data_t hfnum;
+ struct list_head *qh_entry;
+ dwc_otg_qh_t *qh;
+ dwc_otg_transaction_type_e tr_type;
+ gintsts_data_t gintsts = {.d32 = 0};
+
+ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
+
+#ifdef DEBUG_SOF
+ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
+#endif
+ hcd->frame_number = hfnum.b.frnum;
+
+#ifdef DEBUG
+ hcd->frrem_accum += hfnum.b.frrem;
+ hcd->frrem_samples++;
+#endif
+
+#ifdef DWC_TRACK_MISSED_SOFS
+ track_missed_sofs(hcd->frame_number);
+#endif
+
+ /* Determine whether any periodic QHs should be executed. */
+ qh_entry = hcd->periodic_sched_inactive.next;
+ while (qh_entry != &hcd->periodic_sched_inactive) {
+ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
+ qh_entry = qh_entry->next;
+ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
+ /*
+ * Move QH to the ready list to be executed next
+ * (micro)frame.
+ */
+ list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready);
+ }
+ }
+
+ tr_type = dwc_otg_hcd_select_transactions(hcd);
+ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
+ dwc_otg_hcd_queue_transactions(hcd, tr_type);
+ }
+
+ /* Clear interrupt */
+ gintsts.b.sofintr = 1;
+ dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
+ * least one packet in the Rx FIFO. The packets are moved from the FIFO to
+ * memory if the DWC_otg controller is operating in Slave mode. */
+int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+ host_grxsts_data_t grxsts;
+ dwc_hc_t *hc = NULL;
+
+ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
+
+ grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
+
+ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
+
+ /* Packet Status */
+ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
+ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
+ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
+ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
+
+ switch (grxsts.b.pktsts) {
+ case DWC_GRXSTS_PKTSTS_IN:
+ /* Read the data into the host buffer. */
+ if (grxsts.b.bcnt > 0) {
+ dwc_otg_read_packet(dwc_otg_hcd->core_if,
+ hc->xfer_buff,
+ grxsts.b.bcnt);
+
+ /* Update the HC fields for the next packet received. */
+ hc->xfer_count += grxsts.b.bcnt;
+ hc->xfer_buff += grxsts.b.bcnt;
+ }
+
+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
+ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
+ case DWC_GRXSTS_PKTSTS_CH_HALTED:
+ /* Handled in interrupt, just ignore data */
+ break;
+ default:
+ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
+ break;
+ }
+
+ return 1;
+}
+
+/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
+ * data packets may be written to the FIFO for OUT transfers. More requests
+ * may be written to the non-periodic request queue for IN transfers. This
+ * interrupt is enabled only in Slave mode. */
+int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
+ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
+ DWC_OTG_TRANSACTION_NON_PERIODIC);
+ return 1;
+}
+
+/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
+ * packets may be written to the FIFO for OUT transfers. More requests may be
+ * written to the periodic request queue for IN transfers. This interrupt is
+ * enabled only in Slave mode. */
+int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
+ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
+ DWC_OTG_TRANSACTION_PERIODIC);
+ return 1;
+}
+
+/** There are multiple conditions that can cause a port interrupt. This function
+ * determines which interrupt conditions have occurred and handles them
+ * appropriately. */
+int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+ int retval = 0;
+ hprt0_data_t hprt0;
+ hprt0_data_t hprt0_modify;
+
+ hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
+ hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
+
+ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
+ * GINTSTS */
+
+ hprt0_modify.b.prtena = 0;
+ hprt0_modify.b.prtconndet = 0;
+ hprt0_modify.b.prtenchng = 0;
+ hprt0_modify.b.prtovrcurrchng = 0;
+
+ /* Port Connect Detected
+ * Set flag and clear if detected */
+ if (hprt0.b.prtconndet) {
+ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
+ "Port Connect Detected--\n", hprt0.d32);
+ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
+ dwc_otg_hcd->flags.b.port_connect_status = 1;
+ hprt0_modify.b.prtconndet = 1;
+
+ /* B-Device has connected, Delete the connection timer. */
+ del_timer( &dwc_otg_hcd->conn_timer );
+
+ /* The Hub driver asserts a reset when it sees port connect
+ * status change flag */
+ retval |= 1;
+ }
+
+ /* Port Enable Changed
+ * Clear if detected - Set internal flag if disabled */
+ if (hprt0.b.prtenchng) {
+ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
+ "Port Enable Changed--\n", hprt0.d32);
+ hprt0_modify.b.prtenchng = 1;
+ if (hprt0.b.prtena == 1) {
+ int do_reset = 0;
+ dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params;
+ dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs;
+ dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if;
+
+ /* Check if we need to adjust the PHY clock speed for
+ * low power and adjust it */
+ if (params->host_support_fs_ls_low_power) {
+ gusbcfg_data_t usbcfg;
+
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+
+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
+ hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
+ /*
+ * Low power
+ */
+ hcfg_data_t hcfg;
+ if (usbcfg.b.phylpwrclksel == 0) {
+ /* Set PHY low power clock select for FS/LS devices */
+ usbcfg.b.phylpwrclksel = 1;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+ do_reset = 1;
+ }
+
+ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
+
+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
+ params->host_ls_low_power_phy_clk ==
+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
+ /* 6 MHZ */
+ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
+ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
+ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
+ dwc_write_reg32(&host_if->host_global_regs->hcfg,
+ hcfg.d32);
+ do_reset = 1;
+ }
+ } else {
+ /* 48 MHZ */
+ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
+ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
+ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
+ dwc_write_reg32(&host_if->host_global_regs->hcfg,
+ hcfg.d32);
+ do_reset = 1;
+ }
+ }
+ } else {
+ /*
+ * Not low power
+ */
+ if (usbcfg.b.phylpwrclksel == 1) {
+ usbcfg.b.phylpwrclksel = 0;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+ do_reset = 1;
+ }
+ }
+
+ if (do_reset) {
+ tasklet_schedule(dwc_otg_hcd->reset_tasklet);
+ }
+ }
+
+ if (!do_reset) {
+ /* Port has been enabled set the reset change flag */
+ dwc_otg_hcd->flags.b.port_reset_change = 1;
+ }
+ } else {
+ dwc_otg_hcd->flags.b.port_enable_change = 1;
+ }
+ retval |= 1;
+ }
+
+ /** Overcurrent Change Interrupt */
+ if (hprt0.b.prtovrcurrchng) {
+ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
+ "Port Overcurrent Changed--\n", hprt0.d32);
+ dwc_otg_hcd->flags.b.port_over_current_change = 1;
+ hprt0_modify.b.prtovrcurrchng = 1;
+ retval |= 1;
+ }
+
+ /* Clear Port Interrupts */
+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
+
+ return retval;
+}
+
+/** This interrupt indicates that one or more host channels has a pending
+ * interrupt. There are multiple conditions that can cause each host channel
+ * interrupt. This function determines which conditions have occurred for each
+ * host channel interrupt and handles them appropriately. */
+int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd)
+{
+ int i;
+ int retval = 0;
+ haint_data_t haint;
+
+ /* Clear appropriate bits in HCINTn to clear the interrupt bit in
+ * GINTSTS */
+
+ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
+
+ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
+ if (haint.b2.chint & (1 << i)) {
+ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
+ }
+ }
+
+ return retval;
+}
+
+/* Macro used to clear one channel interrupt */
+#define clear_hc_int(_hc_regs_, _intr_) \
+do { \
+ hcint_data_t hcint_clear = {.d32 = 0}; \
+ hcint_clear.b._intr_ = 1; \
+ dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \
+} while (0)
+
+/*
+ * Macro used to disable one channel interrupt. Channel interrupts are
+ * disabled when the channel is halted or released by the interrupt handler.
+ * There is no need to handle further interrupts of that type until the
+ * channel is re-assigned. In fact, subsequent handling may cause crashes
+ * because the channel structures are cleaned up when the channel is released.
+ */
+#define disable_hc_int(_hc_regs_, _intr_) \
+do { \
+ hcintmsk_data_t hcintmsk = {.d32 = 0}; \
+ hcintmsk.b._intr_ = 1; \
+ dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
+} while (0)
+
+/**
+ * Gets the actual length of a transfer after the transfer halts. _halt_status
+ * holds the reason for the halt.
+ *
+ * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
+ * *short_read is set to 1 upon return if less than the requested
+ * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
+ * return. short_read may also be NULL on entry, in which case it remains
+ * unchanged.
+ */
+static uint32_t get_actual_xfer_length(dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd,
+ dwc_otg_halt_status_e halt_status,
+ int *short_read)
+{
+ hctsiz_data_t hctsiz;
+ uint32_t length;
+
+ if (short_read != NULL) {
+ *short_read = 0;
+ }
+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+
+ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
+ if (hc->ep_is_in) {
+ length = hc->xfer_len - hctsiz.b.xfersize;
+ if (short_read != NULL) {
+ *short_read = (hctsiz.b.xfersize != 0);
+ }
+ } else if (hc->qh->do_split) {
+ length = qtd->ssplit_out_xfer_count;
+ } else {
+ length = hc->xfer_len;
+ }
+ } else {
+ /*
+ * Must use the hctsiz.pktcnt field to determine how much data
+ * has been transferred. This field reflects the number of
+ * packets that have been transferred via the USB. This is
+ * always an integral number of packets if the transfer was
+ * halted before its normal completion. (Can't use the
+ * hctsiz.xfersize field because that reflects the number of
+ * bytes transferred via the AHB, not the USB).
+ */
+ length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
+ }
+
+ return length;
+}
+
+/**
+ * Updates the state of the URB after a Transfer Complete interrupt on the
+ * host channel. Updates the actual_length field of the URB based on the
+ * number of bytes transferred via the host channel. Sets the URB status
+ * if the data transfer is finished.
+ *
+ * @return 1 if the data transfer specified by the URB is completely finished,
+ * 0 otherwise.
+ */
+static int update_urb_state_xfer_comp(dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ struct urb *urb,
+ dwc_otg_qtd_t *qtd)
+{
+ int xfer_done = 0;
+ int short_read = 0;
+
+ urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
+ DWC_OTG_HC_XFER_COMPLETE,
+ &short_read);
+
+ if (short_read || urb->actual_length == urb->transfer_buffer_length) {
+ xfer_done = 1;
+ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) {
+ urb->status = -EREMOTEIO;
+ } else {
+ urb->status = 0;
+ }
+ }
+
+#ifdef DEBUG
+ {
+ hctsiz_data_t hctsiz;
+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
+ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
+ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
+ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
+ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
+ urb->transfer_buffer_length);
+ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
+ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
+ short_read, xfer_done);
+ }
+#endif
+
+ return xfer_done;
+}
+
+/*
+ * Save the starting data toggle for the next transfer. The data toggle is
+ * saved in the QH for non-control transfers and it's saved in the QTD for
+ * control transfers.
+ */
+static void save_data_toggle(dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ hctsiz_data_t hctsiz;
+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+
+ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
+ dwc_otg_qh_t *qh = hc->qh;
+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
+ } else {
+ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
+ }
+ } else {
+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
+ qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
+ } else {
+ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
+ }
+ }
+}
+
+/**
+ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
+ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
+ * still linked to the QH, the QH is added to the end of the inactive
+ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
+ * schedule if no more QTDs are linked to the QH.
+ */
+static void deactivate_qh(dwc_otg_hcd_t *hcd,
+ dwc_otg_qh_t *qh,
+ int free_qtd)
+{
+ int continue_split = 0;
+ dwc_otg_qtd_t *qtd;
+
+ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
+
+ spin_lock(&hcd->lock);
+ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
+
+ if (qtd->complete_split) {
+ continue_split = 1;
+ } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
+ qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
+ continue_split = 1;
+ }
+
+ if (free_qtd) {
+ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
+ continue_split = 0;
+ }
+
+ qh->channel = NULL;
+ qh->qtd_in_process = NULL;
+ spin_unlock(&hcd->lock);
+ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
+}
+
+/**
+ * Updates the state of an Isochronous URB when the transfer is stopped for
+ * any reason. The fields of the current entry in the frame descriptor array
+ * are set based on the transfer state and the input _halt_status. Completes
+ * the Isochronous URB if all the URB frames have been completed.
+ *
+ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
+ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
+ */
+static dwc_otg_halt_status_e
+update_isoc_urb_state(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd,
+ dwc_otg_halt_status_e halt_status)
+{
+ struct urb *urb = qtd->urb;
+ dwc_otg_halt_status_e ret_val = halt_status;
+ struct usb_iso_packet_descriptor *frame_desc;
+
+ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
+ switch (halt_status) {
+ case DWC_OTG_HC_XFER_COMPLETE:
+ frame_desc->status = 0;
+ frame_desc->actual_length =
+ get_actual_xfer_length(hc, hc_regs, qtd,
+ halt_status, NULL);
+ break;
+ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
+ urb->error_count++;
+ if (hc->ep_is_in) {
+ frame_desc->status = -ENOSR;
+ } else {
+ frame_desc->status = -ECOMM;
+ }
+ frame_desc->actual_length = 0;
+ break;
+ case DWC_OTG_HC_XFER_BABBLE_ERR:
+ urb->error_count++;
+ frame_desc->status = -EOVERFLOW;
+ /* Don't need to update actual_length in this case. */
+ break;
+ case DWC_OTG_HC_XFER_XACT_ERR:
+ urb->error_count++;
+ frame_desc->status = -EPROTO;
+ frame_desc->actual_length =
+ get_actual_xfer_length(hc, hc_regs, qtd,
+ halt_status, NULL);
+ default:
+ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
+ halt_status);
+ BUG();
+ break;
+ }
+
+ if (++qtd->isoc_frame_index == urb->number_of_packets) {
+ /*
+ * urb->status is not used for isoc transfers.
+ * The individual frame_desc statuses are used instead.
+ */
+ dwc_otg_hcd_complete_urb(hcd, urb, 0);
+ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
+ } else {
+ ret_val = DWC_OTG_HC_XFER_COMPLETE;
+ }
+
+ return ret_val;
+}
+
+/**
+ * Releases a host channel for use by other transfers. Attempts to select and
+ * queue more transactions since at least one host channel is available.
+ *
+ * @param hcd The HCD state structure.
+ * @param hc The host channel to release.
+ * @param qtd The QTD associated with the host channel. This QTD may be freed
+ * if the transfer is complete or an error has occurred.
+ * @param halt_status Reason the channel is being released. This status
+ * determines the actions taken by this function.
+ */
+static void release_channel(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_qtd_t *qtd,
+ dwc_otg_halt_status_e halt_status)
+{
+ dwc_otg_transaction_type_e tr_type;
+ int free_qtd;
+
+ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
+ __func__, hc->hc_num, halt_status);
+
+ switch (halt_status) {
+ case DWC_OTG_HC_XFER_URB_COMPLETE:
+ free_qtd = 1;
+ break;
+ case DWC_OTG_HC_XFER_AHB_ERR:
+ case DWC_OTG_HC_XFER_STALL:
+ case DWC_OTG_HC_XFER_BABBLE_ERR:
+ free_qtd = 1;
+ break;
+ case DWC_OTG_HC_XFER_XACT_ERR:
+ if (qtd->error_count >= 3) {
+ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
+ free_qtd = 1;
+ qtd->urb->status = -EPROTO;
+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
+ } else {
+ free_qtd = 0;
+ }
+ break;
+ case DWC_OTG_HC_XFER_URB_DEQUEUE:
+ /*
+ * The QTD has already been removed and the QH has been
+ * deactivated. Don't want to do anything except release the
+ * host channel and try to queue more transfers.
+ */
+ goto cleanup;
+ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
+ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num);
+ free_qtd = 0;
+ break;
+ default:
+ free_qtd = 0;
+ break;
+ }
+
+ deactivate_qh(hcd, hc->qh, free_qtd);
+
+ cleanup:
+ /*
+ * Release the host channel for use by other transfers. The cleanup
+ * function clears the channel interrupt enables and conditions, so
+ * there's no need to clear the Channel Halted interrupt separately.
+ */
+ dwc_otg_hc_cleanup(hcd->core_if, hc);
+ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
+
+ switch (hc->ep_type) {
+ case DWC_OTG_EP_TYPE_CONTROL:
+ case DWC_OTG_EP_TYPE_BULK:
+ hcd->non_periodic_channels--;
+ break;
+
+ default:
+ /*
+ * Don't release reservations for periodic channels here.
+ * That's done when a periodic transfer is descheduled (i.e.
+ * when the QH is removed from the periodic schedule).
+ */
+ break;
+ }
+
+ /* Try to queue more transfers now that there's a free channel. */
+ tr_type = dwc_otg_hcd_select_transactions(hcd);
+ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
+ dwc_otg_hcd_queue_transactions(hcd, tr_type);
+ }
+}
+
+/**
+ * Halts a host channel. If the channel cannot be halted immediately because
+ * the request queue is full, this function ensures that the FIFO empty
+ * interrupt for the appropriate queue is enabled so that the halt request can
+ * be queued when there is space in the request queue.
+ *
+ * This function may also be called in DMA mode. In that case, the channel is
+ * simply released since the core always halts the channel automatically in
+ * DMA mode.
+ */
+static void halt_channel(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_qtd_t *qtd,
+ dwc_otg_halt_status_e halt_status)
+{
+ if (hcd->core_if->dma_enable) {
+ release_channel(hcd, hc, qtd, halt_status);
+ return;
+ }
+
+ /* Slave mode processing... */
+ dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
+
+ if (hc->halt_on_queue) {
+ gintmsk_data_t gintmsk = {.d32 = 0};
+ dwc_otg_core_global_regs_t *global_regs;
+ global_regs = hcd->core_if->core_global_regs;
+
+ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
+ /*
+ * Make sure the Non-periodic Tx FIFO empty interrupt
+ * is enabled so that the non-periodic schedule will
+ * be processed.
+ */
+ gintmsk.b.nptxfempty = 1;
+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
+ } else {
+ /*
+ * Move the QH from the periodic queued schedule to
+ * the periodic assigned schedule. This allows the
+ * halt to be queued when the periodic schedule is
+ * processed.
+ */
+ list_move(&hc->qh->qh_list_entry,
+ &hcd->periodic_sched_assigned);
+
+ /*
+ * Make sure the Periodic Tx FIFO Empty interrupt is
+ * enabled so that the periodic schedule will be
+ * processed.
+ */
+ gintmsk.b.ptxfempty = 1;
+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
+ }
+ }
+}
+
+/**
+ * Performs common cleanup for non-periodic transfers after a Transfer
+ * Complete interrupt. This function should be called after any endpoint type
+ * specific handling is finished to release the host channel.
+ */
+static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd,
+ dwc_otg_halt_status_e halt_status)
+{
+ hcint_data_t hcint;
+
+ qtd->error_count = 0;
+
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ if (hcint.b.nyet) {
+ /*
+ * Got a NYET on the last transaction of the transfer. This
+ * means that the endpoint should be in the PING state at the
+ * beginning of the next transfer.
+ */
+ hc->qh->ping_state = 1;
+ clear_hc_int(hc_regs, nyet);
+ }
+
+ /*
+ * Always halt and release the host channel to make it available for
+ * more transfers. There may still be more phases for a control
+ * transfer or more data packets for a bulk transfer at this point,
+ * but the host channel is still halted. A channel will be reassigned
+ * to the transfer when the non-periodic schedule is processed after
+ * the channel is released. This allows transactions to be queued
+ * properly via dwc_otg_hcd_queue_transactions, which also enables the
+ * Tx FIFO Empty interrupt if necessary.
+ */
+ if (hc->ep_is_in) {
+ /*
+ * IN transfers in Slave mode require an explicit disable to
+ * halt the channel. (In DMA mode, this call simply releases
+ * the channel.)
+ */
+ halt_channel(hcd, hc, qtd, halt_status);
+ } else {
+ /*
+ * The channel is automatically disabled by the core for OUT
+ * transfers in Slave mode.
+ */
+ release_channel(hcd, hc, qtd, halt_status);
+ }
+}
+
+/**
+ * Performs common cleanup for periodic transfers after a Transfer Complete
+ * interrupt. This function should be called after any endpoint type specific
+ * handling is finished to release the host channel.
+ */
+static void complete_periodic_xfer(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd,
+ dwc_otg_halt_status_e halt_status)
+{
+ hctsiz_data_t hctsiz;
+ qtd->error_count = 0;
+
+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
+ /* Core halts channel in these cases. */
+ release_channel(hcd, hc, qtd, halt_status);
+ } else {
+ /* Flush any outstanding requests from the Tx queue. */
+ halt_channel(hcd, hc, qtd, halt_status);
+ }
+}
+
+/**
+ * Handles a host channel Transfer Complete interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ int urb_xfer_done;
+ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
+ struct urb *urb = qtd->urb;
+ int pipe_type = usb_pipetype(urb->pipe);
+
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "Transfer Complete--\n", hc->hc_num);
+
+ /*
+ * Handle xfer complete on CSPLIT.
+ */
+ if (hc->qh->do_split) {
+ qtd->complete_split = 0;
+ }
+
+ /* Update the QTD and URB states. */
+ switch (pipe_type) {
+ case PIPE_CONTROL:
+ switch (qtd->control_phase) {
+ case DWC_OTG_CONTROL_SETUP:
+ if (urb->transfer_buffer_length > 0) {
+ qtd->control_phase = DWC_OTG_CONTROL_DATA;
+ } else {
+ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
+ }
+ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
+ break;
+ case DWC_OTG_CONTROL_DATA: {
+ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
+ if (urb_xfer_done) {
+ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
+ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
+ } else {
+ save_data_toggle(hc, hc_regs, qtd);
+ }
+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
+ break;
+ }
+ case DWC_OTG_CONTROL_STATUS:
+ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
+ if (urb->status == -EINPROGRESS) {
+ urb->status = 0;
+ }
+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
+ break;
+ }
+
+ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
+ break;
+ case PIPE_BULK:
+ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
+ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
+ if (urb_xfer_done) {
+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
+ } else {
+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
+ }
+
+ save_data_toggle(hc, hc_regs, qtd);
+ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
+ break;
+ case PIPE_INTERRUPT:
+ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
+ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
+
+ /*
+ * Interrupt URB is done on the first transfer complete
+ * interrupt.
+ */
+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
+ save_data_toggle(hc, hc_regs, qtd);
+ complete_periodic_xfer(hcd, hc, hc_regs, qtd,
+ DWC_OTG_HC_XFER_URB_COMPLETE);
+ break;
+ case PIPE_ISOCHRONOUS:
+ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
+ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
+ DWC_OTG_HC_XFER_COMPLETE);
+ }
+ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
+ break;
+ }
+
+ disable_hc_int(hc_regs, xfercompl);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel STALL interrupt. This handler may be called in
+ * either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ struct urb *urb = qtd->urb;
+ int pipe_type = usb_pipetype(urb->pipe);
+
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "STALL Received--\n", hc->hc_num);
+
+ if (pipe_type == PIPE_CONTROL) {
+ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
+ }
+
+ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
+ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
+ /*
+ * USB protocol requires resetting the data toggle for bulk
+ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
+ * setup command is issued to the endpoint. Anticipate the
+ * CLEAR_FEATURE command since a STALL has occurred and reset
+ * the data toggle now.
+ */
+ hc->qh->data_toggle = 0;
+ }
+
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
+
+ disable_hc_int(hc_regs, stall);
+
+ return 1;
+}
+
+/*
+ * Updates the state of the URB when a transfer has been stopped due to an
+ * abnormal condition before the transfer completes. Modifies the
+ * actual_length field of the URB to reflect the number of bytes that have
+ * actually been transferred via the host channel.
+ */
+static void update_urb_state_xfer_intr(dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ struct urb *urb,
+ dwc_otg_qtd_t *qtd,
+ dwc_otg_halt_status_e halt_status)
+{
+ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
+ halt_status, NULL);
+ urb->actual_length += bytes_transferred;
+
+#ifdef DEBUG
+ {
+ hctsiz_data_t hctsiz;
+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
+ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
+ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count);
+ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
+ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet);
+ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
+ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
+ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
+ urb->transfer_buffer_length);
+ }
+#endif
+}
+
+/**
+ * Handles a host channel NAK interrupt. This handler may be called in either
+ * DMA mode or Slave mode.
+ */
+static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "NAK Received--\n", hc->hc_num);
+
+ /*
+ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
+ * interrupt. Re-start the SSPLIT transfer.
+ */
+ if (hc->do_split) {
+ if (hc->complete_split) {
+ qtd->error_count = 0;
+ }
+ qtd->complete_split = 0;
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
+ goto handle_nak_done;
+ }
+
+ switch (usb_pipetype(qtd->urb->pipe)) {
+ case PIPE_CONTROL:
+ case PIPE_BULK:
+ if (hcd->core_if->dma_enable && hc->ep_is_in) {
+ /*
+ * NAK interrupts are enabled on bulk/control IN
+ * transfers in DMA mode for the sole purpose of
+ * resetting the error count after a transaction error
+ * occurs. The core will continue transferring data.
+ */
+ qtd->error_count = 0;
+ goto handle_nak_done;
+ }
+
+ /*
+ * NAK interrupts normally occur during OUT transfers in DMA
+ * or Slave mode. For IN transfers, more requests will be
+ * queued as request queue space is available.
+ */
+ qtd->error_count = 0;
+
+ if (!hc->qh->ping_state) {
+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
+ qtd, DWC_OTG_HC_XFER_NAK);
+ save_data_toggle(hc, hc_regs, qtd);
+ if (qtd->urb->dev->speed == USB_SPEED_HIGH) {
+ hc->qh->ping_state = 1;
+ }
+ }
+
+ /*
+ * Halt the channel so the transfer can be re-started from
+ * the appropriate point or the PING protocol will
+ * start/continue.
+ */
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
+ break;
+ case PIPE_INTERRUPT:
+ qtd->error_count = 0;
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
+ break;
+ case PIPE_ISOCHRONOUS:
+ /* Should never get called for isochronous transfers. */
+ BUG();
+ break;
+ }
+
+ handle_nak_done:
+ disable_hc_int(hc_regs, nak);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel ACK interrupt. This interrupt is enabled when
+ * performing the PING protocol in Slave mode, when errors occur during
+ * either Slave mode or DMA mode, and during Start Split transactions.
+ */
+static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "ACK Received--\n", hc->hc_num);
+
+ if (hc->do_split) {
+ /*
+ * Handle ACK on SSPLIT.
+ * ACK should not occur in CSPLIT.
+ */
+ if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
+ qtd->ssplit_out_xfer_count = hc->xfer_len;
+ }
+ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
+ /* Don't need complete for isochronous out transfers. */
+ qtd->complete_split = 1;
+ }
+
+ /* ISOC OUT */
+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
+ switch (hc->xact_pos) {
+ case DWC_HCSPLIT_XACTPOS_ALL:
+ break;
+ case DWC_HCSPLIT_XACTPOS_END:
+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
+ qtd->isoc_split_offset = 0;
+ break;
+ case DWC_HCSPLIT_XACTPOS_BEGIN:
+ case DWC_HCSPLIT_XACTPOS_MID:
+ /*
+ * For BEGIN or MID, calculate the length for
+ * the next microframe to determine the correct
+ * SSPLIT token, either MID or END.
+ */
+ {
+ struct usb_iso_packet_descriptor *frame_desc;
+
+ frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
+ qtd->isoc_split_offset += 188;
+
+ if ((frame_desc->length - qtd->isoc_split_offset) <= 188) {
+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
+ } else {
+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
+ }
+
+ }
+ break;
+ }
+ } else {
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
+ }
+ } else {
+ qtd->error_count = 0;
+
+ if (hc->qh->ping_state) {
+ hc->qh->ping_state = 0;
+ /*
+ * Halt the channel so the transfer can be re-started
+ * from the appropriate point. This only happens in
+ * Slave mode. In DMA mode, the ping_state is cleared
+ * when the transfer is started because the core
+ * automatically executes the PING, then the transfer.
+ */
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
+ }
+ }
+
+ /*
+ * If the ACK occurred when _not_ in the PING state, let the channel
+ * continue transferring data after clearing the error count.
+ */
+
+ disable_hc_int(hc_regs, ack);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel NYET interrupt. This interrupt should only occur on
+ * Bulk and Control OUT endpoints and for complete split transactions. If a
+ * NYET occurs at the same time as a Transfer Complete interrupt, it is
+ * handled in the xfercomp interrupt handler, not here. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "NYET Received--\n", hc->hc_num);
+
+ /*
+ * NYET on CSPLIT
+ * re-do the CSPLIT immediately on non-periodic
+ */
+ if (hc->do_split && hc->complete_split) {
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
+
+ if (dwc_full_frame_num(frnum) !=
+ dwc_full_frame_num(hc->qh->sched_frame)) {
+ /*
+ * No longer in the same full speed frame.
+ * Treat this as a transaction error.
+ */
+#if 0
+ /** @todo Fix system performance so this can
+ * be treated as an error. Right now complete
+ * splits cannot be scheduled precisely enough
+ * due to other system activity, so this error
+ * occurs regularly in Slave mode.
+ */
+ qtd->error_count++;
+#endif
+ qtd->complete_split = 0;
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
+ /** @todo add support for isoc release */
+ goto handle_nyet_done;
+ }
+ }
+
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
+ goto handle_nyet_done;
+ }
+
+ hc->qh->ping_state = 1;
+ qtd->error_count = 0;
+
+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
+ DWC_OTG_HC_XFER_NYET);
+ save_data_toggle(hc, hc_regs, qtd);
+
+ /*
+ * Halt the channel and re-start the transfer so the PING
+ * protocol will start.
+ */
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
+
+handle_nyet_done:
+ disable_hc_int(hc_regs, nyet);
+ return 1;
+}
+
+/**
+ * Handles a host channel babble interrupt. This handler may be called in
+ * either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "Babble Error--\n", hc->hc_num);
+ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
+ } else {
+ dwc_otg_halt_status_e halt_status;
+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
+ DWC_OTG_HC_XFER_BABBLE_ERR);
+ halt_channel(hcd, hc, qtd, halt_status);
+ }
+ disable_hc_int(hc_regs, bblerr);
+ return 1;
+}
+
+/**
+ * Handles a host channel AHB error interrupt. This handler is only called in
+ * DMA mode.
+ */
+static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ hcchar_data_t hcchar;
+ hcsplt_data_t hcsplt;
+ hctsiz_data_t hctsiz;
+ uint32_t hcdma;
+ struct urb *urb = qtd->urb;
+
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "AHB Error--\n", hc->hc_num);
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+ hcdma = dwc_read_reg32(&hc_regs->hcdma);
+
+ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
+ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
+ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
+ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
+ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
+ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
+ DWC_ERROR(" Endpoint type: %s\n",
+ ({char *pipetype;
+ switch (usb_pipetype(urb->pipe)) {
+ case PIPE_CONTROL: pipetype = "CONTROL"; break;
+ case PIPE_BULK: pipetype = "BULK"; break;
+ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
+ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
+ default: pipetype = "UNKNOWN"; break;
+ }; pipetype;}));
+ DWC_ERROR(" Speed: %s\n",
+ ({char *speed;
+ switch (urb->dev->speed) {
+ case USB_SPEED_HIGH: speed = "HIGH"; break;
+ case USB_SPEED_FULL: speed = "FULL"; break;
+ case USB_SPEED_LOW: speed = "LOW"; break;
+ default: speed = "UNKNOWN"; break;
+ }; speed;}));
+ DWC_ERROR(" Max packet size: %d\n",
+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
+ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
+ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
+ urb->transfer_buffer, (void *)urb->transfer_dma);
+ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
+ urb->setup_packet, (void *)urb->setup_dma);
+ DWC_ERROR(" Interval: %d\n", urb->interval);
+
+ dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
+
+ /*
+ * Force a channel halt. Don't call halt_channel because that won't
+ * write to the HCCHARn register in DMA mode to force the halt.
+ */
+ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
+
+ disable_hc_int(hc_regs, ahberr);
+ return 1;
+}
+
+/**
+ * Handles a host channel transaction error interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "Transaction Error--\n", hc->hc_num);
+
+ switch (usb_pipetype(qtd->urb->pipe)) {
+ case PIPE_CONTROL:
+ case PIPE_BULK:
+ qtd->error_count++;
+ if (!hc->qh->ping_state) {
+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
+ qtd, DWC_OTG_HC_XFER_XACT_ERR);
+ save_data_toggle(hc, hc_regs, qtd);
+ if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) {
+ hc->qh->ping_state = 1;
+ }
+ }
+
+ /*
+ * Halt the channel so the transfer can be re-started from
+ * the appropriate point or the PING protocol will start.
+ */
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
+ break;
+ case PIPE_INTERRUPT:
+ qtd->error_count++;
+ if (hc->do_split && hc->complete_split) {
+ qtd->complete_split = 0;
+ }
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
+ break;
+ case PIPE_ISOCHRONOUS:
+ {
+ dwc_otg_halt_status_e halt_status;
+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
+ DWC_OTG_HC_XFER_XACT_ERR);
+
+ halt_channel(hcd, hc, qtd, halt_status);
+ }
+ break;
+ }
+
+ disable_hc_int(hc_regs, xacterr);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel frame overrun interrupt. This handler may be called
+ * in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "Frame Overrun--\n", hc->hc_num);
+
+ switch (usb_pipetype(qtd->urb->pipe)) {
+ case PIPE_CONTROL:
+ case PIPE_BULK:
+ break;
+ case PIPE_INTERRUPT:
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
+ break;
+ case PIPE_ISOCHRONOUS:
+ {
+ dwc_otg_halt_status_e halt_status;
+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
+ DWC_OTG_HC_XFER_FRAME_OVERRUN);
+
+ halt_channel(hcd, hc, qtd, halt_status);
+ }
+ break;
+ }
+
+ disable_hc_int(hc_regs, frmovrun);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel data toggle error interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "Data Toggle Error--\n", hc->hc_num);
+
+ if (hc->ep_is_in) {
+ qtd->error_count = 0;
+ } else {
+ DWC_ERROR("Data Toggle Error on OUT transfer,"
+ "channel %d\n", hc->hc_num);
+ }
+
+ disable_hc_int(hc_regs, datatglerr);
+
+ return 1;
+}
+
+#ifdef DEBUG
+/**
+ * This function is for debug only. It checks that a valid halt status is set
+ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
+ * taken and a warning is issued.
+ * @return 1 if halt status is ok, 0 otherwise.
+ */
+static inline int halt_status_ok(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ hcchar_data_t hcchar;
+ hctsiz_data_t hctsiz;
+ hcint_data_t hcint;
+ hcintmsk_data_t hcintmsk;
+ hcsplt_data_t hcsplt;
+
+ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
+ /*
+ * This code is here only as a check. This condition should
+ * never happen. Ignore the halt if it does occur.
+ */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
+ DWC_WARN("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
+ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
+ "hcint 0x%08x, hcintmsk 0x%08x, "
+ "hcsplt 0x%08x, qtd->complete_split %d\n",
+ __func__, hc->hc_num, hcchar.d32, hctsiz.d32,
+ hcint.d32, hcintmsk.d32,
+ hcsplt.d32, qtd->complete_split);
+
+ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
+ __func__, hc->hc_num);
+ DWC_WARN("\n");
+ clear_hc_int(hc_regs, chhltd);
+ return 0;
+ }
+
+ /*
+ * This code is here only as a check. hcchar.chdis should
+ * never be set when the halt interrupt occurs. Halt the
+ * channel again if it does occur.
+ */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (hcchar.b.chdis) {
+ DWC_WARN("%s: hcchar.chdis set unexpectedly, "
+ "hcchar 0x%08x, trying to halt again\n",
+ __func__, hcchar.d32);
+ clear_hc_int(hc_regs, chhltd);
+ hc->halt_pending = 0;
+ halt_channel(hcd, hc, qtd, hc->halt_status);
+ return 0;
+ }
+
+ return 1;
+}
+#endif
+
+/**
+ * Handles a host Channel Halted interrupt in DMA mode. This handler
+ * determines the reason the channel halted and proceeds accordingly.
+ */
+static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ hcint_data_t hcint;
+ hcintmsk_data_t hcintmsk;
+ int out_nak_enh = 0;
+
+ /* For core with OUT NAK enhancement, the flow for high-
+ * speed CONTROL/BULK OUT is handled a little differently.
+ */
+ if (hcd->core_if->snpsid >= 0x4F54271A) {
+ if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
+ (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+ hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
+ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement enabled\n");
+ out_nak_enh = 1;
+ } else {
+ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n");
+ }
+ } else {
+ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, no core support\n");
+ }
+
+ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
+ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
+ /*
+ * Just release the channel. A dequeue can happen on a
+ * transfer timeout. In the case of an AHB Error, the channel
+ * was forced to halt because there's no way to gracefully
+ * recover.
+ */
+ release_channel(hcd, hc, qtd, hc->halt_status);
+ return;
+ }
+
+ /* Read the HCINTn register to determine the cause for the halt. */
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
+
+ if (hcint.b.xfercomp) {
+ /** @todo This is here because of a possible hardware bug. Spec
+ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
+ * interrupt w/ACK bit set should occur, but I only see the
+ * XFERCOMP bit, even with it masked out. This is a workaround
+ * for that behavior. Should fix this when hardware is fixed.
+ */
+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
+ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
+ }
+ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
+ } else if (hcint.b.stall) {
+ handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
+ } else if (hcint.b.xacterr) {
+ if (out_nak_enh) {
+ if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
+ printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n");
+ qtd->error_count = 0;
+ } else {
+ printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n");
+ }
+ }
+
+ /*
+ * Must handle xacterr before nak or ack. Could get a xacterr
+ * at the same time as either of these on a BULK/CONTROL OUT
+ * that started with a PING. The xacterr takes precedence.
+ */
+ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
+ } else if (!out_nak_enh) {
+ if (hcint.b.nyet) {
+ /*
+ * Must handle nyet before nak or ack. Could get a nyet at the
+ * same time as either of those on a BULK/CONTROL OUT that
+ * started with a PING. The nyet takes precedence.
+ */
+ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
+ } else if (hcint.b.bblerr) {
+ handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
+ } else if (hcint.b.frmovrun) {
+ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
+ } else if (hcint.b.nak && !hcintmsk.b.nak) {
+ /*
+ * If nak is not masked, it's because a non-split IN transfer
+ * is in an error state. In that case, the nak is handled by
+ * the nak interrupt handler, not here. Handle nak here for
+ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
+ * rewinding the buffer pointer.
+ */
+ handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
+ } else if (hcint.b.ack && !hcintmsk.b.ack) {
+ /*
+ * If ack is not masked, it's because a non-split IN transfer
+ * is in an error state. In that case, the ack is handled by
+ * the ack interrupt handler, not here. Handle ack here for
+ * split transfers. Start splits halt on ACK.
+ */
+ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
+ } else {
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ /*
+ * A periodic transfer halted with no other channel
+ * interrupts set. Assume it was halted by the core
+ * because it could not be completed in its scheduled
+ * (micro)frame.
+ */
+#ifdef DEBUG
+ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
+ __func__, hc->hc_num);
+#endif
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
+ } else {
+ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
+ "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
+ __func__, hc->hc_num, hcint.d32,
+ dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts));
+ }
+ }
+ } else {
+ printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32);
+ }
+}
+
+/**
+ * Handles a host channel Channel Halted interrupt.
+ *
+ * In slave mode, this handler is called only when the driver specifically
+ * requests a halt. This occurs during handling other host channel interrupts
+ * (e.g. nak, xacterr, stall, nyet, etc.).
+ *
+ * In DMA mode, this is the interrupt that occurs when the core has finished
+ * processing a transfer on a channel. Other host channel interrupts (except
+ * ahberr) are disabled in DMA mode.
+ */
+static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd,
+ dwc_hc_t *hc,
+ dwc_otg_hc_regs_t *hc_regs,
+ dwc_otg_qtd_t *qtd)
+{
+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
+ "Channel Halted--\n", hc->hc_num);
+
+ if (hcd->core_if->dma_enable) {
+ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
+ } else {
+#ifdef DEBUG
+ if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
+ return 1;
+ }
+#endif
+ release_channel(hcd, hc, qtd, hc->halt_status);
+ }
+
+ return 1;
+}
+
+/** Handles interrupt for a specific Host Channel */
+int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num)
+{
+ int retval = 0;
+ hcint_data_t hcint;
+ hcintmsk_data_t hcintmsk;
+ dwc_hc_t *hc;
+ dwc_otg_hc_regs_t *hc_regs;
+ dwc_otg_qtd_t *qtd;
+
+ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
+
+ hc = dwc_otg_hcd->hc_ptr_array[num];
+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
+ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
+
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
+ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
+ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
+ hcint.d32 = hcint.d32 & hcintmsk.d32;
+
+ if (!dwc_otg_hcd->core_if->dma_enable) {
+ if (hcint.b.chhltd && hcint.d32 != 0x2) {
+ hcint.b.chhltd = 0;
+ }
+ }
+
+ if (hcint.b.xfercomp) {
+ retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ /*
+ * If NYET occurred at same time as Xfer Complete, the NYET is
+ * handled by the Xfer Complete interrupt handler. Don't want
+ * to call the NYET interrupt handler in this case.
+ */
+ hcint.b.nyet = 0;
+ }
+ if (hcint.b.chhltd) {
+ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.ahberr) {
+ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.stall) {
+ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.nak) {
+ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.ack) {
+ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.nyet) {
+ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.xacterr) {
+ retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.bblerr) {
+ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.frmovrun) {
+ retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+ if (hcint.b.datatglerr) {
+ retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
+ }
+
+ return retval;
+}
+
+#endif /* DWC_DEVICE_ONLY */
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_queue.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_queue.c
new file mode 100644
index 0000000000..7395d1dcfc
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd_queue.c
@@ -0,0 +1,794 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
+ * $Revision: #33 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064918 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_DEVICE_ONLY
+
+/**
+ * @file
+ *
+ * This file contains the functions to manage Queue Heads and Queue
+ * Transfer Descriptors.
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/errno.h>
+#include <linux/list.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/version.h>
+
+#include <mach/irqs.h>
+
+#include "otg_driver.h"
+#include "otg_hcd.h"
+#include "otg_regs.h"
+
+/**
+ * This function allocates and initializes a QH.
+ *
+ * @param hcd The HCD state structure for the DWC OTG controller.
+ * @param[in] urb Holds the information about the device/endpoint that we need
+ * to initialize the QH.
+ *
+ * @return Returns pointer to the newly allocated QH, or NULL on error. */
+dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb)
+{
+ dwc_otg_qh_t *qh;
+
+ /* Allocate memory */
+ /** @todo add memflags argument */
+ qh = dwc_otg_hcd_qh_alloc ();
+ if (qh == NULL) {
+ return NULL;
+ }
+
+ dwc_otg_hcd_qh_init (hcd, qh, urb);
+ return qh;
+}
+
+/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
+ * removed from a list. QTD list should already be empty if called from URB
+ * Dequeue.
+ *
+ * @param[in] hcd HCD instance.
+ * @param[in] qh The QH to free.
+ */
+void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ dwc_otg_qtd_t *qtd;
+ struct list_head *pos;
+ //unsigned long flags;
+
+ /* Free each QTD in the QTD list */
+
+#ifdef CONFIG_SMP
+ //the spinlock is locked before this function get called,
+ //but in case the lock is needed, the check function is preserved
+
+ //but in non-SMP mode, all spinlock is lockable.
+ //don't do the test in non-SMP mode
+
+ if(spin_trylock(&hcd->lock)) {
+ printk("%s: It is not supposed to be lockable!!\n",__func__);
+ BUG();
+ }
+#endif
+// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
+ for (pos = qh->qtd_list.next;
+ pos != &qh->qtd_list;
+ pos = qh->qtd_list.next)
+ {
+ list_del (pos);
+ qtd = dwc_list_to_qtd (pos);
+ dwc_otg_hcd_qtd_free (qtd);
+ }
+// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
+
+ kfree (qh);
+ return;
+}
+
+/** Initializes a QH structure.
+ *
+ * @param[in] hcd The HCD state structure for the DWC OTG controller.
+ * @param[in] qh The QH to init.
+ * @param[in] urb Holds the information about the device/endpoint that we need
+ * to initialize the QH. */
+#define SCHEDULE_SLOP 10
+void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
+{
+ char *speed, *type;
+ memset (qh, 0, sizeof (dwc_otg_qh_t));
+
+ /* Initialize QH */
+ switch (usb_pipetype(urb->pipe)) {
+ case PIPE_CONTROL:
+ qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
+ break;
+ case PIPE_BULK:
+ qh->ep_type = USB_ENDPOINT_XFER_BULK;
+ break;
+ case PIPE_ISOCHRONOUS:
+ qh->ep_type = USB_ENDPOINT_XFER_ISOC;
+ break;
+ case PIPE_INTERRUPT:
+ qh->ep_type = USB_ENDPOINT_XFER_INT;
+ break;
+ }
+
+ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
+
+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
+ qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
+ INIT_LIST_HEAD(&qh->qtd_list);
+ INIT_LIST_HEAD(&qh->qh_list_entry);
+ qh->channel = NULL;
+ qh->speed = urb->dev->speed;
+
+ /* FS/LS Enpoint on HS Hub
+ * NOT virtual root hub */
+ qh->do_split = 0;
+ if (((urb->dev->speed == USB_SPEED_LOW) ||
+ (urb->dev->speed == USB_SPEED_FULL)) &&
+ (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1))
+ {
+ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
+ usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum,
+ urb->dev->ttport);
+ qh->do_split = 1;
+ }
+
+ if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
+ qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
+ /* Compute scheduling parameters once and save them. */
+ hprt0_data_t hprt;
+
+ /** @todo Account for split transfers in the bus time. */
+ int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
+ qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed,
+ usb_pipein(urb->pipe),
+ (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
+ bytecount));
+
+ /* Start in a slightly future (micro)frame. */
+ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
+ SCHEDULE_SLOP);
+ qh->interval = urb->interval;
+#if 0
+ /* Increase interrupt polling rate for debugging. */
+ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
+ qh->interval = 8;
+ }
+#endif
+ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
+ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
+ ((urb->dev->speed == USB_SPEED_LOW) ||
+ (urb->dev->speed == USB_SPEED_FULL))) {
+ qh->interval *= 8;
+ qh->sched_frame |= 0x7;
+ qh->start_split_frame = qh->sched_frame;
+ }
+
+ }
+
+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
+ urb->dev->devnum);
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
+ usb_pipeendpoint(urb->pipe),
+ usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
+
+ switch(urb->dev->speed) {
+ case USB_SPEED_LOW:
+ speed = "low";
+ break;
+ case USB_SPEED_FULL:
+ speed = "full";
+ break;
+ case USB_SPEED_HIGH:
+ speed = "high";
+ break;
+ default:
+ speed = "?";
+ break;
+ }
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
+
+ switch (qh->ep_type) {
+ case USB_ENDPOINT_XFER_ISOC:
+ type = "isochronous";
+ break;
+ case USB_ENDPOINT_XFER_INT:
+ type = "interrupt";
+ break;
+ case USB_ENDPOINT_XFER_CONTROL:
+ type = "control";
+ break;
+ case USB_ENDPOINT_XFER_BULK:
+ type = "bulk";
+ break;
+ default:
+ type = "?";
+ break;
+ }
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type);
+
+#ifdef DEBUG
+ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
+ qh->usecs);
+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
+ qh->interval);
+ }
+#endif
+
+ return;
+}
+
+/**
+ * Microframe scheduler
+ * track the total use in hcd->frame_usecs
+ * keep each qh use in qh->frame_usecs
+ * when surrendering the qh then donate the time back
+ */
+static const u16 max_uframe_usecs[] = { 100, 100, 100, 100, 100, 100, 30, 0 };
+
+/*
+ * called from dwc_otg_hcd.c:dwc_otg_hcd_init
+ */
+int init_hcd_usecs(dwc_otg_hcd_t *hcd)
+{
+ int i;
+
+ for (i = 0; i < 8; i++)
+ hcd->frame_usecs[i] = max_uframe_usecs[i];
+
+ return 0;
+}
+
+static int find_single_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ int i;
+ u16 utime;
+ int t_left;
+ int ret;
+ int done;
+
+ ret = -1;
+ utime = qh->usecs;
+ t_left = utime;
+ i = 0;
+ done = 0;
+ while (done == 0) {
+ /* At the start hcd->frame_usecs[i] = max_uframe_usecs[i]; */
+ if (utime <= hcd->frame_usecs[i]) {
+ hcd->frame_usecs[i] -= utime;
+ qh->frame_usecs[i] += utime;
+ t_left -= utime;
+ ret = i;
+ done = 1;
+ return ret;
+ } else {
+ i++;
+ if (i == 8) {
+ done = 1;
+ ret = -1;
+ }
+ }
+ }
+ return ret;
+}
+
+/*
+ * use this for FS apps that can span multiple uframes
+ */
+static int find_multi_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ int i;
+ int j;
+ u16 utime;
+ int t_left;
+ int ret;
+ int done;
+ u16 xtime;
+
+ ret = -1;
+ utime = qh->usecs;
+ t_left = utime;
+ i = 0;
+ done = 0;
+loop:
+ while (done == 0) {
+ if (hcd->frame_usecs[i] <= 0) {
+ i++;
+ if (i == 8) {
+ done = 1;
+ ret = -1;
+ }
+ goto loop;
+ }
+
+ /*
+ * We need n consequtive slots so use j as a start slot.
+ * j plus j+1 must be enough time (for now)
+ */
+ xtime = hcd->frame_usecs[i];
+ for (j = i + 1; j < 8; j++) {
+ /*
+ * if we add this frame remaining time to xtime we may
+ * be OK, if not we need to test j for a complete frame.
+ */
+ if ((xtime + hcd->frame_usecs[j]) < utime) {
+ if (hcd->frame_usecs[j] < max_uframe_usecs[j]) {
+ j = 8;
+ ret = -1;
+ continue;
+ }
+ }
+ if (xtime >= utime) {
+ ret = i;
+ j = 8; /* stop loop with a good value ret */
+ continue;
+ }
+ /* add the frame time to x time */
+ xtime += hcd->frame_usecs[j];
+ /* we must have a fully available next frame or break */
+ if ((xtime < utime) &&
+ (hcd->frame_usecs[j] == max_uframe_usecs[j])) {
+ ret = -1;
+ j = 8; /* stop loop with a bad value ret */
+ continue;
+ }
+ }
+ if (ret >= 0) {
+ t_left = utime;
+ for (j = i; (t_left > 0) && (j < 8); j++) {
+ t_left -= hcd->frame_usecs[j];
+ if (t_left <= 0) {
+ qh->frame_usecs[j] +=
+ hcd->frame_usecs[j] + t_left;
+ hcd->frame_usecs[j] = -t_left;
+ ret = i;
+ done = 1;
+ } else {
+ qh->frame_usecs[j] +=
+ hcd->frame_usecs[j];
+ hcd->frame_usecs[j] = 0;
+ }
+ }
+ } else {
+ i++;
+ if (i == 8) {
+ done = 1;
+ ret = -1;
+ }
+ }
+ }
+ return ret;
+}
+
+static int find_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ int ret = -1;
+
+ if (qh->speed == USB_SPEED_HIGH)
+ /* if this is a hs transaction we need a full frame */
+ ret = find_single_uframe(hcd, qh);
+ else
+ /* FS transaction may need a sequence of frames */
+ ret = find_multi_uframe(hcd, qh);
+
+ return ret;
+}
+
+/**
+ * Checks that the max transfer size allowed in a host channel is large enough
+ * to handle the maximum data transfer in a single (micro)frame for a periodic
+ * transfer.
+ *
+ * @param hcd The HCD state structure for the DWC OTG controller.
+ * @param qh QH for a periodic endpoint.
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ int status;
+ uint32_t max_xfer_size;
+ uint32_t max_channel_xfer_size;
+
+ status = 0;
+
+ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
+ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
+
+ if (max_xfer_size > max_channel_xfer_size) {
+ DWC_NOTICE("%s: Periodic xfer length %d > "
+ "max xfer length for channel %d\n",
+ __func__, max_xfer_size, max_channel_xfer_size);
+ status = -ENOSPC;
+ }
+
+ return status;
+}
+
+/**
+ * Schedules an interrupt or isochronous transfer in the periodic schedule.
+ */
+static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ int status;
+ struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
+ int frame;
+
+ status = find_uframe(hcd, qh);
+ frame = -1;
+ if (status == 0) {
+ frame = 7;
+ } else {
+ if (status > 0)
+ frame = status - 1;
+ }
+ /* Set the new frame up */
+ if (frame > -1) {
+ qh->sched_frame &= ~0x7;
+ qh->sched_frame |= (frame & 7);
+ }
+ if (status != -1)
+ status = 0;
+ if (status) {
+ pr_notice("%s: Insufficient periodic bandwidth for "
+ "periodic transfer.\n", __func__);
+ return status;
+ }
+ status = check_max_xfer_size(hcd, qh);
+ if (status) {
+ pr_notice("%s: Channel max transfer size too small "
+ "for periodic transfer.\n", __func__);
+ return status;
+ }
+ /* Always start in the inactive schedule. */
+ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
+
+ /* Update claimed usecs per (micro)frame. */
+ hcd->periodic_usecs += qh->usecs;
+
+ /*
+ * Update average periodic bandwidth claimed and # periodic reqs for
+ * usbfs.
+ */
+ bus->bandwidth_allocated += qh->usecs / qh->interval;
+
+ if (qh->ep_type == USB_ENDPOINT_XFER_INT)
+ bus->bandwidth_int_reqs++;
+ else
+ bus->bandwidth_isoc_reqs++;
+
+ return status;
+}
+
+/**
+ * This function adds a QH to either the non periodic or periodic schedule if
+ * it is not already in the schedule. If the QH is already in the schedule, no
+ * action is taken.
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ //unsigned long flags;
+ int status = 0;
+
+#ifdef CONFIG_SMP
+ //the spinlock is locked before this function get called,
+ //but in case the lock is needed, the check function is preserved
+ //but in non-SMP mode, all spinlock is lockable.
+ //don't do the test in non-SMP mode
+
+ if(spin_trylock(&hcd->lock)) {
+ printk("%s: It is not supposed to be lockable!!\n",__func__);
+ BUG();
+ }
+#endif
+// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
+
+ if (!list_empty(&qh->qh_list_entry)) {
+ /* QH already in a schedule. */
+ goto done;
+ }
+
+ /* Add the new QH to the appropriate schedule */
+ if (dwc_qh_is_non_per(qh)) {
+ /* Always start in the inactive schedule. */
+ list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive);
+ } else {
+ status = schedule_periodic(hcd, qh);
+ }
+
+ done:
+// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
+
+ return status;
+}
+
+/**
+ * Removes an interrupt or isochronous transfer from the periodic schedule.
+ */
+static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
+ int i;
+
+ list_del_init(&qh->qh_list_entry);
+ /* Update claimed usecs per (micro)frame. */
+ hcd->periodic_usecs -= qh->usecs;
+ for (i = 0; i < 8; i++) {
+ hcd->frame_usecs[i] += qh->frame_usecs[i];
+ qh->frame_usecs[i] = 0;
+ }
+ /*
+ * Update average periodic bandwidth claimed and # periodic reqs for
+ * usbfs.
+ */
+ bus->bandwidth_allocated -= qh->usecs / qh->interval;
+
+ if (qh->ep_type == USB_ENDPOINT_XFER_INT)
+ bus->bandwidth_int_reqs--;
+ else
+ bus->bandwidth_isoc_reqs--;
+}
+
+/**
+ * Removes a QH from either the non-periodic or periodic schedule. Memory is
+ * not freed.
+ *
+ * @param[in] hcd The HCD state structure.
+ * @param[in] qh QH to remove from schedule. */
+void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
+{
+ //unsigned long flags;
+
+#ifdef CONFIG_SMP
+ //the spinlock is locked before this function get called,
+ //but in case the lock is needed, the check function is preserved
+ //but in non-SMP mode, all spinlock is lockable.
+ //don't do the test in non-SMP mode
+
+ if(spin_trylock(&hcd->lock)) {
+ printk("%s: It is not supposed to be lockable!!\n",__func__);
+ BUG();
+ }
+#endif
+// SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
+
+ if (list_empty(&qh->qh_list_entry)) {
+ /* QH is not in a schedule. */
+ goto done;
+ }
+
+ if (dwc_qh_is_non_per(qh)) {
+ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+ }
+ list_del_init(&qh->qh_list_entry);
+ } else {
+ deschedule_periodic(hcd, qh);
+ }
+
+ done:
+// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
+ return;
+}
+
+/**
+ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
+ * non-periodic schedule. The QH is added to the inactive non-periodic
+ * schedule if any QTDs are still attached to the QH.
+ *
+ * For periodic QHs, the QH is removed from the periodic queued schedule. If
+ * there are any QTDs still attached to the QH, the QH is added to either the
+ * periodic inactive schedule or the periodic ready schedule and its next
+ * scheduled frame is calculated. The QH is placed in the ready schedule if
+ * the scheduled frame has been reached already. Otherwise it's placed in the
+ * inactive schedule. If there are no QTDs attached to the QH, the QH is
+ * completely removed from the periodic schedule.
+ */
+void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split)
+{
+ unsigned long flags;
+ SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
+
+ if (dwc_qh_is_non_per(qh)) {
+ dwc_otg_hcd_qh_remove(hcd, qh);
+ if (!list_empty(&qh->qtd_list)) {
+ /* Add back to inactive non-periodic schedule. */
+ dwc_otg_hcd_qh_add(hcd, qh);
+ }
+ } else {
+ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
+
+ if (qh->do_split) {
+ /* Schedule the next continuing periodic split transfer */
+ if (sched_next_periodic_split) {
+
+ qh->sched_frame = frame_number;
+ if (dwc_frame_num_le(frame_number,
+ dwc_frame_num_inc(qh->start_split_frame, 1))) {
+ /*
+ * Allow one frame to elapse after start
+ * split microframe before scheduling
+ * complete split, but DONT if we are
+ * doing the next start split in the
+ * same frame for an ISOC out.
+ */
+ if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) {
+ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1);
+ }
+ }
+ } else {
+ qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
+ qh->interval);
+ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
+ qh->sched_frame = frame_number;
+ }
+ qh->sched_frame |= 0x7;
+ qh->start_split_frame = qh->sched_frame;
+ }
+ } else {
+ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval);
+ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
+ qh->sched_frame = frame_number;
+ }
+ }
+
+ if (list_empty(&qh->qtd_list)) {
+ dwc_otg_hcd_qh_remove(hcd, qh);
+ } else {
+ /*
+ * Remove from periodic_sched_queued and move to
+ * appropriate queue.
+ */
+ if (qh->sched_frame == frame_number) {
+ list_move(&qh->qh_list_entry,
+ &hcd->periodic_sched_ready);
+ } else {
+ list_move(&qh->qh_list_entry,
+ &hcd->periodic_sched_inactive);
+ }
+ }
+ }
+
+ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
+}
+
+/**
+ * This function allocates and initializes a QTD.
+ *
+ * @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up
+ * pointing to each other so each pair should have a unique correlation.
+ *
+ * @return Returns pointer to the newly allocated QTD, or NULL on error. */
+dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb)
+{
+ dwc_otg_qtd_t *qtd;
+
+ qtd = dwc_otg_hcd_qtd_alloc ();
+ if (qtd == NULL) {
+ return NULL;
+ }
+
+ dwc_otg_hcd_qtd_init (qtd, urb);
+ return qtd;
+}
+
+/**
+ * Initializes a QTD structure.
+ *
+ * @param[in] qtd The QTD to initialize.
+ * @param[in] urb The URB to use for initialization. */
+void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb)
+{
+ memset (qtd, 0, sizeof (dwc_otg_qtd_t));
+ qtd->urb = urb;
+ if (usb_pipecontrol(urb->pipe)) {
+ /*
+ * The only time the QTD data toggle is used is on the data
+ * phase of control transfers. This phase always starts with
+ * DATA1.
+ */
+ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
+ qtd->control_phase = DWC_OTG_CONTROL_SETUP;
+ }
+
+ /* start split */
+ qtd->complete_split = 0;
+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
+ qtd->isoc_split_offset = 0;
+
+ /* Store the qtd ptr in the urb to reference what QTD. */
+ urb->hcpriv = qtd;
+ return;
+}
+
+/**
+ * This function adds a QTD to the QTD-list of a QH. It will find the correct
+ * QH to place the QTD into. If it does not find a QH, then it will create a
+ * new QH. If the QH to which the QTD is added is not currently scheduled, it
+ * is placed into the proper schedule based on its EP type.
+ *
+ * @param[in] qtd The QTD to add
+ * @param[in] dwc_otg_hcd The DWC HCD structure
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd,
+ dwc_otg_hcd_t *dwc_otg_hcd)
+{
+ struct usb_host_endpoint *ep;
+ dwc_otg_qh_t *qh;
+ unsigned long flags;
+ int retval = 0;
+
+ struct urb *urb = qtd->urb;
+
+ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
+
+ /*
+ * Get the QH which holds the QTD-list to insert to. Create QH if it
+ * doesn't exist.
+ */
+ ep = dwc_urb_to_endpoint(urb);
+ qh = (dwc_otg_qh_t *)ep->hcpriv;
+ if (qh == NULL) {
+ qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb);
+ if (qh == NULL) {
+ goto done;
+ }
+ ep->hcpriv = qh;
+ }
+
+ retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
+ if (retval == 0) {
+ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
+ }
+
+ done:
+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
+
+ return retval;
+}
+
+#endif /* DWC_DEVICE_ONLY */
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd.c
new file mode 100644
index 0000000000..2cf6243ad0
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd.c
@@ -0,0 +1,2502 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $
+ * $Revision: #70 $
+ * $Date: 2008/10/14 $
+ * $Change: 1115682 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_HOST_ONLY
+
+/** @file
+ * This file implements the Peripheral Controller Driver.
+ *
+ * The Peripheral Controller Driver (PCD) is responsible for
+ * translating requests from the Function Driver into the appropriate
+ * actions on the DWC_otg controller. It isolates the Function Driver
+ * from the specifics of the controller by providing an API to the
+ * Function Driver.
+ *
+ * The Peripheral Controller Driver for Linux will implement the
+ * Gadget API, so that the existing Gadget drivers can be used.
+ * (Gadget Driver is the Linux terminology for a Function Driver.)
+ *
+ * The Linux Gadget API is defined in the header file
+ * <code><linux/usb_gadget.h></code>. The USB EP operations API is
+ * defined in the structure <code>usb_ep_ops</code> and the USB
+ * Controller API is defined in the structure
+ * <code>usb_gadget_ops</code>.
+ *
+ * An important function of the PCD is managing interrupts generated
+ * by the DWC_otg controller. The implementation of the DWC_otg device
+ * mode interrupt service routines is in dwc_otg_pcd_intr.c.
+ *
+ * @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
+ * @todo Does it work when the request size is greater than DEPTSIZ
+ * transfer size
+ *
+ */
+
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/errno.h>
+#include <linux/list.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/dma-mapping.h>
+#include <linux/version.h>
+
+#include <mach/irqs.h>
+#include <linux/usb/ch9.h>
+
+//#include <linux/usb_gadget.h>
+
+#include "otg_driver.h"
+#include "otg_pcd.h"
+
+
+
+/**
+ * Static PCD pointer for use in usb_gadget_register_driver and
+ * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init.
+ */
+static dwc_otg_pcd_t *s_pcd = 0;
+
+
+/* Display the contents of the buffer */
+extern void dump_msg(const u8 *buf, unsigned int length);
+
+
+/**
+ * This function completes a request. It call's the request call back.
+ */
+void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req,
+ int status)
+{
+ unsigned stopped = ep->stopped;
+
+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep);
+ list_del_init(&req->queue);
+
+ if (req->req.status == -EINPROGRESS) {
+ req->req.status = status;
+ } else {
+ status = req->req.status;
+ }
+
+ /* don't modify queue heads during completion callback */
+ ep->stopped = 1;
+ SPIN_UNLOCK(&ep->pcd->lock);
+ req->req.complete(&ep->ep, &req->req);
+ SPIN_LOCK(&ep->pcd->lock);
+
+ if (ep->pcd->request_pending > 0) {
+ --ep->pcd->request_pending;
+ }
+
+ ep->stopped = stopped;
+}
+
+/**
+ * This function terminates all the requsts in the EP request queue.
+ */
+void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep)
+{
+ dwc_otg_pcd_request_t *req;
+
+ ep->stopped = 1;
+
+ /* called with irqs blocked?? */
+ while (!list_empty(&ep->queue)) {
+ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
+ queue);
+ dwc_otg_request_done(ep, req, -ESHUTDOWN);
+ }
+}
+
+/* USB Endpoint Operations */
+/*
+ * The following sections briefly describe the behavior of the Gadget
+ * API endpoint operations implemented in the DWC_otg driver
+ * software. Detailed descriptions of the generic behavior of each of
+ * these functions can be found in the Linux header file
+ * include/linux/usb_gadget.h.
+ *
+ * The Gadget API provides wrapper functions for each of the function
+ * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
+ * function, which then calls the underlying PCD function. The
+ * following sections are named according to the wrapper
+ * functions. Within each section, the corresponding DWC_otg PCD
+ * function name is specified.
+ *
+ */
+
+/**
+ * This function assigns periodic Tx FIFO to an periodic EP
+ * in shared Tx FIFO mode
+ */
+static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t *core_if)
+{
+ uint32_t PerTxMsk = 1;
+ int i;
+ for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i)
+ {
+ if((PerTxMsk & core_if->p_tx_msk) == 0) {
+ core_if->p_tx_msk |= PerTxMsk;
+ return i + 1;
+ }
+ PerTxMsk <<= 1;
+ }
+ return 0;
+}
+/**
+ * This function releases periodic Tx FIFO
+ * in shared Tx FIFO mode
+ */
+static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
+{
+ core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
+}
+/**
+ * This function assigns periodic Tx FIFO to an periodic EP
+ * in shared Tx FIFO mode
+ */
+static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if)
+{
+ uint32_t TxMsk = 1;
+ int i;
+
+ for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i)
+ {
+ if((TxMsk & core_if->tx_msk) == 0) {
+ core_if->tx_msk |= TxMsk;
+ return i + 1;
+ }
+ TxMsk <<= 1;
+ }
+ return 0;
+}
+/**
+ * This function releases periodic Tx FIFO
+ * in shared Tx FIFO mode
+ */
+static void release_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
+{
+ core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
+}
+
+/**
+ * This function is called by the Gadget Driver for each EP to be
+ * configured for the current configuration (SET_CONFIGURATION).
+ *
+ * This function initializes the dwc_otg_ep_t data structure, and then
+ * calls dwc_otg_ep_activate.
+ */
+static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep,
+ const struct usb_endpoint_descriptor *ep_desc)
+{
+ dwc_otg_pcd_ep_t *ep = 0;
+ dwc_otg_pcd_t *pcd = 0;
+ unsigned long flags;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc);
+
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+ if (!usb_ep || !ep_desc || ep->desc ||
+ ep_desc->bDescriptorType != USB_DT_ENDPOINT) {
+ DWC_WARN("%s, bad ep or descriptor\n", __func__);
+ return -EINVAL;
+ }
+ if (ep == &ep->pcd->ep0) {
+ DWC_WARN("%s, bad ep(0)\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Check FIFO size? */
+ if (!ep_desc->wMaxPacketSize) {
+ DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name);
+ return -ERANGE;
+ }
+
+ pcd = ep->pcd;
+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+ DWC_WARN("%s, bogus device state\n", __func__);
+ return -ESHUTDOWN;
+ }
+
+ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
+
+ ep->desc = ep_desc;
+ ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize);
+
+ /*
+ * Activate the EP
+ */
+ ep->stopped = 0;
+
+ ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0;
+ ep->dwc_ep.maxpacket = ep->ep.maxpacket;
+
+ ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
+
+ if(ep->dwc_ep.is_in) {
+ if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) {
+ ep->dwc_ep.tx_fifo_num = 0;
+
+ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) {
+ /*
+ * if ISOC EP then assign a Periodic Tx FIFO.
+ */
+ ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if);
+ }
+ } else {
+ /*
+ * if Dedicated FIFOs mode is on then assign a Tx FIFO.
+ */
+ ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if);
+
+ }
+ }
+ /* Set initial data PID. */
+ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) {
+ ep->dwc_ep.data_pid_start = 0;
+ }
+
+ DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n",
+ ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"),
+ ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
+
+ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) {
+ ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
+ }
+
+ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+
+ return 0;
+}
+
+/**
+ * This function is called when an EP is disabled due to disconnect or
+ * change in configuration. Any pending requests will terminate with a
+ * status of -ESHUTDOWN.
+ *
+ * This function modifies the dwc_otg_ep_t data structure for this EP,
+ * and then calls dwc_otg_ep_deactivate.
+ */
+static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep)
+{
+ dwc_otg_pcd_ep_t *ep;
+ dwc_otg_pcd_t *pcd = 0;
+ unsigned long flags;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep);
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+ if (!usb_ep || !ep->desc) {
+ DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
+ usb_ep ? ep->ep.name : NULL);
+ return -EINVAL;
+ }
+
+ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
+
+ dwc_otg_request_nuke(ep);
+
+ dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
+ ep->desc = 0;
+ ep->stopped = 1;
+
+ if(ep->dwc_ep.is_in) {
+ dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
+ release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
+ release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
+ }
+
+ /* Free DMA Descriptors */
+ pcd = ep->pcd;
+
+ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
+
+ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) {
+ dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
+ }
+
+ DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name);
+ return 0;
+}
+
+
+/**
+ * This function allocates a request object to use with the specified
+ * endpoint.
+ *
+ * @param ep The endpoint to be used with with the request
+ * @param gfp_flags the GFP_* flags to use.
+ */
+static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep,
+ gfp_t gfp_flags)
+{
+ dwc_otg_pcd_request_t *req;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags);
+ if (0 == ep) {
+ DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
+ return 0;
+ }
+ req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags);
+ if (0 == req) {
+ DWC_WARN("%s() %s\n", __func__,
+ "request allocation failed!\n");
+ return 0;
+ }
+ memset(req, 0, sizeof(dwc_otg_pcd_request_t));
+ req->req.dma = DMA_ADDR_INVALID;
+ INIT_LIST_HEAD(&req->queue);
+ return &req->req;
+}
+
+/**
+ * This function frees a request object.
+ *
+ * @param ep The endpoint associated with the request
+ * @param req The request being freed
+ */
+static void dwc_otg_pcd_free_request(struct usb_ep *ep,
+ struct usb_request *req)
+{
+ dwc_otg_pcd_request_t *request;
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req);
+
+ if (0 == ep || 0 == req) {
+ DWC_WARN("%s() %s\n", __func__,
+ "Invalid ep or req argument!\n");
+ return;
+ }
+
+ request = container_of(req, dwc_otg_pcd_request_t, req);
+ kfree(request);
+}
+
+#if 0
+/**
+ * This function allocates an I/O buffer to be used for a transfer
+ * to/from the specified endpoint.
+ *
+ * @param usb_ep The endpoint to be used with with the request
+ * @param bytes The desired number of bytes for the buffer
+ * @param dma Pointer to the buffer's DMA address; must be valid
+ * @param gfp_flags the GFP_* flags to use.
+ * @return address of a new buffer or null is buffer could not be allocated.
+ */
+static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes,
+ dma_addr_t *dma,
+ gfp_t gfp_flags)
+{
+ void *buf;
+ dwc_otg_pcd_ep_t *ep;
+ dwc_otg_pcd_t *pcd = 0;
+
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+ pcd = ep->pcd;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes,
+ dma, gfp_flags);
+
+ /* Check dword alignment */
+ if ((bytes & 0x3UL) != 0) {
+ DWC_WARN("%s() Buffer size is not a multiple of"
+ "DWORD size (%d)",__func__, bytes);
+ }
+
+ if (GET_CORE_IF(pcd)->dma_enable) {
+ buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags);
+ }
+ else {
+ buf = kmalloc(bytes, gfp_flags);
+ }
+
+ /* Check dword alignment */
+ if (((int)buf & 0x3UL) != 0) {
+ DWC_WARN("%s() Buffer is not DWORD aligned (%p)",
+ __func__, buf);
+ }
+
+ return buf;
+}
+
+/**
+ * This function frees an I/O buffer that was allocated by alloc_buffer.
+ *
+ * @param usb_ep the endpoint associated with the buffer
+ * @param buf address of the buffer
+ * @param dma The buffer's DMA address
+ * @param bytes The number of bytes of the buffer
+ */
+static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf,
+ dma_addr_t dma, unsigned bytes)
+{
+ dwc_otg_pcd_ep_t *ep;
+ dwc_otg_pcd_t *pcd = 0;
+
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+ pcd = ep->pcd;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes);
+
+ if (GET_CORE_IF(pcd)->dma_enable) {
+ dma_free_coherent (NULL, bytes, buf, dma);
+ }
+ else {
+ kfree(buf);
+ }
+}
+#endif
+
+/**
+ * This function is used to submit an I/O Request to an EP.
+ *
+ * - When the request completes the request's completion callback
+ * is called to return the request to the driver.
+ * - An EP, except control EPs, may have multiple requests
+ * pending.
+ * - Once submitted the request cannot be examined or modified.
+ * - Each request is turned into one or more packets.
+ * - A BULK EP can queue any amount of data; the transfer is
+ * packetized.
+ * - Zero length Packets are specified with the request 'zero'
+ * flag.
+ */
+static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep,
+ struct usb_request *usb_req,
+ gfp_t gfp_flags)
+{
+ int prevented = 0;
+ dwc_otg_pcd_request_t *req;
+ dwc_otg_pcd_ep_t *ep;
+ dwc_otg_pcd_t *pcd;
+ unsigned long flags = 0;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n",
+ __func__, usb_ep, usb_req, gfp_flags);
+
+ req = container_of(usb_req, dwc_otg_pcd_request_t, req);
+ if (!usb_req || !usb_req->complete || !usb_req->buf ||
+ !list_empty(&req->queue)) {
+ DWC_WARN("%s, bad params\n", __func__);
+ return -EINVAL;
+ }
+
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+ if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) {
+ DWC_WARN("%s, bad ep\n", __func__);
+ return -EINVAL;
+ }
+
+ pcd = ep->pcd;
+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
+ DWC_WARN("%s, bogus device state\n", __func__);
+ return -ESHUTDOWN;
+ }
+
+
+ DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n",
+ usb_ep->name, usb_req, usb_req->length, usb_req->buf);
+
+ if (!GET_CORE_IF(pcd)->core_params->opt) {
+ if (ep->dwc_ep.num != 0) {
+ DWC_ERROR("%s queue req %p, len %d buf %p\n",
+ usb_ep->name, usb_req, usb_req->length, usb_req->buf);
+ }
+ }
+
+ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
+
+#if defined(DEBUG) & defined(VERBOSE)
+ dump_msg(usb_req->buf, usb_req->length);
+#endif
+
+ usb_req->status = -EINPROGRESS;
+ usb_req->actual = 0;
+
+ /*
+ * For EP0 IN without premature status, zlp is required?
+ */
+ if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
+ DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name);
+ //_req->zero = 1;
+ }
+
+ /* Start the transfer */
+ if (list_empty(&ep->queue) && !ep->stopped) {
+ /* EP0 Transfer? */
+ if (ep->dwc_ep.num == 0) {
+ switch (pcd->ep0state) {
+ case EP0_IN_DATA_PHASE:
+ DWC_DEBUGPL(DBG_PCD,
+ "%s ep0: EP0_IN_DATA_PHASE\n",
+ __func__);
+ break;
+
+ case EP0_OUT_DATA_PHASE:
+ DWC_DEBUGPL(DBG_PCD,
+ "%s ep0: EP0_OUT_DATA_PHASE\n",
+ __func__);
+ if (pcd->request_config) {
+ /* Complete STATUS PHASE */
+ ep->dwc_ep.is_in = 1;
+ pcd->ep0state = EP0_IN_STATUS_PHASE;
+ }
+ break;
+
+ case EP0_IN_STATUS_PHASE:
+ DWC_DEBUGPL(DBG_PCD,
+ "%s ep0: EP0_IN_STATUS_PHASE\n",
+ __func__);
+ break;
+
+ default:
+ DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
+ pcd->ep0state);
+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+ return -EL2HLT;
+ }
+ ep->dwc_ep.dma_addr = usb_req->dma;
+ ep->dwc_ep.start_xfer_buff = usb_req->buf;
+ ep->dwc_ep.xfer_buff = usb_req->buf;
+ ep->dwc_ep.xfer_len = usb_req->length;
+ ep->dwc_ep.xfer_count = 0;
+ ep->dwc_ep.sent_zlp = 0;
+ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
+
+ if(usb_req->zero) {
+ if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0)
+ && (ep->dwc_ep.xfer_len != 0)) {
+ ep->dwc_ep.sent_zlp = 1;
+ }
+
+ }
+
+ ep_check_and_patch_dma_addr(ep);
+ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
+ }
+ else {
+
+ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
+
+ /* Setup and start the Transfer */
+ ep->dwc_ep.dma_addr = usb_req->dma;
+ ep->dwc_ep.start_xfer_buff = usb_req->buf;
+ ep->dwc_ep.xfer_buff = usb_req->buf;
+ ep->dwc_ep.sent_zlp = 0;
+ ep->dwc_ep.total_len = usb_req->length;
+ ep->dwc_ep.xfer_len = 0;
+ ep->dwc_ep.xfer_count = 0;
+
+ if(max_transfer > MAX_TRANSFER_SIZE) {
+ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
+ } else {
+ ep->dwc_ep.maxxfer = max_transfer;
+ }
+
+ if(usb_req->zero) {
+ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
+ && (ep->dwc_ep.total_len != 0)) {
+ ep->dwc_ep.sent_zlp = 1;
+ }
+
+ }
+
+ ep_check_and_patch_dma_addr(ep);
+ dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
+ }
+ }
+
+ if ((req != 0) || prevented) {
+ ++pcd->request_pending;
+ list_add_tail(&req->queue, &ep->queue);
+ if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) {
+ /** @todo NGS Create a function for this. */
+ diepmsk_data_t diepmsk = { .d32 = 0};
+ diepmsk.b.intktxfemp = 1;
+ if(&GET_CORE_IF(pcd)->multiproc_int_enable) {
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num],
+ 0, diepmsk.d32);
+ } else {
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32);
+ }
+ }
+ }
+
+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+ return 0;
+}
+
+/**
+ * This function cancels an I/O request from an EP.
+ */
+static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep,
+ struct usb_request *usb_req)
+{
+ dwc_otg_pcd_request_t *req;
+ dwc_otg_pcd_ep_t *ep;
+ dwc_otg_pcd_t *pcd;
+ unsigned long flags;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req);
+
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+ if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) {
+ DWC_WARN("%s, bad argument\n", __func__);
+ return -EINVAL;
+ }
+ pcd = ep->pcd;
+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+ DWC_WARN("%s, bogus device state\n", __func__);
+ return -ESHUTDOWN;
+ }
+
+ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
+ DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name,
+ ep->dwc_ep.is_in ? "IN" : "OUT",
+ usb_req);
+
+ /* make sure it's actually queued on this endpoint */
+ list_for_each_entry(req, &ep->queue, queue)
+ {
+ if (&req->req == usb_req) {
+ break;
+ }
+ }
+
+ if (&req->req != usb_req) {
+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+ return -EINVAL;
+ }
+
+ if (!list_empty(&req->queue)) {
+ dwc_otg_request_done(ep, req, -ECONNRESET);
+ }
+ else {
+ req = 0;
+ }
+
+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+
+ return req ? 0 : -EOPNOTSUPP;
+}
+
+/**
+ * usb_ep_set_halt stalls an endpoint.
+ *
+ * usb_ep_clear_halt clears an endpoint halt and resets its data
+ * toggle.
+ *
+ * Both of these functions are implemented with the same underlying
+ * function. The behavior depends on the value argument.
+ *
+ * @param[in] usb_ep the Endpoint to halt or clear halt.
+ * @param[in] value
+ * - 0 means clear_halt.
+ * - 1 means set_halt,
+ * - 2 means clear stall lock flag.
+ * - 3 means set stall lock flag.
+ */
+static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value)
+{
+ int retval = 0;
+ unsigned long flags;
+ dwc_otg_pcd_ep_t *ep = 0;
+
+
+ DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value);
+
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+
+ if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) ||
+ ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
+ DWC_WARN("%s, bad ep\n", __func__);
+ return -EINVAL;
+ }
+
+ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
+ if (!list_empty(&ep->queue)) {
+ DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name);
+ retval = -EAGAIN;
+ }
+ else if (value == 0) {
+ dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,
+ &ep->dwc_ep);
+ }
+ else if(value == 1) {
+ if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) {
+ dtxfsts_data_t txstatus;
+ fifosize_data_t txfifosize;
+
+ txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]);
+ txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts);
+
+ if(txstatus.b.txfspcavail < txfifosize.b.depth) {
+ DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name);
+ retval = -EAGAIN;
+ }
+ else {
+ if (ep->dwc_ep.num == 0) {
+ ep->pcd->ep0state = EP0_STALL;
+ }
+
+ ep->stopped = 1;
+ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
+ &ep->dwc_ep);
+ }
+ }
+ else {
+ if (ep->dwc_ep.num == 0) {
+ ep->pcd->ep0state = EP0_STALL;
+ }
+
+ ep->stopped = 1;
+ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
+ &ep->dwc_ep);
+ }
+ }
+ else if (value == 2) {
+ ep->dwc_ep.stall_clear_flag = 0;
+ }
+ else if (value == 3) {
+ ep->dwc_ep.stall_clear_flag = 1;
+ }
+
+ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
+ return retval;
+}
+
+/**
+ * This function allocates a DMA Descriptor chain for the Endpoint
+ * buffer to be used for a transfer to/from the specified endpoint.
+ */
+dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count)
+{
+
+ return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL);
+}
+
+LIST_HEAD(tofree_list);
+DEFINE_SPINLOCK(tofree_list_lock);
+
+struct free_param {
+ struct list_head list;
+
+ void* addr;
+ dma_addr_t dma_addr;
+ uint32_t size;
+};
+void free_list_agent_fn(void *data){
+ struct list_head free_list;
+ struct free_param *cur,*next;
+
+ spin_lock(&tofree_list_lock);
+ list_add(&free_list,&tofree_list);
+ list_del_init(&tofree_list);
+ spin_unlock(&tofree_list_lock);
+
+ list_for_each_entry_safe(cur,next,&free_list,list){
+ if(cur==&free_list) break;
+ dma_free_coherent(NULL,cur->size,cur->addr,cur->dma_addr);
+ list_del(&cur->list);
+ kfree(cur);
+ }
+}
+DECLARE_WORK(free_list_agent,free_list_agent_fn);
+/**
+ * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc.
+ */
+void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count)
+{
+ if(irqs_disabled()){
+ struct free_param* fp=kmalloc(sizeof(struct free_param),GFP_KERNEL);
+ fp->addr=desc_addr;
+ fp->dma_addr=dma_desc_addr;
+ fp->size=count*sizeof(dwc_otg_dma_desc_t);
+
+ spin_lock(&tofree_list_lock);
+ list_add(&fp->list,&tofree_list);
+ spin_unlock(&tofree_list_lock);
+
+ schedule_work(&free_list_agent);
+ return ;
+ }
+ dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr);
+}
+
+#ifdef DWC_EN_ISOC
+
+/**
+ * This function initializes a descriptor chain for Isochronous transfer
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dwc_ep The EP to start the transfer on.
+ *
+ */
+void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
+{
+
+ dsts_data_t dsts = { .d32 = 0};
+ depctl_data_t depctl = { .d32 = 0 };
+ volatile uint32_t *addr;
+ int i, j;
+
+ if(dwc_ep->is_in)
+ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval;
+ else
+ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
+
+
+ /** Allocate descriptors for double buffering */
+ dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2);
+ if(dwc_ep->desc_addr) {
+ DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__);
+ return;
+ }
+
+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+ /** ISO OUT EP */
+ if(dwc_ep->is_in == 0) {
+ desc_sts_data_t sts = { .d32 =0 };
+ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
+ dma_addr_t dma_ad;
+ uint32_t data_per_desc;
+ dwc_otg_dev_out_ep_regs_t *out_regs =
+ core_if->dev_if->out_ep_regs[dwc_ep->num];
+ int offset;
+
+ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
+ dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma));
+
+ /** Buffer 0 descriptors setup */
+ dma_ad = dwc_ep->dma_addr0;
+
+ sts.b_iso_out.bs = BS_HOST_READY;
+ sts.b_iso_out.rxsts = 0;
+ sts.b_iso_out.l = 0;
+ sts.b_iso_out.sp = 0;
+ sts.b_iso_out.ioc = 0;
+ sts.b_iso_out.pid = 0;
+ sts.b_iso_out.framenum = 0;
+
+ offset = 0;
+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+ {
+
+ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
+ {
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ offset += data_per_desc;
+ dma_desc ++;
+ //(uint32_t)dma_ad += data_per_desc;
+ dma_ad = (uint32_t)dma_ad + data_per_desc;
+ }
+ }
+
+ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
+ {
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ offset += data_per_desc;
+ dma_desc ++;
+ //(uint32_t)dma_ad += data_per_desc;
+ dma_ad = (uint32_t)dma_ad + data_per_desc;
+ }
+
+ sts.b_iso_out.ioc = 1;
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+ dma_desc ++;
+
+ /** Buffer 1 descriptors setup */
+ sts.b_iso_out.ioc = 0;
+ dma_ad = dwc_ep->dma_addr1;
+
+ offset = 0;
+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+ {
+ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
+ {
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ offset += data_per_desc;
+ dma_desc ++;
+ //(uint32_t)dma_ad += data_per_desc;
+ dma_ad = (uint32_t)dma_ad + data_per_desc;
+ }
+ }
+ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
+ {
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ offset += data_per_desc;
+ dma_desc ++;
+ //(uint32_t)dma_ad += data_per_desc;
+ dma_ad = (uint32_t)dma_ad + data_per_desc;
+ }
+
+ sts.b_iso_out.ioc = 1;
+ sts.b_iso_out.l = 1;
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ dwc_ep->next_frame = 0;
+
+ /** Write dma_ad into DOEPDMA register */
+ dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
+
+ }
+ /** ISO IN EP */
+ else {
+ desc_sts_data_t sts = { .d32 =0 };
+ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
+ dma_addr_t dma_ad;
+ dwc_otg_dev_in_ep_regs_t *in_regs =
+ core_if->dev_if->in_ep_regs[dwc_ep->num];
+ unsigned int frmnumber;
+ fifosize_data_t txfifosize,rxfifosize;
+
+ txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts);
+ rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz);
+
+
+ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
+
+ dma_ad = dwc_ep->dma_addr0;
+
+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+ sts.b_iso_in.bs = BS_HOST_READY;
+ sts.b_iso_in.txsts = 0;
+ sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0;
+ sts.b_iso_in.ioc = 0;
+ sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
+
+
+ frmnumber = dwc_ep->next_frame;
+
+ sts.b_iso_in.framenum = frmnumber;
+ sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
+ sts.b_iso_in.l = 0;
+
+ /** Buffer 0 descriptors setup */
+ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
+ {
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+ dma_desc ++;
+
+ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
+ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
+ sts.b_iso_in.framenum += dwc_ep->bInterval;
+ }
+
+ sts.b_iso_in.ioc = 1;
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+ ++dma_desc;
+
+ /** Buffer 1 descriptors setup */
+ sts.b_iso_in.ioc = 0;
+ dma_ad = dwc_ep->dma_addr1;
+
+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+ {
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+ dma_desc ++;
+
+ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
+ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
+ sts.b_iso_in.framenum += dwc_ep->bInterval;
+
+ sts.b_iso_in.ioc = 0;
+ }
+ sts.b_iso_in.ioc = 1;
+ sts.b_iso_in.l = 1;
+
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval;
+
+ /** Write dma_ad into diepdma register */
+ dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
+ }
+ /** Enable endpoint, clear nak */
+ depctl.d32 = 0;
+ depctl.b.epena = 1;
+ depctl.b.usbactep = 1;
+ depctl.b.cnak = 1;
+
+ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
+ depctl.d32 = dwc_read_reg32(addr);
+}
+
+/**
+ * This function initializes a descriptor chain for Isochronous transfer
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+
+void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ depctl_data_t depctl = { .d32 = 0 };
+ volatile uint32_t *addr;
+
+
+ if(ep->is_in) {
+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
+ } else {
+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
+ }
+
+
+ if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) {
+ return;
+ } else {
+ deptsiz_data_t deptsiz = { .d32 = 0 };
+
+ ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval;
+ ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) /
+ ep->maxpacket;
+ ep->xfer_count = 0;
+ ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
+ ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
+
+ if(ep->is_in) {
+ /* Program the transfer size and packet count
+ * as follows: xfersize = N * maxpacket +
+ * short_packet pktcnt = N + (short_packet
+ * exist ? 1 : 0)
+ */
+ deptsiz.b.mc = ep->pkt_per_frm;
+ deptsiz.b.xfersize = ep->xfer_len;
+ deptsiz.b.pktcnt =
+ (ep->xfer_len - 1 + ep->maxpacket) /
+ ep->maxpacket;
+ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
+
+ /* Write the DMA register */
+ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
+
+ } else {
+ deptsiz.b.pktcnt =
+ (ep->xfer_len + (ep->maxpacket - 1)) /
+ ep->maxpacket;
+ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
+
+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
+
+ /* Write the DMA register */
+ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr);
+
+ }
+ /** Enable endpoint, clear nak */
+ depctl.d32 = 0;
+ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
+
+ depctl.b.epena = 1;
+ depctl.b.cnak = 1;
+
+ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
+ }
+}
+
+
+/**
+ * This function does the setup for a data transfer for an EP and
+ * starts the transfer. For an IN transfer, the packets will be
+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ */
+
+void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ if(core_if->dma_enable) {
+ if(core_if->dma_desc_enable) {
+ if(ep->is_in) {
+ ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm;
+ } else {
+ ep->desc_cnt = ep->pkt_cnt;
+ }
+ dwc_otg_iso_ep_start_ddma_transfer(core_if, ep);
+ } else {
+ if(core_if->pti_enh_enable) {
+ dwc_otg_iso_ep_start_buf_transfer(core_if, ep);
+ } else {
+ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
+ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
+ dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
+ }
+ }
+ } else {
+ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
+ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
+ dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
+ }
+}
+
+/**
+ * This function does the setup for a data transfer for an EP and
+ * starts the transfer. For an IN transfer, the packets will be
+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ */
+
+void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ depctl_data_t depctl = { .d32 = 0 };
+ volatile uint32_t *addr;
+
+ if(ep->is_in == 1) {
+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
+ }
+ else {
+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
+ }
+
+ /* disable the ep */
+ depctl.d32 = dwc_read_reg32(addr);
+
+ depctl.b.epdis = 1;
+ depctl.b.snak = 1;
+
+ dwc_write_reg32(addr, depctl.d32);
+
+ if(core_if->dma_desc_enable &&
+ ep->iso_desc_addr && ep->iso_dma_desc_addr) {
+ dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2);
+ }
+
+ /* reset varibales */
+ ep->dma_addr0 = 0;
+ ep->dma_addr1 = 0;
+ ep->xfer_buff0 = 0;
+ ep->xfer_buff1 = 0;
+ ep->data_per_frame = 0;
+ ep->data_pattern_frame = 0;
+ ep->sync_frame = 0;
+ ep->buf_proc_intrvl = 0;
+ ep->bInterval = 0;
+ ep->proc_buf_num = 0;
+ ep->pkt_per_frm = 0;
+ ep->pkt_per_frm = 0;
+ ep->desc_cnt = 0;
+ ep->iso_desc_addr = 0;
+ ep->iso_dma_desc_addr = 0;
+}
+
+
+/**
+ * This function is used to submit an ISOC Transfer Request to an EP.
+ *
+ * - Every time a sync period completes the request's completion callback
+ * is called to provide data to the gadget driver.
+ * - Once submitted the request cannot be modified.
+ * - Each request is turned into periodic data packets untill ISO
+ * Transfer is stopped..
+ */
+static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req,
+ gfp_t gfp_flags)
+{
+ dwc_otg_pcd_ep_t *ep;
+ dwc_otg_pcd_t *pcd;
+ dwc_ep_t *dwc_ep;
+ unsigned long flags = 0;
+ int32_t frm_data;
+ dwc_otg_core_if_t *core_if;
+ dcfg_data_t dcfg;
+ dsts_data_t dsts;
+
+
+ if (!req || !req->process_buffer || !req->buf0 || !req->buf1) {
+ DWC_WARN("%s, bad params\n", __func__);
+ return -EINVAL;
+ }
+
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+
+ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
+ DWC_WARN("%s, bad ep\n", __func__);
+ return -EINVAL;
+ }
+
+ pcd = ep->pcd;
+ core_if = GET_CORE_IF(pcd);
+
+ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
+
+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
+ DWC_WARN("%s, bogus device state\n", __func__);
+ return -ESHUTDOWN;
+ }
+
+ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
+
+ dwc_ep = &ep->dwc_ep;
+
+ if(ep->iso_req) {
+ DWC_WARN("%s, iso request in progress\n", __func__);
+ }
+ req->status = -EINPROGRESS;
+
+ dwc_ep->dma_addr0 = req->dma0;
+ dwc_ep->dma_addr1 = req->dma1;
+
+ dwc_ep->xfer_buff0 = req->buf0;
+ dwc_ep->xfer_buff1 = req->buf1;
+
+ ep->iso_req = req;
+
+ dwc_ep->data_per_frame = req->data_per_frame;
+
+ /** @todo - pattern data support is to be implemented in the future */
+ dwc_ep->data_pattern_frame = req->data_pattern_frame;
+ dwc_ep->sync_frame = req->sync_frame;
+
+ dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl;
+
+ dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1);
+
+ dwc_ep->proc_buf_num = 0;
+
+ dwc_ep->pkt_per_frm = 0;
+ frm_data = ep->dwc_ep.data_per_frame;
+ while(frm_data > 0) {
+ dwc_ep->pkt_per_frm++;
+ frm_data -= ep->dwc_ep.maxpacket;
+ }
+
+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+ if(req->flags & USB_REQ_ISO_ASAP) {
+ dwc_ep->next_frame = dsts.b.soffn + 1;
+ if(dwc_ep->bInterval != 1){
+ dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval);
+ }
+ } else {
+ dwc_ep->next_frame = req->start_frame;
+ }
+
+
+ if(!core_if->pti_enh_enable) {
+ dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
+ } else {
+ dwc_ep->pkt_cnt =
+ (dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval)
+ - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket;
+ }
+
+ if(core_if->dma_desc_enable) {
+ dwc_ep->desc_cnt =
+ dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
+ }
+
+ dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL);
+ if(!dwc_ep->pkt_info) {
+ return -ENOMEM;
+ }
+ if(core_if->pti_enh_enable) {
+ memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
+ }
+
+ dwc_ep->cur_pkt = 0;
+
+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+
+ dwc_otg_iso_ep_start_transfer(core_if, dwc_ep);
+
+ return 0;
+}
+
+/**
+ * This function stops ISO EP Periodic Data Transfer.
+ */
+static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req)
+{
+ dwc_otg_pcd_ep_t *ep;
+ dwc_otg_pcd_t *pcd;
+ dwc_ep_t *dwc_ep;
+ unsigned long flags;
+
+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
+
+ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
+ DWC_WARN("%s, bad ep\n", __func__);
+ return -EINVAL;
+ }
+
+ pcd = ep->pcd;
+
+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
+ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
+ DWC_WARN("%s, bogus device state\n", __func__);
+ return -ESHUTDOWN;
+ }
+
+ dwc_ep = &ep->dwc_ep;
+
+ dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep);
+
+ kfree(dwc_ep->pkt_info);
+
+ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
+
+ if(ep->iso_req != req) {
+ return -EINVAL;
+ }
+
+ req->status = -ECONNRESET;
+
+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+
+
+ ep->iso_req = 0;
+
+ return 0;
+}
+
+/**
+ * This function is used for perodical data exchnage between PCD and gadget drivers.
+ * for Isochronous EPs
+ *
+ * - Every time a sync period completes this function is called to
+ * perform data exchange between PCD and gadget
+ */
+void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req)
+{
+ int i;
+ struct usb_gadget_iso_packet_descriptor *iso_packet;
+ dwc_ep_t *dwc_ep;
+
+ dwc_ep = &ep->dwc_ep;
+
+ if(ep->iso_req->status == -ECONNRESET) {
+ DWC_PRINT("Device has already disconnected\n");
+ /*Device has been disconnected*/
+ return;
+ }
+
+ if(dwc_ep->proc_buf_num != 0) {
+ iso_packet = ep->iso_req->iso_packet_desc0;
+ }
+
+ else {
+ iso_packet = ep->iso_req->iso_packet_desc1;
+ }
+
+ /* Fill in ISOC packets descriptors & pass to gadget driver*/
+
+ for(i = 0; i < dwc_ep->pkt_cnt; ++i) {
+ iso_packet[i].status = dwc_ep->pkt_info[i].status;
+ iso_packet[i].offset = dwc_ep->pkt_info[i].offset;
+ iso_packet[i].actual_length = dwc_ep->pkt_info[i].length;
+ dwc_ep->pkt_info[i].status = 0;
+ dwc_ep->pkt_info[i].offset = 0;
+ dwc_ep->pkt_info[i].length = 0;
+ }
+
+ /* Call callback function to process data buffer */
+ ep->iso_req->status = 0;/* success */
+
+ SPIN_UNLOCK(&ep->pcd->lock);
+ ep->iso_req->process_buffer(&ep->ep, ep->iso_req);
+ SPIN_LOCK(&ep->pcd->lock);
+}
+
+
+static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets,
+ gfp_t gfp_flags)
+{
+ struct usb_iso_request *pReq = NULL;
+ uint32_t req_size;
+
+
+ req_size = sizeof(struct usb_iso_request);
+ req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor)));
+
+
+ pReq = kmalloc(req_size, gfp_flags);
+ if (!pReq) {
+ DWC_WARN("%s, can't allocate Iso Request\n", __func__);
+ return 0;
+ }
+ pReq->iso_packet_desc0 = (void*) (pReq + 1);
+
+ pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets;
+
+ return pReq;
+}
+
+static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req)
+{
+ kfree(req);
+}
+
+static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops =
+{
+ .ep_ops =
+ {
+ .enable = dwc_otg_pcd_ep_enable,
+ .disable = dwc_otg_pcd_ep_disable,
+
+ .alloc_request = dwc_otg_pcd_alloc_request,
+ .free_request = dwc_otg_pcd_free_request,
+
+ //.alloc_buffer = dwc_otg_pcd_alloc_buffer,
+ //.free_buffer = dwc_otg_pcd_free_buffer,
+
+ .queue = dwc_otg_pcd_ep_queue,
+ .dequeue = dwc_otg_pcd_ep_dequeue,
+
+ .set_halt = dwc_otg_pcd_ep_set_halt,
+ .fifo_status = 0,
+ .fifo_flush = 0,
+ },
+ .iso_ep_start = dwc_otg_pcd_iso_ep_start,
+ .iso_ep_stop = dwc_otg_pcd_iso_ep_stop,
+ .alloc_iso_request = dwc_otg_pcd_alloc_iso_request,
+ .free_iso_request = dwc_otg_pcd_free_iso_request,
+};
+
+#else
+
+
+static struct usb_ep_ops dwc_otg_pcd_ep_ops =
+{
+ .enable = dwc_otg_pcd_ep_enable,
+ .disable = dwc_otg_pcd_ep_disable,
+
+ .alloc_request = dwc_otg_pcd_alloc_request,
+ .free_request = dwc_otg_pcd_free_request,
+
+// .alloc_buffer = dwc_otg_pcd_alloc_buffer,
+// .free_buffer = dwc_otg_pcd_free_buffer,
+
+ .queue = dwc_otg_pcd_ep_queue,
+ .dequeue = dwc_otg_pcd_ep_dequeue,
+
+ .set_halt = dwc_otg_pcd_ep_set_halt,
+ .fifo_status = 0,
+ .fifo_flush = 0,
+
+
+};
+
+#endif /* DWC_EN_ISOC */
+/* Gadget Operations */
+/**
+ * The following gadget operations will be implemented in the DWC_otg
+ * PCD. Functions in the API that are not described below are not
+ * implemented.
+ *
+ * The Gadget API provides wrapper functions for each of the function
+ * pointers defined in usb_gadget_ops. The Gadget Driver calls the
+ * wrapper function, which then calls the underlying PCD function. The
+ * following sections are named according to the wrapper functions
+ * (except for ioctl, which doesn't have a wrapper function). Within
+ * each section, the corresponding DWC_otg PCD function name is
+ * specified.
+ *
+ */
+
+/**
+ *Gets the USB Frame number of the last SOF.
+ */
+static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget)
+{
+ dwc_otg_pcd_t *pcd;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
+
+ if (gadget == 0) {
+ return -ENODEV;
+ }
+ else {
+ pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
+ dwc_otg_get_frame_number(GET_CORE_IF(pcd));
+ }
+
+ return 0;
+}
+
+void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd)
+{
+ uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl);
+ gotgctl_data_t mem;
+ gotgctl_data_t val;
+
+ val.d32 = dwc_read_reg32(addr);
+ if (val.b.sesreq) {
+ DWC_ERROR("Session Request Already active!\n");
+ return;
+ }
+
+ DWC_NOTICE("Session Request Initated\n");
+ mem.d32 = dwc_read_reg32(addr);
+ mem.b.sesreq = 1;
+ dwc_write_reg32(addr, mem.d32);
+
+ /* Start the SRP timer */
+ dwc_otg_pcd_start_srp_timer(pcd);
+ return;
+}
+
+void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set)
+{
+ dctl_data_t dctl = {.d32=0};
+ volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl);
+
+ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
+ if (pcd->remote_wakeup_enable) {
+ if (set) {
+ dctl.b.rmtwkupsig = 1;
+ dwc_modify_reg32(addr, 0, dctl.d32);
+ DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
+ mdelay(1);
+ dwc_modify_reg32(addr, dctl.d32, 0);
+ DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
+ }
+ else {
+ }
+ }
+ else {
+ DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
+ }
+ }
+ return;
+}
+
+/**
+ * Initiates Session Request Protocol (SRP) to wakeup the host if no
+ * session is in progress. If a session is already in progress, but
+ * the device is suspended, remote wakeup signaling is started.
+ *
+ */
+static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget)
+{
+ unsigned long flags;
+ dwc_otg_pcd_t *pcd;
+ dsts_data_t dsts;
+ gotgctl_data_t gotgctl;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
+
+ if (gadget == 0) {
+ return -ENODEV;
+ }
+ else {
+ pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
+ }
+ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
+
+ /*
+ * This function starts the Protocol if no session is in progress. If
+ * a session is already in progress, but the device is suspended,
+ * remote wakeup signaling is started.
+ */
+
+ /* Check if valid session */
+ gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
+ if (gotgctl.b.bsesvld) {
+ /* Check if suspend state */
+ dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts));
+ if (dsts.b.suspsts) {
+ dwc_otg_pcd_remote_wakeup(pcd, 1);
+ }
+ }
+ else {
+ dwc_otg_pcd_initiate_srp(pcd);
+ }
+
+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
+ return 0;
+}
+
+static const struct usb_gadget_ops dwc_otg_pcd_ops =
+{
+ .get_frame = dwc_otg_pcd_get_frame,
+ .wakeup = dwc_otg_pcd_wakeup,
+ // current versions must always be self-powered
+};
+
+/**
+ * This function updates the otg values in the gadget structure.
+ */
+void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset)
+{
+
+ if (!pcd->gadget.is_otg)
+ return;
+
+ if (reset) {
+ pcd->b_hnp_enable = 0;
+ pcd->a_hnp_support = 0;
+ pcd->a_alt_hnp_support = 0;
+ }
+
+ pcd->gadget.b_hnp_enable = pcd->b_hnp_enable;
+ pcd->gadget.a_hnp_support = pcd->a_hnp_support;
+ pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support;
+}
+
+/**
+ * This function is the top level PCD interrupt handler.
+ */
+static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev)
+{
+ dwc_otg_pcd_t *pcd = dev;
+ int32_t retval = IRQ_NONE;
+
+ retval = dwc_otg_pcd_handle_intr(pcd);
+ return IRQ_RETVAL(retval);
+}
+
+/**
+ * PCD Callback function for initializing the PCD when switching to
+ * device mode.
+ *
+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
+ */
+static int32_t dwc_otg_pcd_start_cb(void *p)
+{
+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
+
+ /*
+ * Initialized the Core for Device mode.
+ */
+ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
+ dwc_otg_core_dev_init(GET_CORE_IF(pcd));
+ }
+ return 1;
+}
+
+/**
+ * PCD Callback function for stopping the PCD when switching to Host
+ * mode.
+ *
+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
+ */
+static int32_t dwc_otg_pcd_stop_cb(void *p)
+{
+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
+ extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd);
+
+ dwc_otg_pcd_stop(pcd);
+ return 1;
+}
+
+
+/**
+ * PCD Callback function for notifying the PCD when resuming from
+ * suspend.
+ *
+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
+ */
+static int32_t dwc_otg_pcd_suspend_cb(void *p)
+{
+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
+
+ if (pcd->driver && pcd->driver->resume) {
+ SPIN_UNLOCK(&pcd->lock);
+ pcd->driver->suspend(&pcd->gadget);
+ SPIN_LOCK(&pcd->lock);
+ }
+
+ return 1;
+}
+
+
+/**
+ * PCD Callback function for notifying the PCD when resuming from
+ * suspend.
+ *
+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
+ */
+static int32_t dwc_otg_pcd_resume_cb(void *p)
+{
+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
+
+ if (pcd->driver && pcd->driver->resume) {
+ SPIN_UNLOCK(&pcd->lock);
+ pcd->driver->resume(&pcd->gadget);
+ SPIN_LOCK(&pcd->lock);
+ }
+
+ /* Stop the SRP timeout timer. */
+ if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) ||
+ (!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
+ if (GET_CORE_IF(pcd)->srp_timer_started) {
+ GET_CORE_IF(pcd)->srp_timer_started = 0;
+ del_timer(&pcd->srp_timer);
+ }
+ }
+ return 1;
+}
+
+
+/**
+ * PCD Callback structure for handling mode switching.
+ */
+static dwc_otg_cil_callbacks_t pcd_callbacks =
+{
+ .start = dwc_otg_pcd_start_cb,
+ .stop = dwc_otg_pcd_stop_cb,
+ .suspend = dwc_otg_pcd_suspend_cb,
+ .resume_wakeup = dwc_otg_pcd_resume_cb,
+ .p = 0, /* Set at registration */
+};
+
+/**
+ * This function is called when the SRP timer expires. The SRP should
+ * complete within 6 seconds.
+ */
+static void srp_timeout(unsigned long ptr)
+{
+ gotgctl_data_t gotgctl;
+ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr;
+ volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
+
+ gotgctl.d32 = dwc_read_reg32(addr);
+
+ core_if->srp_timer_started = 0;
+
+ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
+ (core_if->core_params->i2c_enable)) {
+ DWC_PRINT("SRP Timeout\n");
+
+ if ((core_if->srp_success) &&
+ (gotgctl.b.bsesvld)) {
+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
+ }
+
+ /* Clear Session Request */
+ gotgctl.d32 = 0;
+ gotgctl.b.sesreq = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
+ gotgctl.d32, 0);
+
+ core_if->srp_success = 0;
+ }
+ else {
+ DWC_ERROR("Device not connected/responding\n");
+ gotgctl.b.sesreq = 0;
+ dwc_write_reg32(addr, gotgctl.d32);
+ }
+ }
+ else if (gotgctl.b.sesreq) {
+ DWC_PRINT("SRP Timeout\n");
+
+ DWC_ERROR("Device not connected/responding\n");
+ gotgctl.b.sesreq = 0;
+ dwc_write_reg32(addr, gotgctl.d32);
+ }
+ else {
+ DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32);
+ }
+}
+
+/**
+ * Start the SRP timer to detect when the SRP does not complete within
+ * 6 seconds.
+ *
+ * @param pcd the pcd structure.
+ */
+void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd)
+{
+ struct timer_list *srp_timer = &pcd->srp_timer;
+ GET_CORE_IF(pcd)->srp_timer_started = 1;
+ init_timer(srp_timer);
+ srp_timer->function = srp_timeout;
+ srp_timer->data = (unsigned long)GET_CORE_IF(pcd);
+ srp_timer->expires = jiffies + (HZ*6);
+ add_timer(srp_timer);
+}
+
+/**
+ * Tasklet
+ *
+ */
+extern void start_next_request(dwc_otg_pcd_ep_t *ep);
+
+static void start_xfer_tasklet_func (unsigned long data)
+{
+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data;
+ dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if;
+
+ int i;
+ depctl_data_t diepctl;
+
+ DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
+
+ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
+
+ if (pcd->ep0.queue_sof) {
+ pcd->ep0.queue_sof = 0;
+ start_next_request (&pcd->ep0);
+ // break;
+ }
+
+ for (i=0; i<core_if->dev_if->num_in_eps; i++)
+ {
+ depctl_data_t diepctl;
+ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl);
+
+ if (pcd->in_ep[i].queue_sof) {
+ pcd->in_ep[i].queue_sof = 0;
+ start_next_request (&pcd->in_ep[i]);
+ // break;
+ }
+ }
+
+ return;
+}
+
+
+
+
+
+
+
+static struct tasklet_struct start_xfer_tasklet = {
+ .next = NULL,
+ .state = 0,
+ .count = ATOMIC_INIT(0),
+ .func = start_xfer_tasklet_func,
+ .data = 0,
+};
+/**
+ * This function initialized the pcd Dp structures to there default
+ * state.
+ *
+ * @param pcd the pcd structure.
+ */
+void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd)
+{
+ static const char * names[] =
+ {
+
+ "ep0",
+ "ep1in",
+ "ep2in",
+ "ep3in",
+ "ep4in",
+ "ep5in",
+ "ep6in",
+ "ep7in",
+ "ep8in",
+ "ep9in",
+ "ep10in",
+ "ep11in",
+ "ep12in",
+ "ep13in",
+ "ep14in",
+ "ep15in",
+ "ep1out",
+ "ep2out",
+ "ep3out",
+ "ep4out",
+ "ep5out",
+ "ep6out",
+ "ep7out",
+ "ep8out",
+ "ep9out",
+ "ep10out",
+ "ep11out",
+ "ep12out",
+ "ep13out",
+ "ep14out",
+ "ep15out"
+
+ };
+
+ int i;
+ int in_ep_cntr, out_ep_cntr;
+ uint32_t hwcfg1;
+ uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps;
+ uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps;
+ dwc_otg_pcd_ep_t *ep;
+
+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
+
+ INIT_LIST_HEAD (&pcd->gadget.ep_list);
+ pcd->gadget.ep0 = &pcd->ep0.ep;
+ pcd->gadget.speed = USB_SPEED_UNKNOWN;
+
+ INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list);
+
+ /**
+ * Initialize the EP0 structure.
+ */
+ ep = &pcd->ep0;
+
+ /* Init EP structure */
+ ep->desc = 0;
+ ep->pcd = pcd;
+ ep->stopped = 1;
+
+ /* Init DWC ep structure */
+ ep->dwc_ep.num = 0;
+ ep->dwc_ep.active = 0;
+ ep->dwc_ep.tx_fifo_num = 0;
+ /* Control until ep is actvated */
+ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
+ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
+ ep->dwc_ep.dma_addr = 0;
+ ep->dwc_ep.start_xfer_buff = 0;
+ ep->dwc_ep.xfer_buff = 0;
+ ep->dwc_ep.xfer_len = 0;
+ ep->dwc_ep.xfer_count = 0;
+ ep->dwc_ep.sent_zlp = 0;
+ ep->dwc_ep.total_len = 0;
+ ep->queue_sof = 0;
+ ep->dwc_ep.desc_addr = 0;
+ ep->dwc_ep.dma_desc_addr = 0;
+
+ ep->dwc_ep.aligned_buf=NULL;
+ ep->dwc_ep.aligned_buf_size=0;
+ ep->dwc_ep.aligned_dma_addr=0;
+
+
+ /* Init the usb_ep structure. */
+ ep->ep.name = names[0];
+ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
+
+ /**
+ * @todo NGS: What should the max packet size be set to
+ * here? Before EP type is set?
+ */
+ ep->ep.maxpacket = MAX_PACKET_SIZE;
+
+ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
+
+ INIT_LIST_HEAD (&ep->queue);
+ /**
+ * Initialize the EP structures.
+ */
+ in_ep_cntr = 0;
+ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3;
+
+ for (i = 1; in_ep_cntr < num_in_eps; i++)
+ {
+ if((hwcfg1 & 0x1) == 0) {
+ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr];
+ in_ep_cntr ++;
+
+ /* Init EP structure */
+ ep->desc = 0;
+ ep->pcd = pcd;
+ ep->stopped = 1;
+
+ /* Init DWC ep structure */
+ ep->dwc_ep.is_in = 1;
+ ep->dwc_ep.num = i;
+ ep->dwc_ep.active = 0;
+ ep->dwc_ep.tx_fifo_num = 0;
+
+ /* Control until ep is actvated */
+ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
+ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
+ ep->dwc_ep.dma_addr = 0;
+ ep->dwc_ep.start_xfer_buff = 0;
+ ep->dwc_ep.xfer_buff = 0;
+ ep->dwc_ep.xfer_len = 0;
+ ep->dwc_ep.xfer_count = 0;
+ ep->dwc_ep.sent_zlp = 0;
+ ep->dwc_ep.total_len = 0;
+ ep->queue_sof = 0;
+ ep->dwc_ep.desc_addr = 0;
+ ep->dwc_ep.dma_desc_addr = 0;
+
+ /* Init the usb_ep structure. */
+ ep->ep.name = names[i];
+ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
+
+ /**
+ * @todo NGS: What should the max packet size be set to
+ * here? Before EP type is set?
+ */
+ ep->ep.maxpacket = MAX_PACKET_SIZE;
+
+ //add only even number ep as in
+ if((i%2)==1)
+ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
+
+ INIT_LIST_HEAD (&ep->queue);
+ }
+ hwcfg1 >>= 2;
+ }
+
+ out_ep_cntr = 0;
+ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2;
+
+ for (i = 1; out_ep_cntr < num_out_eps; i++)
+ {
+ if((hwcfg1 & 0x1) == 0) {
+ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr];
+ out_ep_cntr++;
+
+ /* Init EP structure */
+ ep->desc = 0;
+ ep->pcd = pcd;
+ ep->stopped = 1;
+
+ /* Init DWC ep structure */
+ ep->dwc_ep.is_in = 0;
+ ep->dwc_ep.num = i;
+ ep->dwc_ep.active = 0;
+ ep->dwc_ep.tx_fifo_num = 0;
+ /* Control until ep is actvated */
+ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
+ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
+ ep->dwc_ep.dma_addr = 0;
+ ep->dwc_ep.start_xfer_buff = 0;
+ ep->dwc_ep.xfer_buff = 0;
+ ep->dwc_ep.xfer_len = 0;
+ ep->dwc_ep.xfer_count = 0;
+ ep->dwc_ep.sent_zlp = 0;
+ ep->dwc_ep.total_len = 0;
+ ep->queue_sof = 0;
+
+ /* Init the usb_ep structure. */
+ ep->ep.name = names[15 + i];
+ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
+ /**
+ * @todo NGS: What should the max packet size be set to
+ * here? Before EP type is set?
+ */
+ ep->ep.maxpacket = MAX_PACKET_SIZE;
+
+ //add only odd number ep as out
+ if((i%2)==0)
+ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
+
+ INIT_LIST_HEAD (&ep->queue);
+ }
+ hwcfg1 >>= 2;
+ }
+
+ /* remove ep0 from the list. There is a ep0 pointer.*/
+ list_del_init (&pcd->ep0.ep.ep_list);
+
+ pcd->ep0state = EP0_DISCONNECT;
+ pcd->ep0.ep.maxpacket = MAX_EP0_SIZE;
+ pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
+ pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
+}
+
+/**
+ * This function releases the Gadget device.
+ * required by device_unregister().
+ *
+ * @todo Should this do something? Should it free the PCD?
+ */
+static void dwc_otg_pcd_gadget_release(struct device *dev)
+{
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev);
+}
+
+
+
+/**
+ * This function initialized the PCD portion of the driver.
+ *
+ */
+u8 dev_id[]="gadget";
+int dwc_otg_pcd_init(struct platform_device *pdev)
+{
+ static char pcd_name[] = "dwc_otg_pcd";
+ dwc_otg_pcd_t *pcd;
+ dwc_otg_core_if_t* core_if;
+ dwc_otg_dev_if_t* dev_if;
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+ int retval = 0;
+
+
+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, pdev);
+ /*
+ * Allocate PCD structure
+ */
+ pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL);
+
+ if (pcd == 0) {
+ return -ENOMEM;
+ }
+
+ memset(pcd, 0, sizeof(dwc_otg_pcd_t));
+ spin_lock_init(&pcd->lock);
+
+ otg_dev->pcd = pcd;
+ s_pcd = pcd;
+ pcd->gadget.name = pcd_name;
+
+ pcd->gadget.dev.init_name = dev_id;
+ pcd->otg_dev = platform_get_drvdata(pdev);
+
+ pcd->gadget.dev.parent = &pdev->dev;
+ pcd->gadget.dev.release = dwc_otg_pcd_gadget_release;
+ pcd->gadget.ops = &dwc_otg_pcd_ops;
+
+ core_if = GET_CORE_IF(pcd);
+ dev_if = core_if->dev_if;
+
+ if(core_if->hwcfg4.b.ded_fifo_en) {
+ DWC_PRINT("Dedicated Tx FIFOs mode\n");
+ }
+ else {
+ DWC_PRINT("Shared Tx FIFO mode\n");
+ }
+
+ /* If the module is set to FS or if the PHY_TYPE is FS then the gadget
+ * should not report as dual-speed capable. replace the following line
+ * with the block of code below it once the software is debugged for
+ * this. If is_dualspeed = 0 then the gadget driver should not report
+ * a device qualifier descriptor when queried. */
+ if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) ||
+ ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) &&
+ (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) &&
+ (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) {
+ pcd->gadget.max_speed = USB_SPEED_FULL;
+ }
+ else {
+ pcd->gadget.max_speed = USB_SPEED_HIGH;
+ }
+
+ if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) ||
+ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) ||
+ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
+ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
+ pcd->gadget.is_otg = 0;
+ }
+ else {
+ pcd->gadget.is_otg = 1;
+ }
+
+
+ pcd->driver = 0;
+ /* Register the gadget device */
+printk("%s: 1\n",__func__);
+ retval = device_register(&pcd->gadget.dev);
+ if (retval != 0) {
+ kfree (pcd);
+printk("%s: 2\n",__func__);
+ return retval;
+ }
+
+
+ /*
+ * Initialized the Core for Device mode.
+ */
+ if (dwc_otg_is_device_mode(core_if)) {
+ dwc_otg_core_dev_init(core_if);
+ }
+
+ /*
+ * Initialize EP structures
+ */
+ dwc_otg_pcd_reinit(pcd);
+
+ /*
+ * Register the PCD Callbacks.
+ */
+ dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,
+ pcd);
+ /*
+ * Setup interupt handler
+ */
+ DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq);
+ retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq,
+ IRQF_SHARED, pcd->gadget.name, pcd);
+ if (retval != 0) {
+ DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
+ device_unregister(&pcd->gadget.dev);
+ kfree (pcd);
+ return -EBUSY;
+ }
+
+ /*
+ * Initialize the DMA buffer for SETUP packets
+ */
+ if (GET_CORE_IF(pcd)->dma_enable) {
+ pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0);
+ if (pcd->setup_pkt == 0) {
+ free_irq(otg_dev->irq, pcd);
+ device_unregister(&pcd->gadget.dev);
+ kfree (pcd);
+ return -ENOMEM;
+ }
+
+ pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0);
+ if (pcd->status_buf == 0) {
+ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
+ free_irq(otg_dev->irq, pcd);
+ device_unregister(&pcd->gadget.dev);
+ kfree (pcd);
+ return -ENOMEM;
+ }
+
+ if (GET_CORE_IF(pcd)->dma_desc_enable) {
+ dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1);
+ dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1);
+ dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1);
+ dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1);
+
+ if(dev_if->setup_desc_addr[0] == 0
+ || dev_if->setup_desc_addr[1] == 0
+ || dev_if->in_desc_addr == 0
+ || dev_if->out_desc_addr == 0 ) {
+
+ if(dev_if->out_desc_addr)
+ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
+ if(dev_if->in_desc_addr)
+ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
+ if(dev_if->setup_desc_addr[1])
+ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
+ if(dev_if->setup_desc_addr[0])
+ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
+
+
+ dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle);
+ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
+
+ free_irq(otg_dev->irq, pcd);
+ device_unregister(&pcd->gadget.dev);
+ kfree (pcd);
+
+ return -ENOMEM;
+ }
+ }
+ }
+ else {
+ pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL);
+ if (pcd->setup_pkt == 0) {
+ free_irq(otg_dev->irq, pcd);
+ device_unregister(&pcd->gadget.dev);
+ kfree (pcd);
+ return -ENOMEM;
+ }
+
+ pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL);
+ if (pcd->status_buf == 0) {
+ kfree(pcd->setup_pkt);
+ free_irq(otg_dev->irq, pcd);
+ device_unregister(&pcd->gadget.dev);
+ kfree (pcd);
+ return -ENOMEM;
+ }
+ }
+
+
+ /* Initialize tasklet */
+ start_xfer_tasklet.data = (unsigned long)pcd;
+ pcd->start_xfer_tasklet = &start_xfer_tasklet;
+
+ return 0;
+}
+
+/**
+ * Cleanup the PCD.
+ */
+void dwc_otg_pcd_remove(struct platform_device *pdev)
+{
+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
+ dwc_otg_pcd_t *pcd = otg_dev->pcd;
+ dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if;
+
+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pdev);
+
+ /*
+ * Free the IRQ
+ */
+ free_irq(otg_dev->irq, pcd);
+
+ /* start with the driver above us */
+ if (pcd->driver) {
+ /* should have been done already by driver model core */
+ DWC_WARN("driver '%s' is still registered\n",
+ pcd->driver->driver.name);
+ usb_gadget_unregister_driver(pcd->driver);
+ }
+ device_unregister(&pcd->gadget.dev);
+
+ if (GET_CORE_IF(pcd)->dma_enable) {
+ dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle);
+ dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle);
+ if (GET_CORE_IF(pcd)->dma_desc_enable) {
+ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
+ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
+ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
+ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
+ }
+ }
+ else {
+ kfree (pcd->setup_pkt);
+ kfree (pcd->status_buf);
+ }
+
+ kfree(pcd);
+ otg_dev->pcd = 0;
+}
+
+/**
+ * This function registers a gadget driver with the PCD.
+ *
+ * When a driver is successfully registered, it will receive control
+ * requests including set_configuration(), which enables non-control
+ * requests. then usb traffic follows until a disconnect is reported.
+ * then a host may connect again, or the driver might get unbound.
+ *
+ * @param driver The driver being registered
+ */
+int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
+ int (*bind)(struct usb_gadget *))
+{
+ int retval;
+
+ DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name);
+
+ if (!driver || driver->max_speed == USB_SPEED_UNKNOWN ||
+ !bind ||
+ !driver->unbind ||
+ !driver->disconnect ||
+ !driver->setup) {
+ DWC_DEBUGPL(DBG_PCDV,"EINVAL\n");
+ return -EINVAL;
+ }
+ if (s_pcd == 0) {
+ DWC_DEBUGPL(DBG_PCDV,"ENODEV\n");
+ return -ENODEV;
+ }
+ if (s_pcd->driver != 0) {
+ DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver);
+ return -EBUSY;
+ }
+
+ /* hook up the driver */
+ s_pcd->driver = driver;
+ s_pcd->gadget.dev.driver = &driver->driver;
+
+ DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name);
+ retval = bind(&s_pcd->gadget);
+ if (retval) {
+ DWC_ERROR("bind to driver %s --> error %d\n",
+ driver->driver.name, retval);
+ s_pcd->driver = 0;
+ s_pcd->gadget.dev.driver = 0;
+ return retval;
+ }
+ DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
+ driver->driver.name);
+ return 0;
+}
+
+EXPORT_SYMBOL(usb_gadget_probe_driver);
+
+/**
+ * This function unregisters a gadget driver
+ *
+ * @param driver The driver being unregistered
+ */
+int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
+{
+ //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
+
+ if (s_pcd == 0) {
+ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,
+ -ENODEV);
+ return -ENODEV;
+ }
+ if (driver == 0 || driver != s_pcd->driver) {
+ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,
+ -EINVAL);
+ return -EINVAL;
+ }
+
+ driver->unbind(&s_pcd->gadget);
+ s_pcd->driver = 0;
+
+ DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n",
+ driver->driver.name);
+ return 0;
+}
+EXPORT_SYMBOL(usb_gadget_unregister_driver);
+
+#endif /* DWC_HOST_ONLY */
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd.h b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd.h
new file mode 100644
index 0000000000..e75437c21e
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd.h
@@ -0,0 +1,292 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $
+ * $Revision: #36 $
+ * $Date: 2008/09/26 $
+ * $Change: 1103515 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_HOST_ONLY
+#if !defined(__DWC_PCD_H__)
+#define __DWC_PCD_H__
+
+#include <linux/types.h>
+#include <linux/list.h>
+#include <linux/errno.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+
+#include <linux/usb/ch9.h>
+#include <linux/usb/gadget.h>
+
+#include <linux/interrupt.h>
+#include <linux/dma-mapping.h>
+
+struct dwc_otg_device;
+
+#include "otg_cil.h"
+
+/**
+ * @file
+ *
+ * This file contains the structures, constants, and interfaces for
+ * the Perpherial Contoller Driver (PCD).
+ *
+ * The Peripheral Controller Driver (PCD) for Linux will implement the
+ * Gadget API, so that the existing Gadget drivers can be used. For
+ * the Mass Storage Function driver the File-backed USB Storage Gadget
+ * (FBS) driver will be used. The FBS driver supports the
+ * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only
+ * transports.
+ *
+ */
+
+/** Invalid DMA Address */
+#define DMA_ADDR_INVALID (~(dma_addr_t)0)
+/** Maxpacket size for EP0 */
+#define MAX_EP0_SIZE 64
+/** Maxpacket size for any EP */
+#define MAX_PACKET_SIZE 1024
+
+/** Max Transfer size for any EP */
+#define MAX_TRANSFER_SIZE 65535
+
+/** Max DMA Descriptor count for any EP */
+#define MAX_DMA_DESC_CNT 64
+
+/**
+ * Get the pointer to the core_if from the pcd pointer.
+ */
+#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if)
+
+/**
+ * States of EP0.
+ */
+typedef enum ep0_state
+{
+ EP0_DISCONNECT, /* no host */
+ EP0_IDLE,
+ EP0_IN_DATA_PHASE,
+ EP0_OUT_DATA_PHASE,
+ EP0_IN_STATUS_PHASE,
+ EP0_OUT_STATUS_PHASE,
+ EP0_STALL,
+} ep0state_e;
+
+/** Fordward declaration.*/
+struct dwc_otg_pcd;
+
+/** DWC_otg iso request structure.
+ *
+ */
+typedef struct usb_iso_request dwc_otg_pcd_iso_request_t;
+
+/** PCD EP structure.
+ * This structure describes an EP, there is an array of EPs in the PCD
+ * structure.
+ */
+typedef struct dwc_otg_pcd_ep
+{
+ /** USB EP data */
+ struct usb_ep ep;
+ /** USB EP Descriptor */
+ const struct usb_endpoint_descriptor *desc;
+
+ /** queue of dwc_otg_pcd_requests. */
+ struct list_head queue;
+ unsigned stopped : 1;
+ unsigned disabling : 1;
+ unsigned dma : 1;
+ unsigned queue_sof : 1;
+
+#ifdef DWC_EN_ISOC
+ /** DWC_otg Isochronous Transfer */
+ struct usb_iso_request* iso_req;
+#endif //DWC_EN_ISOC
+
+ /** DWC_otg ep data. */
+ dwc_ep_t dwc_ep;
+
+ /** Pointer to PCD */
+ struct dwc_otg_pcd *pcd;
+}dwc_otg_pcd_ep_t;
+
+
+
+/** DWC_otg PCD Structure.
+ * This structure encapsulates the data for the dwc_otg PCD.
+ */
+typedef struct dwc_otg_pcd
+{
+ /** USB gadget */
+ struct usb_gadget gadget;
+ /** USB gadget driver pointer*/
+ struct usb_gadget_driver *driver;
+ /** The DWC otg device pointer. */
+ struct dwc_otg_device *otg_dev;
+
+ /** State of EP0 */
+ ep0state_e ep0state;
+ /** EP0 Request is pending */
+ unsigned ep0_pending : 1;
+ /** Indicates when SET CONFIGURATION Request is in process */
+ unsigned request_config : 1;
+ /** The state of the Remote Wakeup Enable. */
+ unsigned remote_wakeup_enable : 1;
+ /** The state of the B-Device HNP Enable. */
+ unsigned b_hnp_enable : 1;
+ /** The state of A-Device HNP Support. */
+ unsigned a_hnp_support : 1;
+ /** The state of the A-Device Alt HNP support. */
+ unsigned a_alt_hnp_support : 1;
+ /** Count of pending Requests */
+ unsigned request_pending;
+
+ /** SETUP packet for EP0
+ * This structure is allocated as a DMA buffer on PCD initialization
+ * with enough space for up to 3 setup packets.
+ */
+ union
+ {
+ struct usb_ctrlrequest req;
+ uint32_t d32[2];
+ } *setup_pkt;
+
+ dma_addr_t setup_pkt_dma_handle;
+
+ /** 2-byte dma buffer used to return status from GET_STATUS */
+ uint16_t *status_buf;
+ dma_addr_t status_buf_dma_handle;
+
+ /** EP0 */
+ dwc_otg_pcd_ep_t ep0;
+
+ /** Array of IN EPs. */
+ dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1];
+ /** Array of OUT EPs. */
+ dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1];
+ /** number of valid EPs in the above array. */
+// unsigned num_eps : 4;
+ spinlock_t lock;
+ /** Timer for SRP. If it expires before SRP is successful
+ * clear the SRP. */
+ struct timer_list srp_timer;
+
+ /** Tasklet to defer starting of TEST mode transmissions until
+ * Status Phase has been completed.
+ */
+ struct tasklet_struct test_mode_tasklet;
+
+ /** Tasklet to delay starting of xfer in DMA mode */
+ struct tasklet_struct *start_xfer_tasklet;
+
+ /** The test mode to enter when the tasklet is executed. */
+ unsigned test_mode;
+
+} dwc_otg_pcd_t;
+
+
+/** DWC_otg request structure.
+ * This structure is a list of requests.
+ */
+typedef struct
+{
+ struct usb_request req; /**< USB Request. */
+ struct list_head queue; /**< queue of these requests. */
+} dwc_otg_pcd_request_t;
+
+
+extern int dwc_otg_pcd_init(struct platform_device *pdev);
+
+//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev );
+extern void dwc_otg_pcd_remove( struct platform_device *pdev );
+extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd );
+extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd );
+
+extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd);
+extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set);
+
+extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req);
+extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req,
+ int status);
+extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep);
+extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd,
+ const unsigned reset);
+#ifndef VERBOSE
+#define VERIFY_PCD_DMA_ADDR(_addr_) BUG_ON(((_addr_)==DMA_ADDR_INVALID)||\
+ ((_addr_)==0)||\
+ ((_addr_)&0x3))
+#else
+#define VERIFY_PCD_DMA_ADDR(_addr_) {\
+ if(((_addr_)==DMA_ADDR_INVALID)||\
+ ((_addr_)==0)||\
+ ((_addr_)&0x3)) {\
+ printk("%s: Invalid DMA address "#_addr_"(%.8x)\n",__func__,_addr_);\
+ BUG();\
+ }\
+ }
+#endif
+
+
+static inline void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
+//void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
+ dwc_ep_t *dwc_ep=&ep->dwc_ep;
+
+DWC_DEBUGPL(DBG_PCDV,"%s: dwc_ep xfer_buf=%.8x, total_len=%d, dma_addr=%.8x\n",__func__,(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->dma_addr);
+ if (/*(core_if->dma_enable)&&*/(dwc_ep->dma_addr==DMA_ADDR_INVALID)) {
+ if((((u32)dwc_ep->xfer_buff)&0x3)==0){
+ dwc_ep->dma_addr=dma_map_single(NULL,(void *)(dwc_ep->start_xfer_buff),(dwc_ep->total_len), DMA_TO_DEVICE);
+DWC_DEBUGPL(DBG_PCDV," got dma_addr=%.8x\n",dwc_ep->dma_addr);
+ }else{
+DWC_DEBUGPL(DBG_PCDV," buf not aligned, use aligned_buf instead. xfer_buf=%.8x, total_len=%d, aligned_buf_size=%d\n",(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->aligned_buf_size);
+ if(dwc_ep->aligned_buf_size<dwc_ep->total_len){
+ if(dwc_ep->aligned_buf){
+//printk(" free buff dwc_ep aligned_buf_size=%d, aligned_buf(%.8x), aligned_dma_addr(%.8x));\n",dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
+ //dma_free_coherent(NULL,dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
+ kfree(dwc_ep->aligned_buf);
+ }
+ dwc_ep->aligned_buf_size=((1<<20)>(dwc_ep->total_len<<1))?(dwc_ep->total_len<<1):(1<<20);
+ //dwc_ep->aligned_buf = dma_alloc_coherent (NULL, dwc_ep->aligned_buf_size, &dwc_ep->aligned_dma_addr, GFP_KERNEL|GFP_DMA);
+ dwc_ep->aligned_buf=kmalloc(dwc_ep->aligned_buf_size,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
+ dwc_ep->aligned_dma_addr=dma_map_single(NULL,(void *)(dwc_ep->aligned_buf),(dwc_ep->aligned_buf_size),DMA_FROM_DEVICE);
+ if(!dwc_ep->aligned_buf){
+ DWC_ERROR("Cannot alloc required buffer!!\n");
+ BUG();
+ }
+DWC_DEBUGPL(DBG_PCDV," dwc_ep allocated aligned buf=%.8x, dma_addr=%.8x, size=%d(0x%x)\n", (u32)dwc_ep->aligned_buf, dwc_ep->aligned_dma_addr, dwc_ep->aligned_buf_size, dwc_ep->aligned_buf_size);
+ }
+ dwc_ep->dma_addr=dwc_ep->aligned_dma_addr;
+ if(dwc_ep->is_in) {
+ memcpy(dwc_ep->aligned_buf,dwc_ep->xfer_buff,dwc_ep->total_len);
+ dma_sync_single_for_device(NULL,dwc_ep->dma_addr,dwc_ep->total_len,DMA_TO_DEVICE);
+ }
+ }
+ }
+}
+
+#endif
+#endif /* DWC_HOST_ONLY */
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd_intr.c b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd_intr.c
new file mode 100644
index 0000000000..f3c74464b2
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_pcd_intr.c
@@ -0,0 +1,3682 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $
+ * $Revision: #83 $
+ * $Date: 2008/10/14 $
+ * $Change: 1115682 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+#ifndef DWC_HOST_ONLY
+#include <linux/interrupt.h>
+#include <linux/dma-mapping.h>
+#include <linux/version.h>
+#include <linux/pci.h>
+
+#include "otg_driver.h"
+#include "otg_pcd.h"
+
+
+#define DEBUG_EP0
+
+
+/* request functions defined in "dwc_otg_pcd.c" */
+
+/** @file
+ * This file contains the implementation of the PCD Interrupt handlers.
+ *
+ * The PCD handles the device interrupts. Many conditions can cause a
+ * device interrupt. When an interrupt occurs, the device interrupt
+ * service routine determines the cause of the interrupt and
+ * dispatches handling to the appropriate function. These interrupt
+ * handling functions are described below.
+ * All interrupt registers are processed from LSB to MSB.
+ */
+
+
+/**
+ * This function prints the ep0 state for debug purposes.
+ */
+static inline void print_ep0_state(dwc_otg_pcd_t *pcd)
+{
+#ifdef DEBUG
+ char str[40];
+
+ switch (pcd->ep0state) {
+ case EP0_DISCONNECT:
+ strcpy(str, "EP0_DISCONNECT");
+ break;
+ case EP0_IDLE:
+ strcpy(str, "EP0_IDLE");
+ break;
+ case EP0_IN_DATA_PHASE:
+ strcpy(str, "EP0_IN_DATA_PHASE");
+ break;
+ case EP0_OUT_DATA_PHASE:
+ strcpy(str, "EP0_OUT_DATA_PHASE");
+ break;
+ case EP0_IN_STATUS_PHASE:
+ strcpy(str,"EP0_IN_STATUS_PHASE");
+ break;
+ case EP0_OUT_STATUS_PHASE:
+ strcpy(str,"EP0_OUT_STATUS_PHASE");
+ break;
+ case EP0_STALL:
+ strcpy(str,"EP0_STALL");
+ break;
+ default:
+ strcpy(str,"EP0_INVALID");
+ }
+
+ DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state);
+#endif
+}
+
+/**
+ * This function returns pointer to in ep struct with number ep_num
+ */
+static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
+{
+ int i;
+ int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
+ if(ep_num == 0) {
+ return &pcd->ep0;
+ }
+ else {
+ for(i = 0; i < num_in_eps; ++i)
+ {
+ if(pcd->in_ep[i].dwc_ep.num == ep_num)
+ return &pcd->in_ep[i];
+ }
+ return 0;
+ }
+}
+/**
+ * This function returns pointer to out ep struct with number ep_num
+ */
+static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
+{
+ int i;
+ int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
+ if(ep_num == 0) {
+ return &pcd->ep0;
+ }
+ else {
+ for(i = 0; i < num_out_eps; ++i)
+ {
+ if(pcd->out_ep[i].dwc_ep.num == ep_num)
+ return &pcd->out_ep[i];
+ }
+ return 0;
+ }
+}
+/**
+ * This functions gets a pointer to an EP from the wIndex address
+ * value of the control request.
+ */
+static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex)
+{
+ dwc_otg_pcd_ep_t *ep;
+
+ if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
+ return &pcd->ep0;
+ list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list)
+ {
+ u8 bEndpointAddress;
+
+ if (!ep->desc)
+ continue;
+
+ bEndpointAddress = ep->desc->bEndpointAddress;
+ if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))
+ == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)))
+ return ep;
+ }
+ return NULL;
+}
+
+/**
+ * This function checks the EP request queue, if the queue is not
+ * empty the next request is started.
+ */
+void start_next_request(dwc_otg_pcd_ep_t *ep)
+{
+ dwc_otg_pcd_request_t *req = 0;
+ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
+ if (!list_empty(&ep->queue)) {
+ req = list_entry(ep->queue.next,
+ dwc_otg_pcd_request_t, queue);
+
+ /* Setup and start the Transfer */
+ ep->dwc_ep.dma_addr = req->req.dma;
+ ep->dwc_ep.start_xfer_buff = req->req.buf;
+ ep->dwc_ep.xfer_buff = req->req.buf;
+ ep->dwc_ep.sent_zlp = 0;
+ ep->dwc_ep.total_len = req->req.length;
+ ep->dwc_ep.xfer_len = 0;
+ ep->dwc_ep.xfer_count = 0;
+
+ if(max_transfer > MAX_TRANSFER_SIZE) {
+ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
+ } else {
+ ep->dwc_ep.maxxfer = max_transfer;
+ }
+
+ if(req->req.zero) {
+ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
+ && (ep->dwc_ep.total_len != 0)) {
+ ep->dwc_ep.sent_zlp = 1;
+ }
+
+ }
+ ep_check_and_patch_dma_addr(ep);
+ dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
+ }
+}
+
+/**
+ * This function handles the SOF Interrupts. At this time the SOF
+ * Interrupt is disabled.
+ */
+int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+
+ gintsts_data_t gintsts;
+
+ DWC_DEBUGPL(DBG_PCD, "SOF\n");
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.sofintr = 1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+
+/**
+ * This function handles the Rx Status Queue Level Interrupt, which
+ * indicates that there is a least one packet in the Rx FIFO. The
+ * packets are moved from the FIFO to memory, where they will be
+ * processed when the Endpoint Interrupt Register indicates Transfer
+ * Complete or SETUP Phase Done.
+ *
+ * Repeat the following until the Rx Status Queue is empty:
+ * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet
+ * info
+ * -# If Receive FIFO is empty then skip to step Clear the interrupt
+ * and exit
+ * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the
+ * SETUP data to the buffer
+ * -# If OUT Data Packet call dwc_otg_read_packet to copy the data
+ * to the destination buffer
+ */
+int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
+ gintmsk_data_t gintmask = {.d32=0};
+ device_grxsts_data_t status;
+ dwc_otg_pcd_ep_t *ep;
+ gintsts_data_t gintsts;
+#ifdef DEBUG
+ static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" };
+#endif
+
+ //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
+ /* Disable the Rx Status Queue Level interrupt */
+ gintmask.b.rxstsqlvl= 1;
+ dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0);
+
+ /* Get the Status from the top of the FIFO */
+ status.d32 = dwc_read_reg32(&global_regs->grxstsp);
+
+ DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s "
+ "pktsts:%x Frame:%d(0x%0x)\n",
+ status.b.epnum, status.b.bcnt,
+ dpid_str[status.b.dpid],
+ status.b.pktsts, status.b.fn, status.b.fn);
+ /* Get pointer to EP structure */
+ ep = get_out_ep(pcd, status.b.epnum);
+
+ switch (status.b.pktsts) {
+ case DWC_DSTS_GOUT_NAK:
+ DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n");
+ break;
+ case DWC_STS_DATA_UPDT:
+ DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n");
+ if (status.b.bcnt && ep->dwc_ep.xfer_buff) {
+ /** @todo NGS Check for buffer overflow? */
+ dwc_otg_read_packet(core_if,
+ ep->dwc_ep.xfer_buff,
+ status.b.bcnt);
+ ep->dwc_ep.xfer_count += status.b.bcnt;
+ ep->dwc_ep.xfer_buff += status.b.bcnt;
+ }
+ break;
+ case DWC_STS_XFER_COMP:
+ DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n");
+ break;
+ case DWC_DSTS_SETUP_COMP:
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n");
+#endif
+ break;
+case DWC_DSTS_SETUP_UPDT:
+ dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32);
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCD,
+ "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n",
+ pcd->setup_pkt->req.bRequestType,
+ pcd->setup_pkt->req.bRequest,
+ pcd->setup_pkt->req.wValue,
+ pcd->setup_pkt->req.wIndex,
+ pcd->setup_pkt->req.wLength);
+#endif
+ ep->dwc_ep.xfer_count += status.b.bcnt;
+ break;
+ default:
+ DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n",
+ status.b.pktsts);
+ break;
+ }
+
+ /* Enable the Rx Status Queue Level interrupt */
+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32);
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.rxstsqlvl = 1;
+ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
+
+ //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__);
+ return 1;
+}
+/**
+ * This function examines the Device IN Token Learning Queue to
+ * determine the EP number of the last IN token received. This
+ * implementation is for the Mass Storage device where there are only
+ * 2 IN EPs (Control-IN and BULK-IN).
+ *
+ * The EP numbers for the first six IN Tokens are in DTKNQR1 and there
+ * are 8 EP Numbers in each of the other possible DTKNQ Registers.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ *
+ */
+static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if)
+{
+ dwc_otg_device_global_regs_t *dev_global_regs =
+ core_if->dev_if->dev_global_regs;
+ const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
+ /* Number of Token Queue Registers */
+ const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
+ dtknq1_data_t dtknqr1;
+ uint32_t in_tkn_epnums[4];
+ int ndx = 0;
+ int i = 0;
+ volatile uint32_t *addr = &dev_global_regs->dtknqr1;
+ int epnum = 0;
+
+ //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
+
+ /* Read the DTKNQ Registers */
+ for (i = 0; i < DTKNQ_REG_CNT; i++)
+ {
+ in_tkn_epnums[ i ] = dwc_read_reg32(addr);
+ DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1,
+ in_tkn_epnums[i]);
+ if (addr == &dev_global_regs->dvbusdis) {
+ addr = &dev_global_regs->dtknqr3_dthrctl;
+ }
+ else {
+ ++addr;
+ }
+ }
+
+ /* Copy the DTKNQR1 data to the bit field. */
+ dtknqr1.d32 = in_tkn_epnums[0];
+ /* Get the EP numbers */
+ in_tkn_epnums[0] = dtknqr1.b.epnums0_5;
+ ndx = dtknqr1.b.intknwptr - 1;
+
+ //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx);
+ if (ndx == -1) {
+ /** @todo Find a simpler way to calculate the max
+ * queue position.*/
+ int cnt = TOKEN_Q_DEPTH;
+ if (TOKEN_Q_DEPTH <= 6) {
+ cnt = TOKEN_Q_DEPTH - 1;
+ }
+ else if (TOKEN_Q_DEPTH <= 14) {
+ cnt = TOKEN_Q_DEPTH - 7;
+ }
+ else if (TOKEN_Q_DEPTH <= 22) {
+ cnt = TOKEN_Q_DEPTH - 15;
+ }
+ else {
+ cnt = TOKEN_Q_DEPTH - 23;
+ }
+ epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF;
+ }
+ else {
+ if (ndx <= 5) {
+ epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF;
+ }
+ else if (ndx <= 13) {
+ ndx -= 6;
+ epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF;
+ }
+ else if (ndx <= 21) {
+ ndx -= 14;
+ epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF;
+ }
+ else if (ndx <= 29) {
+ ndx -= 22;
+ epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF;
+ }
+ }
+ //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum);
+ return epnum;
+}
+
+/**
+ * This interrupt occurs when the non-periodic Tx FIFO is half-empty.
+ * The active request is checked for the next packet to be loaded into
+ * the non-periodic Tx FIFO.
+ */
+int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+ dwc_otg_dev_in_ep_regs_t *ep_regs;
+ gnptxsts_data_t txstatus = {.d32 = 0};
+ gintsts_data_t gintsts;
+
+ int epnum = 0;
+ dwc_otg_pcd_ep_t *ep = 0;
+ uint32_t len = 0;
+ int dwords;
+
+ /* Get the epnum from the IN Token Learning Queue. */
+ epnum = get_ep_of_last_in_token(core_if);
+ ep = get_in_ep(pcd, epnum);
+
+ DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
+ ep_regs = core_if->dev_if->in_ep_regs[epnum];
+
+ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+ if (len > ep->dwc_ep.maxpacket) {
+ len = ep->dwc_ep.maxpacket;
+ }
+ dwords = (len + 3)/4;
+
+ /* While there is space in the queue and space in the FIFO and
+ * More data to tranfer, Write packets to the Tx FIFO */
+ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+ DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32);
+
+ while (txstatus.b.nptxqspcavail > 0 &&
+ txstatus.b.nptxfspcavail > dwords &&
+ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) {
+ /* Write the FIFO */
+ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
+ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+
+ if (len > ep->dwc_ep.maxpacket) {
+ len = ep->dwc_ep.maxpacket;
+ }
+
+ dwords = (len + 3)/4;
+ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+ DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32);
+ }
+
+ DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n",
+ dwc_read_reg32(&global_regs->gnptxsts));
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.nptxfempty = 1;
+ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * This function is called when dedicated Tx FIFO Empty interrupt occurs.
+ * The active request is checked for the next packet to be loaded into
+ * apropriate Tx FIFO.
+ */
+static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_dev_if_t* dev_if = core_if->dev_if;
+ dwc_otg_dev_in_ep_regs_t *ep_regs;
+ dtxfsts_data_t txstatus = {.d32 = 0};
+ dwc_otg_pcd_ep_t *ep = 0;
+ uint32_t len = 0;
+ int dwords;
+
+ ep = get_in_ep(pcd, epnum);
+
+ DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
+
+ ep_regs = core_if->dev_if->in_ep_regs[epnum];
+
+ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+
+ if (len > ep->dwc_ep.maxpacket) {
+ len = ep->dwc_ep.maxpacket;
+ }
+
+ dwords = (len + 3)/4;
+
+ /* While there is space in the queue and space in the FIFO and
+ * More data to tranfer, Write packets to the Tx FIFO */
+ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
+ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32);
+
+ while (txstatus.b.txfspcavail > dwords &&
+ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len &&
+ ep->dwc_ep.xfer_len != 0) {
+ /* Write the FIFO */
+ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
+
+ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+ if (len > ep->dwc_ep.maxpacket) {
+ len = ep->dwc_ep.maxpacket;
+ }
+
+ dwords = (len + 3)/4;
+ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
+ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
+ }
+
+ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts));
+
+ return 1;
+}
+
+/**
+ * This function is called when the Device is disconnected. It stops
+ * any active requests and informs the Gadget driver of the
+ * disconnect.
+ */
+void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd)
+{
+ int i, num_in_eps, num_out_eps;
+ dwc_otg_pcd_ep_t *ep;
+
+ gintmsk_data_t intr_mask = {.d32 = 0};
+
+ num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
+ num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
+
+ DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__);
+ /* don't disconnect drivers more than once */
+ if (pcd->ep0state == EP0_DISCONNECT) {
+ DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__);
+ return;
+ }
+ pcd->ep0state = EP0_DISCONNECT;
+
+ /* Reset the OTG state. */
+ dwc_otg_pcd_update_otg(pcd, 1);
+
+ /* Disable the NP Tx Fifo Empty Interrupt. */
+ intr_mask.b.nptxfempty = 1;
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+ intr_mask.d32, 0);
+
+ /* Flush the FIFOs */
+ /**@todo NGS Flush Periodic FIFOs */
+ dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10);
+ dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd));
+
+ /* prevent new request submissions, kill any outstanding requests */
+ ep = &pcd->ep0;
+ dwc_otg_request_nuke(ep);
+ /* prevent new request submissions, kill any outstanding requests */
+ for (i = 0; i < num_in_eps; i++)
+ {
+ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i];
+ dwc_otg_request_nuke(ep);
+ }
+ /* prevent new request submissions, kill any outstanding requests */
+ for (i = 0; i < num_out_eps; i++)
+ {
+ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i];
+ dwc_otg_request_nuke(ep);
+ }
+
+ /* report disconnect; the driver is already quiesced */
+ if (pcd->driver && pcd->driver->disconnect) {
+ SPIN_UNLOCK(&pcd->lock);
+ pcd->driver->disconnect(&pcd->gadget);
+ SPIN_LOCK(&pcd->lock);
+ }
+}
+
+/**
+ * This interrupt indicates that ...
+ */
+int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd)
+{
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ gintsts_data_t gintsts;
+
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr");
+ intr_mask.b.i2cintr = 1;
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+ intr_mask.d32, 0);
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.i2cintr = 1;
+ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+ gintsts.d32);
+ return 1;
+}
+
+
+/**
+ * This interrupt indicates that ...
+ */
+int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd)
+{
+ gintsts_data_t gintsts;
+#if defined(VERBOSE)
+ DWC_PRINT("Early Suspend Detected\n");
+#endif
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.erlysuspend = 1;
+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+ gintsts.d32);
+ return 1;
+}
+
+/**
+ * This function configures EPO to receive SETUP packets.
+ *
+ * @todo NGS: Update the comments from the HW FS.
+ *
+ * -# Program the following fields in the endpoint specific registers
+ * for Control OUT EP 0, in order to receive a setup packet
+ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
+ * setup packets)
+ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
+ * to back setup packets)
+ * - In DMA mode, DOEPDMA0 Register with a memory address to
+ * store any setup packets received
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param pcd Programming view of the PCD.
+ */
+static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ deptsiz0_data_t doeptsize0 = { .d32 = 0};
+ dwc_otg_dma_desc_t* dma_desc;
+ depctl_data_t doepctl = { .d32 = 0 };
+
+#ifdef VERBOSE
+ DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__,
+ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
+#endif
+
+ doeptsize0.b.supcnt = 3;
+ doeptsize0.b.pktcnt = 1;
+ doeptsize0.b.xfersize = 8*3;
+
+ if (core_if->dma_enable) {
+ if (!core_if->dma_desc_enable) {
+ /** put here as for Hermes mode deptisz register should not be written */
+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
+ doeptsize0.d32);
+
+ /** @todo dma needs to handle multiple setup packets (up to 3) */
+ VERIFY_PCD_DMA_ADDR(pcd->setup_pkt_dma_handle);
+
+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma,
+ pcd->setup_pkt_dma_handle);
+ } else {
+ dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1;
+ dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index];
+
+ /** DMA Descriptor Setup */
+ dma_desc->status.b.bs = BS_HOST_BUSY;
+ dma_desc->status.b.l = 1;
+ dma_desc->status.b.ioc = 1;
+ dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket;
+ dma_desc->buf = pcd->setup_pkt_dma_handle;
+ dma_desc->status.b.bs = BS_HOST_READY;
+
+ /** DOEPDMA0 Register write */
+ VERIFY_PCD_DMA_ADDR(dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
+ }
+
+ } else {
+ /** put here as for Hermes mode deptisz register should not be written */
+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
+ doeptsize0.d32);
+ }
+
+ /** DOEPCTL0 Register write */
+ doepctl.b.epena = 1;
+ doepctl.b.cnak = 1;
+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
+
+#ifdef VERBOSE
+ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
+ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
+ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
+ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
+#endif
+}
+
+/**
+ * This interrupt occurs when a USB Reset is detected. When the USB
+ * Reset Interrupt occurs the device state is set to DEFAULT and the
+ * EP0 state is set to IDLE.
+ * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1)
+ * -# Unmask the following interrupt bits
+ * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint)
+ * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint)
+ * - DOEPMSK.SETUP = 1
+ * - DOEPMSK.XferCompl = 1
+ * - DIEPMSK.XferCompl = 1
+ * - DIEPMSK.TimeOut = 1
+ * -# Program the following fields in the endpoint specific registers
+ * for Control OUT EP 0, in order to receive a setup packet
+ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
+ * setup packets)
+ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
+ * to back setup packets)
+ * - In DMA mode, DOEPDMA0 Register with a memory address to
+ * store any setup packets received
+ * At this point, all the required initialization, except for enabling
+ * the control 0 OUT endpoint is done, for receiving SETUP packets.
+ */
+int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ depctl_data_t doepctl = { .d32 = 0};
+
+ daint_data_t daintmsk = { .d32 = 0};
+ doepmsk_data_t doepmsk = { .d32 = 0};
+ diepmsk_data_t diepmsk = { .d32 = 0};
+
+ dcfg_data_t dcfg = { .d32=0 };
+ grstctl_t resetctl = { .d32=0 };
+ dctl_data_t dctl = {.d32=0};
+ int i = 0;
+ gintsts_data_t gintsts;
+
+ DWC_PRINT("USB RESET\n");
+#ifdef DWC_EN_ISOC
+ for(i = 1;i < 16; ++i)
+ {
+ dwc_otg_pcd_ep_t *ep;
+ dwc_ep_t *dwc_ep;
+ ep = get_in_ep(pcd,i);
+ if(ep != 0){
+ dwc_ep = &ep->dwc_ep;
+ dwc_ep->next_frame = 0xffffffff;
+ }
+ }
+#endif /* DWC_EN_ISOC */
+
+ /* reset the HNP settings */
+ dwc_otg_pcd_update_otg(pcd, 1);
+
+ /* Clear the Remote Wakeup Signalling */
+ dctl.b.rmtwkupsig = 1;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
+ dctl.d32, 0);
+
+ /* Set NAK for all OUT EPs */
+ doepctl.b.snak = 1;
+ for (i=0; i <= dev_if->num_out_eps; i++)
+ {
+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl,
+ doepctl.d32);
+ }
+
+ /* Flush the NP Tx FIFO */
+ dwc_otg_flush_tx_fifo(core_if, 0x10);
+ /* Flush the Learning Queue */
+ resetctl.b.intknqflsh = 1;
+ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
+
+ if(core_if->multiproc_int_enable) {
+ daintmsk.b.inep0 = 1;
+ daintmsk.b.outep0 = 1;
+ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32);
+
+ doepmsk.b.setup = 1;
+ doepmsk.b.xfercompl = 1;
+ doepmsk.b.ahberr = 1;
+ doepmsk.b.epdisabled = 1;
+
+ if(core_if->dma_desc_enable) {
+ doepmsk.b.stsphsercvd = 1;
+ doepmsk.b.bna = 1;
+ }
+/*
+ doepmsk.b.babble = 1;
+ doepmsk.b.nyet = 1;
+
+ if(core_if->dma_enable) {
+ doepmsk.b.nak = 1;
+ }
+*/
+ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32);
+
+ diepmsk.b.xfercompl = 1;
+ diepmsk.b.timeout = 1;
+ diepmsk.b.epdisabled = 1;
+ diepmsk.b.ahberr = 1;
+ diepmsk.b.intknepmis = 1;
+
+ if(core_if->dma_desc_enable) {
+ diepmsk.b.bna = 1;
+ }
+/*
+ if(core_if->dma_enable) {
+ diepmsk.b.nak = 1;
+ }
+*/
+ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32);
+ } else{
+ daintmsk.b.inep0 = 1;
+ daintmsk.b.outep0 = 1;
+ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32);
+
+ doepmsk.b.setup = 1;
+ doepmsk.b.xfercompl = 1;
+ doepmsk.b.ahberr = 1;
+ doepmsk.b.epdisabled = 1;
+
+ if(core_if->dma_desc_enable) {
+ doepmsk.b.stsphsercvd = 1;
+ doepmsk.b.bna = 1;
+ }
+/*
+ doepmsk.b.babble = 1;
+ doepmsk.b.nyet = 1;
+ doepmsk.b.nak = 1;
+*/
+ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32);
+
+ diepmsk.b.xfercompl = 1;
+ diepmsk.b.timeout = 1;
+ diepmsk.b.epdisabled = 1;
+ diepmsk.b.ahberr = 1;
+ diepmsk.b.intknepmis = 1;
+
+ if(core_if->dma_desc_enable) {
+ diepmsk.b.bna = 1;
+ }
+
+// diepmsk.b.nak = 1;
+
+ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32);
+ }
+
+ /* Reset Device Address */
+ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
+ dcfg.b.devaddr = 0;
+ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
+
+ /* setup EP0 to receive SETUP packets */
+ ep0_out_start(core_if, pcd);
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.usbreset = 1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * Get the device speed from the device status register and convert it
+ * to USB speed constant.
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ */
+static int get_device_speed(dwc_otg_core_if_t *core_if)
+{
+ dsts_data_t dsts;
+ enum usb_device_speed speed = USB_SPEED_UNKNOWN;
+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
+
+ switch (dsts.b.enumspd) {
+ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
+ speed = USB_SPEED_HIGH;
+ break;
+ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
+ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
+ speed = USB_SPEED_FULL;
+ break;
+
+ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
+ speed = USB_SPEED_LOW;
+ break;
+ }
+
+ return speed;
+}
+
+/**
+ * Read the device status register and set the device speed in the
+ * data structure.
+ * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate.
+ */
+int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+ gintsts_data_t gintsts;
+ gusbcfg_data_t gusbcfg;
+ dwc_otg_core_global_regs_t *global_regs =
+ GET_CORE_IF(pcd)->core_global_regs;
+ uint8_t utmi16b, utmi8b;
+// DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n");
+ DWC_PRINT("SPEED ENUM\n");
+
+ if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) {
+ utmi16b = 6;
+ utmi8b = 9;
+ } else {
+ utmi16b = 4;
+ utmi8b = 8;
+ }
+ dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep);
+
+#ifdef DEBUG_EP0
+ print_ep0_state(pcd);
+#endif
+
+ if (pcd->ep0state == EP0_DISCONNECT) {
+ pcd->ep0state = EP0_IDLE;
+ }
+ else if (pcd->ep0state == EP0_STALL) {
+ pcd->ep0state = EP0_IDLE;
+ }
+
+ pcd->ep0state = EP0_IDLE;
+
+ ep0->stopped = 0;
+
+ pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd));
+
+ /* Set USB turnaround time based on device speed and PHY interface. */
+ gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ if (pcd->gadget.speed == USB_SPEED_HIGH) {
+ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) {
+ /* ULPI interface */
+ gusbcfg.b.usbtrdtim = 9;
+ }
+ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) {
+ /* UTMI+ interface */
+ if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) {
+ gusbcfg.b.usbtrdtim = utmi8b;
+ }
+ else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) {
+ gusbcfg.b.usbtrdtim = utmi16b;
+ }
+ else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) {
+ gusbcfg.b.usbtrdtim = utmi8b;
+ }
+ else {
+ gusbcfg.b.usbtrdtim = utmi16b;
+ }
+ }
+ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) {
+ /* UTMI+ OR ULPI interface */
+ if (gusbcfg.b.ulpi_utmi_sel == 1) {
+ /* ULPI interface */
+ gusbcfg.b.usbtrdtim = 9;
+ }
+ else {
+ /* UTMI+ interface */
+ if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) {
+ gusbcfg.b.usbtrdtim = utmi16b;
+ }
+ else {
+ gusbcfg.b.usbtrdtim = utmi8b;
+ }
+ }
+ }
+ }
+ else {
+ /* Full or low speed */
+ gusbcfg.b.usbtrdtim = 9;
+ }
+ dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32);
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.enumdone = 1;
+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+ gintsts.d32);
+ return 1;
+}
+
+/**
+ * This interrupt indicates that the ISO OUT Packet was dropped due to
+ * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs
+ * read all the data from the Rx FIFO.
+ */
+int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd)
+{
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ gintsts_data_t gintsts;
+
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
+ "ISOC Out Dropped");
+
+ intr_mask.b.isooutdrop = 1;
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+ intr_mask.d32, 0);
+
+ /* Clear interrupt */
+
+ gintsts.d32 = 0;
+ gintsts.b.isooutdrop = 1;
+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+ gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * This interrupt indicates the end of the portion of the micro-frame
+ * for periodic transactions. If there is a periodic transaction for
+ * the next frame, load the packets into the EP periodic Tx FIFO.
+ */
+int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd)
+{
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ gintsts_data_t gintsts;
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP");
+
+ intr_mask.b.eopframe = 1;
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+ intr_mask.d32, 0);
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.eopframe = 1;
+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * This interrupt indicates that EP of the packet on the top of the
+ * non-periodic Tx FIFO does not match EP of the IN Token received.
+ *
+ * The "Device IN Token Queue" Registers are read to determine the
+ * order the IN Tokens have been received. The non-periodic Tx FIFO
+ * is flushed, so it can be reloaded in the order seen in the IN Token
+ * Queue.
+ */
+int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if)
+{
+ gintsts_data_t gintsts;
+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.epmismatch = 1;
+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * This funcion stalls EP0.
+ */
+static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val)
+{
+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+ struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req;
+ DWC_WARN("req %02x.%02x protocol STALL; err %d\n",
+ ctrl->bRequestType, ctrl->bRequest, err_val);
+
+ ep0->dwc_ep.is_in = 1;
+ dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep);
+ pcd->ep0.stopped = 1;
+ pcd->ep0state = EP0_IDLE;
+ ep0_out_start(GET_CORE_IF(pcd), pcd);
+}
+
+/**
+ * This functions delegates the setup command to the gadget driver.
+ */
+static inline void do_gadget_setup(dwc_otg_pcd_t *pcd,
+ struct usb_ctrlrequest * ctrl)
+{
+ int ret = 0;
+ if (pcd->driver && pcd->driver->setup) {
+ SPIN_UNLOCK(&pcd->lock);
+ ret = pcd->driver->setup(&pcd->gadget, ctrl);
+ SPIN_LOCK(&pcd->lock);
+ if (ret < 0) {
+ ep0_do_stall(pcd, ret);
+ }
+
+ /** @todo This is a g_file_storage gadget driver specific
+ * workaround: a DELAYED_STATUS result from the fsg_setup
+ * routine will result in the gadget queueing a EP0 IN status
+ * phase for a two-stage control transfer. Exactly the same as
+ * a SET_CONFIGURATION/SET_INTERFACE except that this is a class
+ * specific request. Need a generic way to know when the gadget
+ * driver will queue the status phase. Can we assume when we
+ * call the gadget driver setup() function that it will always
+ * queue and require the following flag? Need to look into
+ * this.
+ */
+
+ if (ret == 256 + 999) {
+ pcd->request_config = 1;
+ }
+ }
+}
+
+/**
+ * This function starts the Zero-Length Packet for the IN status phase
+ * of a 2 stage control transfer.
+ */
+static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+ if (pcd->ep0state == EP0_STALL) {
+ return;
+ }
+
+ pcd->ep0state = EP0_IN_STATUS_PHASE;
+
+ /* Prepare for more SETUP Packets */
+ DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n");
+ ep0->dwc_ep.xfer_len = 0;
+ ep0->dwc_ep.xfer_count = 0;
+ ep0->dwc_ep.is_in = 1;
+ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
+ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
+
+ /* Prepare for more SETUP Packets */
+// if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd);
+}
+
+/**
+ * This function starts the Zero-Length Packet for the OUT status phase
+ * of a 2 stage control transfer.
+ */
+static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+ if (pcd->ep0state == EP0_STALL) {
+ DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n");
+ return;
+ }
+ pcd->ep0state = EP0_OUT_STATUS_PHASE;
+
+ DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n");
+ ep0->dwc_ep.xfer_len = 0;
+ ep0->dwc_ep.xfer_count = 0;
+ ep0->dwc_ep.is_in = 0;
+ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
+ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
+
+ /* Prepare for more SETUP Packets */
+ if(GET_CORE_IF(pcd)->dma_enable == 0) {
+ ep0_out_start(GET_CORE_IF(pcd), pcd);
+ }
+}
+
+/**
+ * Clear the EP halt (STALL) and if pending requests start the
+ * transfer.
+ */
+static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep)
+{
+ if(ep->dwc_ep.stall_clear_flag == 0)
+ dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
+
+ /* Reactive the EP */
+ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
+ if (ep->stopped) {
+ ep->stopped = 0;
+ /* If there is a request in the EP queue start it */
+
+ /** @todo FIXME: this causes an EP mismatch in DMA mode.
+ * epmismatch not yet implemented. */
+
+ /*
+ * Above fixme is solved by implmenting a tasklet to call the
+ * start_next_request(), outside of interrupt context at some
+ * time after the current time, after a clear-halt setup packet.
+ * Still need to implement ep mismatch in the future if a gadget
+ * ever uses more than one endpoint at once
+ */
+ ep->queue_sof = 1;
+ tasklet_schedule (pcd->start_xfer_tasklet);
+ }
+ /* Start Control Status Phase */
+ do_setup_in_status_phase(pcd);
+}
+
+/**
+ * This function is called when the SET_FEATURE TEST_MODE Setup packet
+ * is sent from the host. The Device Control register is written with
+ * the Test Mode bits set to the specified Test Mode. This is done as
+ * a tasklet so that the "Status" phase of the control transfer
+ * completes before transmitting the TEST packets.
+ *
+ * @todo This has not been tested since the tasklet struct was put
+ * into the PCD struct!
+ *
+ */
+static void do_test_mode(unsigned long data)
+{
+ dctl_data_t dctl;
+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data;
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ int test_mode = pcd->test_mode;
+
+
+// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__);
+
+ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
+ switch (test_mode) {
+ case 1: // TEST_J
+ dctl.b.tstctl = 1;
+ break;
+
+ case 2: // TEST_K
+ dctl.b.tstctl = 2;
+ break;
+
+ case 3: // TEST_SE0_NAK
+ dctl.b.tstctl = 3;
+ break;
+
+ case 4: // TEST_PACKET
+ dctl.b.tstctl = 4;
+ break;
+
+ case 5: // TEST_FORCE_ENABLE
+ dctl.b.tstctl = 5;
+ break;
+ }
+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
+}
+
+/**
+ * This function process the GET_STATUS Setup Commands.
+ */
+static inline void do_get_status(dwc_otg_pcd_t *pcd)
+{
+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
+ dwc_otg_pcd_ep_t *ep;
+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+ uint16_t *status = pcd->status_buf;
+
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCD,
+ "GET_STATUS %02x.%02x v%04x i%04x l%04x\n",
+ ctrl.bRequestType, ctrl.bRequest,
+ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
+#endif
+
+ switch (ctrl.bRequestType & USB_RECIP_MASK) {
+ case USB_RECIP_DEVICE:
+ *status = 0x1; /* Self powered */
+ *status |= pcd->remote_wakeup_enable << 1;
+ break;
+
+ case USB_RECIP_INTERFACE:
+ *status = 0;
+ break;
+
+ case USB_RECIP_ENDPOINT:
+ ep = get_ep_by_addr(pcd, ctrl.wIndex);
+ if (ep == 0 || ctrl.wLength > 2) {
+ ep0_do_stall(pcd, -EOPNOTSUPP);
+ return;
+ }
+ /** @todo check for EP stall */
+ *status = ep->stopped;
+ break;
+ }
+ pcd->ep0_pending = 1;
+ ep0->dwc_ep.start_xfer_buff = (uint8_t *)status;
+ ep0->dwc_ep.xfer_buff = (uint8_t *)status;
+ ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle;
+ ep0->dwc_ep.xfer_len = 2;
+ ep0->dwc_ep.xfer_count = 0;
+ ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
+ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
+}
+/**
+ * This function process the SET_FEATURE Setup Commands.
+ */
+static inline void do_set_feature(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
+ dwc_otg_pcd_ep_t *ep = 0;
+ int32_t otg_cap_param = core_if->core_params->otg_cap;
+ gotgctl_data_t gotgctl = { .d32 = 0 };
+
+ DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
+ ctrl.bRequestType, ctrl.bRequest,
+ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
+ DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param);
+
+
+ switch (ctrl.bRequestType & USB_RECIP_MASK) {
+ case USB_RECIP_DEVICE:
+ switch (ctrl.wValue) {
+ case USB_DEVICE_REMOTE_WAKEUP:
+ pcd->remote_wakeup_enable = 1;
+ break;
+
+ case USB_DEVICE_TEST_MODE:
+ /* Setup the Test Mode tasklet to do the Test
+ * Packet generation after the SETUP Status
+ * phase has completed. */
+
+ /** @todo This has not been tested since the
+ * tasklet struct was put into the PCD
+ * struct! */
+ pcd->test_mode_tasklet.next = 0;
+ pcd->test_mode_tasklet.state = 0;
+ atomic_set(&pcd->test_mode_tasklet.count, 0);
+ pcd->test_mode_tasklet.func = do_test_mode;
+ pcd->test_mode_tasklet.data = (unsigned long)pcd;
+ pcd->test_mode = ctrl.wIndex >> 8;
+ tasklet_schedule(&pcd->test_mode_tasklet);
+ break;
+
+ case USB_DEVICE_B_HNP_ENABLE:
+ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
+
+ /* dev may initiate HNP */
+ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
+ pcd->b_hnp_enable = 1;
+ dwc_otg_pcd_update_otg(pcd, 0);
+ DWC_DEBUGPL(DBG_PCD, "Request B HNP\n");
+ /**@todo Is the gotgctl.devhnpen cleared
+ * by a USB Reset? */
+ gotgctl.b.devhnpen = 1;
+ gotgctl.b.hnpreq = 1;
+ dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32);
+ }
+ else {
+ ep0_do_stall(pcd, -EOPNOTSUPP);
+ }
+ break;
+
+ case USB_DEVICE_A_HNP_SUPPORT:
+ /* RH port supports HNP */
+ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n");
+ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
+ pcd->a_hnp_support = 1;
+ dwc_otg_pcd_update_otg(pcd, 0);
+ }
+ else {
+ ep0_do_stall(pcd, -EOPNOTSUPP);
+ }
+ break;
+
+ case USB_DEVICE_A_ALT_HNP_SUPPORT:
+ /* other RH port does */
+ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
+ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
+ pcd->a_alt_hnp_support = 1;
+ dwc_otg_pcd_update_otg(pcd, 0);
+ }
+ else {
+ ep0_do_stall(pcd, -EOPNOTSUPP);
+ }
+ break;
+ }
+ do_setup_in_status_phase(pcd);
+ break;
+
+ case USB_RECIP_INTERFACE:
+ do_gadget_setup(pcd, &ctrl);
+ break;
+
+ case USB_RECIP_ENDPOINT:
+ if (ctrl.wValue == USB_ENDPOINT_HALT) {
+ ep = get_ep_by_addr(pcd, ctrl.wIndex);
+ if (ep == 0) {
+ ep0_do_stall(pcd, -EOPNOTSUPP);
+ return;
+ }
+ ep->stopped = 1;
+ dwc_otg_ep_set_stall(core_if, &ep->dwc_ep);
+ }
+ do_setup_in_status_phase(pcd);
+ break;
+ }
+}
+
+/**
+ * This function process the CLEAR_FEATURE Setup Commands.
+ */
+static inline void do_clear_feature(dwc_otg_pcd_t *pcd)
+{
+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
+ dwc_otg_pcd_ep_t *ep = 0;
+
+ DWC_DEBUGPL(DBG_PCD,
+ "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
+ ctrl.bRequestType, ctrl.bRequest,
+ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
+
+ switch (ctrl.bRequestType & USB_RECIP_MASK) {
+ case USB_RECIP_DEVICE:
+ switch (ctrl.wValue) {
+ case USB_DEVICE_REMOTE_WAKEUP:
+ pcd->remote_wakeup_enable = 0;
+ break;
+
+ case USB_DEVICE_TEST_MODE:
+ /** @todo Add CLEAR_FEATURE for TEST modes. */
+ break;
+ }
+ do_setup_in_status_phase(pcd);
+ break;
+
+ case USB_RECIP_ENDPOINT:
+ ep = get_ep_by_addr(pcd, ctrl.wIndex);
+ if (ep == 0) {
+ ep0_do_stall(pcd, -EOPNOTSUPP);
+ return;
+ }
+
+ pcd_clear_halt(pcd, ep);
+
+ break;
+ }
+}
+
+/**
+ * This function process the SET_ADDRESS Setup Commands.
+ */
+static inline void do_set_address(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
+
+ if (ctrl.bRequestType == USB_RECIP_DEVICE) {
+ dcfg_data_t dcfg = {.d32=0};
+
+#ifdef DEBUG_EP0
+// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue);
+#endif
+ dcfg.b.devaddr = ctrl.wValue;
+ dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32);
+ do_setup_in_status_phase(pcd);
+ }
+}
+
+/**
+ * This function processes SETUP commands. In Linux, the USB Command
+ * processing is done in two places - the first being the PCD and the
+ * second in the Gadget Driver (for example, the File-Backed Storage
+ * Gadget Driver).
+ *
+ * <table>
+ * <tr><td>Command </td><td>Driver </td><td>Description</td></tr>
+ *
+ * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as
+ * defined in chapter 9 of the USB 2.0 Specification chapter 9
+ * </td></tr>
+ *
+ * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint
+ * requests are the ENDPOINT_HALT feature is procesed, all others the
+ * interface requests are ignored.</td></tr>
+ *
+ * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint
+ * requests are processed by the PCD. Interface requests are passed
+ * to the Gadget Driver.</td></tr>
+ *
+ * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg,
+ * with device address received </td></tr>
+ *
+ * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the
+ * requested descriptor</td></tr>
+ *
+ * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional -
+ * not implemented by any of the existing Gadget Drivers.</td></tr>
+ *
+ * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable
+ * all EPs and enable EPs for new configuration.</td></tr>
+ *
+ * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return
+ * the current configuration</td></tr>
+ *
+ * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all
+ * EPs and enable EPs for new configuration.</td></tr>
+ *
+ * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the
+ * current interface.</td></tr>
+ *
+ * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug
+ * message.</td></tr>
+ * </table>
+ *
+ * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are
+ * processed by pcd_setup. Calling the Function Driver's setup function from
+ * pcd_setup processes the gadget SETUP commands.
+ */
+static inline void pcd_setup(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+
+ deptsiz0_data_t doeptsize0 = { .d32 = 0};
+
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n",
+ ctrl.bRequestType, ctrl.bRequest,
+ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
+#endif
+
+ doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz);
+
+ /** @todo handle > 1 setup packet , assert error for now */
+
+ if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) {
+ DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n");
+ }
+
+ /* Clean up the request queue */
+ dwc_otg_request_nuke(ep0);
+ ep0->stopped = 0;
+
+ if (ctrl.bRequestType & USB_DIR_IN) {
+ ep0->dwc_ep.is_in = 1;
+ pcd->ep0state = EP0_IN_DATA_PHASE;
+ }
+ else {
+ ep0->dwc_ep.is_in = 0;
+ pcd->ep0state = EP0_OUT_DATA_PHASE;
+ }
+
+ if(ctrl.wLength == 0) {
+ ep0->dwc_ep.is_in = 1;
+ pcd->ep0state = EP0_IN_STATUS_PHASE;
+ }
+
+ if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) {
+ /* handle non-standard (class/vendor) requests in the gadget driver */
+ do_gadget_setup(pcd, &ctrl);
+ return;
+ }
+
+ /** @todo NGS: Handle bad setup packet? */
+
+///////////////////////////////////////////
+//// --- Standard Request handling --- ////
+
+ switch (ctrl.bRequest) {
+ case USB_REQ_GET_STATUS:
+ do_get_status(pcd);
+ break;
+
+ case USB_REQ_CLEAR_FEATURE:
+ do_clear_feature(pcd);
+ break;
+
+ case USB_REQ_SET_FEATURE:
+ do_set_feature(pcd);
+ break;
+
+ case USB_REQ_SET_ADDRESS:
+ do_set_address(pcd);
+ break;
+
+ case USB_REQ_SET_INTERFACE:
+ case USB_REQ_SET_CONFIGURATION:
+// _pcd->request_config = 1; /* Configuration changed */
+ do_gadget_setup(pcd, &ctrl);
+ break;
+
+ case USB_REQ_SYNCH_FRAME:
+ do_gadget_setup(pcd, &ctrl);
+ break;
+
+ default:
+ /* Call the Gadget Driver's setup functions */
+ do_gadget_setup(pcd, &ctrl);
+ break;
+ }
+}
+
+/**
+ * This function completes the ep0 control transfer.
+ */
+static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ dwc_otg_dev_in_ep_regs_t *in_ep_regs =
+ dev_if->in_ep_regs[ep->dwc_ep.num];
+#ifdef DEBUG_EP0
+ dwc_otg_dev_out_ep_regs_t *out_ep_regs =
+ dev_if->out_ep_regs[ep->dwc_ep.num];
+#endif
+ deptsiz0_data_t deptsiz;
+ desc_sts_data_t desc_sts;
+ dwc_otg_pcd_request_t *req;
+ int is_last = 0;
+ dwc_otg_pcd_t *pcd = ep->pcd;
+
+ //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name);
+
+ if (pcd->ep0_pending && list_empty(&ep->queue)) {
+ if (ep->dwc_ep.is_in) {
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n");
+#endif
+ do_setup_out_status_phase(pcd);
+ }
+ else {
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n");
+#endif
+ do_setup_in_status_phase(pcd);
+ }
+ pcd->ep0_pending = 0;
+ return 1;
+ }
+
+ if (list_empty(&ep->queue)) {
+ return 0;
+ }
+ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue);
+
+
+ if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) {
+ is_last = 1;
+ }
+ else if (ep->dwc_ep.is_in) {
+ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
+ if(core_if->dma_desc_enable != 0)
+ desc_sts.d32 = readl(dev_if->in_desc_addr);
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
+ ep->ep.name, ep->dwc_ep.xfer_len,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
+#endif
+
+ if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) ||
+ ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) {
+ req->req.actual = ep->dwc_ep.xfer_count;
+ /* Is a Zero Len Packet needed? */
+ if (req->req.zero) {
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n");
+#endif
+ req->req.zero = 0;
+ }
+ do_setup_out_status_phase(pcd);
+ }
+ }
+ else {
+ /* ep0-OUT */
+#ifdef DEBUG_EP0
+ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
+ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n",
+ ep->ep.name, ep->dwc_ep.xfer_len,
+ deptsiz.b.xfersize,
+ deptsiz.b.pktcnt);
+#endif
+ req->req.actual = ep->dwc_ep.xfer_count;
+ /* Is a Zero Len Packet needed? */
+ if (req->req.zero) {
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n");
+#endif
+ req->req.zero = 0;
+ }
+ if(core_if->dma_desc_enable == 0)
+ do_setup_in_status_phase(pcd);
+ }
+
+ /* Complete the request */
+ if (is_last) {
+ dwc_otg_request_done(ep, req, 0);
+ ep->dwc_ep.start_xfer_buff = 0;
+ ep->dwc_ep.xfer_buff = 0;
+ ep->dwc_ep.xfer_len = 0;
+ return 1;
+ }
+ return 0;
+}
+
+inline void aligned_buf_patch_on_buf_dma_oep_completion(dwc_otg_pcd_ep_t *ep, uint32_t byte_count)
+{
+ dwc_ep_t *dwc_ep = &ep->dwc_ep;
+ if(byte_count && dwc_ep->aligned_buf &&
+ dwc_ep->dma_addr>=dwc_ep->aligned_dma_addr &&
+ dwc_ep->dma_addr<=(dwc_ep->aligned_dma_addr+dwc_ep->aligned_buf_size))\
+ {
+ //aligned buf used, apply complete patch
+ u32 offset=(dwc_ep->dma_addr-dwc_ep->aligned_dma_addr);
+ memcpy(dwc_ep->start_xfer_buff+offset, dwc_ep->aligned_buf+offset, byte_count);
+ }
+}
+
+/**
+ * This function completes the request for the EP. If there are
+ * additional requests for the EP in the queue they will be started.
+ */
+static void complete_ep(dwc_otg_pcd_ep_t *ep)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ dwc_otg_dev_in_ep_regs_t *in_ep_regs =
+ dev_if->in_ep_regs[ep->dwc_ep.num];
+ deptsiz_data_t deptsiz;
+ desc_sts_data_t desc_sts;
+ dwc_otg_pcd_request_t *req = 0;
+ dwc_otg_dma_desc_t* dma_desc;
+ uint32_t byte_count = 0;
+ int is_last = 0;
+ int i;
+
+ DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name,
+ (ep->dwc_ep.is_in?"IN":"OUT"));
+
+ /* Get any pending requests */
+ if (!list_empty(&ep->queue)) {
+ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
+ queue);
+ if (!req) {
+ printk("complete_ep 0x%p, req = NULL!\n", ep);
+ return;
+ }
+ }
+ else {
+ printk("complete_ep 0x%p, ep->queue empty!\n", ep);
+ return;
+ }
+ DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending);
+
+ if (ep->dwc_ep.is_in) {
+ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
+
+ if (core_if->dma_enable) {
+ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
+ if(core_if->dma_desc_enable == 0) {
+ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
+ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
+ byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
+DWC_DEBUGPL(DBG_PCDV,"byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x)\n", byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count );
+
+ ep->dwc_ep.xfer_buff += byte_count;
+ ep->dwc_ep.dma_addr += byte_count;
+ ep->dwc_ep.xfer_count += byte_count;
+
+ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
+ ep->ep.name, ep->dwc_ep.xfer_len,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
+
+ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
+ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
+ } else if(ep->dwc_ep.sent_zlp) {
+ /*
+ * This fragment of code should initiate 0
+ * length trasfer in case if it is queued
+ * a trasfer with size divisible to EPs max
+ * packet size and with usb_request zero field
+ * is set, which means that after data is transfered,
+ * it is also should be transfered
+ * a 0 length packet at the end. For Slave and
+ * Buffer DMA modes in this case SW has
+ * to initiate 2 transfers one with transfer size,
+ * and the second with 0 size. For Desriptor
+ * DMA mode SW is able to initiate a transfer,
+ * which will handle all the packets including
+ * the last 0 legth.
+ */
+ ep->dwc_ep.sent_zlp = 0;
+ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
+ } else {
+ is_last = 1;
+ }
+ } else {
+ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
+ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
+ }
+ } else {
+
+ dma_desc = ep->dwc_ep.desc_addr;
+ byte_count = 0;
+ ep->dwc_ep.sent_zlp = 0;
+
+ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
+ desc_sts.d32 = readl(dma_desc);
+ byte_count += desc_sts.b.bytes;
+ dma_desc++;
+ }
+
+ if(byte_count == 0) {
+ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len;
+ is_last = 1;
+ } else {
+ DWC_WARN("Incomplete transfer\n");
+ }
+ }
+ } else {
+ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
+ /* Check if the whole transfer was completed,
+ * if no, setup transfer for next portion of data
+ */
+ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
+ ep->ep.name, ep->dwc_ep.xfer_len,
+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
+ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
+ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
+ } else if(ep->dwc_ep.sent_zlp) {
+ /*
+ * This fragment of code should initiate 0
+ * length trasfer in case if it is queued
+ * a trasfer with size divisible to EPs max
+ * packet size and with usb_request zero field
+ * is set, which means that after data is transfered,
+ * it is also should be transfered
+ * a 0 length packet at the end. For Slave and
+ * Buffer DMA modes in this case SW has
+ * to initiate 2 transfers one with transfer size,
+ * and the second with 0 size. For Desriptor
+ * DMA mode SW is able to initiate a transfer,
+ * which will handle all the packets including
+ * the last 0 legth.
+ */
+ ep->dwc_ep.sent_zlp = 0;
+ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
+ } else {
+ is_last = 1;
+ }
+ }
+ else {
+ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
+ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
+ }
+ }
+ } else {
+ dwc_otg_dev_out_ep_regs_t *out_ep_regs =
+ dev_if->out_ep_regs[ep->dwc_ep.num];
+ desc_sts.d32 = 0;
+ if(core_if->dma_enable) {
+ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_FROM_DEVICE);
+ if(core_if->dma_desc_enable) {
+ DWC_WARN("\n\n%s: we need a cache invalidation here!!\n\n",__func__);
+ dma_desc = ep->dwc_ep.desc_addr;
+ byte_count = 0;
+ ep->dwc_ep.sent_zlp = 0;
+ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
+ desc_sts.d32 = readl(dma_desc);
+ byte_count += desc_sts.b.bytes;
+ dma_desc++;
+ }
+
+ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len
+ - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3);
+
+ //todo: invalidate cache & aligned buf patch on completion
+ //
+
+ is_last = 1;
+ } else {
+ deptsiz.d32 = 0;
+ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
+
+ byte_count = (ep->dwc_ep.xfer_len -
+ ep->dwc_ep.xfer_count - deptsiz.b.xfersize);
+
+// dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
+
+DWC_DEBUGPL(DBG_PCDV,"ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
+ //todo: invalidate cache & aligned buf patch on completion
+ dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
+ aligned_buf_patch_on_buf_dma_oep_completion(ep,byte_count);
+
+ ep->dwc_ep.xfer_buff += byte_count;
+ ep->dwc_ep.dma_addr += byte_count;
+ ep->dwc_ep.xfer_count += byte_count;
+
+ /* Check if the whole transfer was completed,
+ * if no, setup transfer for next portion of data
+ */
+ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
+ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
+ }
+ else if(ep->dwc_ep.sent_zlp) {
+ /*
+ * This fragment of code should initiate 0
+ * length trasfer in case if it is queued
+ * a trasfer with size divisible to EPs max
+ * packet size and with usb_request zero field
+ * is set, which means that after data is transfered,
+ * it is also should be transfered
+ * a 0 length packet at the end. For Slave and
+ * Buffer DMA modes in this case SW has
+ * to initiate 2 transfers one with transfer size,
+ * and the second with 0 size. For Desriptor
+ * DMA mode SW is able to initiate a transfer,
+ * which will handle all the packets including
+ * the last 0 legth.
+ */
+ ep->dwc_ep.sent_zlp = 0;
+ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
+ } else {
+ is_last = 1;
+ }
+ }
+ } else {
+ /* Check if the whole transfer was completed,
+ * if no, setup transfer for next portion of data
+ */
+ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
+ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
+ }
+ else if(ep->dwc_ep.sent_zlp) {
+ /*
+ * This fragment of code should initiate 0
+ * length trasfer in case if it is queued
+ * a trasfer with size divisible to EPs max
+ * packet size and with usb_request zero field
+ * is set, which means that after data is transfered,
+ * it is also should be transfered
+ * a 0 length packet at the end. For Slave and
+ * Buffer DMA modes in this case SW has
+ * to initiate 2 transfers one with transfer size,
+ * and the second with 0 size. For Desriptor
+ * DMA mode SW is able to initiate a transfer,
+ * which will handle all the packets including
+ * the last 0 legth.
+ */
+ ep->dwc_ep.sent_zlp = 0;
+ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
+ } else {
+ is_last = 1;
+ }
+ }
+
+#ifdef DEBUG
+
+ DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n",
+ &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len,
+ ep->dwc_ep.xfer_count,
+ deptsiz.b.xfersize,
+ deptsiz.b.pktcnt);
+#endif
+ }
+
+ /* Complete the request */
+ if (is_last) {
+ req->req.actual = ep->dwc_ep.xfer_count;
+
+ dwc_otg_request_done(ep, req, 0);
+
+ ep->dwc_ep.start_xfer_buff = 0;
+ ep->dwc_ep.xfer_buff = 0;
+ ep->dwc_ep.xfer_len = 0;
+
+ /* If there is a request in the queue start it.*/
+ start_next_request(ep);
+ }
+}
+
+
+#ifdef DWC_EN_ISOC
+
+/**
+ * This function BNA interrupt for Isochronous EPs
+ *
+ */
+static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep)
+{
+ dwc_ep_t *dwc_ep = &ep->dwc_ep;
+ volatile uint32_t *addr;
+ depctl_data_t depctl = {.d32 = 0};
+ dwc_otg_pcd_t *pcd = ep->pcd;
+ dwc_otg_dma_desc_t *dma_desc;
+ int i;
+
+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num);
+
+ if(dwc_ep->is_in) {
+ desc_sts_data_t sts = {.d32 = 0};
+ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
+ {
+ sts.d32 = readl(&dma_desc->status);
+ sts.b_iso_in.bs = BS_HOST_READY;
+ writel(sts.d32,&dma_desc->status);
+ }
+ }
+ else {
+ desc_sts_data_t sts = {.d32 = 0};
+ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
+ {
+ sts.d32 = readl(&dma_desc->status);
+ sts.b_iso_out.bs = BS_HOST_READY;
+ writel(sts.d32,&dma_desc->status);
+ }
+ }
+
+ if(dwc_ep->is_in == 0){
+ addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
+ }
+ else{
+ addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
+ }
+ depctl.b.epena = 1;
+ dwc_modify_reg32(addr,depctl.d32,depctl.d32);
+}
+
+/**
+ * This function sets latest iso packet information(non-PTI mode)
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ deptsiz_data_t deptsiz = { .d32 = 0 };
+ dma_addr_t dma_addr;
+ uint32_t offset;
+
+ if(ep->proc_buf_num)
+ dma_addr = ep->dma_addr1;
+ else
+ dma_addr = ep->dma_addr0;
+
+ if(ep->is_in) {
+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
+ offset = ep->data_per_frame;
+ } else {
+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
+ offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3)));
+ }
+
+ if(!deptsiz.b.xfersize) {
+ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
+ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
+ ep->pkt_info[ep->cur_pkt].status = 0;
+ } else {
+ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
+ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
+ ep->pkt_info[ep->cur_pkt].status = -ENODATA;
+ }
+ ep->cur_pkt_addr += offset;
+ ep->cur_pkt_dma_addr += offset;
+ ep->cur_pkt++;
+}
+
+/**
+ * This function sets latest iso packet information(DDMA mode)
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dwc_ep The EP to start the transfer on.
+ *
+ */
+static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
+{
+ dwc_otg_dma_desc_t* dma_desc;
+ desc_sts_data_t sts = {.d32 = 0};
+ iso_pkt_info_t *iso_packet;
+ uint32_t data_per_desc;
+ uint32_t offset;
+ int i, j;
+
+ iso_packet = dwc_ep->pkt_info;
+
+ /** Reinit closed DMA Descriptors*/
+ /** ISO OUT EP */
+ if(dwc_ep->is_in == 0) {
+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
+ offset = 0;
+
+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+ {
+ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
+ {
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+
+ sts.d32 = readl(&dma_desc->status);
+
+ /* Write status in iso_packet_decsriptor */
+ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
+ if(iso_packet->status) {
+ iso_packet->status = -ENODATA;
+ }
+
+ /* Received data length */
+ if(!sts.b_iso_out.rxbytes){
+ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes;
+ } else {
+ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes +
+ (4 - dwc_ep->data_per_frame % 4);
+ }
+
+ iso_packet->offset = offset;
+
+ offset += data_per_desc;
+ dma_desc ++;
+ iso_packet ++;
+ }
+ }
+
+ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
+ {
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+
+ sts.d32 = readl(&dma_desc->status);
+
+ /* Write status in iso_packet_decsriptor */
+ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
+ if(iso_packet->status) {
+ iso_packet->status = -ENODATA;
+ }
+
+ /* Received data length */
+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
+
+ iso_packet->offset = offset;
+
+ offset += data_per_desc;
+ iso_packet++;
+ dma_desc++;
+ }
+
+ sts.d32 = readl(&dma_desc->status);
+
+ /* Write status in iso_packet_decsriptor */
+ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
+ if(iso_packet->status) {
+ iso_packet->status = -ENODATA;
+ }
+ /* Received data length */
+ if(!sts.b_iso_out.rxbytes){
+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
+ } else {
+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes +
+ (4 - dwc_ep->data_per_frame % 4);
+ }
+
+ iso_packet->offset = offset;
+ }
+ else /** ISO IN EP */
+ {
+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
+
+ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
+ {
+ sts.d32 = readl(&dma_desc->status);
+
+ /* Write status in iso packet descriptor */
+ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
+ if(iso_packet->status != 0) {
+ iso_packet->status = -ENODATA;
+
+ }
+ /* Bytes has been transfered */
+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
+
+ dma_desc ++;
+ iso_packet++;
+ }
+
+ sts.d32 = readl(&dma_desc->status);
+ while(sts.b_iso_in.bs == BS_DMA_BUSY) {
+ sts.d32 = readl(&dma_desc->status);
+ }
+
+ /* Write status in iso packet descriptor ??? do be done with ERROR codes*/
+ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
+ if(iso_packet->status != 0) {
+ iso_packet->status = -ENODATA;
+ }
+
+ /* Bytes has been transfered */
+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
+ }
+}
+
+/**
+ * This function reinitialize DMA Descriptors for Isochronous transfer
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dwc_ep The EP to start the transfer on.
+ *
+ */
+static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
+{
+ int i, j;
+ dwc_otg_dma_desc_t* dma_desc;
+ dma_addr_t dma_ad;
+ volatile uint32_t *addr;
+ desc_sts_data_t sts = { .d32 =0 };
+ uint32_t data_per_desc;
+
+ if(dwc_ep->is_in == 0) {
+ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
+ }
+ else {
+ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
+ }
+
+
+ if(dwc_ep->proc_buf_num == 0) {
+ /** Buffer 0 descriptors setup */
+ dma_ad = dwc_ep->dma_addr0;
+ }
+ else {
+ /** Buffer 1 descriptors setup */
+ dma_ad = dwc_ep->dma_addr1;
+ }
+
+ /** Reinit closed DMA Descriptors*/
+ /** ISO OUT EP */
+ if(dwc_ep->is_in == 0) {
+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
+
+ sts.b_iso_out.bs = BS_HOST_READY;
+ sts.b_iso_out.rxsts = 0;
+ sts.b_iso_out.l = 0;
+ sts.b_iso_out.sp = 0;
+ sts.b_iso_out.ioc = 0;
+ sts.b_iso_out.pid = 0;
+ sts.b_iso_out.framenum = 0;
+
+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
+ {
+ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
+ {
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ //(uint32_t)dma_ad += data_per_desc;
+ dma_ad = (uint32_t)dma_ad + data_per_desc;
+ dma_desc ++;
+ }
+ }
+
+ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
+ {
+
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ dma_desc++;
+ //(uint32_t)dma_ad += data_per_desc;
+ dma_ad = (uint32_t)dma_ad + data_per_desc;
+ }
+
+ sts.b_iso_out.ioc = 1;
+ sts.b_iso_out.l = dwc_ep->proc_buf_num;
+
+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
+ sts.b_iso_out.rxbytes = data_per_desc;
+
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+ }
+ else /** ISO IN EP */
+ {
+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
+
+ sts.b_iso_in.bs = BS_HOST_READY;
+ sts.b_iso_in.txsts = 0;
+ sts.b_iso_in.sp = 0;
+ sts.b_iso_in.ioc = 0;
+ sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
+ sts.b_iso_in.framenum = dwc_ep->next_frame;
+ sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
+ sts.b_iso_in.l = 0;
+
+ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
+ {
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ sts.b_iso_in.framenum += dwc_ep->bInterval;
+ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
+ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
+ dma_desc ++;
+ }
+
+ sts.b_iso_in.ioc = 1;
+ sts.b_iso_in.l = dwc_ep->proc_buf_num;
+
+ writel((uint32_t)dma_ad, &dma_desc->buf);
+ writel(sts.d32, &dma_desc->status);
+
+ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1;
+ }
+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+}
+
+
+/**
+ * This function is to handle Iso EP transfer complete interrupt
+ * in case Iso out packet was dropped
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param dwc_ep The EP for wihich transfer complete was asserted
+ *
+ */
+static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
+{
+ uint32_t dma_addr;
+ uint32_t drp_pkt;
+ uint32_t drp_pkt_cnt;
+ deptsiz_data_t deptsiz = { .d32 = 0 };
+ depctl_data_t depctl = { .d32 = 0 };
+ int i;
+
+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz);
+
+ drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt;
+ drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm);
+
+ /* Setting dropped packets status */
+ for(i = 0; i < drp_pkt_cnt; ++i) {
+ dwc_ep->pkt_info[drp_pkt].status = -ENODATA;
+ drp_pkt ++;
+ deptsiz.b.pktcnt--;
+ }
+
+
+ if(deptsiz.b.pktcnt > 0) {
+ deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket;
+ } else {
+ deptsiz.b.xfersize = 0;
+ deptsiz.b.pktcnt = 0;
+ }
+
+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32);
+
+ if(deptsiz.b.pktcnt > 0) {
+ if(dwc_ep->proc_buf_num) {
+ dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize;
+ } else {
+ dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;;
+ }
+
+ VERIFY_PCD_DMA_ADDR(dma_addr);
+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr);
+
+ /** Re-enable endpoint, clear nak */
+ depctl.d32 = 0;
+ depctl.b.epena = 1;
+ depctl.b.cnak = 1;
+
+ dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl,
+ depctl.d32,depctl.d32);
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+/**
+ * This function sets iso packets information(PTI mode)
+ *
+ * @param core_if Programming view of DWC_otg controller.
+ * @param ep The EP to start the transfer on.
+ *
+ */
+static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
+{
+ int i, j;
+ dma_addr_t dma_ad;
+ iso_pkt_info_t *packet_info = ep->pkt_info;
+ uint32_t offset;
+ uint32_t frame_data;
+ deptsiz_data_t deptsiz;
+
+ if(ep->proc_buf_num == 0) {
+ /** Buffer 0 descriptors setup */
+ dma_ad = ep->dma_addr0;
+ }
+ else {
+ /** Buffer 1 descriptors setup */
+ dma_ad = ep->dma_addr1;
+ }
+
+ if(ep->is_in) {
+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
+ } else {
+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
+ }
+
+ if(!deptsiz.b.xfersize) {
+ offset = 0;
+ for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm)
+ {
+ frame_data = ep->data_per_frame;
+ for(j = 0; j < ep->pkt_per_frm; ++j) {
+
+ /* Packet status - is not set as initially
+ * it is set to 0 and if packet was sent
+ successfully, status field will remain 0*/
+
+ /* Bytes has been transfered */
+ packet_info->length = (ep->maxpacket < frame_data) ?
+ ep->maxpacket : frame_data;
+
+ /* Received packet offset */
+ packet_info->offset = offset;
+ offset += packet_info->length;
+ frame_data -= packet_info->length;
+
+ packet_info ++;
+ }
+ }
+ return 1;
+ } else {
+ /* This is a workaround for in case of Transfer Complete with
+ * PktDrpSts interrupts merging - in this case Transfer complete
+ * interrupt for Isoc Out Endpoint is asserted without PktDrpSts
+ * set and with DOEPTSIZ register non zero. Investigations showed,
+ * that this happens when Out packet is dropped, but because of
+ * interrupts merging during first interrupt handling PktDrpSts
+ * bit is cleared and for next merged interrupts it is not reset.
+ * In this case SW hadles the interrupt as if PktDrpSts bit is set.
+ */
+ if(ep->is_in) {
+ return 1;
+ } else {
+ return handle_iso_out_pkt_dropped(core_if, ep);
+ }
+ }
+}
+
+/**
+ * This function is to handle Iso EP transfer complete interrupt
+ *
+ * @param ep The EP for which transfer complete was asserted
+ *
+ */
+static void complete_iso_ep(dwc_otg_pcd_ep_t *ep)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
+ dwc_ep_t *dwc_ep = &ep->dwc_ep;
+ uint8_t is_last = 0;
+
+ if(core_if->dma_enable) {
+ if(core_if->dma_desc_enable) {
+ set_ddma_iso_pkts_info(core_if, dwc_ep);
+ reinit_ddma_iso_xfer(core_if, dwc_ep);
+ is_last = 1;
+ } else {
+ if(core_if->pti_enh_enable) {
+ if(set_iso_pkts_info(core_if, dwc_ep)) {
+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+ dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep);
+ is_last = 1;
+ }
+ } else {
+ set_current_pkt_info(core_if, dwc_ep);
+ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
+ is_last = 1;
+ dwc_ep->cur_pkt = 0;
+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+ if(dwc_ep->proc_buf_num) {
+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
+ } else {
+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
+ }
+ }
+ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
+ }
+ }
+ } else {
+ set_current_pkt_info(core_if, dwc_ep);
+ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
+ is_last = 1;
+ dwc_ep->cur_pkt = 0;
+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+ if(dwc_ep->proc_buf_num) {
+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
+ } else {
+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
+ }
+ }
+ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
+ }
+ if(is_last)
+ dwc_otg_iso_buffer_done(ep, ep->iso_req);
+}
+
+#endif //DWC_EN_ISOC
+
+
+/**
+ * This function handles EP0 Control transfers.
+ *
+ * The state of the control tranfers are tracked in
+ * <code>ep0state</code>.
+ */
+static void handle_ep0(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
+ desc_sts_data_t desc_sts;
+ deptsiz0_data_t deptsiz;
+ uint32_t byte_count;
+
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
+ print_ep0_state(pcd);
+#endif
+
+ switch (pcd->ep0state) {
+ case EP0_DISCONNECT:
+ break;
+
+ case EP0_IDLE:
+ pcd->request_config = 0;
+
+ pcd_setup(pcd);
+ break;
+
+ case EP0_IN_DATA_PHASE:
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n",
+ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
+ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
+#endif
+
+ if (core_if->dma_enable != 0) {
+ /*
+ * For EP0 we can only program 1 packet at a time so we
+ * need to do the make calculations after each complete.
+ * Call write_packet to make the calculations, as in
+ * slave mode, and use those values to determine if we
+ * can complete.
+ */
+ if(core_if->dma_desc_enable == 0) {
+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz);
+ byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize;
+ }
+ else {
+ desc_sts.d32 = readl(core_if->dev_if->in_desc_addr);
+ byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes;
+ }
+
+ ep0->dwc_ep.xfer_count += byte_count;
+ ep0->dwc_ep.xfer_buff += byte_count;
+ ep0->dwc_ep.dma_addr += byte_count;
+ }
+ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
+ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
+ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
+ }
+ else if(ep0->dwc_ep.sent_zlp) {
+ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
+ ep0->dwc_ep.sent_zlp = 0;
+ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
+ }
+ else {
+ ep0_complete_request(ep0);
+ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
+ }
+ break;
+ case EP0_OUT_DATA_PHASE:
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n",
+ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
+ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
+#endif
+ if (core_if->dma_enable != 0) {
+ if(core_if->dma_desc_enable == 0) {
+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz);
+ byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize;
+
+ //todo: invalidate cache & aligned buf patch on completion
+ dma_sync_single_for_device(NULL,ep0->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
+ aligned_buf_patch_on_buf_dma_oep_completion(ep0,byte_count);
+ }
+ else {
+ desc_sts.d32 = readl(core_if->dev_if->out_desc_addr);
+ byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes;
+
+ //todo: invalidate cache & aligned buf patch on completion
+ //
+
+ }
+ ep0->dwc_ep.xfer_count += byte_count;
+ ep0->dwc_ep.xfer_buff += byte_count;
+ ep0->dwc_ep.dma_addr += byte_count;
+ }
+ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
+ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
+ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
+ }
+ else if(ep0->dwc_ep.sent_zlp) {
+ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
+ ep0->dwc_ep.sent_zlp = 0;
+ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
+ }
+ else {
+ ep0_complete_request(ep0);
+ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
+ }
+ break;
+
+ case EP0_IN_STATUS_PHASE:
+ case EP0_OUT_STATUS_PHASE:
+ DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n");
+ ep0_complete_request(ep0);
+ pcd->ep0state = EP0_IDLE;
+ ep0->stopped = 1;
+ ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */
+
+ /* Prepare for more SETUP Packets */
+ if(core_if->dma_enable) {
+ ep0_out_start(core_if, pcd);
+ }
+ break;
+
+ case EP0_STALL:
+ DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n");
+ break;
+ }
+#ifdef DEBUG_EP0
+ print_ep0_state(pcd);
+#endif
+}
+
+
+/**
+ * Restart transfer
+ */
+static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum)
+{
+ dwc_otg_core_if_t *core_if;
+ dwc_otg_dev_if_t *dev_if;
+ deptsiz_data_t dieptsiz = {.d32=0};
+ dwc_otg_pcd_ep_t *ep;
+
+ ep = get_in_ep(pcd, epnum);
+
+#ifdef DWC_EN_ISOC
+ if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
+ return;
+ }
+#endif /* DWC_EN_ISOC */
+
+ core_if = GET_CORE_IF(pcd);
+ dev_if = core_if->dev_if;
+
+ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
+
+ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x"
+ " stopped=%d\n", ep->dwc_ep.xfer_buff,
+ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
+ ep->stopped);
+ /*
+ * If xfersize is 0 and pktcnt in not 0, resend the last packet.
+ */
+ if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 &&
+ ep->dwc_ep.start_xfer_buff != 0) {
+ if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) {
+ ep->dwc_ep.xfer_count = 0;
+ ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff;
+ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
+ }
+ else {
+ ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket;
+ /* convert packet size to dwords. */
+ ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket;
+ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
+ }
+ ep->stopped = 0;
+ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x "
+ "xfer_len=%0x stopped=%d\n",
+ ep->dwc_ep.xfer_buff,
+ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
+ ep->stopped
+ );
+ if (epnum == 0) {
+ dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep);
+ }
+ else {
+ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
+ }
+ }
+}
+
+
+/**
+ * handle the IN EP disable interrupt.
+ */
+static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd,
+ const uint32_t epnum)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ deptsiz_data_t dieptsiz = {.d32=0};
+ dctl_data_t dctl = {.d32=0};
+ dwc_otg_pcd_ep_t *ep;
+ dwc_ep_t *dwc_ep;
+
+ ep = get_in_ep(pcd, epnum);
+ dwc_ep = &ep->dwc_ep;
+
+ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
+ return;
+ }
+
+ DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum,
+ dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl));
+ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
+
+ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
+ dieptsiz.b.pktcnt,
+ dieptsiz.b.xfersize);
+
+ if (ep->stopped) {
+ /* Flush the Tx FIFO */
+ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
+ /* Clear the Global IN NP NAK */
+ dctl.d32 = 0;
+ dctl.b.cgnpinnak = 1;
+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
+ dctl.d32, 0);
+ /* Restart the transaction */
+ if (dieptsiz.b.pktcnt != 0 ||
+ dieptsiz.b.xfersize != 0) {
+ restart_transfer(pcd, epnum);
+ }
+ }
+ else {
+ /* Restart the transaction */
+ if (dieptsiz.b.pktcnt != 0 ||
+ dieptsiz.b.xfersize != 0) {
+ restart_transfer(pcd, epnum);
+ }
+ DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n");
+ }
+}
+
+/**
+ * Handler for the IN EP timeout handshake interrupt.
+ */
+static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd,
+ const uint32_t epnum)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+
+#ifdef DEBUG
+ deptsiz_data_t dieptsiz = {.d32=0};
+ uint32_t num = 0;
+#endif
+ dctl_data_t dctl = {.d32=0};
+ dwc_otg_pcd_ep_t *ep;
+
+ gintmsk_data_t intr_mask = {.d32 = 0};
+
+ ep = get_in_ep(pcd, epnum);
+
+ /* Disable the NP Tx Fifo Empty Interrrupt */
+ if (!core_if->dma_enable) {
+ intr_mask.b.nptxfempty = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
+ }
+ /** @todo NGS Check EP type.
+ * Implement for Periodic EPs */
+ /*
+ * Non-periodic EP
+ */
+ /* Enable the Global IN NAK Effective Interrupt */
+ intr_mask.b.ginnakeff = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
+ 0, intr_mask.d32);
+
+ /* Set Global IN NAK */
+ dctl.b.sgnpinnak = 1;
+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
+ dctl.d32, dctl.d32);
+
+ ep->stopped = 1;
+
+#ifdef DEBUG
+ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz);
+ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
+ dieptsiz.b.pktcnt,
+ dieptsiz.b.xfersize);
+#endif
+
+#ifdef DISABLE_PERIODIC_EP
+ /*
+ * Set the NAK bit for this EP to
+ * start the disable process.
+ */
+ diepctl.d32 = 0;
+ diepctl.b.snak = 1;
+ dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32);
+ ep->disabling = 1;
+ ep->stopped = 1;
+#endif
+}
+
+/**
+ * Handler for the IN EP NAK interrupt.
+ */
+static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd,
+ const uint32_t epnum)
+{
+ /** @todo implement ISR */
+ dwc_otg_core_if_t* core_if;
+ diepmsk_data_t intr_mask = { .d32 = 0};
+
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK");
+ core_if = GET_CORE_IF(pcd);
+ intr_mask.b.nak = 1;
+
+ if(core_if->multiproc_int_enable) {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum],
+ intr_mask.d32, 0);
+ } else {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk,
+ intr_mask.d32, 0);
+ }
+
+ return 1;
+}
+
+/**
+ * Handler for the OUT EP Babble interrupt.
+ */
+static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd,
+ const uint32_t epnum)
+{
+ /** @todo implement ISR */
+ dwc_otg_core_if_t* core_if;
+ doepmsk_data_t intr_mask = { .d32 = 0};
+
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble");
+ core_if = GET_CORE_IF(pcd);
+ intr_mask.b.babble = 1;
+
+ if(core_if->multiproc_int_enable) {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
+ intr_mask.d32, 0);
+ } else {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
+ intr_mask.d32, 0);
+ }
+
+ return 1;
+}
+
+/**
+ * Handler for the OUT EP NAK interrupt.
+ */
+static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd,
+ const uint32_t epnum)
+{
+ /** @todo implement ISR */
+ dwc_otg_core_if_t* core_if;
+ doepmsk_data_t intr_mask = { .d32 = 0};
+
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK");
+ core_if = GET_CORE_IF(pcd);
+ intr_mask.b.nak = 1;
+
+ if(core_if->multiproc_int_enable) {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
+ intr_mask.d32, 0);
+ } else {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
+ intr_mask.d32, 0);
+ }
+
+ return 1;
+}
+
+/**
+ * Handler for the OUT EP NYET interrupt.
+ */
+static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd,
+ const uint32_t epnum)
+{
+ /** @todo implement ISR */
+ dwc_otg_core_if_t* core_if;
+ doepmsk_data_t intr_mask = { .d32 = 0};
+
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET");
+ core_if = GET_CORE_IF(pcd);
+ intr_mask.b.nyet = 1;
+
+ if(core_if->multiproc_int_enable) {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
+ intr_mask.d32, 0);
+ } else {
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
+ intr_mask.d32, 0);
+ }
+
+ return 1;
+}
+
+/**
+ * This interrupt indicates that an IN EP has a pending Interrupt.
+ * The sequence for handling the IN EP interrupt is shown below:
+ * -# Read the Device All Endpoint Interrupt register
+ * -# Repeat the following for each IN EP interrupt bit set (from
+ * LSB to MSB).
+ * -# Read the Device Endpoint Interrupt (DIEPINTn) register
+ * -# If "Transfer Complete" call the request complete function
+ * -# If "Endpoint Disabled" complete the EP disable procedure.
+ * -# If "AHB Error Interrupt" log error
+ * -# If "Time-out Handshake" log error
+ * -# If "IN Token Received when TxFIFO Empty" write packet to Tx
+ * FIFO.
+ * -# If "IN Token EP Mismatch" (disable, this is handled by EP
+ * Mismatch Interrupt)
+ */
+static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd)
+{
+#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \
+do { \
+ diepint_data_t diepint = {.d32=0}; \
+ diepint.b.__intr = 1; \
+ dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \
+ diepint.d32); \
+} while (0)
+
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ diepint_data_t diepint = {.d32=0};
+ dctl_data_t dctl = {.d32=0};
+ depctl_data_t depctl = {.d32=0};
+ uint32_t ep_intr;
+ uint32_t epnum = 0;
+ dwc_otg_pcd_ep_t *ep;
+ dwc_ep_t *dwc_ep;
+ gintmsk_data_t intr_mask = {.d32 = 0};
+
+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
+
+ /* Read in the device interrupt bits */
+ ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if);
+
+ /* Service the Device IN interrupts for each endpoint */
+ while(ep_intr) {
+ if (ep_intr&0x1) {
+ uint32_t empty_msk;
+ /* Get EP pointer */
+ ep = get_in_ep(pcd, epnum);
+ dwc_ep = &ep->dwc_ep;
+
+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
+ empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
+
+ DWC_DEBUGPL(DBG_PCDV,
+ "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n",
+ epnum,
+ empty_msk,
+ depctl.d32);
+
+ DWC_DEBUGPL(DBG_PCD,
+ "EP%d-%s: type=%d, mps=%d\n",
+ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
+ dwc_ep->type, dwc_ep->maxpacket);
+
+ diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep);
+
+ DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32);
+ /* Transfer complete */
+ if (diepint.b.xfercompl) {
+ /* Disable the NP Tx FIFO Empty
+ * Interrrupt */
+ if(core_if->en_multiple_tx_fifo == 0) {
+ intr_mask.b.nptxfempty = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
+ }
+ else {
+ /* Disable the Tx FIFO Empty Interrupt for this EP */
+ uint32_t fifoemptymsk = 0x1 << dwc_ep->num;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
+ fifoemptymsk, 0);
+ }
+ /* Clear the bit in DIEPINTn for this interrupt */
+ CLEAR_IN_EP_INTR(core_if,epnum,xfercompl);
+
+ /* Complete the transfer */
+ if (epnum == 0) {
+ handle_ep0(pcd);
+ }
+#ifdef DWC_EN_ISOC
+ else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+ if(!ep->stopped)
+ complete_iso_ep(ep);
+ }
+#endif //DWC_EN_ISOC
+ else {
+
+ complete_ep(ep);
+ }
+ }
+ /* Endpoint disable */
+ if (diepint.b.epdisabled) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum);
+ handle_in_ep_disable_intr(pcd, epnum);
+
+ /* Clear the bit in DIEPINTn for this interrupt */
+ CLEAR_IN_EP_INTR(core_if,epnum,epdisabled);
+ }
+ /* AHB Error */
+ if (diepint.b.ahberr) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum);
+ /* Clear the bit in DIEPINTn for this interrupt */
+ CLEAR_IN_EP_INTR(core_if,epnum,ahberr);
+ }
+ /* TimeOUT Handshake (non-ISOC IN EPs) */
+ if (diepint.b.timeout) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum);
+ handle_in_ep_timeout_intr(pcd, epnum);
+
+ CLEAR_IN_EP_INTR(core_if,epnum,timeout);
+ }
+ /** IN Token received with TxF Empty */
+ if (diepint.b.intktxfemp) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n",
+ epnum);
+ if (!ep->stopped && epnum != 0) {
+
+ diepmsk_data_t diepmsk = { .d32 = 0};
+ diepmsk.b.intktxfemp = 1;
+
+ if(core_if->multiproc_int_enable) {
+ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum],
+ diepmsk.d32, 0);
+ } else {
+ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0);
+ }
+ start_next_request(ep);
+ }
+ else if(core_if->dma_desc_enable && epnum == 0 &&
+ pcd->ep0state == EP0_OUT_STATUS_PHASE) {
+ // EP0 IN set STALL
+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
+
+ /* set the disable and stall bits */
+ if (depctl.b.epena) {
+ depctl.b.epdis = 1;
+ }
+ depctl.b.stall = 1;
+ dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32);
+ }
+ CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp);
+ }
+ /** IN Token Received with EP mismatch */
+ if (diepint.b.intknepmis) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum);
+ CLEAR_IN_EP_INTR(core_if,epnum,intknepmis);
+ }
+ /** IN Endpoint NAK Effective */
+ if (diepint.b.inepnakeff) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum);
+ /* Periodic EP */
+ if (ep->disabling) {
+ depctl.d32 = 0;
+ depctl.b.snak = 1;
+ depctl.b.epdis = 1;
+ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
+ }
+ CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff);
+
+ }
+
+ /** IN EP Tx FIFO Empty Intr */
+ if (diepint.b.emptyintr) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum);
+ write_empty_tx_fifo(pcd, epnum);
+
+ CLEAR_IN_EP_INTR(core_if,epnum,emptyintr);
+ }
+
+ /** IN EP BNA Intr */
+ if (diepint.b.bna) {
+ CLEAR_IN_EP_INTR(core_if,epnum,bna);
+ if(core_if->dma_desc_enable) {
+#ifdef DWC_EN_ISOC
+ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+ /*
+ * This checking is performed to prevent first "false" BNA
+ * handling occuring right after reconnect
+ */
+ if(dwc_ep->next_frame != 0xffffffff)
+ dwc_otg_pcd_handle_iso_bna(ep);
+ }
+ else
+#endif //DWC_EN_ISOC
+ {
+ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
+
+ /* If Global Continue on BNA is disabled - disable EP */
+ if(!dctl.b.gcontbna) {
+ depctl.d32 = 0;
+ depctl.b.snak = 1;
+ depctl.b.epdis = 1;
+ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
+ } else {
+ start_next_request(ep);
+ }
+ }
+ }
+ }
+ /* NAK Interrutp */
+ if (diepint.b.nak) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum);
+ handle_in_ep_nak_intr(pcd, epnum);
+
+ CLEAR_IN_EP_INTR(core_if,epnum,nak);
+ }
+ }
+ epnum++;
+ ep_intr >>=1;
+ }
+
+ return 1;
+#undef CLEAR_IN_EP_INTR
+}
+
+/**
+ * This interrupt indicates that an OUT EP has a pending Interrupt.
+ * The sequence for handling the OUT EP interrupt is shown below:
+ * -# Read the Device All Endpoint Interrupt register
+ * -# Repeat the following for each OUT EP interrupt bit set (from
+ * LSB to MSB).
+ * -# Read the Device Endpoint Interrupt (DOEPINTn) register
+ * -# If "Transfer Complete" call the request complete function
+ * -# If "Endpoint Disabled" complete the EP disable procedure.
+ * -# If "AHB Error Interrupt" log error
+ * -# If "Setup Phase Done" process Setup Packet (See Standard USB
+ * Command Processing)
+ */
+static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd)
+{
+#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \
+do { \
+ doepint_data_t doepint = {.d32=0}; \
+ doepint.b.__intr = 1; \
+ dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \
+ doepint.d32); \
+} while (0)
+
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
+ uint32_t ep_intr;
+ doepint_data_t doepint = {.d32=0};
+ dctl_data_t dctl = {.d32=0};
+ depctl_data_t doepctl = {.d32=0};
+ uint32_t epnum = 0;
+ dwc_otg_pcd_ep_t *ep;
+ dwc_ep_t *dwc_ep;
+
+ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
+
+ /* Read in the device interrupt bits */
+ ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if);
+
+ while(ep_intr) {
+ if (ep_intr&0x1) {
+ /* Get EP pointer */
+ ep = get_out_ep(pcd, epnum);
+ dwc_ep = &ep->dwc_ep;
+
+#ifdef VERBOSE
+ DWC_DEBUGPL(DBG_PCDV,
+ "EP%d-%s: type=%d, mps=%d\n",
+ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
+ dwc_ep->type, dwc_ep->maxpacket);
+#endif
+ doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep);
+
+ /* Transfer complete */
+ if (doepint.b.xfercompl) {
+ if (epnum == 0) {
+ /* Clear the bit in DOEPINTn for this interrupt */
+ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
+ if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE)
+ handle_ep0(pcd);
+#ifdef DWC_EN_ISOC
+ } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+ if (doepint.b.pktdrpsts == 0) {
+ /* Clear the bit in DOEPINTn for this interrupt */
+ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
+ complete_iso_ep(ep);
+ } else {
+ doepint_data_t doepint = {.d32=0};
+ doepint.b.xfercompl = 1;
+ doepint.b.pktdrpsts = 1;
+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint,
+ doepint.d32);
+ if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) {
+ complete_iso_ep(ep);
+ }
+ }
+#endif //DWC_EN_ISOC
+ } else {
+ /* Clear the bit in DOEPINTn for this interrupt */
+ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
+ complete_ep(ep);
+ }
+
+ }
+
+ /* Endpoint disable */
+ if (doepint.b.epdisabled) {
+ /* Clear the bit in DOEPINTn for this interrupt */
+ CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled);
+ }
+ /* AHB Error */
+ if (doepint.b.ahberr) {
+ DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum);
+ DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma);
+ CLEAR_OUT_EP_INTR(core_if,epnum,ahberr);
+ }
+ /* Setup Phase Done (contorl EPs) */
+ if (doepint.b.setup) {
+#ifdef DEBUG_EP0
+ DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n",
+ epnum);
+#endif
+ CLEAR_OUT_EP_INTR(core_if,epnum,setup);
+ handle_ep0(pcd);
+ }
+
+ /** OUT EP BNA Intr */
+ if (doepint.b.bna) {
+ CLEAR_OUT_EP_INTR(core_if,epnum,bna);
+ if(core_if->dma_desc_enable) {
+#ifdef DWC_EN_ISOC
+ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
+ /*
+ * This checking is performed to prevent first "false" BNA
+ * handling occuring right after reconnect
+ */
+ if(dwc_ep->next_frame != 0xffffffff)
+ dwc_otg_pcd_handle_iso_bna(ep);
+ }
+ else
+#endif //DWC_EN_ISOC
+ {
+ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
+
+ /* If Global Continue on BNA is disabled - disable EP*/
+ if(!dctl.b.gcontbna) {
+ doepctl.d32 = 0;
+ doepctl.b.snak = 1;
+ doepctl.b.epdis = 1;
+ dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32);
+ } else {
+ start_next_request(ep);
+ }
+ }
+ }
+ }
+ if (doepint.b.stsphsercvd) {
+ CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd);
+ if(core_if->dma_desc_enable) {
+ do_setup_in_status_phase(pcd);
+ }
+ }
+ /* Babble Interrutp */
+ if (doepint.b.babble) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum);
+ handle_out_ep_babble_intr(pcd, epnum);
+
+ CLEAR_OUT_EP_INTR(core_if,epnum,babble);
+ }
+ /* NAK Interrutp */
+ if (doepint.b.nak) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum);
+ handle_out_ep_nak_intr(pcd, epnum);
+
+ CLEAR_OUT_EP_INTR(core_if,epnum,nak);
+ }
+ /* NYET Interrutp */
+ if (doepint.b.nyet) {
+ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum);
+ handle_out_ep_nyet_intr(pcd, epnum);
+
+ CLEAR_OUT_EP_INTR(core_if,epnum,nyet);
+ }
+ }
+
+ epnum++;
+ ep_intr >>=1;
+ }
+
+ return 1;
+
+#undef CLEAR_OUT_EP_INTR
+}
+
+
+/**
+ * Incomplete ISO IN Transfer Interrupt.
+ * This interrupt indicates one of the following conditions occurred
+ * while transmitting an ISOC transaction.
+ * - Corrupted IN Token for ISOC EP.
+ * - Packet not complete in FIFO.
+ * The follow actions will be taken:
+ * -# Determine the EP
+ * -# Set incomplete flag in dwc_ep structure
+ * -# Disable EP; when "Endpoint Disabled" interrupt is received
+ * Flush FIFO
+ */
+int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd)
+{
+ gintsts_data_t gintsts;
+
+
+#ifdef DWC_EN_ISOC
+ dwc_otg_dev_if_t *dev_if;
+ deptsiz_data_t deptsiz = { .d32 = 0};
+ depctl_data_t depctl = { .d32 = 0};
+ dsts_data_t dsts = { .d32 = 0};
+ dwc_ep_t *dwc_ep;
+ int i;
+
+ dev_if = GET_CORE_IF(pcd)->dev_if;
+
+ for(i = 1; i <= dev_if->num_in_eps; ++i) {
+ dwc_ep = &pcd->in_ep[i].dwc_ep;
+ if(dwc_ep->active &&
+ dwc_ep->type == USB_ENDPOINT_XFER_ISOC)
+ {
+ deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz);
+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
+
+ if(depctl.b.epdis && deptsiz.d32) {
+ set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep);
+ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
+ dwc_ep->cur_pkt = 0;
+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+
+ if(dwc_ep->proc_buf_num) {
+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
+ } else {
+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
+ }
+ }
+
+ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
+ dwc_ep->next_frame = dsts.b.soffn;
+
+ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
+ }
+ }
+ }
+
+#else
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
+ "IN ISOC Incomplete");
+
+ intr_mask.b.incomplisoin = 1;
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+ intr_mask.d32, 0);
+#endif //DWC_EN_ISOC
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.incomplisoin = 1;
+ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+ gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * Incomplete ISO OUT Transfer Interrupt.
+ *
+ * This interrupt indicates that the core has dropped an ISO OUT
+ * packet. The following conditions can be the cause:
+ * - FIFO Full, the entire packet would not fit in the FIFO.
+ * - CRC Error
+ * - Corrupted Token
+ * The follow actions will be taken:
+ * -# Determine the EP
+ * -# Set incomplete flag in dwc_ep structure
+ * -# Read any data from the FIFO
+ * -# Disable EP. when "Endpoint Disabled" interrupt is received
+ * re-enable EP.
+ */
+int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd)
+{
+ /* @todo implement ISR */
+ gintsts_data_t gintsts;
+
+#ifdef DWC_EN_ISOC
+ dwc_otg_dev_if_t *dev_if;
+ deptsiz_data_t deptsiz = { .d32 = 0};
+ depctl_data_t depctl = { .d32 = 0};
+ dsts_data_t dsts = { .d32 = 0};
+ dwc_ep_t *dwc_ep;
+ int i;
+
+ dev_if = GET_CORE_IF(pcd)->dev_if;
+
+ for(i = 1; i <= dev_if->num_out_eps; ++i) {
+ dwc_ep = &pcd->in_ep[i].dwc_ep;
+ if(pcd->out_ep[i].dwc_ep.active &&
+ pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC)
+ {
+ deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz);
+ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
+
+ if(depctl.b.epdis && deptsiz.d32) {
+ set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep);
+ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
+ dwc_ep->cur_pkt = 0;
+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
+
+ if(dwc_ep->proc_buf_num) {
+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
+ } else {
+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
+ }
+ }
+
+ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
+ dwc_ep->next_frame = dsts.b.soffn;
+
+ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
+ }
+ }
+ }
+#else
+ /** @todo implement ISR */
+ gintmsk_data_t intr_mask = { .d32 = 0};
+
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
+ "OUT ISOC Incomplete");
+
+ intr_mask.b.incomplisoout = 1;
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+ intr_mask.d32, 0);
+
+#endif // DWC_EN_ISOC
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.incomplisoout = 1;
+ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+ gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * This function handles the Global IN NAK Effective interrupt.
+ *
+ */
+int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
+ depctl_data_t diepctl = { .d32 = 0};
+ depctl_data_t diepctl_rd = { .d32 = 0};
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ gintsts_data_t gintsts;
+ int i;
+
+ DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n");
+
+ /* Disable all active IN EPs */
+ diepctl.b.epdis = 1;
+ diepctl.b.snak = 1;
+
+ for (i=0; i <= dev_if->num_in_eps; i++)
+ {
+ diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
+ if (diepctl_rd.b.epena) {
+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl,
+ diepctl.d32);
+ }
+ }
+ /* Disable the Global IN NAK Effective Interrupt */
+ intr_mask.b.ginnakeff = 1;
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+ intr_mask.d32, 0);
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.ginnakeff = 1;
+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+ gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * OUT NAK Effective.
+ *
+ */
+int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd)
+{
+ gintmsk_data_t intr_mask = { .d32 = 0};
+ gintsts_data_t gintsts;
+
+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
+ "Global IN NAK Effective\n");
+ /* Disable the Global IN NAK Effective Interrupt */
+ intr_mask.b.goutnakeff = 1;
+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
+ intr_mask.d32, 0);
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.goutnakeff = 1;
+ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
+ gintsts.d32);
+
+ return 1;
+}
+
+
+/**
+ * PCD interrupt handler.
+ *
+ * The PCD handles the device interrupts. Many conditions can cause a
+ * device interrupt. When an interrupt occurs, the device interrupt
+ * service routine determines the cause of the interrupt and
+ * dispatches handling to the appropriate function. These interrupt
+ * handling functions are described below.
+ *
+ * All interrupt registers are processed from LSB to MSB.
+ *
+ */
+int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd)
+{
+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
+#ifdef VERBOSE
+ dwc_otg_core_global_regs_t *global_regs =
+ core_if->core_global_regs;
+#endif
+ gintsts_data_t gintr_status;
+ int32_t retval = 0;
+
+
+#ifdef VERBOSE
+ DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n",
+ __func__,
+ dwc_read_reg32(&global_regs->gintsts),
+ dwc_read_reg32(&global_regs->gintmsk));
+#endif
+
+ if (dwc_otg_is_device_mode(core_if)) {
+ SPIN_LOCK(&pcd->lock);
+#ifdef VERBOSE
+ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n",
+ __func__,
+ dwc_read_reg32(&global_regs->gintsts),
+ dwc_read_reg32(&global_regs->gintmsk));
+#endif
+
+ gintr_status.d32 = dwc_otg_read_core_intr(core_if);
+/*
+ if (!gintr_status.d32) {
+ SPIN_UNLOCK(&pcd->lock);
+ return 0;
+ }
+*/
+ DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n",
+ __func__, gintr_status.d32);
+
+ if (gintr_status.b.sofintr) {
+ retval |= dwc_otg_pcd_handle_sof_intr(pcd);
+ }
+ if (gintr_status.b.rxstsqlvl) {
+ retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd);
+ }
+ if (gintr_status.b.nptxfempty) {
+ retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd);
+ }
+ if (gintr_status.b.ginnakeff) {
+ retval |= dwc_otg_pcd_handle_in_nak_effective(pcd);
+ }
+ if (gintr_status.b.goutnakeff) {
+ retval |= dwc_otg_pcd_handle_out_nak_effective(pcd);
+ }
+ if (gintr_status.b.i2cintr) {
+ retval |= dwc_otg_pcd_handle_i2c_intr(pcd);
+ }
+ if (gintr_status.b.erlysuspend) {
+ retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd);
+ }
+ if (gintr_status.b.usbreset) {
+ retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd);
+ }
+ if (gintr_status.b.enumdone) {
+ retval |= dwc_otg_pcd_handle_enum_done_intr(pcd);
+ }
+ if (gintr_status.b.isooutdrop) {
+ retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd);
+ }
+ if (gintr_status.b.eopframe) {
+ retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd);
+ }
+ if (gintr_status.b.epmismatch) {
+ retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if);
+ }
+ if (gintr_status.b.inepint) {
+ if(!core_if->multiproc_int_enable) {
+ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
+ }
+ }
+ if (gintr_status.b.outepintr) {
+ if(!core_if->multiproc_int_enable) {
+ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
+ }
+ }
+ if (gintr_status.b.incomplisoin) {
+ retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd);
+ }
+ if (gintr_status.b.incomplisoout) {
+ retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd);
+ }
+
+ /* In MPI mode De vice Endpoints intterrupts are asserted
+ * without setting outepintr and inepint bits set, so these
+ * Interrupt handlers are called without checking these bit-fields
+ */
+ if(core_if->multiproc_int_enable) {
+ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
+ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
+ }
+#ifdef VERBOSE
+ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__,
+ dwc_read_reg32(&global_regs->gintsts));
+#endif
+ SPIN_UNLOCK(&pcd->lock);
+ }
+ S3C2410X_CLEAR_EINTPEND();
+
+ return retval;
+}
+
+#endif /* DWC_HOST_ONLY */
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_plat.h b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_plat.h
new file mode 100644
index 0000000000..1744a1fbc8
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_plat.h
@@ -0,0 +1,266 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $
+ * $Revision: #23 $
+ * $Date: 2008/07/15 $
+ * $Change: 1064915 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#if !defined(__DWC_OTG_PLAT_H__)
+#define __DWC_OTG_PLAT_H__
+
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/list.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+
+/* Changed all readl and writel to __raw_readl, __raw_writel */
+
+/**
+ * @file
+ *
+ * This file contains the Platform Specific constants, interfaces
+ * (functions and macros) for Linux.
+ *
+ */
+//#if !defined(__LINUX_ARM_ARCH__)
+//#error "The contents of this file is Linux specific!!!"
+//#endif
+
+/**
+ * Reads the content of a register.
+ *
+ * @param reg address of register to read.
+ * @return contents of the register.
+ *
+
+ * Usage:<br>
+ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
+ */
+static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg)
+{
+ return __raw_readl(reg);
+ // return readl(reg);
+};
+
+/**
+ * Writes a register with a 32 bit value.
+ *
+ * @param reg address of register to read.
+ * @param value to write to _reg.
+ *
+ * Usage:<br>
+ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
+ */
+static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value)
+{
+ // writel( value, reg );
+ __raw_writel(value, reg);
+
+};
+
+/**
+ * This function modifies bit values in a register. Using the
+ * algorithm: (reg_contents & ~clear_mask) | set_mask.
+ *
+ * @param reg address of register to read.
+ * @param clear_mask bit mask to be cleared.
+ * @param set_mask bit mask to be set.
+ *
+ * Usage:<br>
+ * <code> // Clear the SOF Interrupt Mask bit and <br>
+ * // set the OTG Interrupt mask bit, leaving all others as they were.
+ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
+ */
+static __inline__
+ void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask)
+{
+ // writel( (readl(reg) & ~clear_mask) | set_mask, reg );
+ __raw_writel( (__raw_readl(reg) & ~clear_mask) | set_mask, reg );
+};
+
+
+/**
+ * Wrapper for the OS micro-second delay function.
+ * @param[in] usecs Microseconds of delay
+ */
+static __inline__ void UDELAY( const uint32_t usecs )
+{
+ udelay( usecs );
+}
+
+/**
+ * Wrapper for the OS milli-second delay function.
+ * @param[in] msecs milliseconds of delay
+ */
+static __inline__ void MDELAY( const uint32_t msecs )
+{
+ mdelay( msecs );
+}
+
+/**
+ * Wrapper for the Linux spin_lock. On the ARM (Integrator)
+ * spin_lock() is a nop.
+ *
+ * @param lock Pointer to the spinlock.
+ */
+static __inline__ void SPIN_LOCK( spinlock_t *lock )
+{
+ spin_lock(lock);
+}
+
+/**
+ * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
+ * spin_lock() is a nop.
+ *
+ * @param lock Pointer to the spinlock.
+ */
+static __inline__ void SPIN_UNLOCK( spinlock_t *lock )
+{
+ spin_unlock(lock);
+}
+
+/**
+ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
+ * (Integrator) spin_lock() is a nop.
+ *
+ * @param l Pointer to the spinlock.
+ * @param f unsigned long for irq flags storage.
+ */
+#define SPIN_LOCK_IRQSAVE( l, f ) spin_lock_irqsave(l,f);
+
+/**
+ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
+ * (Integrator) spin_lock() is a nop.
+ *
+ * @param l Pointer to the spinlock.
+ * @param f unsigned long for irq flags storage.
+ */
+#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f);
+
+/*
+ * Debugging support vanishes in non-debug builds.
+ */
+
+
+/**
+ * The Debug Level bit-mask variable.
+ */
+extern uint32_t g_dbg_lvl;
+/**
+ * Set the Debug Level variable.
+ */
+static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new )
+{
+ uint32_t old = g_dbg_lvl;
+ g_dbg_lvl = new;
+ return old;
+}
+
+/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
+#define DBG_CIL (0x2)
+/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
+ * messages */
+#define DBG_CILV (0x20)
+/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
+ * messages */
+#define DBG_PCD (0x4)
+/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
+ * messages */
+#define DBG_PCDV (0x40)
+/** When debug level has the DBG_HCD bit set, display Host debug messages */
+#define DBG_HCD (0x8)
+/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
+ * messages */
+#define DBG_HCDV (0x80)
+/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
+ * mode. */
+#define DBG_HCD_URB (0x800)
+
+/** When debug level has any bit set, display debug messages */
+#define DBG_ANY (0xFF)
+
+/** All debug messages off */
+#define DBG_OFF 0
+
+/** Prefix string for DWC_DEBUG print macros. */
+#define USB_DWC "DWC_otg: "
+
+/**
+ * Print a debug message when the Global debug level variable contains
+ * the bit defined in <code>lvl</code>.
+ *
+ * @param[in] lvl - Debug level, use one of the DBG_ constants above.
+ * @param[in] x - like printf
+ *
+ * Example:<p>
+ * <code>
+ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
+ * </code>
+ * <br>
+ * results in:<br>
+ * <code>
+ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
+ * </code>
+ */
+#ifdef DEBUG
+
+# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
+# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
+
+# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
+
+#else
+
+# define DWC_DEBUGPL(lvl, x...) do{}while(0)
+# define DWC_DEBUGP(x...)
+
+# define CHK_DEBUG_LEVEL(level) (0)
+
+#endif /*DEBUG*/
+
+/**
+ * Print an Error message.
+ */
+#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
+/**
+ * Print a Warning message.
+ */
+#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
+/**
+ * Print a notice (normal but significant message).
+ */
+#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
+/**
+ * Basic message printing.
+ */
+#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
+
+#endif
+
diff --git a/target/linux/cns3xxx/files/drivers/usb/dwc/otg_regs.h b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_regs.h
new file mode 100644
index 0000000000..3c3ace6632
--- /dev/null
+++ b/target/linux/cns3xxx/files/drivers/usb/dwc/otg_regs.h
@@ -0,0 +1,2059 @@
+/* ==========================================================================
+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $
+ * $Revision: #72 $
+ * $Date: 2008/09/19 $
+ * $Change: 1099526 $
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ * ========================================================================== */
+
+#ifndef __DWC_OTG_REGS_H__
+#define __DWC_OTG_REGS_H__
+
+/**
+ * @file
+ *
+ * This file contains the data structures for accessing the DWC_otg core registers.
+ *
+ * The application interfaces with the HS OTG core by reading from and
+ * writing to the Control and Status Register (CSR) space through the
+ * AHB Slave interface. These registers are 32 bits wide, and the
+ * addresses are 32-bit-block aligned.
+ * CSRs are classified as follows:
+ * - Core Global Registers
+ * - Device Mode Registers
+ * - Device Global Registers
+ * - Device Endpoint Specific Registers
+ * - Host Mode Registers
+ * - Host Global Registers
+ * - Host Port CSRs
+ * - Host Channel Specific Registers
+ *
+ * Only the Core Global registers can be accessed in both Device and
+ * Host modes. When the HS OTG core is operating in one mode, either
+ * Device or Host, the application must not access registers from the
+ * other mode. When the core switches from one mode to another, the
+ * registers in the new mode of operation must be reprogrammed as they
+ * would be after a power-on reset.
+ */
+
+/** Maximum number of Periodic FIFOs */
+#define MAX_PERIO_FIFOS 15
+/** Maximum number of Transmit FIFOs */
+#define MAX_TX_FIFOS 15
+
+/** Maximum number of Endpoints/HostChannels */
+#define MAX_EPS_CHANNELS 16
+
+/****************************************************************************/
+/** DWC_otg Core registers .
+ * The dwc_otg_core_global_regs structure defines the size
+ * and relative field offsets for the Core Global registers.
+ */
+typedef struct dwc_otg_core_global_regs
+{
+ /** OTG Control and Status Register. <i>Offset: 000h</i> */
+ volatile uint32_t gotgctl;
+ /** OTG Interrupt Register. <i>Offset: 004h</i> */
+ volatile uint32_t gotgint;
+ /**Core AHB Configuration Register. <i>Offset: 008h</i> */
+ volatile uint32_t gahbcfg;
+
+#define DWC_GLBINTRMASK 0x0001
+#define DWC_DMAENABLE 0x0020
+#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
+#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
+#define DWC_PTXEMPTYLVL_EMPTY 0x0100
+#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
+
+ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
+ volatile uint32_t gusbcfg;
+ /**Core Reset Register. <i>Offset: 010h</i> */
+ volatile uint32_t grstctl;
+ /**Core Interrupt Register. <i>Offset: 014h</i> */
+ volatile uint32_t gintsts;
+ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
+ volatile uint32_t gintmsk;
+ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
+ volatile uint32_t grxstsr;
+ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
+ volatile uint32_t grxstsp;
+ /**Receive FIFO Size Register. <i>Offset: 024h</i> */
+ volatile uint32_t grxfsiz;
+ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
+ volatile uint32_t gnptxfsiz;
+ /**Non Periodic Transmit FIFO/Queue Status Register (Read
+ * Only). <i>Offset: 02Ch</i> */
+ volatile uint32_t gnptxsts;
+ /**I2C Access Register. <i>Offset: 030h</i> */
+ volatile uint32_t gi2cctl;
+ /**PHY Vendor Control Register. <i>Offset: 034h</i> */
+ volatile uint32_t gpvndctl;
+ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
+ volatile uint32_t ggpio;
+ /**User ID Register. <i>Offset: 03Ch</i> */
+ volatile uint32_t guid;
+ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
+ volatile uint32_t gsnpsid;
+ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
+ volatile uint32_t ghwcfg1;
+ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
+ volatile uint32_t ghwcfg2;
+#define DWC_SLAVE_ONLY_ARCH 0
+#define DWC_EXT_DMA_ARCH 1
+#define DWC_INT_DMA_ARCH 2
+
+#define DWC_MODE_HNP_SRP_CAPABLE 0
+#define DWC_MODE_SRP_ONLY_CAPABLE 1
+#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
+#define DWC_MODE_SRP_CAPABLE_DEVICE 3
+#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
+#define DWC_MODE_SRP_CAPABLE_HOST 5
+#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
+
+ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
+ volatile uint32_t ghwcfg3;
+ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
+ volatile uint32_t ghwcfg4;
+ /** Reserved <i>Offset: 054h-0FFh</i> */
+ volatile uint32_t reserved[43];
+ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
+ volatile uint32_t hptxfsiz;
+ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
+ otherwise Device Transmit FIFO#n Register.
+ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
+ volatile uint32_t dptxfsiz_dieptxf[15];
+} dwc_otg_core_global_regs_t;
+
+/**
+ * This union represents the bit fields of the Core OTG Control
+ * and Status Register (GOTGCTL). Set the bits using the bit
+ * fields then write the <i>d32</i> value to the register.
+ */
+typedef union gotgctl_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned sesreqscs : 1;
+ unsigned sesreq : 1;
+ unsigned reserved2_7 : 6;
+ unsigned hstnegscs : 1;
+ unsigned hnpreq : 1;
+ unsigned hstsethnpen : 1;
+ unsigned devhnpen : 1;
+ unsigned reserved12_15 : 4;
+ unsigned conidsts : 1;
+ unsigned reserved17 : 1;
+ unsigned asesvld : 1;
+ unsigned bsesvld : 1;
+ unsigned currmod : 1;
+ unsigned reserved21_31 : 11;
+ } b;
+} gotgctl_data_t;
+
+/**
+ * This union represents the bit fields of the Core OTG Interrupt Register
+ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
+ * value to the register.
+ */
+typedef union gotgint_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Current Mode */
+ unsigned reserved0_1 : 2;
+
+ /** Session End Detected */
+ unsigned sesenddet : 1;
+
+ unsigned reserved3_7 : 5;
+
+ /** Session Request Success Status Change */
+ unsigned sesreqsucstschng : 1;
+ /** Host Negotiation Success Status Change */
+ unsigned hstnegsucstschng : 1;
+
+ unsigned reserver10_16 : 7;
+
+ /** Host Negotiation Detected */
+ unsigned hstnegdet : 1;
+ /** A-Device Timeout Change */
+ unsigned adevtoutchng : 1;
+ /** Debounce Done */
+ unsigned debdone : 1;
+
+ unsigned reserved31_20 : 12;
+
+ } b;
+} gotgint_data_t;
+
+
+/**
+ * This union represents the bit fields of the Core AHB Configuration
+ * Register (GAHBCFG). Set/clear the bits using the bit fields then
+ * write the <i>d32</i> value to the register.
+ */
+typedef union gahbcfg_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned glblintrmsk : 1;
+#define DWC_GAHBCFG_GLBINT_ENABLE 1
+
+ unsigned hburstlen : 4;
+#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
+
+ unsigned dmaenable : 1;
+#define DWC_GAHBCFG_DMAENABLE 1
+ unsigned reserved : 1;
+ unsigned nptxfemplvl_txfemplvl : 1;
+ unsigned ptxfemplvl : 1;
+#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
+#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
+ unsigned reserved9_31 : 23;
+ } b;
+} gahbcfg_data_t;
+
+/**
+ * This union represents the bit fields of the Core USB Configuration
+ * Register (GUSBCFG). Set the bits using the bit fields then write
+ * the <i>d32</i> value to the register.
+ */
+typedef union gusbcfg_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned toutcal : 3;
+ unsigned phyif : 1;
+ unsigned ulpi_utmi_sel : 1;
+ unsigned fsintf : 1;
+ unsigned physel : 1;
+ unsigned ddrsel : 1;
+ unsigned srpcap : 1;
+ unsigned hnpcap : 1;
+ unsigned usbtrdtim : 4;
+ unsigned nptxfrwnden : 1;
+ unsigned phylpwrclksel : 1;
+ unsigned otgutmifssel : 1;
+ unsigned ulpi_fsls : 1;
+ unsigned ulpi_auto_res : 1;
+ unsigned ulpi_clk_sus_m : 1;
+ unsigned ulpi_ext_vbus_drv : 1;
+ unsigned ulpi_int_vbus_indicator : 1;
+ unsigned term_sel_dl_pulse : 1;
+ unsigned reserved23_27 : 5;
+ unsigned tx_end_delay : 1;
+ unsigned reserved29_31 : 3;
+ } b;
+} gusbcfg_data_t;
+
+/**
+ * This union represents the bit fields of the Core Reset Register
+ * (GRSTCTL). Set/clear the bits using the bit fields then write the
+ * <i>d32</i> value to the register.
+ */
+typedef union grstctl_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Core Soft Reset (CSftRst) (Device and Host)
+ *
+ * The application can flush the control logic in the
+ * entire core using this bit. This bit resets the
+ * pipelines in the AHB Clock domain as well as the
+ * PHY Clock domain.
+ *
+ * The state machines are reset to an IDLE state, the
+ * control bits in the CSRs are cleared, all the
+ * transmit FIFOs and the receive FIFO are flushed.
+ *
+ * The status mask bits that control the generation of
+ * the interrupt, are cleared, to clear the
+ * interrupt. The interrupt status bits are not
+ * cleared, so the application can get the status of
+ * any events that occurred in the core after it has
+ * set this bit.
+ *
+ * Any transactions on the AHB are terminated as soon
+ * as possible following the protocol. Any
+ * transactions on the USB are terminated immediately.
+ *
+ * The configuration settings in the CSRs are
+ * unchanged, so the software doesn't have to
+ * reprogram these registers (Device
+ * Configuration/Host Configuration/Core System
+ * Configuration/Core PHY Configuration).
+ *
+ * The application can write to this bit, any time it
+ * wants to reset the core. This is a self clearing
+ * bit and the core clears this bit after all the
+ * necessary logic is reset in the core, which may
+ * take several clocks, depending on the current state
+ * of the core.
+ */
+ unsigned csftrst : 1;
+ /** Hclk Soft Reset
+ *
+ * The application uses this bit to reset the control logic in
+ * the AHB clock domain. Only AHB clock domain pipelines are
+ * reset.
+ */
+ unsigned hsftrst : 1;
+ /** Host Frame Counter Reset (Host Only)<br>
+ *
+ * The application can reset the (micro)frame number
+ * counter inside the core, using this bit. When the
+ * (micro)frame counter is reset, the subsequent SOF
+ * sent out by the core, will have a (micro)frame
+ * number of 0.
+ */
+ unsigned hstfrm : 1;
+ /** In Token Sequence Learning Queue Flush
+ * (INTknQFlsh) (Device Only)
+ */
+ unsigned intknqflsh : 1;
+ /** RxFIFO Flush (RxFFlsh) (Device and Host)
+ *
+ * The application can flush the entire Receive FIFO
+ * using this bit. <p>The application must first
+ * ensure that the core is not in the middle of a
+ * transaction. <p>The application should write into
+ * this bit, only after making sure that neither the
+ * DMA engine is reading from the RxFIFO nor the MAC
+ * is writing the data in to the FIFO. <p>The
+ * application should wait until the bit is cleared
+ * before performing any other operations. This bit
+ * will takes 8 clocks (slowest of PHY or AHB clock)
+ * to clear.
+ */
+ unsigned rxfflsh : 1;
+ /** TxFIFO Flush (TxFFlsh) (Device and Host).
+ *
+ * This bit is used to selectively flush a single or
+ * all transmit FIFOs. The application must first
+ * ensure that the core is not in the middle of a
+ * transaction. <p>The application should write into
+ * this bit, only after making sure that neither the
+ * DMA engine is writing into the TxFIFO nor the MAC
+ * is reading the data out of the FIFO. <p>The
+ * application should wait until the core clears this
+ * bit, before performing any operations. This bit
+ * will takes 8 clocks (slowest of PHY or AHB clock)
+ * to clear.
+ */
+ unsigned txfflsh : 1;
+ /** TxFIFO Number (TxFNum) (Device and Host).
+ *
+ * This is the FIFO number which needs to be flushed,
+ * using the TxFIFO Flush bit. This field should not
+ * be changed until the TxFIFO Flush bit is cleared by
+ * the core.
+ * - 0x0 : Non Periodic TxFIFO Flush
+ * - 0x1 : Periodic TxFIFO #1 Flush in device mode
+ * or Periodic TxFIFO in host mode
+ * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
+ * - ...
+ * - 0xF : Periodic TxFIFO #15 Flush in device mode
+ * - 0x10: Flush all the Transmit NonPeriodic and
+ * Transmit Periodic FIFOs in the core
+ */
+ unsigned txfnum : 5;
+ /** Reserved */
+ unsigned reserved11_29 : 19;
+ /** DMA Request Signal. Indicated DMA request is in
+ * probress. Used for debug purpose. */
+ unsigned dmareq : 1;
+ /** AHB Master Idle. Indicates the AHB Master State
+ * Machine is in IDLE condition. */
+ unsigned ahbidle : 1;
+ } b;
+} grstctl_t;
+
+
+/**
+ * This union represents the bit fields of the Core Interrupt Mask
+ * Register (GINTMSK). Set/clear the bits using the bit fields then
+ * write the <i>d32</i> value to the register.
+ */
+typedef union gintmsk_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned reserved0 : 1;
+ unsigned modemismatch : 1;
+ unsigned otgintr : 1;
+ unsigned sofintr : 1;
+ unsigned rxstsqlvl : 1;
+ unsigned nptxfempty : 1;
+ unsigned ginnakeff : 1;
+ unsigned goutnakeff : 1;
+ unsigned reserved8 : 1;
+ unsigned i2cintr : 1;
+ unsigned erlysuspend : 1;
+ unsigned usbsuspend : 1;
+ unsigned usbreset : 1;
+ unsigned enumdone : 1;
+ unsigned isooutdrop : 1;
+ unsigned eopframe : 1;
+ unsigned reserved16 : 1;
+ unsigned epmismatch : 1;
+ unsigned inepintr : 1;
+ unsigned outepintr : 1;
+ unsigned incomplisoin : 1;
+ unsigned incomplisoout : 1;
+ unsigned reserved22_23 : 2;
+ unsigned portintr : 1;
+ unsigned hcintr : 1;
+ unsigned ptxfempty : 1;
+ unsigned reserved27 : 1;
+ unsigned conidstschng : 1;
+ unsigned disconnect : 1;
+ unsigned sessreqintr : 1;
+ unsigned wkupintr : 1;
+ } b;
+} gintmsk_data_t;
+/**
+ * This union represents the bit fields of the Core Interrupt Register
+ * (GINTSTS). Set/clear the bits using the bit fields then write the
+ * <i>d32</i> value to the register.
+ */
+typedef union gintsts_data
+{
+ /** raw register data */
+ uint32_t d32;
+#define DWC_SOF_INTR_MASK 0x0008
+ /** register bits */
+ struct
+ {
+#define DWC_HOST_MODE 1
+ unsigned curmode : 1;
+ unsigned modemismatch : 1;
+ unsigned otgintr : 1;
+ unsigned sofintr : 1;
+ unsigned rxstsqlvl : 1;
+ unsigned nptxfempty : 1;
+ unsigned ginnakeff : 1;
+ unsigned goutnakeff : 1;
+ unsigned reserved8 : 1;
+ unsigned i2cintr : 1;
+ unsigned erlysuspend : 1;
+ unsigned usbsuspend : 1;
+ unsigned usbreset : 1;
+ unsigned enumdone : 1;
+ unsigned isooutdrop : 1;
+ unsigned eopframe : 1;
+ unsigned intokenrx : 1;
+ unsigned epmismatch : 1;
+ unsigned inepint: 1;
+ unsigned outepintr : 1;
+ unsigned incomplisoin : 1;
+ unsigned incomplisoout : 1;
+ unsigned reserved22_23 : 2;
+ unsigned portintr : 1;
+ unsigned hcintr : 1;
+ unsigned ptxfempty : 1;
+ unsigned reserved27 : 1;
+ unsigned conidstschng : 1;
+ unsigned disconnect : 1;
+ unsigned sessreqintr : 1;
+ unsigned wkupintr : 1;
+ } b;
+} gintsts_data_t;
+
+
+/**
+ * This union represents the bit fields in the Device Receive Status Read and
+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
+ * element then read out the bits using the <i>b</i>it elements.
+ */
+typedef union device_grxsts_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned epnum : 4;
+ unsigned bcnt : 11;
+ unsigned dpid : 2;
+#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
+#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
+
+#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
+#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
+#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
+ unsigned pktsts : 4;
+ unsigned fn : 4;
+ unsigned reserved : 7;
+ } b;
+} device_grxsts_data_t;
+
+/**
+ * This union represents the bit fields in the Host Receive Status Read and
+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
+ * element then read out the bits using the <i>b</i>it elements.
+ */
+typedef union host_grxsts_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned chnum : 4;
+ unsigned bcnt : 11;
+ unsigned dpid : 2;
+ unsigned pktsts : 4;
+#define DWC_GRXSTS_PKTSTS_IN 0x2
+#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
+#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
+#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
+ unsigned reserved : 11;
+ } b;
+} host_grxsts_data_t;
+
+/**
+ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
+ * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then
+ * read out the bits using the <i>b</i>it elements.
+ */
+typedef union fifosize_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned startaddr : 16;
+ unsigned depth : 16;
+ } b;
+} fifosize_data_t;
+
+/**
+ * This union represents the bit fields in the Non-Periodic Transmit
+ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
+ * <i>d32</i> element then read out the bits using the <i>b</i>it
+ * elements.
+ */
+typedef union gnptxsts_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned nptxfspcavail : 16;
+ unsigned nptxqspcavail : 8;
+ /** Top of the Non-Periodic Transmit Request Queue
+ * - bit 24 - Terminate (Last entry for the selected
+ * channel/EP)
+ * - bits 26:25 - Token Type
+ * - 2'b00 - IN/OUT
+ * - 2'b01 - Zero Length OUT
+ * - 2'b10 - PING/Complete Split
+ * - 2'b11 - Channel Halt
+ * - bits 30:27 - Channel/EP Number
+ */
+ unsigned nptxqtop_terminate : 1;
+ unsigned nptxqtop_token : 2;
+ unsigned nptxqtop_chnep : 4;
+ unsigned reserved : 1;
+ } b;
+} gnptxsts_data_t;
+
+/**
+ * This union represents the bit fields in the Transmit
+ * FIFO Status Register (DTXFSTS). Read the register into the
+ * <i>d32</i> element then read out the bits using the <i>b</i>it
+ * elements.
+ */
+typedef union dtxfsts_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned txfspcavail : 16;
+ unsigned reserved : 16;
+ } b;
+} dtxfsts_data_t;
+
+/**
+ * This union represents the bit fields in the I2C Control Register
+ * (I2CCTL). Read the register into the <i>d32</i> element then read out the
+ * bits using the <i>b</i>it elements.
+ */
+typedef union gi2cctl_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned rwdata : 8;
+ unsigned regaddr : 8;
+ unsigned addr : 7;
+ unsigned i2cen : 1;
+ unsigned ack : 1;
+ unsigned i2csuspctl : 1;
+ unsigned i2cdevaddr : 2;
+ unsigned reserved : 2;
+ unsigned rw : 1;
+ unsigned bsydne : 1;
+ } b;
+} gi2cctl_data_t;
+
+/**
+ * This union represents the bit fields in the User HW Config1
+ * Register. Read the register into the <i>d32</i> element then read
+ * out the bits using the <i>b</i>it elements.
+ */
+typedef union hwcfg1_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned ep_dir0 : 2;
+ unsigned ep_dir1 : 2;
+ unsigned ep_dir2 : 2;
+ unsigned ep_dir3 : 2;
+ unsigned ep_dir4 : 2;
+ unsigned ep_dir5 : 2;
+ unsigned ep_dir6 : 2;
+ unsigned ep_dir7 : 2;
+ unsigned ep_dir8 : 2;
+ unsigned ep_dir9 : 2;
+ unsigned ep_dir10 : 2;
+ unsigned ep_dir11 : 2;
+ unsigned ep_dir12 : 2;
+ unsigned ep_dir13 : 2;
+ unsigned ep_dir14 : 2;
+ unsigned ep_dir15 : 2;
+ } b;
+} hwcfg1_data_t;
+
+/**
+ * This union represents the bit fields in the User HW Config2
+ * Register. Read the register into the <i>d32</i> element then read
+ * out the bits using the <i>b</i>it elements.
+ */
+typedef union hwcfg2_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /* GHWCFG2 */
+ unsigned op_mode : 3;
+#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
+#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
+#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
+
+ unsigned architecture : 2;
+ unsigned point2point : 1;
+ unsigned hs_phy_type : 2;
+#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
+#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
+
+ unsigned fs_phy_type : 2;
+ unsigned num_dev_ep : 4;
+ unsigned num_host_chan : 4;
+ unsigned perio_ep_supported : 1;
+ unsigned dynamic_fifo : 1;
+ unsigned multi_proc_int : 1;
+ unsigned reserved21 : 1;
+ unsigned nonperio_tx_q_depth : 2;
+ unsigned host_perio_tx_q_depth : 2;
+ unsigned dev_token_q_depth : 5;
+ unsigned reserved31 : 1;
+ } b;
+} hwcfg2_data_t;
+
+/**
+ * This union represents the bit fields in the User HW Config3
+ * Register. Read the register into the <i>d32</i> element then read
+ * out the bits using the <i>b</i>it elements.
+ */
+typedef union hwcfg3_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /* GHWCFG3 */
+ unsigned xfer_size_cntr_width : 4;
+ unsigned packet_size_cntr_width : 3;
+ unsigned otg_func : 1;
+ unsigned i2c : 1;
+ unsigned vendor_ctrl_if : 1;
+ unsigned optional_features : 1;
+ unsigned synch_reset_type : 1;
+ unsigned ahb_phy_clock_synch : 1;
+ unsigned reserved15_13 : 3;
+ unsigned dfifo_depth : 16;
+ } b;
+} hwcfg3_data_t;
+
+/**
+ * This union represents the bit fields in the User HW Config4
+ * Register. Read the register into the <i>d32</i> element then read
+ * out the bits using the <i>b</i>it elements.
+ */
+typedef union hwcfg4_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned num_dev_perio_in_ep : 4;
+ unsigned power_optimiz : 1;
+ unsigned min_ahb_freq : 9;
+ unsigned utmi_phy_data_width : 2;
+ unsigned num_dev_mode_ctrl_ep : 4;
+ unsigned iddig_filt_en : 1;
+ unsigned vbus_valid_filt_en : 1;
+ unsigned a_valid_filt_en : 1;
+ unsigned b_valid_filt_en : 1;
+ unsigned session_end_filt_en : 1;
+ unsigned ded_fifo_en : 1;
+ unsigned num_in_eps : 4;
+ unsigned desc_dma : 1;
+ unsigned desc_dma_dyn : 1;
+ } b;
+} hwcfg4_data_t;
+
+////////////////////////////////////////////
+// Device Registers
+/**
+ * Device Global Registers. <i>Offsets 800h-BFFh</i>
+ *
+ * The following structures define the size and relative field offsets
+ * for the Device Mode Registers.
+ *
+ * <i>These registers are visible only in Device mode and must not be
+ * accessed in Host mode, as the results are unknown.</i>
+ */
+typedef struct dwc_otg_dev_global_regs
+{
+ /** Device Configuration Register. <i>Offset 800h</i> */
+ volatile uint32_t dcfg;
+ /** Device Control Register. <i>Offset: 804h</i> */
+ volatile uint32_t dctl;
+ /** Device Status Register (Read Only). <i>Offset: 808h</i> */
+ volatile uint32_t dsts;
+ /** Reserved. <i>Offset: 80Ch</i> */
+ uint32_t unused;
+ /** Device IN Endpoint Common Interrupt Mask
+ * Register. <i>Offset: 810h</i> */
+ volatile uint32_t diepmsk;
+ /** Device OUT Endpoint Common Interrupt Mask
+ * Register. <i>Offset: 814h</i> */
+ volatile uint32_t doepmsk;
+ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
+ volatile uint32_t daint;
+ /** Device All Endpoints Interrupt Mask Register. <i>Offset:
+ * 81Ch</i> */
+ volatile uint32_t daintmsk;
+ /** Device IN Token Queue Read Register-1 (Read Only).
+ * <i>Offset: 820h</i> */
+ volatile uint32_t dtknqr1;
+ /** Device IN Token Queue Read Register-2 (Read Only).
+ * <i>Offset: 824h</i> */
+ volatile uint32_t dtknqr2;
+ /** Device VBUS discharge Register. <i>Offset: 828h</i> */
+ volatile uint32_t dvbusdis;
+ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
+ volatile uint32_t dvbuspulse;
+ /** Device IN Token Queue Read Register-3 (Read Only). /
+ * Device Thresholding control register (Read/Write)
+ * <i>Offset: 830h</i> */
+ volatile uint32_t dtknqr3_dthrctl;
+ /** Device IN Token Queue Read Register-4 (Read Only). /
+ * Device IN EPs empty Inr. Mask Register (Read/Write)
+ * <i>Offset: 834h</i> */
+ volatile uint32_t dtknqr4_fifoemptymsk;
+ /** Device Each Endpoint Interrupt Register (Read Only). /
+ * <i>Offset: 838h</i> */
+ volatile uint32_t deachint;
+ /** Device Each Endpoint Interrupt mask Register (Read/Write). /
+ * <i>Offset: 83Ch</i> */
+ volatile uint32_t deachintmsk;
+ /** Device Each In Endpoint Interrupt mask Register (Read/Write). /
+ * <i>Offset: 840h</i> */
+ volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS];
+ /** Device Each Out Endpoint Interrupt mask Register (Read/Write). /
+ * <i>Offset: 880h</i> */
+ volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS];
+} dwc_otg_device_global_regs_t;
+
+/**
+ * This union represents the bit fields in the Device Configuration
+ * Register. Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements. Write the
+ * <i>d32</i> member to the dcfg register.
+ */
+typedef union dcfg_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Device Speed */
+ unsigned devspd : 2;
+ /** Non Zero Length Status OUT Handshake */
+ unsigned nzstsouthshk : 1;
+#define DWC_DCFG_SEND_STALL 1
+
+ unsigned reserved3 : 1;
+ /** Device Addresses */
+ unsigned devaddr : 7;
+ /** Periodic Frame Interval */
+ unsigned perfrint : 2;
+#define DWC_DCFG_FRAME_INTERVAL_80 0
+#define DWC_DCFG_FRAME_INTERVAL_85 1
+#define DWC_DCFG_FRAME_INTERVAL_90 2
+#define DWC_DCFG_FRAME_INTERVAL_95 3
+
+ unsigned reserved13_17 : 5;
+ /** In Endpoint Mis-match count */
+ unsigned epmscnt : 5;
+ /** Enable Descriptor DMA in Device mode */
+ unsigned descdma : 1;
+ } b;
+} dcfg_data_t;
+
+/**
+ * This union represents the bit fields in the Device Control
+ * Register. Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union dctl_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Remote Wakeup */
+ unsigned rmtwkupsig : 1;
+ /** Soft Disconnect */
+ unsigned sftdiscon : 1;
+ /** Global Non-Periodic IN NAK Status */
+ unsigned gnpinnaksts : 1;
+ /** Global OUT NAK Status */
+ unsigned goutnaksts : 1;
+ /** Test Control */
+ unsigned tstctl : 3;
+ /** Set Global Non-Periodic IN NAK */
+ unsigned sgnpinnak : 1;
+ /** Clear Global Non-Periodic IN NAK */
+ unsigned cgnpinnak : 1;
+ /** Set Global OUT NAK */
+ unsigned sgoutnak : 1;
+ /** Clear Global OUT NAK */
+ unsigned cgoutnak : 1;
+
+ /** Power-On Programming Done */
+ unsigned pwronprgdone : 1;
+ /** Global Continue on BNA */
+ unsigned gcontbna : 1;
+ /** Global Multi Count */
+ unsigned gmc : 2;
+ /** Ignore Frame Number for ISOC EPs */
+ unsigned ifrmnum : 1;
+ /** NAK on Babble */
+ unsigned nakonbble : 1;
+
+ unsigned reserved16_31 : 16;
+ } b;
+} dctl_data_t;
+
+/**
+ * This union represents the bit fields in the Device Status
+ * Register. Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union dsts_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Suspend Status */
+ unsigned suspsts : 1;
+ /** Enumerated Speed */
+ unsigned enumspd : 2;
+#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
+#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
+#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
+#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
+ /** Erratic Error */
+ unsigned errticerr : 1;
+ unsigned reserved4_7: 4;
+ /** Frame or Microframe Number of the received SOF */
+ unsigned soffn : 14;
+ unsigned reserved22_31 : 10;
+ } b;
+} dsts_data_t;
+
+
+/**
+ * This union represents the bit fields in the Device IN EP Interrupt
+ * Register and the Device IN EP Common Mask Register.
+ *
+ * - Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements.
+ */
+typedef union diepint_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Transfer complete mask */
+ unsigned xfercompl : 1;
+ /** Endpoint disable mask */
+ unsigned epdisabled : 1;
+ /** AHB Error mask */
+ unsigned ahberr : 1;
+ /** TimeOUT Handshake mask (non-ISOC EPs) */
+ unsigned timeout : 1;
+ /** IN Token received with TxF Empty mask */
+ unsigned intktxfemp : 1;
+ /** IN Token Received with EP mismatch mask */
+ unsigned intknepmis : 1;
+ /** IN Endpoint HAK Effective mask */
+ unsigned inepnakeff : 1;
+ /** IN Endpoint HAK Effective mask */
+ unsigned emptyintr : 1;
+ unsigned txfifoundrn : 1;
+
+ /** BNA Interrupt mask */
+ unsigned bna : 1;
+ unsigned reserved10_12 : 3;
+ /** BNA Interrupt mask */
+ unsigned nak : 1;
+ unsigned reserved14_31 : 18;
+ } b;
+} diepint_data_t;
+
+/**
+ * This union represents the bit fields in the Device IN EP
+ * Common/Dedicated Interrupt Mask Register.
+ */
+typedef union diepint_data diepmsk_data_t;
+
+/**
+ * This union represents the bit fields in the Device OUT EP Interrupt
+ * Registerand Device OUT EP Common Interrupt Mask Register.
+ *
+ * - Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements.
+ */
+typedef union doepint_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Transfer complete */
+ unsigned xfercompl : 1;
+ /** Endpoint disable */
+ unsigned epdisabled : 1;
+ /** AHB Error */
+ unsigned ahberr : 1;
+ /** Setup Phase Done (contorl EPs) */
+ unsigned setup : 1;
+ /** OUT Token Received when Endpoint Disabled */
+ unsigned outtknepdis : 1;
+ unsigned stsphsercvd : 1;
+ /** Back-to-Back SETUP Packets Received */
+ unsigned back2backsetup : 1;
+ unsigned reserved7 : 1;
+ /** OUT packet Error */
+ unsigned outpkterr : 1;
+ /** BNA Interrupt */
+ unsigned bna : 1;
+ unsigned reserved10 : 1;
+ /** Packet Drop Status */
+ unsigned pktdrpsts : 1;
+ /** Babble Interrupt */
+ unsigned babble : 1;
+ /** NAK Interrupt */
+ unsigned nak : 1;
+ /** NYET Interrupt */
+ unsigned nyet : 1;
+
+ unsigned reserved15_31 : 17;
+ } b;
+} doepint_data_t;
+
+/**
+ * This union represents the bit fields in the Device OUT EP
+ * Common/Dedicated Interrupt Mask Register.
+ */
+typedef union doepint_data doepmsk_data_t;
+
+/**
+ * This union represents the bit fields in the Device All EP Interrupt
+ * and Mask Registers.
+ * - Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements.
+ */
+typedef union daint_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** IN Endpoint bits */
+ unsigned in : 16;
+ /** OUT Endpoint bits */
+ unsigned out : 16;
+ } ep;
+ struct
+ {
+ /** IN Endpoint bits */
+ unsigned inep0 : 1;
+ unsigned inep1 : 1;
+ unsigned inep2 : 1;
+ unsigned inep3 : 1;
+ unsigned inep4 : 1;
+ unsigned inep5 : 1;
+ unsigned inep6 : 1;
+ unsigned inep7 : 1;
+ unsigned inep8 : 1;
+ unsigned inep9 : 1;
+ unsigned inep10 : 1;
+ unsigned inep11 : 1;
+ unsigned inep12 : 1;
+ unsigned inep13 : 1;
+ unsigned inep14 : 1;
+ unsigned inep15 : 1;
+ /** OUT Endpoint bits */
+ unsigned outep0 : 1;
+ unsigned outep1 : 1;
+ unsigned outep2 : 1;
+ unsigned outep3 : 1;
+ unsigned outep4 : 1;
+ unsigned outep5 : 1;
+ unsigned outep6 : 1;
+ unsigned outep7 : 1;
+ unsigned outep8 : 1;
+ unsigned outep9 : 1;
+ unsigned outep10 : 1;
+ unsigned outep11 : 1;
+ unsigned outep12 : 1;
+ unsigned outep13 : 1;
+ unsigned outep14 : 1;
+ unsigned outep15 : 1;
+ } b;
+} daint_data_t;
+
+/**
+ * This union represents the bit fields in the Device IN Token Queue
+ * Read Registers.
+ * - Read the register into the <i>d32</i> member.
+ * - READ-ONLY Register
+ */
+typedef union dtknq1_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** In Token Queue Write Pointer */
+ unsigned intknwptr : 5;
+ /** Reserved */
+ unsigned reserved05_06 : 2;
+ /** write pointer has wrapped. */
+ unsigned wrap_bit : 1;
+ /** EP Numbers of IN Tokens 0 ... 4 */
+ unsigned epnums0_5 : 24;
+ }b;
+} dtknq1_data_t;
+
+/**
+ * This union represents Threshold control Register
+ * - Read and write the register into the <i>d32</i> member.
+ * - READ-WRITABLE Register
+ */
+typedef union dthrctl_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** non ISO Tx Thr. Enable */
+ unsigned non_iso_thr_en : 1;
+ /** ISO Tx Thr. Enable */
+ unsigned iso_thr_en : 1;
+ /** Tx Thr. Length */
+ unsigned tx_thr_len : 9;
+ /** Reserved */
+ unsigned reserved11_15 : 5;
+ /** Rx Thr. Enable */
+ unsigned rx_thr_en : 1;
+ /** Rx Thr. Length */
+ unsigned rx_thr_len : 9;
+ /** Reserved */
+ unsigned reserved26_31 : 6;
+ }b;
+} dthrctl_data_t;
+
+
+/**
+ * Device Logical IN Endpoint-Specific Registers. <i>Offsets
+ * 900h-AFCh</i>
+ *
+ * There will be one set of endpoint registers per logical endpoint
+ * implemented.
+ *
+ * <i>These registers are visible only in Device mode and must not be
+ * accessed in Host mode, as the results are unknown.</i>
+ */
+typedef struct dwc_otg_dev_in_ep_regs
+{
+ /** Device IN Endpoint Control Register. <i>Offset:900h +
+ * (ep_num * 20h) + 00h</i> */
+ volatile uint32_t diepctl;
+ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
+ uint32_t reserved04;
+ /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
+ * (ep_num * 20h) + 08h</i> */
+ volatile uint32_t diepint;
+ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
+ uint32_t reserved0C;
+ /** Device IN Endpoint Transfer Size
+ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
+ volatile uint32_t dieptsiz;
+ /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
+ * (ep_num * 20h) + 14h</i> */
+ volatile uint32_t diepdma;
+ /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h +
+ * (ep_num * 20h) + 18h</i> */
+ volatile uint32_t dtxfsts;
+ /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h +
+ * (ep_num * 20h) + 1Ch</i> */
+ volatile uint32_t diepdmab;
+} dwc_otg_dev_in_ep_regs_t;
+
+/**
+ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
+ * B00h-CFCh</i>
+ *
+ * There will be one set of endpoint registers per logical endpoint
+ * implemented.
+ *
+ * <i>These registers are visible only in Device mode and must not be
+ * accessed in Host mode, as the results are unknown.</i>
+ */
+typedef struct dwc_otg_dev_out_ep_regs
+{
+ /** Device OUT Endpoint Control Register. <i>Offset:B00h +
+ * (ep_num * 20h) + 00h</i> */
+ volatile uint32_t doepctl;
+ /** Device OUT Endpoint Frame number Register. <i>Offset:
+ * B00h + (ep_num * 20h) + 04h</i> */
+ volatile uint32_t doepfn;
+ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
+ * (ep_num * 20h) + 08h</i> */
+ volatile uint32_t doepint;
+ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
+ uint32_t reserved0C;
+ /** Device OUT Endpoint Transfer Size Register. <i>Offset:
+ * B00h + (ep_num * 20h) + 10h</i> */
+ volatile uint32_t doeptsiz;
+ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
+ * + (ep_num * 20h) + 14h</i> */
+ volatile uint32_t doepdma;
+ /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 1Ch</i> */
+ uint32_t unused;
+ /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h
+ * + (ep_num * 20h) + 1Ch</i> */
+ uint32_t doepdmab;
+} dwc_otg_dev_out_ep_regs_t;
+
+/**
+ * This union represents the bit fields in the Device EP Control
+ * Register. Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union depctl_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Maximum Packet Size
+ * IN/OUT EPn
+ * IN/OUT EP0 - 2 bits
+ * 2'b00: 64 Bytes
+ * 2'b01: 32
+ * 2'b10: 16
+ * 2'b11: 8 */
+ unsigned mps : 11;
+#define DWC_DEP0CTL_MPS_64 0
+#define DWC_DEP0CTL_MPS_32 1
+#define DWC_DEP0CTL_MPS_16 2
+#define DWC_DEP0CTL_MPS_8 3
+
+ /** Next Endpoint
+ * IN EPn/IN EP0
+ * OUT EPn/OUT EP0 - reserved */
+ unsigned nextep : 4;
+
+ /** USB Active Endpoint */
+ unsigned usbactep : 1;
+
+ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
+ * This field contains the PID of the packet going to
+ * be received or transmitted on this endpoint. The
+ * application should program the PID of the first
+ * packet going to be received or transmitted on this
+ * endpoint , after the endpoint is
+ * activated. Application use the SetD1PID and
+ * SetD0PID fields of this register to program either
+ * D0 or D1 PID.
+ *
+ * The encoding for this field is
+ * - 0: D0
+ * - 1: D1
+ */
+ unsigned dpid : 1;
+
+ /** NAK Status */
+ unsigned naksts : 1;
+
+ /** Endpoint Type
+ * 2'b00: Control
+ * 2'b01: Isochronous
+ * 2'b10: Bulk
+ * 2'b11: Interrupt */
+ unsigned eptype : 2;
+
+ /** Snoop Mode
+ * OUT EPn/OUT EP0
+ * IN EPn/IN EP0 - reserved */
+ unsigned snp : 1;
+
+ /** Stall Handshake */
+ unsigned stall : 1;
+
+ /** Tx Fifo Number
+ * IN EPn/IN EP0
+ * OUT EPn/OUT EP0 - reserved */
+ unsigned txfnum : 4;
+
+ /** Clear NAK */
+ unsigned cnak : 1;
+ /** Set NAK */
+ unsigned snak : 1;
+ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
+ * Writing to this field sets the Endpoint DPID (DPID)
+ * field in this register to DATA0. Set Even
+ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
+ * Writing to this field sets the Even/Odd
+ * (micro)frame (EO_FrNum) field to even (micro)
+ * frame.
+ */
+ unsigned setd0pid : 1;
+ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
+ * Writing to this field sets the Endpoint DPID (DPID)
+ * field in this register to DATA1 Set Odd
+ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
+ * Writing to this field sets the Even/Odd
+ * (micro)frame (EO_FrNum) field to odd (micro) frame.
+ */
+ unsigned setd1pid : 1;
+ /** Endpoint Disable */
+ unsigned epdis : 1;
+ /** Endpoint Enable */
+ unsigned epena : 1;
+ } b;
+} depctl_data_t;
+
+/**
+ * This union represents the bit fields in the Device EP Transfer
+ * Size Register. Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union deptsiz_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct {
+ /** Transfer size */
+ unsigned xfersize : 19;
+ /** Packet Count */
+ unsigned pktcnt : 10;
+ /** Multi Count - Periodic IN endpoints */
+ unsigned mc : 2;
+ unsigned reserved : 1;
+ } b;
+} deptsiz_data_t;
+
+/**
+ * This union represents the bit fields in the Device EP 0 Transfer
+ * Size Register. Read the register into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it elements.
+ */
+typedef union deptsiz0_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct {
+ /** Transfer size */
+ unsigned xfersize : 7;
+ /** Reserved */
+ unsigned reserved7_18 : 12;
+ /** Packet Count */
+ unsigned pktcnt : 1;
+ /** Reserved */
+ unsigned reserved20_28 : 9;
+ /**Setup Packet Count (DOEPTSIZ0 Only) */
+ unsigned supcnt : 2;
+ unsigned reserved31;
+ } b;
+} deptsiz0_data_t;
+
+
+/////////////////////////////////////////////////
+// DMA Descriptor Specific Structures
+//
+
+/** Buffer status definitions */
+
+#define BS_HOST_READY 0x0
+#define BS_DMA_BUSY 0x1
+#define BS_DMA_DONE 0x2
+#define BS_HOST_BUSY 0x3
+
+/** Receive/Transmit status definitions */
+
+#define RTS_SUCCESS 0x0
+#define RTS_BUFFLUSH 0x1
+#define RTS_RESERVED 0x2
+#define RTS_BUFERR 0x3
+
+
+/**
+ * This union represents the bit fields in the DMA Descriptor
+ * status quadlet. Read the quadlet into the <i>d32</i> member then
+ * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and
+ * <i>b_iso_in</i> elements.
+ */
+typedef union desc_sts_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** quadlet bits */
+ struct {
+ /** Received number of bytes */
+ unsigned bytes : 16;
+
+ unsigned reserved16_22 : 7;
+ /** Multiple Transfer - only for OUT EPs */
+ unsigned mtrf : 1;
+ /** Setup Packet received - only for OUT EPs */
+ unsigned sr : 1;
+ /** Interrupt On Complete */
+ unsigned ioc : 1;
+ /** Short Packet */
+ unsigned sp : 1;
+ /** Last */
+ unsigned l : 1;
+ /** Receive Status */
+ unsigned sts : 2;
+ /** Buffer Status */
+ unsigned bs : 2;
+ } b;
+
+#ifdef DWC_EN_ISOC
+ /** iso out quadlet bits */
+ struct {
+ /** Received number of bytes */
+ unsigned rxbytes : 11;
+
+ unsigned reserved11 : 1;
+ /** Frame Number */
+ unsigned framenum : 11;
+ /** Received ISO Data PID */
+ unsigned pid : 2;
+ /** Interrupt On Complete */
+ unsigned ioc : 1;
+ /** Short Packet */
+ unsigned sp : 1;
+ /** Last */
+ unsigned l : 1;
+ /** Receive Status */
+ unsigned rxsts : 2;
+ /** Buffer Status */
+ unsigned bs : 2;
+ } b_iso_out;
+
+ /** iso in quadlet bits */
+ struct {
+ /** Transmited number of bytes */
+ unsigned txbytes : 12;
+ /** Frame Number */
+ unsigned framenum : 11;
+ /** Transmited ISO Data PID */
+ unsigned pid : 2;
+ /** Interrupt On Complete */
+ unsigned ioc : 1;
+ /** Short Packet */
+ unsigned sp : 1;
+ /** Last */
+ unsigned l : 1;
+ /** Transmit Status */
+ unsigned txsts : 2;
+ /** Buffer Status */
+ unsigned bs : 2;
+ } b_iso_in;
+#endif //DWC_EN_ISOC
+} desc_sts_data_t;
+
+/**
+ * DMA Descriptor structure
+ *
+ * DMA Descriptor structure contains two quadlets:
+ * Status quadlet and Data buffer pointer.
+ */
+typedef struct dwc_otg_dma_desc
+{
+ /** DMA Descriptor status quadlet */
+ desc_sts_data_t status;
+ /** DMA Descriptor data buffer pointer */
+ dma_addr_t buf;
+} dwc_otg_dma_desc_t;
+
+/**
+ * The dwc_otg_dev_if structure contains information needed to manage
+ * the DWC_otg controller acting in device mode. It represents the
+ * programming view of the device-specific aspects of the controller.
+ */
+typedef struct dwc_otg_dev_if
+{
+ /** Pointer to device Global registers.
+ * Device Global Registers starting at offset 800h
+ */
+ dwc_otg_device_global_regs_t *dev_global_regs;
+#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
+
+ /**
+ * Device Logical IN Endpoint-Specific Registers 900h-AFCh
+ */
+ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
+#define DWC_DEV_IN_EP_REG_OFFSET 0x900
+#define DWC_EP_REG_OFFSET 0x20
+
+ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
+ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
+#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
+
+ /* Device configuration information*/
+ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
+ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
+ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
+
+ /** Size of periodic FIFOs (Bytes) */
+ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
+
+ /** Size of Tx FIFOs (Bytes) */
+ uint16_t tx_fifo_size[MAX_TX_FIFOS];
+
+ /** Thresholding enable flags and length varaiables **/
+ uint16_t rx_thr_en;
+ uint16_t iso_tx_thr_en;
+ uint16_t non_iso_tx_thr_en;
+
+ uint16_t rx_thr_length;
+ uint16_t tx_thr_length;
+
+ /**
+ * Pointers to the DMA Descriptors for EP0 Control
+ * transfers (virtual and physical)
+ */
+ /** 2 descriptors for SETUP packets */
+ uint32_t dma_setup_desc_addr[2];
+ dwc_otg_dma_desc_t* setup_desc_addr[2];
+
+ /** Pointer to Descriptor with latest SETUP packet */
+ dwc_otg_dma_desc_t* psetup;
+
+ /** Index of current SETUP handler descriptor */
+ uint32_t setup_desc_index;
+
+ /** Descriptor for Data In or Status In phases */
+ uint32_t dma_in_desc_addr;
+ dwc_otg_dma_desc_t* in_desc_addr;;
+
+ /** Descriptor for Data Out or Status Out phases */
+ uint32_t dma_out_desc_addr;
+ dwc_otg_dma_desc_t* out_desc_addr;
+} dwc_otg_dev_if_t;
+
+
+
+
+/////////////////////////////////////////////////
+// Host Mode Register Structures
+//
+/**
+ * The Host Global Registers structure defines the size and relative
+ * field offsets for the Host Mode Global Registers. Host Global
+ * Registers offsets 400h-7FFh.
+*/
+typedef struct dwc_otg_host_global_regs
+{
+ /** Host Configuration Register. <i>Offset: 400h</i> */
+ volatile uint32_t hcfg;
+ /** Host Frame Interval Register. <i>Offset: 404h</i> */
+ volatile uint32_t hfir;
+ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
+ volatile uint32_t hfnum;
+ /** Reserved. <i>Offset: 40Ch</i> */
+ uint32_t reserved40C;
+ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
+ volatile uint32_t hptxsts;
+ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
+ volatile uint32_t haint;
+ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
+ volatile uint32_t haintmsk;
+} dwc_otg_host_global_regs_t;
+
+/**
+ * This union represents the bit fields in the Host Configuration Register.
+ * Read the register into the <i>d32</i> member then set/clear the bits using
+ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
+ */
+typedef union hcfg_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ /** FS/LS Phy Clock Select */
+ unsigned fslspclksel : 2;
+#define DWC_HCFG_30_60_MHZ 0
+#define DWC_HCFG_48_MHZ 1
+#define DWC_HCFG_6_MHZ 2
+
+ /** FS/LS Only Support */
+ unsigned fslssupp : 1;
+ } b;
+} hcfg_data_t;
+
+/**
+ * This union represents the bit fields in the Host Frame Remaing/Number
+ * Register.
+ */
+typedef union hfir_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ unsigned frint : 16;
+ unsigned reserved : 16;
+ } b;
+} hfir_data_t;
+
+/**
+ * This union represents the bit fields in the Host Frame Remaing/Number
+ * Register.
+ */
+typedef union hfnum_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ unsigned frnum : 16;
+#define DWC_HFNUM_MAX_FRNUM 0x3FFF
+ unsigned frrem : 16;
+ } b;
+} hfnum_data_t;
+
+typedef union hptxsts_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ unsigned ptxfspcavail : 16;
+ unsigned ptxqspcavail : 8;
+ /** Top of the Periodic Transmit Request Queue
+ * - bit 24 - Terminate (last entry for the selected channel)
+ * - bits 26:25 - Token Type
+ * - 2'b00 - Zero length
+ * - 2'b01 - Ping
+ * - 2'b10 - Disable
+ * - bits 30:27 - Channel Number
+ * - bit 31 - Odd/even microframe
+ */
+ unsigned ptxqtop_terminate : 1;
+ unsigned ptxqtop_token : 2;
+ unsigned ptxqtop_chnum : 4;
+ unsigned ptxqtop_odd : 1;
+ } b;
+} hptxsts_data_t;
+
+/**
+ * This union represents the bit fields in the Host Port Control and Status
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
+ * hprt0 register.
+ */
+typedef union hprt0_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned prtconnsts : 1;
+ unsigned prtconndet : 1;
+ unsigned prtena : 1;
+ unsigned prtenchng : 1;
+ unsigned prtovrcurract : 1;
+ unsigned prtovrcurrchng : 1;
+ unsigned prtres : 1;
+ unsigned prtsusp : 1;
+ unsigned prtrst : 1;
+ unsigned reserved9 : 1;
+ unsigned prtlnsts : 2;
+ unsigned prtpwr : 1;
+ unsigned prttstctl : 4;
+ unsigned prtspd : 2;
+#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
+#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
+#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
+ unsigned reserved19_31 : 13;
+ } b;
+} hprt0_data_t;
+
+/**
+ * This union represents the bit fields in the Host All Interrupt
+ * Register.
+ */
+typedef union haint_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned ch0 : 1;
+ unsigned ch1 : 1;
+ unsigned ch2 : 1;
+ unsigned ch3 : 1;
+ unsigned ch4 : 1;
+ unsigned ch5 : 1;
+ unsigned ch6 : 1;
+ unsigned ch7 : 1;
+ unsigned ch8 : 1;
+ unsigned ch9 : 1;
+ unsigned ch10 : 1;
+ unsigned ch11 : 1;
+ unsigned ch12 : 1;
+ unsigned ch13 : 1;
+ unsigned ch14 : 1;
+ unsigned ch15 : 1;
+ unsigned reserved : 16;
+ } b;
+
+ struct
+ {
+ unsigned chint : 16;
+ unsigned reserved : 16;
+ } b2;
+} haint_data_t;
+
+/**
+ * This union represents the bit fields in the Host All Interrupt
+ * Register.
+ */
+typedef union haintmsk_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ unsigned ch0 : 1;
+ unsigned ch1 : 1;
+ unsigned ch2 : 1;
+ unsigned ch3 : 1;
+ unsigned ch4 : 1;
+ unsigned ch5 : 1;
+ unsigned ch6 : 1;
+ unsigned ch7 : 1;
+ unsigned ch8 : 1;
+ unsigned ch9 : 1;
+ unsigned ch10 : 1;
+ unsigned ch11 : 1;
+ unsigned ch12 : 1;
+ unsigned ch13 : 1;
+ unsigned ch14 : 1;
+ unsigned ch15 : 1;
+ unsigned reserved : 16;
+ } b;
+
+ struct
+ {
+ unsigned chint : 16;
+ unsigned reserved : 16;
+ } b2;
+} haintmsk_data_t;
+
+/**
+ * Host Channel Specific Registers. <i>500h-5FCh</i>
+ */
+typedef struct dwc_otg_hc_regs
+{
+ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
+ volatile uint32_t hcchar;
+ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
+ volatile uint32_t hcsplt;
+ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
+ volatile uint32_t hcint;
+ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
+ volatile uint32_t hcintmsk;
+ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
+ volatile uint32_t hctsiz;
+ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
+ volatile uint32_t hcdma;
+ /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
+ uint32_t reserved[2];
+} dwc_otg_hc_regs_t;
+
+/**
+ * This union represents the bit fields in the Host Channel Characteristics
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
+ * hcchar register.
+ */
+typedef union hcchar_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ /** Maximum packet size in bytes */
+ unsigned mps : 11;
+
+ /** Endpoint number */
+ unsigned epnum : 4;
+
+ /** 0: OUT, 1: IN */
+ unsigned epdir : 1;
+
+ unsigned reserved : 1;
+
+ /** 0: Full/high speed device, 1: Low speed device */
+ unsigned lspddev : 1;
+
+ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
+ unsigned eptype : 2;
+
+ /** Packets per frame for periodic transfers. 0 is reserved. */
+ unsigned multicnt : 2;
+
+ /** Device address */
+ unsigned devaddr : 7;
+
+ /**
+ * Frame to transmit periodic transaction.
+ * 0: even, 1: odd
+ */
+ unsigned oddfrm : 1;
+
+ /** Channel disable */
+ unsigned chdis : 1;
+
+ /** Channel enable */
+ unsigned chen : 1;
+ } b;
+} hcchar_data_t;
+
+typedef union hcsplt_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ /** Port Address */
+ unsigned prtaddr : 7;
+
+ /** Hub Address */
+ unsigned hubaddr : 7;
+
+ /** Transaction Position */
+ unsigned xactpos : 2;
+#define DWC_HCSPLIT_XACTPOS_MID 0
+#define DWC_HCSPLIT_XACTPOS_END 1
+#define DWC_HCSPLIT_XACTPOS_BEGIN 2
+#define DWC_HCSPLIT_XACTPOS_ALL 3
+
+ /** Do Complete Split */
+ unsigned compsplt : 1;
+
+ /** Reserved */
+ unsigned reserved : 14;
+
+ /** Split Enble */
+ unsigned spltena : 1;
+ } b;
+} hcsplt_data_t;
+
+
+/**
+ * This union represents the bit fields in the Host All Interrupt
+ * Register.
+ */
+typedef union hcint_data
+{
+ /** raw register data */
+ uint32_t d32;
+ /** register bits */
+ struct
+ {
+ /** Transfer Complete */
+ unsigned xfercomp : 1;
+ /** Channel Halted */
+ unsigned chhltd : 1;
+ /** AHB Error */
+ unsigned ahberr : 1;
+ /** STALL Response Received */
+ unsigned stall : 1;
+ /** NAK Response Received */
+ unsigned nak : 1;
+ /** ACK Response Received */
+ unsigned ack : 1;
+ /** NYET Response Received */
+ unsigned nyet : 1;
+ /** Transaction Err */
+ unsigned xacterr : 1;
+ /** Babble Error */
+ unsigned bblerr : 1;
+ /** Frame Overrun */
+ unsigned frmovrun : 1;
+ /** Data Toggle Error */
+ unsigned datatglerr : 1;
+ /** Reserved */
+ unsigned reserved : 21;
+ } b;
+} hcint_data_t;
+
+/**
+ * This union represents the bit fields in the Host Channel Transfer Size
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
+ * hcchar register.
+ */
+typedef union hctsiz_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ /** Total transfer size in bytes */
+ unsigned xfersize : 19;
+
+ /** Data packets to transfer */
+ unsigned pktcnt : 10;
+
+ /**
+ * Packet ID for next data packet
+ * 0: DATA0
+ * 1: DATA2
+ * 2: DATA1
+ * 3: MDATA (non-Control), SETUP (Control)
+ */
+ unsigned pid : 2;
+#define DWC_HCTSIZ_DATA0 0
+#define DWC_HCTSIZ_DATA1 2
+#define DWC_HCTSIZ_DATA2 1
+#define DWC_HCTSIZ_MDATA 3
+#define DWC_HCTSIZ_SETUP 3
+
+ /** Do PING protocol when 1 */
+ unsigned dopng : 1;
+ } b;
+} hctsiz_data_t;
+
+/**
+ * This union represents the bit fields in the Host Channel Interrupt Mask
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
+ * hcintmsk register.
+ */
+typedef union hcintmsk_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ unsigned xfercompl : 1;
+ unsigned chhltd : 1;
+ unsigned ahberr : 1;
+ unsigned stall : 1;
+ unsigned nak : 1;
+ unsigned ack : 1;
+ unsigned nyet : 1;
+ unsigned xacterr : 1;
+ unsigned bblerr : 1;
+ unsigned frmovrun : 1;
+ unsigned datatglerr : 1;
+ unsigned reserved : 21;
+ } b;
+} hcintmsk_data_t;
+
+/** OTG Host Interface Structure.
+ *
+ * The OTG Host Interface Structure structure contains information
+ * needed to manage the DWC_otg controller acting in host mode. It
+ * represents the programming view of the host-specific aspects of the
+ * controller.
+ */
+typedef struct dwc_otg_host_if
+{
+ /** Host Global Registers starting at offset 400h.*/
+ dwc_otg_host_global_regs_t *host_global_regs;
+#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
+
+ /** Host Port 0 Control and Status Register */
+ volatile uint32_t *hprt0;
+#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
+
+ /** Host Channel Specific Registers at offsets 500h-5FCh. */
+ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
+#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
+#define DWC_OTG_CHAN_REGS_OFFSET 0x20
+
+
+ /* Host configuration information */
+ /** Number of Host Channels (range: 1-16) */
+ uint8_t num_host_channels;
+ /** Periodic EPs supported (0: no, 1: yes) */
+ uint8_t perio_eps_supported;
+ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
+ uint16_t perio_tx_fifo_size;
+} dwc_otg_host_if_t;
+
+
+/**
+ * This union represents the bit fields in the Power and Clock Gating Control
+ * Register. Read the register into the <i>d32</i> member then set/clear the
+ * bits using the <i>b</i>it elements.
+ */
+typedef union pcgcctl_data
+{
+ /** raw register data */
+ uint32_t d32;
+
+ /** register bits */
+ struct
+ {
+ /** Stop Pclk */
+ unsigned stoppclk : 1;
+ /** Gate Hclk */
+ unsigned gatehclk : 1;
+ /** Power Clamp */
+ unsigned pwrclmp : 1;
+ /** Reset Power Down Modules */
+ unsigned rstpdwnmodule : 1;
+ /** PHY Suspended */
+ unsigned physuspended : 1;
+ unsigned reserved : 27;
+ } b;
+} pcgcctl_data_t;
+
+
+#endif
diff --git a/target/linux/cns3xxx/patches-3.3/200-dwc_otg.patch b/target/linux/cns3xxx/patches-3.3/200-dwc_otg.patch
deleted file mode 100644
index f0510fae2c..0000000000
--- a/target/linux/cns3xxx/patches-3.3/200-dwc_otg.patch
+++ /dev/null
@@ -1,22807 +0,0 @@
---- a/drivers/Makefile
-+++ b/drivers/Makefile
-@@ -71,6 +71,7 @@ obj-$(CONFIG_PARIDE) += block/paride/
- obj-$(CONFIG_TC) += tc/
- obj-$(CONFIG_UWB) += uwb/
- obj-$(CONFIG_USB_OTG_UTILS) += usb/
-+obj-$(CONFIG_USB_DWC_OTG) += usb/dwc/
- obj-$(CONFIG_USB) += usb/
- obj-$(CONFIG_PCI) += usb/
- obj-$(CONFIG_USB_GADGET) += usb/
---- a/drivers/usb/Kconfig
-+++ b/drivers/usb/Kconfig
-@@ -134,6 +134,8 @@ source "drivers/usb/musb/Kconfig"
-
- source "drivers/usb/renesas_usbhs/Kconfig"
-
-+source "drivers/usb/dwc/Kconfig"
-+
- source "drivers/usb/class/Kconfig"
-
- source "drivers/usb/storage/Kconfig"
---- /dev/null
-+++ b/drivers/usb/dwc/Kconfig
-@@ -0,0 +1,44 @@
-+#
-+# USB Dual Role (OTG-ready) Controller Drivers
-+# for silicon based on Synopsys DesignWare IP
-+#
-+
-+comment "Enable Host or Gadget support for DesignWare OTG controller"
-+depends on !USB && USB_GADGET=n
-+
-+config USB_DWC_OTG
-+ tristate "Synopsys DWC OTG Controller"
-+ depends on USB
-+ help
-+ This driver provides USB Device Controller support for the
-+ Synopsys DesignWare USB OTG Core used on the Cavium CNS34xx SOC.
-+
-+config DWC_DEBUG
-+ bool "Enable DWC Debugging"
-+ depends on USB_DWC_OTG
-+ default n
-+ help
-+ Enable DWC driver debugging
-+
-+choice
-+ prompt "DWC Mode Selection"
-+ depends on USB_DWC_OTG
-+ default DWC_HOST_ONLY
-+ help
-+ Select the DWC Core in OTG, Host only, or Device only mode.
-+
-+config DWC_HOST_ONLY
-+ bool "DWC Host Only Mode"
-+
-+config DWC_OTG_MODE
-+ bool "DWC OTG Mode"
-+ select USB_GADGET
-+ select USB_GADGET_SELECTED
-+
-+config DWC_DEVICE_ONLY
-+ bool "DWC Device Only Mode"
-+ select USB_GADGET
-+ select USB_GADGET_SELECTED
-+
-+endchoice
-+
---- /dev/null
-+++ b/drivers/usb/dwc/Makefile
-@@ -0,0 +1,26 @@
-+#
-+# Makefile for DWC_otg Highspeed USB controller driver
-+#
-+
-+EXTRA_CFLAGS += -DDWC_HS_ELECT_TST
-+#EXTRA_CFLAGS += -Dlinux -DDWC_HS_ELECT_TST
-+#EXTRA_CFLAGS += -DDWC_EN_ISOC
-+
-+ifneq ($(CONFIG_DWC_HOST_ONLY),)
-+EXTRA_CFLAGS += -DDWC_HOST_ONLY
-+endif
-+
-+ifneq ($(CONFIG_DWC_DEVICE_ONLY),)
-+EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
-+endif
-+
-+ifneq ($(CONFIG_DWC_DEBUG),)
-+EXTRA_CFLAGS += -DDEBUG
-+endif
-+
-+obj-$(CONFIG_USB_DWC_OTG) := dwc_otg.o
-+
-+dwc_otg-objs := otg_driver.o otg_attr.o
-+dwc_otg-objs += otg_cil.o otg_cil_intr.o
-+dwc_otg-objs += otg_pcd.o otg_pcd_intr.o
-+dwc_otg-objs += otg_hcd.o otg_hcd_intr.o otg_hcd_queue.o
---- /dev/null
-+++ b/drivers/usb/dwc/otg_attr.c
-@@ -0,0 +1,886 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
-+ * $Revision: #31 $
-+ * $Date: 2008/07/15 $
-+ * $Change: 1064918 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+/** @file
-+ *
-+ * The diagnostic interface will provide access to the controller for
-+ * bringing up the hardware and testing. The Linux driver attributes
-+ * feature will be used to provide the Linux Diagnostic
-+ * Interface. These attributes are accessed through sysfs.
-+ */
-+
-+/** @page "Linux Module Attributes"
-+ *
-+ * The Linux module attributes feature is used to provide the Linux
-+ * Diagnostic Interface. These attributes are accessed through sysfs.
-+ * The diagnostic interface will provide access to the controller for
-+ * bringing up the hardware and testing.
-+
-+
-+ The following table shows the attributes.
-+ <table>
-+ <tr>
-+ <td><b> Name</b></td>
-+ <td><b> Description</b></td>
-+ <td><b> Access</b></td>
-+ </tr>
-+
-+ <tr>
-+ <td> mode </td>
-+ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> hnpcapable </td>
-+ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
-+ Read returns the current value.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> srpcapable </td>
-+ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
-+ Read returns the current value.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> hnp </td>
-+ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> srp </td>
-+ <td> Initiates the Session Request Protocol. Read returns the status.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> buspower </td>
-+ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> bussuspend </td>
-+ <td> Suspends the USB bus.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> busconnected </td>
-+ <td> Gets the connection status of the bus</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> gotgctl </td>
-+ <td> Gets or sets the Core Control Status Register.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> gusbcfg </td>
-+ <td> Gets or sets the Core USB Configuration Register</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> grxfsiz </td>
-+ <td> Gets or sets the Receive FIFO Size Register</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> gnptxfsiz </td>
-+ <td> Gets or sets the non-periodic Transmit Size Register</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> gpvndctl </td>
-+ <td> Gets or sets the PHY Vendor Control Register</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> ggpio </td>
-+ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
-+ or sets the upper 16 bits.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> guid </td>
-+ <td> Gets or sets the value of the User ID Register</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> gsnpsid </td>
-+ <td> Gets the value of the Synopsys ID Regester</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> devspeed </td>
-+ <td> Gets or sets the device speed setting in the DCFG register</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> enumspeed </td>
-+ <td> Gets the device enumeration Speed.</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> hptxfsiz </td>
-+ <td> Gets the value of the Host Periodic Transmit FIFO</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> hprt0 </td>
-+ <td> Gets or sets the value in the Host Port Control and Status Register</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> regoffset </td>
-+ <td> Sets the register offset for the next Register Access</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> regvalue </td>
-+ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> remote_wakeup </td>
-+ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
-+ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
-+ Wakeup signalling bit in the Device Control Register is set for 1
-+ milli-second.</td>
-+ <td> Read/Write</td>
-+ </tr>
-+
-+ <tr>
-+ <td> regdump </td>
-+ <td> Dumps the contents of core registers.</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> spramdump </td>
-+ <td> Dumps the contents of core registers.</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> hcddump </td>
-+ <td> Dumps the current HCD state.</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> hcd_frrem </td>
-+ <td> Shows the average value of the Frame Remaining
-+ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
-+ occurs. This can be used to determine the average interrupt latency. Also
-+ shows the average Frame Remaining value for start_transfer and the "a" and
-+ "b" sample points. The "a" and "b" sample points may be used during debugging
-+ bto determine how long it takes to execute a section of the HCD code.</td>
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> rd_reg_test </td>
-+ <td> Displays the time required to read the GNPTXFSIZ register many times
-+ (the output shows the number of times the register is read).
-+ <td> Read</td>
-+ </tr>
-+
-+ <tr>
-+ <td> wr_reg_test </td>
-+ <td> Displays the time required to write the GNPTXFSIZ register many times
-+ (the output shows the number of times the register is written).
-+ <td> Read</td>
-+ </tr>
-+
-+ </table>
-+
-+ Example usage:
-+ To get the current mode:
-+ cat /sys/devices/lm0/mode
-+
-+ To power down the USB:
-+ echo 0 > /sys/devices/lm0/buspower
-+ */
-+
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/moduleparam.h>
-+#include <linux/init.h>
-+#include <linux/device.h>
-+#include <linux/platform_device.h>
-+#include <linux/errno.h>
-+#include <linux/types.h>
-+#include <linux/stat.h> /* permission constants */
-+#include <linux/version.h>
-+
-+#include <asm/sizes.h>
-+#include <asm/io.h>
-+#include <asm/sizes.h>
-+
-+#include "otg_plat.h"
-+#include "otg_attr.h"
-+#include "otg_driver.h"
-+#include "otg_pcd.h"
-+#include "otg_hcd.h"
-+
-+/*
-+ * MACROs for defining sysfs attribute
-+ */
-+#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
-+static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
-+{ \
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t val; \
-+ val = dwc_read_reg32 (_addr_); \
-+ val = (val & (_mask_)) >> _shift_; \
-+ return sprintf (buf, "%s = 0x%x\n", _string_, val); \
-+}
-+#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
-+static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
-+ const char *buf, size_t count) \
-+{ \
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t set = simple_strtoul(buf, NULL, 16); \
-+ uint32_t clear = set; \
-+ clear = ((~clear) << _shift_) & _mask_; \
-+ set = (set << _shift_) & _mask_; \
-+ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
-+ dwc_modify_reg32(_addr_, clear, set); \
-+ return count; \
-+}
-+
-+/*
-+ * MACROs for defining sysfs attribute for 32-bit registers
-+ */
-+#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
-+static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
-+{ \
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t val; \
-+ val = dwc_read_reg32 (_addr_); \
-+ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
-+}
-+#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
-+static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
-+ const char *buf, size_t count) \
-+{ \
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t val = simple_strtoul(buf, NULL, 16); \
-+ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
-+ dwc_write_reg32(_addr_, val); \
-+ return count; \
-+}
-+
-+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
-+DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
-+DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
-+DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
-+
-+#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
-+DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
-+DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
-+
-+#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
-+DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
-+DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
-+DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
-+
-+#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
-+DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
-+DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
-+
-+
-+/** @name Functions for Show/Store of Attributes */
-+/**@{*/
-+
-+/**
-+ * Show the register offset of the Register Access.
-+ */
-+static ssize_t regoffset_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
-+}
-+
-+/**
-+ * Set the register offset for the next Register Access Read/Write
-+ */
-+static ssize_t regoffset_store( struct device *_dev,
-+ struct device_attribute *attr,
-+ const char *buf,
-+ size_t count )
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t offset = simple_strtoul(buf, NULL, 16);
-+ //dev_dbg(_dev, "Offset=0x%08x\n", offset);
-+ if (offset < SZ_256K ) {
-+ otg_dev->reg_offset = offset;
-+ }
-+ else {
-+ dev_err( _dev, "invalid offset\n" );
-+ }
-+
-+ return count;
-+}
-+DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store);
-+
-+
-+/**
-+ * Show the value of the register at the offset in the reg_offset
-+ * attribute.
-+ */
-+static ssize_t regvalue_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t val;
-+ volatile uint32_t *addr;
-+
-+ if (otg_dev->reg_offset != 0xFFFFFFFF &&
-+ 0 != otg_dev->base) {
-+ /* Calculate the address */
-+ addr = (uint32_t*)(otg_dev->reg_offset +
-+ (uint8_t*)otg_dev->base);
-+ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
-+ val = dwc_read_reg32( addr );
-+ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
-+ "Reg@0x%06x = 0x%08x\n",
-+ otg_dev->reg_offset, val);
-+ }
-+ else {
-+ dev_err(_dev, "Invalid offset (0x%0x)\n",
-+ otg_dev->reg_offset);
-+ return sprintf(buf, "invalid offset\n" );
-+ }
-+}
-+
-+/**
-+ * Store the value in the register at the offset in the reg_offset
-+ * attribute.
-+ *
-+ */
-+static ssize_t regvalue_store( struct device *_dev,
-+ struct device_attribute *attr,
-+ const char *buf,
-+ size_t count )
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ volatile uint32_t * addr;
-+ uint32_t val = simple_strtoul(buf, NULL, 16);
-+ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
-+ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
-+ /* Calculate the address */
-+ addr = (uint32_t*)(otg_dev->reg_offset +
-+ (uint8_t*)otg_dev->base);
-+ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
-+ dwc_write_reg32( addr, val );
-+ }
-+ else {
-+ dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
-+ otg_dev->reg_offset);
-+ }
-+ return count;
-+}
-+DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
-+
-+/*
-+ * Attributes
-+ */
-+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
-+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
-+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
-+
-+//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
-+//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
-+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
-+
-+DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
-+DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
-+DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
-+DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
-+DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
-+DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
-+DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
-+DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
-+DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
-+DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
-+
-+DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
-+DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
-+
-+
-+/**
-+ * @todo Add code to initiate the HNP.
-+ */
-+/**
-+ * Show the HNP status bit
-+ */
-+static ssize_t hnp_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ gotgctl_data_t val;
-+ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
-+ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
-+}
-+
-+/**
-+ * Set the HNP Request bit
-+ */
-+static ssize_t hnp_store( struct device *_dev,
-+ struct device_attribute *attr,
-+ const char *buf,
-+ size_t count )
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t in = simple_strtoul(buf, NULL, 16);
-+ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
-+ gotgctl_data_t mem;
-+ mem.d32 = dwc_read_reg32(addr);
-+ mem.b.hnpreq = in;
-+ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
-+ dwc_write_reg32(addr, mem.d32);
-+ return count;
-+}
-+DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
-+
-+/**
-+ * @todo Add code to initiate the SRP.
-+ */
-+/**
-+ * Show the SRP status bit
-+ */
-+static ssize_t srp_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+#ifndef DWC_HOST_ONLY
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ gotgctl_data_t val;
-+ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
-+ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
-+#else
-+ return sprintf(buf, "Host Only Mode!\n");
-+#endif
-+}
-+
-+
-+
-+/**
-+ * Set the SRP Request bit
-+ */
-+static ssize_t srp_store( struct device *_dev,
-+ struct device_attribute *attr,
-+ const char *buf,
-+ size_t count )
-+{
-+#ifndef DWC_HOST_ONLY
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ dwc_otg_pcd_initiate_srp(otg_dev->pcd);
-+#endif
-+ return count;
-+}
-+DEVICE_ATTR(srp, 0644, srp_show, srp_store);
-+
-+/**
-+ * @todo Need to do more for power on/off?
-+ */
-+/**
-+ * Show the Bus Power status
-+ */
-+static ssize_t buspower_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ hprt0_data_t val;
-+ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
-+ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
-+}
-+
-+
-+/**
-+ * Set the Bus Power status
-+ */
-+static ssize_t buspower_store( struct device *_dev,
-+ struct device_attribute *attr,
-+ const char *buf,
-+ size_t count )
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t on = simple_strtoul(buf, NULL, 16);
-+ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
-+ hprt0_data_t mem;
-+
-+ mem.d32 = dwc_read_reg32(addr);
-+ mem.b.prtpwr = on;
-+
-+ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
-+ dwc_write_reg32(addr, mem.d32);
-+
-+ return count;
-+}
-+DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
-+
-+/**
-+ * @todo Need to do more for suspend?
-+ */
-+/**
-+ * Show the Bus Suspend status
-+ */
-+static ssize_t bussuspend_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ hprt0_data_t val;
-+ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
-+ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
-+}
-+
-+/**
-+ * Set the Bus Suspend status
-+ */
-+static ssize_t bussuspend_store( struct device *_dev,
-+ struct device_attribute *attr,
-+ const char *buf,
-+ size_t count )
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t in = simple_strtoul(buf, NULL, 16);
-+ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
-+ hprt0_data_t mem;
-+ mem.d32 = dwc_read_reg32(addr);
-+ mem.b.prtsusp = in;
-+ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
-+ dwc_write_reg32(addr, mem.d32);
-+ return count;
-+}
-+DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
-+
-+/**
-+ * Show the status of Remote Wakeup.
-+ */
-+static ssize_t remote_wakeup_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+#ifndef DWC_HOST_ONLY
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ dctl_data_t val;
-+ val.d32 =
-+ dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
-+ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
-+ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
-+#else
-+ return sprintf(buf, "Host Only Mode!\n");
-+#endif
-+}
-+/**
-+ * Initiate a remote wakeup of the host. The Device control register
-+ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
-+ * flag is set.
-+ *
-+ */
-+static ssize_t remote_wakeup_store( struct device *_dev,
-+ struct device_attribute *attr,
-+ const char *buf,
-+ size_t count )
-+{
-+#ifndef DWC_HOST_ONLY
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t val = simple_strtoul(buf, NULL, 16);
-+ if (val&1) {
-+ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
-+ }
-+ else {
-+ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
-+ }
-+#endif
-+ return count;
-+}
-+DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
-+ remote_wakeup_store);
-+
-+/**
-+ * Dump global registers and either host or device registers (depending on the
-+ * current mode of the core).
-+ */
-+static ssize_t regdump_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ dwc_otg_dump_global_registers( otg_dev->core_if);
-+ if (dwc_otg_is_host_mode(otg_dev->core_if)) {
-+ dwc_otg_dump_host_registers( otg_dev->core_if);
-+ } else {
-+ dwc_otg_dump_dev_registers( otg_dev->core_if);
-+
-+ }
-+ return sprintf( buf, "Register Dump\n" );
-+}
-+
-+DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
-+
-+/**
-+ * Dump global registers and either host or device registers (depending on the
-+ * current mode of the core).
-+ */
-+static ssize_t spramdump_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ dwc_otg_dump_spram( otg_dev->core_if);
-+
-+ return sprintf( buf, "SPRAM Dump\n" );
-+}
-+
-+DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0);
-+
-+/**
-+ * Dump the current hcd state.
-+ */
-+static ssize_t hcddump_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+#ifndef DWC_DEVICE_ONLY
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ dwc_otg_hcd_dump_state(otg_dev->hcd);
-+#endif
-+ return sprintf( buf, "HCD Dump\n" );
-+}
-+
-+DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
-+
-+/**
-+ * Dump the average frame remaining at SOF. This can be used to
-+ * determine average interrupt latency. Frame remaining is also shown for
-+ * start transfer and two additional sample points.
-+ */
-+static ssize_t hcd_frrem_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+#ifndef DWC_DEVICE_ONLY
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ dwc_otg_hcd_dump_frrem(otg_dev->hcd);
-+#endif
-+ return sprintf( buf, "HCD Dump Frame Remaining\n" );
-+}
-+
-+DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
-+
-+/**
-+ * Displays the time required to read the GNPTXFSIZ register many times (the
-+ * output shows the number of times the register is read).
-+ */
-+#define RW_REG_COUNT 10000000
-+#define MSEC_PER_JIFFIE 1000/HZ
-+static ssize_t rd_reg_test_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ int i;
-+ int time;
-+ int start_jiffies;
-+
-+ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
-+ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
-+ start_jiffies = jiffies;
-+ for (i = 0; i < RW_REG_COUNT; i++) {
-+ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
-+ }
-+ time = jiffies - start_jiffies;
-+ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
-+ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
-+}
-+
-+DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
-+
-+/**
-+ * Displays the time required to write the GNPTXFSIZ register many times (the
-+ * output shows the number of times the register is written).
-+ */
-+static ssize_t wr_reg_test_show( struct device *_dev,
-+ struct device_attribute *attr,
-+ char *buf)
-+{
-+ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
-+ uint32_t reg_val;
-+ int i;
-+ int time;
-+ int start_jiffies;
-+
-+ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
-+ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
-+ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
-+ start_jiffies = jiffies;
-+ for (i = 0; i < RW_REG_COUNT; i++) {
-+ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
-+ }
-+ time = jiffies - start_jiffies;
-+ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
-+ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
-+}
-+
-+DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
-+/**@}*/
-+
-+/**
-+ * Create the device files
-+ */
-+void dwc_otg_attr_create (struct platform_device *pdev)
-+{
-+ struct device *dev = &pdev->dev;
-+ int error;
-+
-+ error = device_create_file(dev, &dev_attr_regoffset);
-+ error = device_create_file(dev, &dev_attr_regvalue);
-+ error = device_create_file(dev, &dev_attr_mode);
-+ error = device_create_file(dev, &dev_attr_hnpcapable);
-+ error = device_create_file(dev, &dev_attr_srpcapable);
-+ error = device_create_file(dev, &dev_attr_hnp);
-+ error = device_create_file(dev, &dev_attr_srp);
-+ error = device_create_file(dev, &dev_attr_buspower);
-+ error = device_create_file(dev, &dev_attr_bussuspend);
-+ error = device_create_file(dev, &dev_attr_busconnected);
-+ error = device_create_file(dev, &dev_attr_gotgctl);
-+ error = device_create_file(dev, &dev_attr_gusbcfg);
-+ error = device_create_file(dev, &dev_attr_grxfsiz);
-+ error = device_create_file(dev, &dev_attr_gnptxfsiz);
-+ error = device_create_file(dev, &dev_attr_gpvndctl);
-+ error = device_create_file(dev, &dev_attr_ggpio);
-+ error = device_create_file(dev, &dev_attr_guid);
-+ error = device_create_file(dev, &dev_attr_gsnpsid);
-+ error = device_create_file(dev, &dev_attr_devspeed);
-+ error = device_create_file(dev, &dev_attr_enumspeed);
-+ error = device_create_file(dev, &dev_attr_hptxfsiz);
-+ error = device_create_file(dev, &dev_attr_hprt0);
-+ error = device_create_file(dev, &dev_attr_remote_wakeup);
-+ error = device_create_file(dev, &dev_attr_regdump);
-+ error = device_create_file(dev, &dev_attr_spramdump);
-+ error = device_create_file(dev, &dev_attr_hcddump);
-+ error = device_create_file(dev, &dev_attr_hcd_frrem);
-+ error = device_create_file(dev, &dev_attr_rd_reg_test);
-+ error = device_create_file(dev, &dev_attr_wr_reg_test);
-+}
-+
-+/**
-+ * Remove the device files
-+ */
-+void dwc_otg_attr_remove (struct platform_device *pdev)
-+{
-+ struct device *dev = &pdev->dev;
-+
-+ device_remove_file(dev, &dev_attr_regoffset);
-+ device_remove_file(dev, &dev_attr_regvalue);
-+ device_remove_file(dev, &dev_attr_mode);
-+ device_remove_file(dev, &dev_attr_hnpcapable);
-+ device_remove_file(dev, &dev_attr_srpcapable);
-+ device_remove_file(dev, &dev_attr_hnp);
-+ device_remove_file(dev, &dev_attr_srp);
-+ device_remove_file(dev, &dev_attr_buspower);
-+ device_remove_file(dev, &dev_attr_bussuspend);
-+ device_remove_file(dev, &dev_attr_busconnected);
-+ device_remove_file(dev, &dev_attr_gotgctl);
-+ device_remove_file(dev, &dev_attr_gusbcfg);
-+ device_remove_file(dev, &dev_attr_grxfsiz);
-+ device_remove_file(dev, &dev_attr_gnptxfsiz);
-+ device_remove_file(dev, &dev_attr_gpvndctl);
-+ device_remove_file(dev, &dev_attr_ggpio);
-+ device_remove_file(dev, &dev_attr_guid);
-+ device_remove_file(dev, &dev_attr_gsnpsid);
-+ device_remove_file(dev, &dev_attr_devspeed);
-+ device_remove_file(dev, &dev_attr_enumspeed);
-+ device_remove_file(dev, &dev_attr_hptxfsiz);
-+ device_remove_file(dev, &dev_attr_hprt0);
-+ device_remove_file(dev, &dev_attr_remote_wakeup);
-+ device_remove_file(dev, &dev_attr_regdump);
-+ device_remove_file(dev, &dev_attr_spramdump);
-+ device_remove_file(dev, &dev_attr_hcddump);
-+ device_remove_file(dev, &dev_attr_hcd_frrem);
-+ device_remove_file(dev, &dev_attr_rd_reg_test);
-+ device_remove_file(dev, &dev_attr_wr_reg_test);
-+}
---- /dev/null
-+++ b/drivers/usb/dwc/otg_attr.h
-@@ -0,0 +1,67 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $
-+ * $Revision: #7 $
-+ * $Date: 2005/03/28 $
-+ * $Change: 477051 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+#if !defined(__DWC_OTG_ATTR_H__)
-+#define __DWC_OTG_ATTR_H__
-+
-+/** @file
-+ * This file contains the interface to the Linux device attributes.
-+ */
-+extern struct device_attribute dev_attr_regoffset;
-+extern struct device_attribute dev_attr_regvalue;
-+
-+extern struct device_attribute dev_attr_mode;
-+extern struct device_attribute dev_attr_hnpcapable;
-+extern struct device_attribute dev_attr_srpcapable;
-+extern struct device_attribute dev_attr_hnp;
-+extern struct device_attribute dev_attr_srp;
-+extern struct device_attribute dev_attr_buspower;
-+extern struct device_attribute dev_attr_bussuspend;
-+extern struct device_attribute dev_attr_busconnected;
-+extern struct device_attribute dev_attr_gotgctl;
-+extern struct device_attribute dev_attr_gusbcfg;
-+extern struct device_attribute dev_attr_grxfsiz;
-+extern struct device_attribute dev_attr_gnptxfsiz;
-+extern struct device_attribute dev_attr_gpvndctl;
-+extern struct device_attribute dev_attr_ggpio;
-+extern struct device_attribute dev_attr_guid;
-+extern struct device_attribute dev_attr_gsnpsid;
-+extern struct device_attribute dev_attr_devspeed;
-+extern struct device_attribute dev_attr_enumspeed;
-+extern struct device_attribute dev_attr_hptxfsiz;
-+extern struct device_attribute dev_attr_hprt0;
-+
-+void dwc_otg_attr_create (struct platform_device *pdev);
-+void dwc_otg_attr_remove (struct platform_device *pdev);
-+
-+#endif
---- /dev/null
-+++ b/drivers/usb/dwc/otg_cil.c
-@@ -0,0 +1,3831 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $
-+ * $Revision: #147 $
-+ * $Date: 2008/10/16 $
-+ * $Change: 1117667 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+/** @file
-+ *
-+ * The Core Interface Layer provides basic services for accessing and
-+ * managing the DWC_otg hardware. These services are used by both the
-+ * Host Controller Driver and the Peripheral Controller Driver.
-+ *
-+ * The CIL manages the memory map for the core so that the HCD and PCD
-+ * don't have to do this separately. It also handles basic tasks like
-+ * reading/writing the registers and data FIFOs in the controller.
-+ * Some of the data access functions provide encapsulation of several
-+ * operations required to perform a task, such as writing multiple
-+ * registers to start a transfer. Finally, the CIL performs basic
-+ * services that are not specific to either the host or device modes
-+ * of operation. These services include management of the OTG Host
-+ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
-+ * Diagnostic API is also provided to allow testing of the controller
-+ * hardware.
-+ *
-+ * The Core Interface Layer has the following requirements:
-+ * - Provides basic controller operations.
-+ * - Minimal use of OS services.
-+ * - The OS services used will be abstracted by using inline functions
-+ * or macros.
-+ *
-+ */
-+#include <asm/unaligned.h>
-+#include <linux/dma-mapping.h>
-+#ifdef DEBUG
-+#include <linux/jiffies.h>
-+#endif
-+
-+#include "otg_plat.h"
-+#include "otg_regs.h"
-+#include "otg_cil.h"
-+#include "otg_pcd.h"
-+
-+
-+/**
-+ * This function is called to initialize the DWC_otg CSR data
-+ * structures. The register addresses in the device and host
-+ * structures are initialized from the base address supplied by the
-+ * caller. The calling function must make the OS calls to get the
-+ * base address of the DWC_otg controller registers. The core_params
-+ * argument holds the parameters that specify how the core should be
-+ * configured.
-+ *
-+ * @param[in] reg_base_addr Base address of DWC_otg core registers
-+ * @param[in] core_params Pointer to the core configuration parameters
-+ *
-+ */
-+dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr,
-+ dwc_otg_core_params_t *core_params)
-+{
-+ dwc_otg_core_if_t *core_if = 0;
-+ dwc_otg_dev_if_t *dev_if = 0;
-+ dwc_otg_host_if_t *host_if = 0;
-+ uint8_t *reg_base = (uint8_t *)reg_base_addr;
-+ int i = 0;
-+
-+ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params);
-+
-+ core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL);
-+
-+ if (core_if == 0) {
-+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
-+ return 0;
-+ }
-+
-+ memset(core_if, 0, sizeof(dwc_otg_core_if_t));
-+
-+ core_if->core_params = core_params;
-+ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
-+
-+ /*
-+ * Allocate the Device Mode structures.
-+ */
-+ dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
-+
-+ if (dev_if == 0) {
-+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
-+ kfree(core_if);
-+ return 0;
-+ }
-+
-+ dev_if->dev_global_regs =
-+ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
-+
-+ for (i=0; i<MAX_EPS_CHANNELS; i++)
-+ {
-+ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
-+ (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
-+ (i * DWC_EP_REG_OFFSET));
-+
-+ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
-+ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
-+ (i * DWC_EP_REG_OFFSET));
-+ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
-+ i, &dev_if->in_ep_regs[i]->diepctl);
-+ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
-+ i, &dev_if->out_ep_regs[i]->doepctl);
-+ }
-+
-+ dev_if->speed = 0; // unknown
-+
-+ core_if->dev_if = dev_if;
-+
-+ /*
-+ * Allocate the Host Mode structures.
-+ */
-+ host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL);
-+
-+ if (host_if == 0) {
-+ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
-+ kfree(dev_if);
-+ kfree(core_if);
-+ return 0;
-+ }
-+
-+ host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
-+ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
-+
-+ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
-+
-+ for (i=0; i<MAX_EPS_CHANNELS; i++)
-+ {
-+ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
-+ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
-+ (i * DWC_OTG_CHAN_REGS_OFFSET));
-+ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
-+ i, &host_if->hc_regs[i]->hcchar);
-+ }
-+
-+ host_if->num_host_channels = MAX_EPS_CHANNELS;
-+ core_if->host_if = host_if;
-+
-+ for (i=0; i<MAX_EPS_CHANNELS; i++)
-+ {
-+ core_if->data_fifo[i] =
-+ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
-+ (i * DWC_OTG_DATA_FIFO_SIZE));
-+ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
-+ i, (unsigned)core_if->data_fifo[i]);
-+ }
-+
-+ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
-+
-+ /*
-+ * Store the contents of the hardware configuration registers here for
-+ * easy access later.
-+ */
-+ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
-+ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
-+ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
-+ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
-+
-+ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
-+ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
-+ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
-+ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
-+
-+ core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
-+ core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
-+
-+ DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32);
-+ DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32);
-+
-+ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
-+ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
-+ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
-+ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
-+ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
-+ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
-+ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
-+
-+ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
-+ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
-+
-+ /*
-+ * Set the SRP sucess bit for FS-I2c
-+ */
-+ core_if->srp_success = 0;
-+ core_if->srp_timer_started = 0;
-+
-+
-+ /*
-+ * Create new workqueue and init works
-+ */
-+ core_if->wq_otg = create_singlethread_workqueue("dwc_otg");
-+ if(core_if->wq_otg == 0) {
-+ DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n");
-+ kfree(host_if);
-+ kfree(dev_if);
-+ kfree(core_if);
-+ return 0 * HZ;
-+ }
-+ INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change);
-+ INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected);
-+
-+ return core_if;
-+}
-+
-+/**
-+ * This function frees the structures allocated by dwc_otg_cil_init().
-+ *
-+ * @param[in] core_if The core interface pointer returned from
-+ * dwc_otg_cil_init().
-+ *
-+ */
-+void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if)
-+{
-+ /* Disable all interrupts */
-+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
-+ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
-+
-+ if (core_if->wq_otg) {
-+ destroy_workqueue(core_if->wq_otg);
-+ }
-+ if (core_if->dev_if) {
-+ kfree(core_if->dev_if);
-+ }
-+ if (core_if->host_if) {
-+ kfree(core_if->host_if);
-+ }
-+ kfree(core_if);
-+}
-+
-+/**
-+ * This function enables the controller's Global Interrupt in the AHB Config
-+ * register.
-+ *
-+ * @param[in] core_if Programming view of DWC_otg controller.
-+ */
-+void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if)
-+{
-+ gahbcfg_data_t ahbcfg = { .d32 = 0};
-+ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
-+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
-+}
-+
-+/**
-+ * This function disables the controller's Global Interrupt in the AHB Config
-+ * register.
-+ *
-+ * @param[in] core_if Programming view of DWC_otg controller.
-+ */
-+void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if)
-+{
-+ gahbcfg_data_t ahbcfg = { .d32 = 0};
-+ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
-+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
-+}
-+
-+/**
-+ * This function initializes the commmon interrupts, used in both
-+ * device and host modes.
-+ *
-+ * @param[in] core_if Programming view of the DWC_otg controller
-+ *
-+ */
-+static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if)
-+{
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+
-+ /* Clear any pending OTG Interrupts */
-+ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
-+
-+ /* Clear any pending interrupts */
-+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
-+
-+ /*
-+ * Enable the interrupts in the GINTMSK.
-+ */
-+ intr_mask.b.modemismatch = 1;
-+ intr_mask.b.otgintr = 1;
-+
-+ if (!core_if->dma_enable) {
-+ intr_mask.b.rxstsqlvl = 1;
-+ }
-+
-+ intr_mask.b.conidstschng = 1;
-+ intr_mask.b.wkupintr = 1;
-+ intr_mask.b.disconnect = 1;
-+ intr_mask.b.usbsuspend = 1;
-+ intr_mask.b.sessreqintr = 1;
-+ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
-+}
-+
-+/**
-+ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
-+ * type.
-+ */
-+static void init_fslspclksel(dwc_otg_core_if_t *core_if)
-+{
-+ uint32_t val;
-+ hcfg_data_t hcfg;
-+
-+ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
-+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
-+ (core_if->core_params->ulpi_fs_ls)) ||
-+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
-+ /* Full speed PHY */
-+ val = DWC_HCFG_48_MHZ;
-+ }
-+ else {
-+ /* High speed PHY running at full speed or high speed */
-+ val = DWC_HCFG_30_60_MHZ;
-+ }
-+
-+ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
-+ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
-+ hcfg.b.fslspclksel = val;
-+ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
-+}
-+
-+/**
-+ * Initializes the DevSpd field of the DCFG register depending on the PHY type
-+ * and the enumeration speed of the device.
-+ */
-+static void init_devspd(dwc_otg_core_if_t *core_if)
-+{
-+ uint32_t val;
-+ dcfg_data_t dcfg;
-+
-+ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
-+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
-+ (core_if->core_params->ulpi_fs_ls)) ||
-+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
-+ /* Full speed PHY */
-+ val = 0x3;
-+ }
-+ else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
-+ /* High speed PHY running at full speed */
-+ val = 0x1;
-+ }
-+ else {
-+ /* High speed PHY running at high speed */
-+ val = 0x0;
-+ }
-+
-+ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
-+
-+ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
-+ dcfg.b.devspd = val;
-+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
-+}
-+
-+/**
-+ * This function calculates the number of IN EPS
-+ * using GHWCFG1 and GHWCFG2 registers values
-+ *
-+ * @param core_if Programming view of the DWC_otg controller
-+ */
-+static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if)
-+{
-+ uint32_t num_in_eps = 0;
-+ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
-+ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3;
-+ uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
-+ int i;
-+
-+
-+ for(i = 0; i < num_eps; ++i)
-+ {
-+ if(!(hwcfg1 & 0x1))
-+ num_in_eps++;
-+
-+ hwcfg1 >>= 2;
-+ }
-+
-+ if(core_if->hwcfg4.b.ded_fifo_en) {
-+ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
-+ }
-+
-+ return num_in_eps;
-+}
-+
-+
-+/**
-+ * This function calculates the number of OUT EPS
-+ * using GHWCFG1 and GHWCFG2 registers values
-+ *
-+ * @param core_if Programming view of the DWC_otg controller
-+ */
-+static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if)
-+{
-+ uint32_t num_out_eps = 0;
-+ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
-+ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2;
-+ int i;
-+
-+ for(i = 0; i < num_eps; ++i)
-+ {
-+ if(!(hwcfg1 & 0x2))
-+ num_out_eps++;
-+
-+ hwcfg1 >>= 2;
-+ }
-+ return num_out_eps;
-+}
-+/**
-+ * This function initializes the DWC_otg controller registers and
-+ * prepares the core for device mode or host mode operation.
-+ *
-+ * @param core_if Programming view of the DWC_otg controller
-+ *
-+ */
-+void dwc_otg_core_init(dwc_otg_core_if_t *core_if)
-+{
-+ int i = 0;
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ gahbcfg_data_t ahbcfg = { .d32 = 0 };
-+ gusbcfg_data_t usbcfg = { .d32 = 0 };
-+ gi2cctl_data_t i2cctl = { .d32 = 0 };
-+
-+ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
-+
-+ /* Common Initialization */
-+
-+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
-+
-+// usbcfg.b.tx_end_delay = 1;
-+ /* Program the ULPI External VBUS bit if needed */
-+ usbcfg.b.ulpi_ext_vbus_drv =
-+ (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
-+
-+ /* Set external TS Dline pulsing */
-+ usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0;
-+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
-+
-+
-+ /* Reset the Controller */
-+ dwc_otg_core_reset(core_if);
-+
-+ /* Initialize parameters from Hardware configuration registers. */
-+ dev_if->num_in_eps = calc_num_in_eps(core_if);
-+ dev_if->num_out_eps = calc_num_out_eps(core_if);
-+
-+
-+ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep);
-+
-+ for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
-+ {
-+ dev_if->perio_tx_fifo_size[i] =
-+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
-+ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
-+ i, dev_if->perio_tx_fifo_size[i]);
-+ }
-+
-+ for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++)
-+ {
-+ dev_if->tx_fifo_size[i] =
-+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
-+ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n",
-+ i, dev_if->perio_tx_fifo_size[i]);
-+ }
-+
-+ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
-+ core_if->rx_fifo_size =
-+ dwc_read_reg32(&global_regs->grxfsiz);
-+ core_if->nperio_tx_fifo_size =
-+ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
-+
-+ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
-+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
-+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size);
-+
-+ /* This programming sequence needs to happen in FS mode before any other
-+ * programming occurs */
-+ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
-+ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
-+ /* If FS mode with FS PHY */
-+
-+ /* core_init() is now called on every switch so only call the
-+ * following for the first time through. */
-+ if (!core_if->phy_init_done) {
-+ core_if->phy_init_done = 1;
-+ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
-+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
-+ usbcfg.b.physel = 1;
-+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
-+
-+ /* Reset after a PHY select */
-+ dwc_otg_core_reset(core_if);
-+ }
-+
-+ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
-+ * do this on HNP Dev/Host mode switches (done in dev_init and
-+ * host_init). */
-+ if (dwc_otg_is_host_mode(core_if)) {
-+ init_fslspclksel(core_if);
-+ }
-+ else {
-+ init_devspd(core_if);
-+ }
-+
-+ if (core_if->core_params->i2c_enable) {
-+ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
-+ /* Program GUSBCFG.OtgUtmifsSel to I2C */
-+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
-+ usbcfg.b.otgutmifssel = 1;
-+ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
-+
-+ /* Program GI2CCTL.I2CEn */
-+ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
-+ i2cctl.b.i2cdevaddr = 1;
-+ i2cctl.b.i2cen = 0;
-+ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
-+ i2cctl.b.i2cen = 1;
-+ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
-+ }
-+
-+ } /* endif speed == DWC_SPEED_PARAM_FULL */
-+
-+ else {
-+ /* High speed PHY. */
-+ if (!core_if->phy_init_done) {
-+ core_if->phy_init_done = 1;
-+ /* HS PHY parameters. These parameters are preserved
-+ * during soft reset so only program the first time. Do
-+ * a soft reset immediately after setting phyif. */
-+ usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type;
-+ if (usbcfg.b.ulpi_utmi_sel == 1) {
-+ /* ULPI interface */
-+ usbcfg.b.phyif = 0;
-+ usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr;
-+ }
-+ else {
-+ /* UTMI+ interface */
-+ if (core_if->core_params->phy_utmi_width == 16) {
-+ usbcfg.b.phyif = 1;
-+ }
-+ else {
-+ usbcfg.b.phyif = 0;
-+ }
-+ }
-+
-+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
-+
-+ /* Reset after setting the PHY parameters */
-+ dwc_otg_core_reset(core_if);
-+ }
-+ }
-+
-+ if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
-+ (core_if->hwcfg2.b.fs_phy_type == 1) &&
-+ (core_if->core_params->ulpi_fs_ls)) {
-+ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
-+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
-+ usbcfg.b.ulpi_fsls = 1;
-+ usbcfg.b.ulpi_clk_sus_m = 1;
-+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
-+ }
-+ else {
-+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
-+ usbcfg.b.ulpi_fsls = 0;
-+ usbcfg.b.ulpi_clk_sus_m = 0;
-+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
-+ }
-+
-+ /* Program the GAHBCFG Register.*/
-+ switch (core_if->hwcfg2.b.architecture) {
-+
-+ case DWC_SLAVE_ONLY_ARCH:
-+ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
-+ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
-+ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
-+ core_if->dma_enable = 0;
-+ core_if->dma_desc_enable = 0;
-+ break;
-+
-+ case DWC_EXT_DMA_ARCH:
-+ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
-+ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
-+ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
-+ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
-+ break;
-+
-+ case DWC_INT_DMA_ARCH:
-+ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
-+ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
-+ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
-+ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
-+ break;
-+
-+ }
-+ ahbcfg.b.dmaenable = core_if->dma_enable;
-+ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
-+
-+ core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
-+
-+ core_if->pti_enh_enable = core_if->core_params->pti_enable != 0;
-+ core_if->multiproc_int_enable = core_if->core_params->mpi_enable;
-+ DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled"));
-+ DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled"));
-+
-+ /*
-+ * Program the GUSBCFG register.
-+ */
-+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
-+
-+ switch (core_if->hwcfg2.b.op_mode) {
-+ case DWC_MODE_HNP_SRP_CAPABLE:
-+ usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
-+ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
-+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
-+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
-+ break;
-+
-+ case DWC_MODE_SRP_ONLY_CAPABLE:
-+ usbcfg.b.hnpcap = 0;
-+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
-+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
-+ break;
-+
-+ case DWC_MODE_NO_HNP_SRP_CAPABLE:
-+ usbcfg.b.hnpcap = 0;
-+ usbcfg.b.srpcap = 0;
-+ break;
-+
-+ case DWC_MODE_SRP_CAPABLE_DEVICE:
-+ usbcfg.b.hnpcap = 0;
-+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
-+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
-+ break;
-+
-+ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
-+ usbcfg.b.hnpcap = 0;
-+ usbcfg.b.srpcap = 0;
-+ break;
-+
-+ case DWC_MODE_SRP_CAPABLE_HOST:
-+ usbcfg.b.hnpcap = 0;
-+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
-+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
-+ break;
-+
-+ case DWC_MODE_NO_SRP_CAPABLE_HOST:
-+ usbcfg.b.hnpcap = 0;
-+ usbcfg.b.srpcap = 0;
-+ break;
-+ }
-+
-+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
-+
-+ /* Enable common interrupts */
-+ dwc_otg_enable_common_interrupts(core_if);
-+
-+ /* Do device or host intialization based on mode during PCD
-+ * and HCD initialization */
-+ if (dwc_otg_is_host_mode(core_if)) {
-+ DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
-+ core_if->op_state = A_HOST;
-+ }
-+ else {
-+ DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
-+ core_if->op_state = B_PERIPHERAL;
-+#ifdef DWC_DEVICE_ONLY
-+ dwc_otg_core_dev_init(core_if);
-+#endif
-+ }
-+}
-+
-+
-+/**
-+ * This function enables the Device mode interrupts.
-+ *
-+ * @param core_if Programming view of DWC_otg controller
-+ */
-+void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if)
-+{
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+
-+ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
-+
-+ /* Disable all interrupts. */
-+ dwc_write_reg32(&global_regs->gintmsk, 0);
-+
-+ /* Clear any pending interrupts */
-+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
-+
-+ /* Enable the common interrupts */
-+ dwc_otg_enable_common_interrupts(core_if);
-+
-+ /* Enable interrupts */
-+ intr_mask.b.usbreset = 1;
-+ intr_mask.b.enumdone = 1;
-+
-+ if(!core_if->multiproc_int_enable) {
-+ intr_mask.b.inepintr = 1;
-+ intr_mask.b.outepintr = 1;
-+ }
-+
-+ intr_mask.b.erlysuspend = 1;
-+
-+ if(core_if->en_multiple_tx_fifo == 0) {
-+ intr_mask.b.epmismatch = 1;
-+ }
-+
-+
-+#ifdef DWC_EN_ISOC
-+ if(core_if->dma_enable) {
-+ if(core_if->dma_desc_enable == 0) {
-+ if(core_if->pti_enh_enable) {
-+ dctl_data_t dctl = { .d32 = 0 };
-+ dctl.b.ifrmnum = 1;
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
-+ } else {
-+ intr_mask.b.incomplisoin = 1;
-+ intr_mask.b.incomplisoout = 1;
-+ }
-+ }
-+ } else {
-+ intr_mask.b.incomplisoin = 1;
-+ intr_mask.b.incomplisoout = 1;
-+ }
-+#endif // DWC_EN_ISOC
-+
-+/** @todo NGS: Should this be a module parameter? */
-+#ifdef USE_PERIODIC_EP
-+ intr_mask.b.isooutdrop = 1;
-+ intr_mask.b.eopframe = 1;
-+ intr_mask.b.incomplisoin = 1;
-+ intr_mask.b.incomplisoout = 1;
-+#endif
-+
-+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
-+
-+ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
-+ dwc_read_reg32(&global_regs->gintmsk));
-+}
-+
-+/**
-+ * This function initializes the DWC_otg controller registers for
-+ * device mode.
-+ *
-+ * @param core_if Programming view of DWC_otg controller
-+ *
-+ */
-+void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if)
-+{
-+ int i,size;
-+ u_int32_t *default_value_array;
-+
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ dwc_otg_core_params_t *params = core_if->core_params;
-+ dcfg_data_t dcfg = { .d32 = 0};
-+ grstctl_t resetctl = { .d32 = 0 };
-+ uint32_t rx_fifo_size;
-+ fifosize_data_t nptxfifosize;
-+ fifosize_data_t txfifosize;
-+ dthrctl_data_t dthrctl;
-+
-+ /* Restart the Phy Clock */
-+ dwc_write_reg32(core_if->pcgcctl, 0);
-+
-+ /* Device configuration register */
-+ init_devspd(core_if);
-+ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
-+ dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0;
-+ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
-+
-+ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
-+
-+ /* Configure data FIFO sizes */
-+ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
-+ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size);
-+ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
-+ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
-+
-+ /* Rx FIFO */
-+ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
-+ dwc_read_reg32(&global_regs->grxfsiz));
-+
-+ rx_fifo_size = params->dev_rx_fifo_size;
-+ dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
-+
-+ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
-+ dwc_read_reg32(&global_regs->grxfsiz));
-+
-+ /** Set Periodic Tx FIFO Mask all bits 0 */
-+ core_if->p_tx_msk = 0;
-+
-+ /** Set Tx FIFO Mask all bits 0 */
-+ core_if->tx_msk = 0;
-+
-+ /* Non-periodic Tx FIFO */
-+ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
-+ dwc_read_reg32(&global_regs->gnptxfsiz));
-+
-+ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
-+ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
-+
-+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
-+
-+ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
-+ dwc_read_reg32(&global_regs->gnptxfsiz));
-+
-+ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
-+ if(core_if->en_multiple_tx_fifo == 0) {
-+ //core_if->hwcfg4.b.ded_fifo_en==0
-+
-+ /**@todo NGS: Fix Periodic FIFO Sizing! */
-+ /*
-+ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
-+ * Indexes of the FIFO size module parameters in the
-+ * dev_perio_tx_fifo_size array and the FIFO size registers in
-+ * the dptxfsiz array run from 0 to 14.
-+ */
-+ /** @todo Finish debug of this */
-+ size=core_if->hwcfg4.b.num_dev_perio_in_ep;
-+ default_value_array=params->dev_perio_tx_fifo_size;
-+
-+ }
-+ else {
-+ //core_if->hwcfg4.b.ded_fifo_en==1
-+ /*
-+ * Tx FIFOs These FIFOs are numbered from 1 to 15.
-+ * Indexes of the FIFO size module parameters in the
-+ * dev_tx_fifo_size array and the FIFO size registers in
-+ * the dptxfsiz_dieptxf array run from 0 to 14.
-+ */
-+
-+ size=core_if->hwcfg4.b.num_in_eps;
-+ default_value_array=params->dev_tx_fifo_size;
-+
-+ }
-+ for (i=0; i < size; i++)
-+ {
-+
-+ txfifosize.b.depth = default_value_array[i];
-+ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i,
-+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
-+ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],
-+ txfifosize.d32);
-+ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i,
-+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
-+ txfifosize.b.startaddr += txfifosize.b.depth;
-+ }
-+ }
-+ /* Flush the FIFOs */
-+ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
-+ dwc_otg_flush_rx_fifo(core_if);
-+
-+ /* Flush the Learning Queue. */
-+ resetctl.b.intknqflsh = 1;
-+ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
-+
-+ /* Clear all pending Device Interrupts */
-+
-+ if(core_if->multiproc_int_enable) {
-+ }
-+
-+ /** @todo - if the condition needed to be checked
-+ * or in any case all pending interrutps should be cleared?
-+ */
-+ if(core_if->multiproc_int_enable) {
-+ for(i = 0; i < core_if->dev_if->num_in_eps; ++i) {
-+ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0);
-+ }
-+
-+ for(i = 0; i < core_if->dev_if->num_out_eps; ++i) {
-+ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0);
-+ }
-+
-+ dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF);
-+ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0);
-+ } else {
-+ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
-+ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
-+ dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
-+ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
-+ }
-+
-+ for (i=0; i <= dev_if->num_in_eps; i++)
-+ {
-+ depctl_data_t depctl;
-+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
-+ if (depctl.b.epena) {
-+ depctl.d32 = 0;
-+ depctl.b.epdis = 1;
-+ depctl.b.snak = 1;
-+ }
-+ else {
-+ depctl.d32 = 0;
-+ }
-+
-+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
-+
-+
-+ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
-+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
-+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
-+ }
-+
-+ for (i=0; i <= dev_if->num_out_eps; i++)
-+ {
-+ depctl_data_t depctl;
-+ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
-+ if (depctl.b.epena) {
-+ depctl.d32 = 0;
-+ depctl.b.epdis = 1;
-+ depctl.b.snak = 1;
-+ }
-+ else {
-+ depctl.d32 = 0;
-+ }
-+
-+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
-+
-+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
-+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
-+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
-+ }
-+
-+ if(core_if->en_multiple_tx_fifo && core_if->dma_enable) {
-+ dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1;
-+ dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1;
-+ dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1;
-+
-+ dev_if->rx_thr_length = params->rx_thr_length;
-+ dev_if->tx_thr_length = params->tx_thr_length;
-+
-+ dev_if->setup_desc_index = 0;
-+
-+ dthrctl.d32 = 0;
-+ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
-+ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
-+ dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
-+ dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
-+ dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
-+
-+ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32);
-+
-+ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
-+ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len);
-+
-+ }
-+
-+ dwc_otg_enable_device_interrupts(core_if);
-+
-+ {
-+ diepmsk_data_t msk = { .d32 = 0 };
-+ msk.b.txfifoundrn = 1;
-+ if(core_if->multiproc_int_enable) {
-+ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32);
-+ } else {
-+ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32);
-+ }
-+ }
-+
-+
-+ if(core_if->multiproc_int_enable) {
-+ /* Set NAK on Babble */
-+ dctl_data_t dctl = { .d32 = 0};
-+ dctl.b.nakonbble = 1;
-+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
-+ }
-+}
-+
-+/**
-+ * This function enables the Host mode interrupts.
-+ *
-+ * @param core_if Programming view of DWC_otg controller
-+ */
-+void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if)
-+{
-+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
-+ gintmsk_data_t intr_mask = { .d32 = 0 };
-+
-+ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
-+
-+ /* Disable all interrupts. */
-+ dwc_write_reg32(&global_regs->gintmsk, 0);
-+
-+ /* Clear any pending interrupts. */
-+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
-+
-+ /* Enable the common interrupts */
-+ dwc_otg_enable_common_interrupts(core_if);
-+
-+ /*
-+ * Enable host mode interrupts without disturbing common
-+ * interrupts.
-+ */
-+ intr_mask.b.sofintr = 1;
-+ intr_mask.b.portintr = 1;
-+ intr_mask.b.hcintr = 1;
-+
-+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
-+}
-+
-+/**
-+ * This function disables the Host Mode interrupts.
-+ *
-+ * @param core_if Programming view of DWC_otg controller
-+ */
-+void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if)
-+{
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+ gintmsk_data_t intr_mask = { .d32 = 0 };
-+
-+ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
-+
-+ /*
-+ * Disable host mode interrupts without disturbing common
-+ * interrupts.
-+ */
-+ intr_mask.b.sofintr = 1;
-+ intr_mask.b.portintr = 1;
-+ intr_mask.b.hcintr = 1;
-+ intr_mask.b.ptxfempty = 1;
-+ intr_mask.b.nptxfempty = 1;
-+
-+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
-+}
-+
-+/**
-+ * This function initializes the DWC_otg controller registers for
-+ * host mode.
-+ *
-+ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
-+ * request queues. Host channels are reset to ensure that they are ready for
-+ * performing transfers.
-+ *
-+ * @param core_if Programming view of DWC_otg controller
-+ *
-+ */
-+void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if)
-+{
-+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
-+ dwc_otg_host_if_t *host_if = core_if->host_if;
-+ dwc_otg_core_params_t *params = core_if->core_params;
-+ hprt0_data_t hprt0 = { .d32 = 0 };
-+ fifosize_data_t nptxfifosize;
-+ fifosize_data_t ptxfifosize;
-+ int i;
-+ hcchar_data_t hcchar;
-+ hcfg_data_t hcfg;
-+ dwc_otg_hc_regs_t *hc_regs;
-+ int num_channels;
-+ gotgctl_data_t gotgctl = { .d32 = 0 };
-+
-+ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if);
-+
-+ /* Restart the Phy Clock */
-+ dwc_write_reg32(core_if->pcgcctl, 0);
-+
-+ /* Initialize Host Configuration Register */
-+ init_fslspclksel(core_if);
-+ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL)
-+ {
-+ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
-+ hcfg.b.fslssupp = 1;
-+ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
-+ }
-+
-+ /* Configure data FIFO sizes */
-+ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
-+ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size);
-+ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
-+ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
-+ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
-+
-+ /* Rx FIFO */
-+ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
-+ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
-+ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
-+
-+ /* Non-periodic Tx FIFO */
-+ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
-+ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
-+ nptxfifosize.b.startaddr = params->host_rx_fifo_size;
-+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
-+ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
-+
-+ /* Periodic Tx FIFO */
-+ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
-+ ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
-+ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
-+ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
-+ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
-+ }
-+
-+ /* Clear Host Set HNP Enable in the OTG Control Register */
-+ gotgctl.b.hstsethnpen = 1;
-+ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
-+
-+ /* Make sure the FIFOs are flushed. */
-+ dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */);
-+ dwc_otg_flush_rx_fifo(core_if);
-+
-+ /* Flush out any leftover queued requests. */
-+ num_channels = core_if->core_params->host_channels;
-+ for (i = 0; i < num_channels; i++)
-+ {
-+ hc_regs = core_if->host_if->hc_regs[i];
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcchar.b.chen = 0;
-+ hcchar.b.chdis = 1;
-+ hcchar.b.epdir = 0;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+ }
-+
-+ /* Halt all channels to put them into a known state. */
-+ for (i = 0; i < num_channels; i++)
-+ {
-+ int count = 0;
-+ hc_regs = core_if->host_if->hc_regs[i];
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcchar.b.chen = 1;
-+ hcchar.b.chdis = 1;
-+ hcchar.b.epdir = 0;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
-+ do {
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (++count > 1000)
-+ {
-+ DWC_ERROR("%s: Unable to clear halt on channel %d\n",
-+ __func__, i);
-+ break;
-+ }
-+ }
-+ while (hcchar.b.chen);
-+ }
-+
-+ /* Turn on the vbus power. */
-+ DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
-+ if (core_if->op_state == A_HOST) {
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
-+ if (hprt0.b.prtpwr == 0) {
-+ hprt0.b.prtpwr = 1;
-+ dwc_write_reg32(host_if->hprt0, hprt0.d32);
-+ }
-+ }
-+
-+ dwc_otg_enable_host_interrupts(core_if);
-+}
-+
-+/**
-+ * Prepares a host channel for transferring packets to/from a specific
-+ * endpoint. The HCCHARn register is set up with the characteristics specified
-+ * in _hc. Host channel interrupts that may need to be serviced while this
-+ * transfer is in progress are enabled.
-+ *
-+ * @param core_if Programming view of DWC_otg controller
-+ * @param hc Information needed to initialize the host channel
-+ */
-+void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
-+{
-+ uint32_t intr_enable;
-+ hcintmsk_data_t hc_intr_mask;
-+ gintmsk_data_t gintmsk = { .d32 = 0 };
-+ hcchar_data_t hcchar;
-+ hcsplt_data_t hcsplt;
-+
-+ uint8_t hc_num = hc->hc_num;
-+ dwc_otg_host_if_t *host_if = core_if->host_if;
-+ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
-+
-+ /* Clear old interrupt conditions for this host channel. */
-+ hc_intr_mask.d32 = 0xFFFFFFFF;
-+ hc_intr_mask.b.reserved = 0;
-+ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
-+
-+ /* Enable channel interrupts required for this transfer. */
-+ hc_intr_mask.d32 = 0;
-+ hc_intr_mask.b.chhltd = 1;
-+ if (core_if->dma_enable) {
-+ hc_intr_mask.b.ahberr = 1;
-+ if (hc->error_state && !hc->do_split &&
-+ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
-+ hc_intr_mask.b.ack = 1;
-+ if (hc->ep_is_in) {
-+ hc_intr_mask.b.datatglerr = 1;
-+ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
-+ hc_intr_mask.b.nak = 1;
-+ }
-+ }
-+ }
-+ }
-+ else {
-+ switch (hc->ep_type) {
-+ case DWC_OTG_EP_TYPE_CONTROL:
-+ case DWC_OTG_EP_TYPE_BULK:
-+ hc_intr_mask.b.xfercompl = 1;
-+ hc_intr_mask.b.stall = 1;
-+ hc_intr_mask.b.xacterr = 1;
-+ hc_intr_mask.b.datatglerr = 1;
-+ if (hc->ep_is_in) {
-+ hc_intr_mask.b.bblerr = 1;
-+ }
-+ else {
-+ hc_intr_mask.b.nak = 1;
-+ hc_intr_mask.b.nyet = 1;
-+ if (hc->do_ping) {
-+ hc_intr_mask.b.ack = 1;
-+ }
-+ }
-+
-+ if (hc->do_split) {
-+ hc_intr_mask.b.nak = 1;
-+ if (hc->complete_split) {
-+ hc_intr_mask.b.nyet = 1;
-+ }
-+ else {
-+ hc_intr_mask.b.ack = 1;
-+ }
-+ }
-+
-+ if (hc->error_state) {
-+ hc_intr_mask.b.ack = 1;
-+ }
-+ break;
-+ case DWC_OTG_EP_TYPE_INTR:
-+ hc_intr_mask.b.xfercompl = 1;
-+ hc_intr_mask.b.nak = 1;
-+ hc_intr_mask.b.stall = 1;
-+ hc_intr_mask.b.xacterr = 1;
-+ hc_intr_mask.b.datatglerr = 1;
-+ hc_intr_mask.b.frmovrun = 1;
-+
-+ if (hc->ep_is_in) {
-+ hc_intr_mask.b.bblerr = 1;
-+ }
-+ if (hc->error_state) {
-+ hc_intr_mask.b.ack = 1;
-+ }
-+ if (hc->do_split) {
-+ if (hc->complete_split) {
-+ hc_intr_mask.b.nyet = 1;
-+ }
-+ else {
-+ hc_intr_mask.b.ack = 1;
-+ }
-+ }
-+ break;
-+ case DWC_OTG_EP_TYPE_ISOC:
-+ hc_intr_mask.b.xfercompl = 1;
-+ hc_intr_mask.b.frmovrun = 1;
-+ hc_intr_mask.b.ack = 1;
-+
-+ if (hc->ep_is_in) {
-+ hc_intr_mask.b.xacterr = 1;
-+ hc_intr_mask.b.bblerr = 1;
-+ }
-+ break;
-+ }
-+ }
-+ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
-+
-+// if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in)
-+// hc->max_packet = 512;
-+ /* Enable the top level host channel interrupt. */
-+ intr_enable = (1 << hc_num);
-+ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
-+
-+ /* Make sure host channel interrupts are enabled. */
-+ gintmsk.b.hcintr = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
-+
-+ /*
-+ * Program the HCCHARn register with the endpoint characteristics for
-+ * the current transfer.
-+ */
-+ hcchar.d32 = 0;
-+ hcchar.b.devaddr = hc->dev_addr;
-+ hcchar.b.epnum = hc->ep_num;
-+ hcchar.b.epdir = hc->ep_is_in;
-+ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
-+ hcchar.b.eptype = hc->ep_type;
-+ hcchar.b.mps = hc->max_packet;
-+
-+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
-+
-+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
-+ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
-+ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
-+ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
-+ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
-+ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
-+ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
-+ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
-+
-+ /*
-+ * Program the HCSPLIT register for SPLITs
-+ */
-+ hcsplt.d32 = 0;
-+ if (hc->do_split) {
-+ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num,
-+ hc->complete_split ? "CSPLIT" : "SSPLIT");
-+ hcsplt.b.compsplt = hc->complete_split;
-+ hcsplt.b.xactpos = hc->xact_pos;
-+ hcsplt.b.hubaddr = hc->hub_addr;
-+ hcsplt.b.prtaddr = hc->port_addr;
-+ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split);
-+ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos);
-+ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr);
-+ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr);
-+ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in);
-+ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
-+ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len);
-+ }
-+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
-+
-+}
-+
-+/**
-+ * Attempts to halt a host channel. This function should only be called in
-+ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
-+ * normal circumstances in DMA mode, the controller halts the channel when the
-+ * transfer is complete or a condition occurs that requires application
-+ * intervention.
-+ *
-+ * In slave mode, checks for a free request queue entry, then sets the Channel
-+ * Enable and Channel Disable bits of the Host Channel Characteristics
-+ * register of the specified channel to intiate the halt. If there is no free
-+ * request queue entry, sets only the Channel Disable bit of the HCCHARn
-+ * register to flush requests for this channel. In the latter case, sets a
-+ * flag to indicate that the host channel needs to be halted when a request
-+ * queue slot is open.
-+ *
-+ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
-+ * HCCHARn register. The controller ensures there is space in the request
-+ * queue before submitting the halt request.
-+ *
-+ * Some time may elapse before the core flushes any posted requests for this
-+ * host channel and halts. The Channel Halted interrupt handler completes the
-+ * deactivation of the host channel.
-+ *
-+ * @param core_if Controller register interface.
-+ * @param hc Host channel to halt.
-+ * @param halt_status Reason for halting the channel.
-+ */
-+void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if,
-+ dwc_hc_t *hc,
-+ dwc_otg_halt_status_e halt_status)
-+{
-+ gnptxsts_data_t nptxsts;
-+ hptxsts_data_t hptxsts;
-+ hcchar_data_t hcchar;
-+ dwc_otg_hc_regs_t *hc_regs;
-+ dwc_otg_core_global_regs_t *global_regs;
-+ dwc_otg_host_global_regs_t *host_global_regs;
-+
-+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
-+ global_regs = core_if->core_global_regs;
-+ host_global_regs = core_if->host_if->host_global_regs;
-+
-+ WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
-+
-+ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
-+ halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
-+ /*
-+ * Disable all channel interrupts except Ch Halted. The QTD
-+ * and QH state associated with this transfer has been cleared
-+ * (in the case of URB_DEQUEUE), so the channel needs to be
-+ * shut down carefully to prevent crashes.
-+ */
-+ hcintmsk_data_t hcintmsk;
-+ hcintmsk.d32 = 0;
-+ hcintmsk.b.chhltd = 1;
-+ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
-+
-+ /*
-+ * Make sure no other interrupts besides halt are currently
-+ * pending. Handling another interrupt could cause a crash due
-+ * to the QTD and QH state.
-+ */
-+ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
-+
-+ /*
-+ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
-+ * even if the channel was already halted for some other
-+ * reason.
-+ */
-+ hc->halt_status = halt_status;
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (hcchar.b.chen == 0) {
-+ /*
-+ * The channel is either already halted or it hasn't
-+ * started yet. In DMA mode, the transfer may halt if
-+ * it finishes normally or a condition occurs that
-+ * requires driver intervention. Don't want to halt
-+ * the channel again. In either Slave or DMA mode,
-+ * it's possible that the transfer has been assigned
-+ * to a channel, but not started yet when an URB is
-+ * dequeued. Don't want to halt a channel that hasn't
-+ * started yet.
-+ */
-+ return;
-+ }
-+ }
-+
-+ if (hc->halt_pending) {
-+ /*
-+ * A halt has already been issued for this channel. This might
-+ * happen when a transfer is aborted by a higher level in
-+ * the stack.
-+ */
-+#ifdef DEBUG
-+ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
-+ __func__, hc->hc_num);
-+
-+/* dwc_otg_dump_global_registers(core_if); */
-+/* dwc_otg_dump_host_registers(core_if); */
-+#endif
-+ return;
-+ }
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcchar.b.chen = 1;
-+ hcchar.b.chdis = 1;
-+
-+ if (!core_if->dma_enable) {
-+ /* Check for space in the request queue to issue the halt. */
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
-+ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
-+ if (nptxsts.b.nptxqspcavail == 0) {
-+ hcchar.b.chen = 0;
-+ }
-+ }
-+ else {
-+ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
-+ if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) {
-+ hcchar.b.chen = 0;
-+ }
-+ }
-+ }
-+
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+
-+ hc->halt_status = halt_status;
-+
-+ if (hcchar.b.chen) {
-+ hc->halt_pending = 1;
-+ hc->halt_on_queue = 0;
-+ }
-+ else {
-+ hc->halt_on_queue = 1;
-+ }
-+
-+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
-+ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
-+ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
-+ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
-+ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
-+
-+ return;
-+}
-+
-+/**
-+ * Clears the transfer state for a host channel. This function is normally
-+ * called after a transfer is done and the host channel is being released.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param hc Identifies the host channel to clean up.
-+ */
-+void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
-+{
-+ dwc_otg_hc_regs_t *hc_regs;
-+
-+ hc->xfer_started = 0;
-+
-+ /*
-+ * Clear channel interrupt enables and any unhandled channel interrupt
-+ * conditions.
-+ */
-+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
-+ dwc_write_reg32(&hc_regs->hcintmsk, 0);
-+ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
-+
-+#ifdef DEBUG
-+ del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
-+ {
-+ hcchar_data_t hcchar;
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (hcchar.b.chdis) {
-+ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
-+ __func__, hc->hc_num, hcchar.d32);
-+ }
-+ }
-+#endif
-+}
-+
-+/**
-+ * Sets the channel property that indicates in which frame a periodic transfer
-+ * should occur. This is always set to the _next_ frame. This function has no
-+ * effect on non-periodic transfers.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param hc Identifies the host channel to set up and its properties.
-+ * @param hcchar Current value of the HCCHAR register for the specified host
-+ * channel.
-+ */
-+static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if,
-+ dwc_hc_t *hc,
-+ hcchar_data_t *hcchar)
-+{
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
-+ hfnum_data_t hfnum;
-+ hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
-+
-+ /* 1 if _next_ frame is odd, 0 if it's even */
-+ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
-+#ifdef DEBUG
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) {
-+ switch (hfnum.b.frnum & 0x7) {
-+ case 7:
-+ core_if->hfnum_7_samples++;
-+ core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
-+ break;
-+ case 0:
-+ core_if->hfnum_0_samples++;
-+ core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
-+ break;
-+ default:
-+ core_if->hfnum_other_samples++;
-+ core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
-+ break;
-+ }
-+ }
-+#endif
-+ }
-+}
-+
-+#ifdef DEBUG
-+static void hc_xfer_timeout(unsigned long ptr)
-+{
-+ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr;
-+ int hc_num = xfer_info->hc->hc_num;
-+ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
-+ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
-+}
-+#endif
-+
-+/*
-+ * This function does the setup for a data transfer for a host channel and
-+ * starts the transfer. May be called in either Slave mode or DMA mode. In
-+ * Slave mode, the caller must ensure that there is sufficient space in the
-+ * request queue and Tx Data FIFO.
-+ *
-+ * For an OUT transfer in Slave mode, it loads a data packet into the
-+ * appropriate FIFO. If necessary, additional data packets will be loaded in
-+ * the Host ISR.
-+ *
-+ * For an IN transfer in Slave mode, a data packet is requested. The data
-+ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
-+ * additional data packets are requested in the Host ISR.
-+ *
-+ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
-+ * register along with a packet count of 1 and the channel is enabled. This
-+ * causes a single PING transaction to occur. Other fields in HCTSIZ are
-+ * simply set to 0 since no data transfer occurs in this case.
-+ *
-+ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
-+ * all the information required to perform the subsequent data transfer. In
-+ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
-+ * controller performs the entire PING protocol, then starts the data
-+ * transfer.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param hc Information needed to initialize the host channel. The xfer_len
-+ * value may be reduced to accommodate the max widths of the XferSize and
-+ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
-+ * to reflect the final xfer_len value.
-+ */
-+void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
-+{
-+ hcchar_data_t hcchar;
-+ hctsiz_data_t hctsiz;
-+ uint16_t num_packets;
-+ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
-+ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
-+ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
-+
-+ hctsiz.d32 = 0;
-+
-+ if (hc->do_ping) {
-+ if (!core_if->dma_enable) {
-+ dwc_otg_hc_do_ping(core_if, hc);
-+ hc->xfer_started = 1;
-+ return;
-+ }
-+ else {
-+ hctsiz.b.dopng = 1;
-+ }
-+ }
-+
-+ if (hc->do_split) {
-+ num_packets = 1;
-+
-+ if (hc->complete_split && !hc->ep_is_in) {
-+ /* For CSPLIT OUT Transfer, set the size to 0 so the
-+ * core doesn't expect any data written to the FIFO */
-+ hc->xfer_len = 0;
-+ }
-+ else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
-+ hc->xfer_len = hc->max_packet;
-+ }
-+ else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
-+ hc->xfer_len = 188;
-+ }
-+
-+ hctsiz.b.xfersize = hc->xfer_len;
-+ }
-+ else {
-+ /*
-+ * Ensure that the transfer length and packet count will fit
-+ * in the widths allocated for them in the HCTSIZn register.
-+ */
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
-+ /*
-+ * Make sure the transfer size is no larger than one
-+ * (micro)frame's worth of data. (A check was done
-+ * when the periodic transfer was accepted to ensure
-+ * that a (micro)frame's worth of data can be
-+ * programmed into a channel.)
-+ */
-+ uint32_t max_periodic_len = hc->multi_count * hc->max_packet;
-+ if (hc->xfer_len > max_periodic_len) {
-+ hc->xfer_len = max_periodic_len;
-+ }
-+ else {
-+ }
-+ }
-+ else if (hc->xfer_len > max_hc_xfer_size) {
-+ /* Make sure that xfer_len is a multiple of max packet size. */
-+ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
-+ }
-+
-+ if (hc->xfer_len > 0) {
-+ num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet;
-+ if (num_packets > max_hc_pkt_count) {
-+ num_packets = max_hc_pkt_count;
-+ hc->xfer_len = num_packets * hc->max_packet;
-+ }
-+ }
-+ else {
-+ /* Need 1 packet for transfer length of 0. */
-+ num_packets = 1;
-+ }
-+
-+#if 0
-+//host testusb item 10, would do series of Control transfer
-+//with URB_SHORT_NOT_OK set in transfer_flags ,
-+//changing the xfer_len would cause the test fail
-+ if (hc->ep_is_in) {
-+ /* Always program an integral # of max packets for IN transfers. */
-+ hc->xfer_len = num_packets * hc->max_packet;
-+ }
-+#endif
-+
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
-+ /*
-+ * Make sure that the multi_count field matches the
-+ * actual transfer length.
-+ */
-+ hc->multi_count = num_packets;
-+ }
-+
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
-+ /* Set up the initial PID for the transfer. */
-+ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
-+ if (hc->ep_is_in) {
-+ if (hc->multi_count == 1) {
-+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
-+ }
-+ else if (hc->multi_count == 2) {
-+ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
-+ }
-+ else {
-+ hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
-+ }
-+ }
-+ else {
-+ if (hc->multi_count == 1) {
-+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
-+ }
-+ else {
-+ hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
-+ }
-+ }
-+ }
-+ else {
-+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
-+ }
-+ }
-+
-+ hctsiz.b.xfersize = hc->xfer_len;
-+ }
-+
-+ hc->start_pkt_count = num_packets;
-+ hctsiz.b.pktcnt = num_packets;
-+ hctsiz.b.pid = hc->data_pid_start;
-+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
-+
-+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
-+ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
-+ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
-+ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
-+
-+ if (core_if->dma_enable) {
-+ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff);
-+ }
-+
-+ /* Start the split */
-+ if (hc->do_split) {
-+ hcsplt_data_t hcsplt;
-+ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
-+ hcsplt.b.spltena = 1;
-+ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
-+ }
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcchar.b.multicnt = hc->multi_count;
-+ hc_set_even_odd_frame(core_if, hc, &hcchar);
-+#ifdef DEBUG
-+ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
-+ if (hcchar.b.chdis) {
-+ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
-+ __func__, hc->hc_num, hcchar.d32);
-+ }
-+#endif
-+
-+ /* Set host channel enable after all other setup is complete. */
-+ hcchar.b.chen = 1;
-+ hcchar.b.chdis = 0;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+
-+ hc->xfer_started = 1;
-+ hc->requests++;
-+
-+ if (!core_if->dma_enable &&
-+ !hc->ep_is_in && hc->xfer_len > 0) {
-+ /* Load OUT packet into the appropriate Tx FIFO. */
-+ dwc_otg_hc_write_packet(core_if, hc);
-+ }
-+
-+#ifdef DEBUG
-+ /* Start a timer for this transfer. */
-+ core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
-+ core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
-+ core_if->hc_xfer_info[hc->hc_num].hc = hc;
-+ core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
-+ core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10);
-+ add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
-+#endif
-+}
-+
-+/**
-+ * This function continues a data transfer that was started by previous call
-+ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
-+ * sufficient space in the request queue and Tx Data FIFO. This function
-+ * should only be called in Slave mode. In DMA mode, the controller acts
-+ * autonomously to complete transfers programmed to a host channel.
-+ *
-+ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
-+ * if there is any data remaining to be queued. For an IN transfer, another
-+ * data packet is always requested. For the SETUP phase of a control transfer,
-+ * this function does nothing.
-+ *
-+ * @return 1 if a new request is queued, 0 if no more requests are required
-+ * for this transfer.
-+ */
-+int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
-+{
-+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
-+
-+ if (hc->do_split) {
-+ /* SPLITs always queue just once per channel */
-+ return 0;
-+ }
-+ else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
-+ /* SETUPs are queued only once since they can't be NAKed. */
-+ return 0;
-+ }
-+ else if (hc->ep_is_in) {
-+ /*
-+ * Always queue another request for other IN transfers. If
-+ * back-to-back INs are issued and NAKs are received for both,
-+ * the driver may still be processing the first NAK when the
-+ * second NAK is received. When the interrupt handler clears
-+ * the NAK interrupt for the first NAK, the second NAK will
-+ * not be seen. So we can't depend on the NAK interrupt
-+ * handler to requeue a NAKed request. Instead, IN requests
-+ * are issued each time this function is called. When the
-+ * transfer completes, the extra requests for the channel will
-+ * be flushed.
-+ */
-+ hcchar_data_t hcchar;
-+ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hc_set_even_odd_frame(core_if, hc, &hcchar);
-+ hcchar.b.chen = 1;
-+ hcchar.b.chdis = 0;
-+ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+ hc->requests++;
-+ return 1;
-+ }
-+ else {
-+ /* OUT transfers. */
-+ if (hc->xfer_count < hc->xfer_len) {
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
-+ hcchar_data_t hcchar;
-+ dwc_otg_hc_regs_t *hc_regs;
-+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hc_set_even_odd_frame(core_if, hc, &hcchar);
-+ }
-+
-+ /* Load OUT packet into the appropriate Tx FIFO. */
-+ dwc_otg_hc_write_packet(core_if, hc);
-+ hc->requests++;
-+ return 1;
-+ }
-+ else {
-+ return 0;
-+ }
-+ }
-+}
-+
-+/**
-+ * Starts a PING transfer. This function should only be called in Slave mode.
-+ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
-+ */
-+void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
-+{
-+ hcchar_data_t hcchar;
-+ hctsiz_data_t hctsiz;
-+ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
-+
-+ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
-+
-+ hctsiz.d32 = 0;
-+ hctsiz.b.dopng = 1;
-+ hctsiz.b.pktcnt = 1;
-+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcchar.b.chen = 1;
-+ hcchar.b.chdis = 0;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+}
-+
-+/*
-+ * This function writes a packet into the Tx FIFO associated with the Host
-+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
-+ * Tx FIFO is written. For a channel associated with a periodic EP, the
-+ * periodic Tx FIFO is written. This function should only be called in Slave
-+ * mode.
-+ *
-+ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
-+ * then number of bytes written to the Tx FIFO.
-+ */
-+void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
-+{
-+ uint32_t i;
-+ uint32_t remaining_count;
-+ uint32_t byte_count;
-+ uint32_t dword_count;
-+
-+ uint32_t *data_buff = (uint32_t *)(hc->xfer_buff);
-+ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
-+
-+ remaining_count = hc->xfer_len - hc->xfer_count;
-+ if (remaining_count > hc->max_packet) {
-+ byte_count = hc->max_packet;
-+ }
-+ else {
-+ byte_count = remaining_count;
-+ }
-+
-+ dword_count = (byte_count + 3) / 4;
-+
-+ if ((((unsigned long)data_buff) & 0x3) == 0) {
-+ /* xfer_buff is DWORD aligned. */
-+ for (i = 0; i < dword_count; i++, data_buff++)
-+ {
-+ dwc_write_reg32(data_fifo, *data_buff);
-+ }
-+ }
-+ else {
-+ /* xfer_buff is not DWORD aligned. */
-+ for (i = 0; i < dword_count; i++, data_buff++)
-+ {
-+ dwc_write_reg32(data_fifo, get_unaligned(data_buff));
-+ }
-+ }
-+
-+ hc->xfer_count += byte_count;
-+ hc->xfer_buff += byte_count;
-+}
-+
-+/**
-+ * Gets the current USB frame number. This is the frame number from the last
-+ * SOF packet.
-+ */
-+uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if)
-+{
-+ dsts_data_t dsts;
-+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
-+
-+ /* read current frame/microframe number from DSTS register */
-+ return dsts.b.soffn;
-+}
-+
-+/**
-+ * This function reads a setup packet from the Rx FIFO into the destination
-+ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
-+ * Interrupt routine when a SETUP packet has been received in Slave mode.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param dest Destination buffer for packet data.
-+ */
-+void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest)
-+{
-+ /* Get the 8 bytes of a setup transaction data */
-+
-+ /* Pop 2 DWORDS off the receive data FIFO into memory */
-+ dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
-+ dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
-+}
-+
-+
-+/**
-+ * This function enables EP0 OUT to receive SETUP packets and configures EP0
-+ * IN for transmitting packets. It is normally called when the
-+ * "Enumeration Done" interrupt occurs.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP0 data.
-+ */
-+void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ dsts_data_t dsts;
-+ depctl_data_t diepctl;
-+ depctl_data_t doepctl;
-+ dctl_data_t dctl = { .d32 = 0 };
-+
-+ /* Read the Device Status and Endpoint 0 Control registers */
-+ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
-+ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
-+ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
-+
-+ /* Set the MPS of the IN EP based on the enumeration speed */
-+ switch (dsts.b.enumspd) {
-+ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
-+ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
-+ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
-+ diepctl.b.mps = DWC_DEP0CTL_MPS_64;
-+ break;
-+ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
-+ diepctl.b.mps = DWC_DEP0CTL_MPS_8;
-+ break;
-+ }
-+
-+ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
-+
-+ /* Enable OUT EP for receive */
-+ doepctl.b.epena = 1;
-+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
-+
-+#ifdef VERBOSE
-+ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
-+ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
-+ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
-+ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
-+#endif
-+ dctl.b.cgnpinnak = 1;
-+
-+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
-+ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
-+ dwc_read_reg32(&dev_if->dev_global_regs->dctl));
-+}
-+
-+/**
-+ * This function activates an EP. The Device EP control register for
-+ * the EP is configured as defined in the ep structure. Note: This
-+ * function is not used for EP0.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to activate.
-+ */
-+void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ depctl_data_t depctl;
-+ volatile uint32_t *addr;
-+ daint_data_t daintmsk = { .d32 = 0 };
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
-+ (ep->is_in?"IN":"OUT"));
-+
-+ /* Read DEPCTLn register */
-+ if (ep->is_in == 1) {
-+ addr = &dev_if->in_ep_regs[ep->num]->diepctl;
-+ daintmsk.ep.in = 1<<ep->num;
-+ }
-+ else {
-+ addr = &dev_if->out_ep_regs[ep->num]->doepctl;
-+ daintmsk.ep.out = 1<<ep->num;
-+ }
-+
-+ /* If the EP is already active don't change the EP Control
-+ * register. */
-+ depctl.d32 = dwc_read_reg32(addr);
-+ if (!depctl.b.usbactep) {
-+ depctl.b.mps = ep->maxpacket;
-+ depctl.b.eptype = ep->type;
-+ depctl.b.txfnum = ep->tx_fifo_num;
-+
-+ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
-+ depctl.b.setd0pid = 1; // ???
-+ }
-+ else {
-+ depctl.b.setd0pid = 1;
-+ }
-+ depctl.b.usbactep = 1;
-+
-+ dwc_write_reg32(addr, depctl.d32);
-+ DWC_DEBUGPL(DBG_PCDV,"DEPCTL(%.8x)=%08x\n",(u32)addr, dwc_read_reg32(addr));
-+ }
-+
-+ /* Enable the Interrupt for this EP */
-+ if(core_if->multiproc_int_enable) {
-+ if (ep->is_in == 1) {
-+ diepmsk_data_t diepmsk = { .d32 = 0};
-+ diepmsk.b.xfercompl = 1;
-+ diepmsk.b.timeout = 1;
-+ diepmsk.b.epdisabled = 1;
-+ diepmsk.b.ahberr = 1;
-+ diepmsk.b.intknepmis = 1;
-+ diepmsk.b.txfifoundrn = 1; //?????
-+
-+
-+ if(core_if->dma_desc_enable) {
-+ diepmsk.b.bna = 1;
-+ }
-+/*
-+ if(core_if->dma_enable) {
-+ doepmsk.b.nak = 1;
-+ }
-+*/
-+ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32);
-+
-+ } else {
-+ doepmsk_data_t doepmsk = { .d32 = 0};
-+ doepmsk.b.xfercompl = 1;
-+ doepmsk.b.ahberr = 1;
-+ doepmsk.b.epdisabled = 1;
-+
-+
-+ if(core_if->dma_desc_enable) {
-+ doepmsk.b.bna = 1;
-+ }
-+/*
-+ doepmsk.b.babble = 1;
-+ doepmsk.b.nyet = 1;
-+ doepmsk.b.nak = 1;
-+*/
-+ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32);
-+ }
-+ dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk,
-+ 0, daintmsk.d32);
-+ } else {
-+ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
-+ 0, daintmsk.d32);
-+ }
-+
-+ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
-+ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
-+
-+ ep->stall_clear_flag = 0;
-+ return;
-+}
-+
-+/**
-+ * This function deactivates an EP. This is done by clearing the USB Active
-+ * EP bit in the Device EP control register. Note: This function is not used
-+ * for EP0. EP0 cannot be deactivated.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to deactivate.
-+ */
-+void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ depctl_data_t depctl = { .d32 = 0 };
-+ volatile uint32_t *addr;
-+ daint_data_t daintmsk = { .d32 = 0};
-+
-+ /* Read DEPCTLn register */
-+ if (ep->is_in == 1) {
-+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
-+ daintmsk.ep.in = 1<<ep->num;
-+ }
-+ else {
-+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
-+ daintmsk.ep.out = 1<<ep->num;
-+ }
-+
-+ //disabled ep only when ep is enabled
-+ //or got halt in the loop in test in cv9
-+ depctl.d32=dwc_read_reg32(addr);
-+ if(depctl.b.epena){
-+ if (ep->is_in == 1) {
-+ diepint_data_t diepint;
-+ dwc_otg_dev_in_ep_regs_t *in_reg=core_if->dev_if->in_ep_regs[ep->num];
-+
-+ //Set ep nak
-+ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
-+ depctl.b.snak=1;
-+ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
-+
-+ //wait for diepint.b.inepnakeff
-+ diepint.d32=dwc_read_reg32(&in_reg->diepint);
-+ while(!diepint.b.inepnakeff){
-+ udelay(1);
-+ diepint.d32=dwc_read_reg32(&in_reg->diepint);
-+ }
-+ diepint.d32=0;
-+ diepint.b.inepnakeff=1;
-+ dwc_write_reg32(&in_reg->diepint,diepint.d32);
-+
-+ //set ep disable and snak
-+ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
-+ depctl.b.snak=1;
-+ depctl.b.epdis=1;
-+ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
-+
-+ //wait for diepint.b.epdisabled
-+ diepint.d32=dwc_read_reg32(&in_reg->diepint);
-+ while(!diepint.b.epdisabled){
-+ udelay(1);
-+ diepint.d32=dwc_read_reg32(&in_reg->diepint);
-+ }
-+ diepint.d32=0;
-+ diepint.b.epdisabled=1;
-+ dwc_write_reg32(&in_reg->diepint,diepint.d32);
-+
-+ //clear ep enable and disable bit
-+ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
-+ depctl.b.epena=0;
-+ depctl.b.epdis=0;
-+ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
-+
-+ }
-+#if 0
-+//following DWC OTG DataBook v2.72a, 6.4.2.1.3 Disabling an OUT Endpoint,
-+//but this doesn't work, the old code do.
-+ else {
-+ doepint_data_t doepint;
-+ dwc_otg_dev_out_ep_regs_t *out_reg=core_if->dev_if->out_ep_regs[ep->num];
-+ dctl_data_t dctl;
-+ gintsts_data_t gintsts;
-+
-+ //set dctl global out nak
-+ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
-+ dctl.b.sgoutnak=1;
-+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl,dctl.d32);
-+
-+ //wait for gintsts.goutnakeff
-+ gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
-+ while(!gintsts.b.goutnakeff){
-+ udelay(1);
-+ gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
-+ }
-+ gintsts.d32=0;
-+ gintsts.b.goutnakeff=1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ //set ep disable and snak
-+ depctl.d32=dwc_read_reg32(&out_reg->doepctl);
-+ depctl.b.snak=1;
-+ depctl.b.epdis=1;
-+ dwc_write_reg32(&out_reg->doepctl,depctl.d32);
-+
-+ //wait for diepint.b.epdisabled
-+ doepint.d32=dwc_read_reg32(&out_reg->doepint);
-+ while(!doepint.b.epdisabled){
-+ udelay(1);
-+ doepint.d32=dwc_read_reg32(&out_reg->doepint);
-+ }
-+ doepint.d32=0;
-+ doepint.b.epdisabled=1;
-+ dwc_write_reg32(&out_reg->doepint,doepint.d32);
-+
-+ //clear ep enable and disable bit
-+ depctl.d32=dwc_read_reg32(&out_reg->doepctl);
-+ depctl.b.epena=0;
-+ depctl.b.epdis=0;
-+ dwc_write_reg32(&out_reg->doepctl,depctl.d32);
-+ }
-+#endif
-+
-+ depctl.d32=0;
-+ depctl.b.usbactep = 0;
-+
-+ if (ep->is_in == 0) {
-+ if(core_if->dma_enable||core_if->dma_desc_enable)
-+ depctl.b.epdis = 1;
-+ }
-+
-+ dwc_write_reg32(addr, depctl.d32);
-+ }
-+
-+ /* Disable the Interrupt for this EP */
-+ if(core_if->multiproc_int_enable) {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk,
-+ daintmsk.d32, 0);
-+
-+ if (ep->is_in == 1) {
-+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0);
-+ } else {
-+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0);
-+ }
-+ } else {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
-+ daintmsk.d32, 0);
-+ }
-+
-+ if (ep->is_in == 1) {
-+ DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
-+ (u32)&core_if->dev_if->in_ep_regs[ep->num]->diepctl,
-+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepctl),
-+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz),
-+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepint),
-+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepdma),
-+ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts));
-+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
-+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
-+ }
-+ else {
-+ DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
-+ (u32)&core_if->dev_if->out_ep_regs[ep->num]->doepctl,
-+ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl),
-+ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz),
-+ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepint),
-+ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepdma));
-+
-+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
-+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
-+ }
-+
-+}
-+
-+/**
-+ * This function does the setup for a data transfer for an EP and
-+ * starts the transfer. For an IN transfer, the packets will be
-+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
-+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ */
-+static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ dwc_otg_dma_desc_t* dma_desc;
-+ uint32_t offset;
-+ uint32_t xfer_est;
-+ int i;
-+
-+ ep->desc_cnt = ( ep->total_len / ep->maxxfer) +
-+ ((ep->total_len % ep->maxxfer) ? 1 : 0);
-+ if(!ep->desc_cnt)
-+ ep->desc_cnt = 1;
-+
-+ dma_desc = ep->desc_addr;
-+ xfer_est = ep->total_len;
-+ offset = 0;
-+ for( i = 0; i < ep->desc_cnt; ++i) {
-+ /** DMA Descriptor Setup */
-+ if(xfer_est > ep->maxxfer) {
-+ dma_desc->status.b.bs = BS_HOST_BUSY;
-+ dma_desc->status.b.l = 0;
-+ dma_desc->status.b.ioc = 0;
-+ dma_desc->status.b.sp = 0;
-+ dma_desc->status.b.bytes = ep->maxxfer;
-+ dma_desc->buf = ep->dma_addr + offset;
-+ dma_desc->status.b.bs = BS_HOST_READY;
-+
-+ xfer_est -= ep->maxxfer;
-+ offset += ep->maxxfer;
-+ } else {
-+ dma_desc->status.b.bs = BS_HOST_BUSY;
-+ dma_desc->status.b.l = 1;
-+ dma_desc->status.b.ioc = 1;
-+ if(ep->is_in) {
-+ dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ?
-+ 1 : ((ep->sent_zlp) ? 1 : 0);
-+ dma_desc->status.b.bytes = xfer_est;
-+ } else {
-+ dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ;
-+ }
-+
-+ dma_desc->buf = ep->dma_addr + offset;
-+ dma_desc->status.b.bs = BS_HOST_READY;
-+ }
-+ dma_desc ++;
-+ }
-+}
-+
-+/**
-+ * This function does the setup for a data transfer for an EP and
-+ * starts the transfer. For an IN transfer, the packets will be
-+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
-+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ */
-+
-+void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ depctl_data_t depctl;
-+ deptsiz_data_t deptsiz;
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+
-+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
-+
-+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
-+ "xfer_buff=%p start_xfer_buff=%p\n",
-+ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
-+ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
-+
-+ /* IN endpoint */
-+ if (ep->is_in == 1) {
-+ dwc_otg_dev_in_ep_regs_t *in_regs =
-+ core_if->dev_if->in_ep_regs[ep->num];
-+
-+ gnptxsts_data_t gtxstatus;
-+
-+ gtxstatus.d32 =
-+ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
-+
-+ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
-+#ifdef DEBUG
-+ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
-+#endif
-+ return;
-+ }
-+
-+ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
-+ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
-+
-+ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
-+ ep->maxxfer : (ep->total_len - ep->xfer_len);
-+
-+ /* Zero Length Packet? */
-+ if ((ep->xfer_len - ep->xfer_count) == 0) {
-+ deptsiz.b.xfersize = 0;
-+ deptsiz.b.pktcnt = 1;
-+ }
-+ else {
-+ /* Program the transfer size and packet count
-+ * as follows: xfersize = N * maxpacket +
-+ * short_packet pktcnt = N + (short_packet
-+ * exist ? 1 : 0)
-+ */
-+ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
-+ deptsiz.b.pktcnt =
-+ (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) /
-+ ep->maxpacket;
-+ }
-+
-+
-+ /* Write the DMA register */
-+ if (core_if->dma_enable) {
-+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
-+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
-+ }
-+ DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ep->num, ep->dma_addr);
-+
-+ if (core_if->dma_desc_enable == 0) {
-+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
-+ dwc_write_reg32 (&(in_regs->diepdma),
-+ (uint32_t)ep->dma_addr);
-+ }
-+ else {
-+ init_dma_desc_chain(core_if, ep);
-+ /** DIEPDMAn Register write */
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
-+ dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr);
-+ }
-+ }
-+ else
-+ {
-+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
-+ if(ep->type != DWC_OTG_EP_TYPE_ISOC) {
-+ /**
-+ * Enable the Non-Periodic Tx FIFO empty interrupt,
-+ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
-+ * the data will be written into the fifo by the ISR.
-+ */
-+ if(core_if->en_multiple_tx_fifo == 0) {
-+ intr_mask.b.nptxfempty = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
-+ intr_mask.d32, intr_mask.d32);
-+ }
-+ else {
-+ /* Enable the Tx FIFO Empty Interrupt for this EP */
-+ if(ep->xfer_len > 0) {
-+ uint32_t fifoemptymsk = 0;
-+ fifoemptymsk = 1 << ep->num;
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
-+ 0, fifoemptymsk);
-+
-+ }
-+ }
-+ }
-+ }
-+
-+ /* EP enable, IN data in FIFO */
-+ depctl.b.cnak = 1;
-+ depctl.b.epena = 1;
-+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
-+
-+ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
-+ depctl.b.nextep = ep->num;
-+ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
-+
-+ DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
-+ (u32)&in_regs->diepctl,
-+ dwc_read_reg32(&in_regs->diepctl),
-+ dwc_read_reg32(&in_regs->dieptsiz),
-+ dwc_read_reg32(&in_regs->diepint),
-+ dwc_read_reg32(&in_regs->diepdma),
-+ dwc_read_reg32(&in_regs->dtxfsts));
-+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
-+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
-+
-+ }
-+ else {
-+ /* OUT endpoint */
-+ dwc_otg_dev_out_ep_regs_t *out_regs =
-+ core_if->dev_if->out_ep_regs[ep->num];
-+
-+ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
-+ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
-+
-+ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
-+ ep->maxxfer : (ep->total_len - ep->xfer_len);
-+
-+ /* Program the transfer size and packet count as follows:
-+ *
-+ * pktcnt = N
-+ * xfersize = N * maxpacket
-+ */
-+ if ((ep->xfer_len - ep->xfer_count) == 0) {
-+ /* Zero Length Packet */
-+ deptsiz.b.xfersize = ep->maxpacket;
-+ deptsiz.b.pktcnt = 1;
-+ }
-+ else {
-+ deptsiz.b.pktcnt =
-+ (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) /
-+ ep->maxpacket;
-+ ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count;
-+ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
-+ }
-+
-+ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
-+ ep->num,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
-+
-+ if (core_if->dma_enable) {
-+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
-+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
-+ }
-+ DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n",
-+ ep->num,
-+ ep->dma_addr);
-+ if (!core_if->dma_desc_enable) {
-+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
-+ dwc_write_reg32 (&(out_regs->doepdma),
-+ (uint32_t)ep->dma_addr);
-+ }
-+ else {
-+ init_dma_desc_chain(core_if, ep);
-+
-+ /** DOEPDMAn Register write */
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
-+ dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr);
-+ }
-+ }
-+ else {
-+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
-+ }
-+
-+ /* EP enable */
-+ depctl.b.cnak = 1;
-+ depctl.b.epena = 1;
-+
-+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
-+
-+ DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
-+ (u32)&out_regs->doepctl,
-+ dwc_read_reg32(&out_regs->doepctl),
-+ dwc_read_reg32(&out_regs->doeptsiz),
-+ dwc_read_reg32(&out_regs->doepint),
-+ dwc_read_reg32(&out_regs->doepdma));
-+
-+ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
-+ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
-+ }
-+}
-+
-+/**
-+ * This function setup a zero length transfer in Buffer DMA and
-+ * Slave modes for usb requests with zero field set
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ *
-+ */
-+void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+
-+ depctl_data_t depctl;
-+ deptsiz_data_t deptsiz;
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+
-+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
-+
-+ /* IN endpoint */
-+ if (ep->is_in == 1) {
-+ dwc_otg_dev_in_ep_regs_t *in_regs =
-+ core_if->dev_if->in_ep_regs[ep->num];
-+
-+ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
-+ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
-+
-+ deptsiz.b.xfersize = 0;
-+ deptsiz.b.pktcnt = 1;
-+
-+
-+ /* Write the DMA register */
-+ if (core_if->dma_enable) {
-+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
-+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
-+ }
-+ if (core_if->dma_desc_enable == 0) {
-+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
-+ dwc_write_reg32 (&(in_regs->diepdma),
-+ (uint32_t)ep->dma_addr);
-+ }
-+ }
-+ else {
-+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
-+ /**
-+ * Enable the Non-Periodic Tx FIFO empty interrupt,
-+ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
-+ * the data will be written into the fifo by the ISR.
-+ */
-+ if(core_if->en_multiple_tx_fifo == 0) {
-+ intr_mask.b.nptxfempty = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
-+ intr_mask.d32, intr_mask.d32);
-+ }
-+ else {
-+ /* Enable the Tx FIFO Empty Interrupt for this EP */
-+ if(ep->xfer_len > 0) {
-+ uint32_t fifoemptymsk = 0;
-+ fifoemptymsk = 1 << ep->num;
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
-+ 0, fifoemptymsk);
-+ }
-+ }
-+ }
-+
-+ /* EP enable, IN data in FIFO */
-+ depctl.b.cnak = 1;
-+ depctl.b.epena = 1;
-+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
-+
-+ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
-+ depctl.b.nextep = ep->num;
-+ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
-+
-+ }
-+ else {
-+ /* OUT endpoint */
-+ dwc_otg_dev_out_ep_regs_t *out_regs =
-+ core_if->dev_if->out_ep_regs[ep->num];
-+
-+ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
-+ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
-+
-+ /* Zero Length Packet */
-+ deptsiz.b.xfersize = ep->maxpacket;
-+ deptsiz.b.pktcnt = 1;
-+
-+ if (core_if->dma_enable) {
-+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
-+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
-+ }
-+ if (!core_if->dma_desc_enable) {
-+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
-+
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
-+ dwc_write_reg32 (&(out_regs->doepdma),
-+ (uint32_t)ep->dma_addr);
-+ }
-+ }
-+ else {
-+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
-+ }
-+
-+ /* EP enable */
-+ depctl.b.cnak = 1;
-+ depctl.b.epena = 1;
-+
-+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
-+
-+ }
-+}
-+
-+/**
-+ * This function does the setup for a data transfer for EP0 and starts
-+ * the transfer. For an IN transfer, the packets will be loaded into
-+ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
-+ * unloaded from the Rx FIFO in the ISR.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP0 data.
-+ */
-+void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ depctl_data_t depctl;
-+ deptsiz0_data_t deptsiz;
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ dwc_otg_dma_desc_t* dma_desc;
-+
-+ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
-+ "xfer_buff=%p start_xfer_buff=%p, dma_addr=%.8x\n",
-+ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
-+ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,ep->dma_addr);
-+
-+ ep->total_len = ep->xfer_len;
-+
-+ /* IN endpoint */
-+ if (ep->is_in == 1) {
-+ dwc_otg_dev_in_ep_regs_t *in_regs =
-+ core_if->dev_if->in_ep_regs[0];
-+
-+ gnptxsts_data_t gtxstatus;
-+
-+ gtxstatus.d32 =
-+ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
-+
-+ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
-+#ifdef DEBUG
-+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
-+ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
-+ dwc_read_reg32(&in_regs->diepctl));
-+ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
-+ deptsiz.d32,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
-+ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
-+ gtxstatus.d32);
-+#endif
-+ return;
-+ }
-+
-+
-+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
-+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
-+
-+ /* Zero Length Packet? */
-+ if (ep->xfer_len == 0) {
-+ deptsiz.b.xfersize = 0;
-+ deptsiz.b.pktcnt = 1;
-+ }
-+ else {
-+ /* Program the transfer size and packet count
-+ * as follows: xfersize = N * maxpacket +
-+ * short_packet pktcnt = N + (short_packet
-+ * exist ? 1 : 0)
-+ */
-+ if (ep->xfer_len > ep->maxpacket) {
-+ ep->xfer_len = ep->maxpacket;
-+ deptsiz.b.xfersize = ep->maxpacket;
-+ }
-+ else {
-+ deptsiz.b.xfersize = ep->xfer_len;
-+ }
-+ deptsiz.b.pktcnt = 1;
-+
-+ }
-+ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
-+ ep->xfer_len,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
-+ /* Write the DMA register */
-+ if (core_if->dma_enable) {
-+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
-+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
-+ }
-+ if(core_if->dma_desc_enable == 0) {
-+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
-+ dwc_write_reg32 (&(in_regs->diepdma),
-+ (uint32_t)ep->dma_addr);
-+ }
-+ else {
-+ dma_desc = core_if->dev_if->in_desc_addr;
-+
-+ /** DMA Descriptor Setup */
-+ dma_desc->status.b.bs = BS_HOST_BUSY;
-+ dma_desc->status.b.l = 1;
-+ dma_desc->status.b.ioc = 1;
-+ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
-+ dma_desc->status.b.bytes = ep->xfer_len;
-+ dma_desc->buf = ep->dma_addr;
-+ dma_desc->status.b.bs = BS_HOST_READY;
-+
-+ /** DIEPDMA0 Register write */
-+
-+ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
-+ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
-+ }
-+ }
-+ else {
-+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
-+ }
-+
-+ /* EP enable, IN data in FIFO */
-+ depctl.b.cnak = 1;
-+ depctl.b.epena = 1;
-+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
-+
-+ /**
-+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
-+ * data will be written into the fifo by the ISR.
-+ */
-+ if (!core_if->dma_enable) {
-+ if(core_if->en_multiple_tx_fifo == 0) {
-+ intr_mask.b.nptxfempty = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
-+ intr_mask.d32, intr_mask.d32);
-+ }
-+ else {
-+ /* Enable the Tx FIFO Empty Interrupt for this EP */
-+ if(ep->xfer_len > 0) {
-+ uint32_t fifoemptymsk = 0;
-+ fifoemptymsk |= 1 << ep->num;
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
-+ 0, fifoemptymsk);
-+ }
-+ }
-+ }
-+ }
-+ else {
-+ /* OUT endpoint */
-+ dwc_otg_dev_out_ep_regs_t *out_regs =
-+ core_if->dev_if->out_ep_regs[0];
-+
-+ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
-+ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
-+
-+ /* Program the transfer size and packet count as follows:
-+ * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
-+ * pktcnt = N */
-+ /* Zero Length Packet */
-+ deptsiz.b.xfersize = ep->maxpacket;
-+ deptsiz.b.pktcnt = 1;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
-+ ep->xfer_len,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
-+
-+ if (core_if->dma_enable) {
-+ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
-+ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
-+ }
-+ if(!core_if->dma_desc_enable) {
-+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
-+
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
-+ dwc_write_reg32 (&(out_regs->doepdma),
-+ (uint32_t)ep->dma_addr);
-+ }
-+ else {
-+ dma_desc = core_if->dev_if->out_desc_addr;
-+
-+ /** DMA Descriptor Setup */
-+ dma_desc->status.b.bs = BS_HOST_BUSY;
-+ dma_desc->status.b.l = 1;
-+ dma_desc->status.b.ioc = 1;
-+ dma_desc->status.b.bytes = ep->maxpacket;
-+ dma_desc->buf = ep->dma_addr;
-+ dma_desc->status.b.bs = BS_HOST_READY;
-+
-+ /** DOEPDMA0 Register write */
-+ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
-+ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
-+ }
-+ }
-+ else {
-+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
-+ }
-+
-+ /* EP enable */
-+ depctl.b.cnak = 1;
-+ depctl.b.epena = 1;
-+ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
-+ }
-+}
-+
-+/**
-+ * This function continues control IN transfers started by
-+ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
-+ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
-+ * bit for the packet count.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP0 data.
-+ */
-+void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ depctl_data_t depctl;
-+ deptsiz0_data_t deptsiz;
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ dwc_otg_dma_desc_t* dma_desc;
-+
-+ if (ep->is_in == 1) {
-+ dwc_otg_dev_in_ep_regs_t *in_regs =
-+ core_if->dev_if->in_ep_regs[0];
-+ gnptxsts_data_t tx_status = { .d32 = 0 };
-+
-+ tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
-+ /** @todo Should there be check for room in the Tx
-+ * Status Queue. If not remove the code above this comment. */
-+
-+ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
-+ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
-+
-+ /* Program the transfer size and packet count
-+ * as follows: xfersize = N * maxpacket +
-+ * short_packet pktcnt = N + (short_packet
-+ * exist ? 1 : 0)
-+ */
-+
-+
-+ if(core_if->dma_desc_enable == 0) {
-+ deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
-+ (ep->total_len - ep->xfer_count);
-+ deptsiz.b.pktcnt = 1;
-+ if(core_if->dma_enable == 0) {
-+ ep->xfer_len += deptsiz.b.xfersize;
-+ } else {
-+ ep->xfer_len = deptsiz.b.xfersize;
-+ }
-+ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
-+ }
-+ else {
-+ ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
-+ (ep->total_len - ep->xfer_count);
-+
-+ dma_desc = core_if->dev_if->in_desc_addr;
-+
-+ /** DMA Descriptor Setup */
-+ dma_desc->status.b.bs = BS_HOST_BUSY;
-+ dma_desc->status.b.l = 1;
-+ dma_desc->status.b.ioc = 1;
-+ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
-+ dma_desc->status.b.bytes = ep->xfer_len;
-+ dma_desc->buf = ep->dma_addr;
-+ dma_desc->status.b.bs = BS_HOST_READY;
-+
-+
-+ /** DIEPDMA0 Register write */
-+ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
-+ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
-+ }
-+
-+
-+ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
-+ ep->xfer_len,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
-+
-+ /* Write the DMA register */
-+ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
-+ if(core_if->dma_desc_enable == 0){
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
-+ dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr);
-+ }
-+ }
-+
-+ /* EP enable, IN data in FIFO */
-+ depctl.b.cnak = 1;
-+ depctl.b.epena = 1;
-+ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
-+
-+ /**
-+ * Enable the Non-Periodic Tx FIFO empty interrupt, the
-+ * data will be written into the fifo by the ISR.
-+ */
-+ if (!core_if->dma_enable) {
-+ if(core_if->en_multiple_tx_fifo == 0) {
-+ /* First clear it from GINTSTS */
-+ intr_mask.b.nptxfempty = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
-+ intr_mask.d32, intr_mask.d32);
-+
-+ }
-+ else {
-+ /* Enable the Tx FIFO Empty Interrupt for this EP */
-+ if(ep->xfer_len > 0) {
-+ uint32_t fifoemptymsk = 0;
-+ fifoemptymsk |= 1 << ep->num;
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
-+ 0, fifoemptymsk);
-+ }
-+ }
-+ }
-+ }
-+ else {
-+ dwc_otg_dev_out_ep_regs_t *out_regs =
-+ core_if->dev_if->out_ep_regs[0];
-+
-+
-+ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
-+ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
-+
-+ /* Program the transfer size and packet count
-+ * as follows: xfersize = N * maxpacket +
-+ * short_packet pktcnt = N + (short_packet
-+ * exist ? 1 : 0)
-+ */
-+ deptsiz.b.xfersize = ep->maxpacket;
-+ deptsiz.b.pktcnt = 1;
-+
-+
-+ if(core_if->dma_desc_enable == 0) {
-+ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
-+ }
-+ else {
-+ dma_desc = core_if->dev_if->out_desc_addr;
-+
-+ /** DMA Descriptor Setup */
-+ dma_desc->status.b.bs = BS_HOST_BUSY;
-+ dma_desc->status.b.l = 1;
-+ dma_desc->status.b.ioc = 1;
-+ dma_desc->status.b.bytes = ep->maxpacket;
-+ dma_desc->buf = ep->dma_addr;
-+ dma_desc->status.b.bs = BS_HOST_READY;
-+
-+ /** DOEPDMA0 Register write */
-+ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
-+ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
-+ }
-+
-+
-+ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
-+ ep->xfer_len,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
-+
-+ /* Write the DMA register */
-+ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
-+ if(core_if->dma_desc_enable == 0){
-+
-+ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
-+ dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr);
-+ }
-+ }
-+
-+ /* EP enable, IN data in FIFO */
-+ depctl.b.cnak = 1;
-+ depctl.b.epena = 1;
-+ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
-+
-+ }
-+}
-+
-+#ifdef DEBUG
-+void dump_msg(const u8 *buf, unsigned int length)
-+{
-+ unsigned int start, num, i;
-+ char line[52], *p;
-+
-+ if (length >= 512)
-+ return;
-+ start = 0;
-+ while (length > 0) {
-+ num = min(length, 16u);
-+ p = line;
-+ for (i = 0; i < num; ++i)
-+ {
-+ if (i == 8)
-+ *p++ = ' ';
-+ sprintf(p, " %02x", buf[i]);
-+ p += 3;
-+ }
-+ *p = 0;
-+ DWC_PRINT("%6x: %s\n", start, line);
-+ buf += num;
-+ start += num;
-+ length -= num;
-+ }
-+}
-+#else
-+static inline void dump_msg(const u8 *buf, unsigned int length)
-+{
-+}
-+#endif
-+
-+/**
-+ * This function writes a packet into the Tx FIFO associated with the
-+ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
-+ * periodic EPs the periodic Tx FIFO associated with the EP is written
-+ * with all packets for the next micro-frame.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to write packet for.
-+ * @param dma Indicates if DMA is being used.
-+ */
-+void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma)
-+{
-+ /**
-+ * The buffer is padded to DWORD on a per packet basis in
-+ * slave/dma mode if the MPS is not DWORD aligned. The last
-+ * packet, if short, is also padded to a multiple of DWORD.
-+ *
-+ * ep->xfer_buff always starts DWORD aligned in memory and is a
-+ * multiple of DWORD in length
-+ *
-+ * ep->xfer_len can be any number of bytes
-+ *
-+ * ep->xfer_count is a multiple of ep->maxpacket until the last
-+ * packet
-+ *
-+ * FIFO access is DWORD */
-+
-+ uint32_t i;
-+ uint32_t byte_count;
-+ uint32_t dword_count;
-+ uint32_t *fifo;
-+ uint32_t *data_buff = (uint32_t *)ep->xfer_buff;
-+
-+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep);
-+ if (ep->xfer_count >= ep->xfer_len) {
-+ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
-+ return;
-+ }
-+
-+ /* Find the byte length of the packet either short packet or MPS */
-+ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) {
-+ byte_count = ep->xfer_len - ep->xfer_count;
-+ }
-+ else {
-+ byte_count = ep->maxpacket;
-+ }
-+
-+ /* Find the DWORD length, padded by extra bytes as neccessary if MPS
-+ * is not a multiple of DWORD */
-+ dword_count = (byte_count + 3) / 4;
-+
-+#ifdef VERBOSE
-+ dump_msg(ep->xfer_buff, byte_count);
-+#endif
-+
-+ /**@todo NGS Where are the Periodic Tx FIFO addresses
-+ * intialized? What should this be? */
-+
-+ fifo = core_if->data_fifo[ep->num];
-+
-+
-+ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count);
-+
-+ if (!dma) {
-+ for (i=0; i<dword_count; i++, data_buff++) {
-+ dwc_write_reg32(fifo, *data_buff);
-+ }
-+ }
-+
-+ ep->xfer_count += byte_count;
-+ ep->xfer_buff += byte_count;
-+ ep->dma_addr += byte_count;
-+}
-+
-+/**
-+ * Set the EP STALL.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to set the stall on.
-+ */
-+void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ depctl_data_t depctl;
-+ volatile uint32_t *depctl_addr;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s ep%d-%s1\n", __func__, ep->num,
-+ (ep->is_in?"IN":"OUT"));
-+
-+ DWC_PRINT("%s ep%d-%s\n", __func__, ep->num,
-+ (ep->is_in?"in":"out"));
-+
-+ if (ep->is_in == 1) {
-+ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
-+ depctl.d32 = dwc_read_reg32(depctl_addr);
-+
-+ /* set the disable and stall bits */
-+#if 0
-+//epdis is set here but not cleared at latter dwc_otg_ep_clear_stall,
-+//which cause the testusb item 13 failed(Host:pc, device: otg device)
-+ if (depctl.b.epena) {
-+ depctl.b.epdis = 1;
-+ }
-+#endif
-+ depctl.b.stall = 1;
-+ dwc_write_reg32(depctl_addr, depctl.d32);
-+ }
-+ else {
-+ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
-+ depctl.d32 = dwc_read_reg32(depctl_addr);
-+
-+ /* set the stall bit */
-+ depctl.b.stall = 1;
-+ dwc_write_reg32(depctl_addr, depctl.d32);
-+ }
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s: DEPCTL(%.8x)=%0x\n",__func__,(u32)depctl_addr,dwc_read_reg32(depctl_addr));
-+
-+ return;
-+}
-+
-+/**
-+ * Clear the EP STALL.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to clear stall from.
-+ */
-+void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ depctl_data_t depctl;
-+ volatile uint32_t *depctl_addr;
-+
-+ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
-+ (ep->is_in?"IN":"OUT"));
-+
-+ if (ep->is_in == 1) {
-+ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
-+ }
-+ else {
-+ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
-+ }
-+
-+ depctl.d32 = dwc_read_reg32(depctl_addr);
-+
-+ /* clear the stall bits */
-+ depctl.b.stall = 0;
-+
-+ /*
-+ * USB Spec 9.4.5: For endpoints using data toggle, regardless
-+ * of whether an endpoint has the Halt feature set, a
-+ * ClearFeature(ENDPOINT_HALT) request always results in the
-+ * data toggle being reinitialized to DATA0.
-+ */
-+ if (ep->type == DWC_OTG_EP_TYPE_INTR ||
-+ ep->type == DWC_OTG_EP_TYPE_BULK) {
-+ depctl.b.setd0pid = 1; /* DATA0 */
-+ }
-+
-+ dwc_write_reg32(depctl_addr, depctl.d32);
-+ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
-+ return;
-+}
-+
-+/**
-+ * This function reads a packet from the Rx FIFO into the destination
-+ * buffer. To read SETUP data use dwc_otg_read_setup_packet.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param dest Destination buffer for the packet.
-+ * @param bytes Number of bytes to copy to the destination.
-+ */
-+void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
-+ uint8_t *dest,
-+ uint16_t bytes)
-+{
-+ int i;
-+ int word_count = (bytes + 3) / 4;
-+
-+ volatile uint32_t *fifo = core_if->data_fifo[0];
-+ uint32_t *data_buff = (uint32_t *)dest;
-+
-+ /**
-+ * @todo Account for the case where _dest is not dword aligned. This
-+ * requires reading data from the FIFO into a uint32_t temp buffer,
-+ * then moving it into the data buffer.
-+ */
-+
-+ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
-+ core_if, dest, bytes);
-+
-+ for (i=0; i<word_count; i++, data_buff++)
-+ {
-+ *data_buff = dwc_read_reg32(fifo);
-+ }
-+
-+ return;
-+}
-+
-+
-+
-+/**
-+ * This functions reads the device registers and prints them
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if)
-+{
-+ int i;
-+ volatile uint32_t *addr;
-+
-+ DWC_PRINT("Device Global Registers\n");
-+ addr=&core_if->dev_if->dev_global_regs->dcfg;
-+ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->dev_global_regs->dctl;
-+ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->dev_global_regs->dsts;
-+ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->dev_global_regs->diepmsk;
-+ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->dev_global_regs->doepmsk;
-+ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->dev_global_regs->daint;
-+ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->dev_global_regs->daintmsk;
-+ DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->dev_global_regs->dtknqr1;
-+ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
-+ addr=&core_if->dev_if->dev_global_regs->dtknqr2;
-+ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
-+ (uint32_t)addr,dwc_read_reg32(addr));
-+ }
-+
-+ addr=&core_if->dev_if->dev_global_regs->dvbusdis;
-+ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+
-+ addr=&core_if->dev_if->dev_global_regs->dvbuspulse;
-+ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
-+ (uint32_t)addr,dwc_read_reg32(addr));
-+
-+ if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
-+ addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
-+ DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n",
-+ (uint32_t)addr, dwc_read_reg32(addr));
-+ }
-+/*
-+ if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
-+ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
-+ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n",
-+ (uint32_t)addr, dwc_read_reg32(addr));
-+ }
-+*/
-+ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
-+ DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr));
-+
-+ addr=&core_if->dev_if->dev_global_regs->deachint;
-+ DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->dev_global_regs->deachintmsk;
-+ DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+
-+ for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
-+ addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i];
-+ DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
-+ }
-+
-+
-+ for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
-+ addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i];
-+ DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
-+ }
-+
-+ for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
-+ DWC_PRINT("Device IN EP %d Registers\n", i);
-+ addr=&core_if->dev_if->in_ep_regs[i]->diepctl;
-+ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->in_ep_regs[i]->diepint;
-+ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz;
-+ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->in_ep_regs[i]->diepdma;
-+ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts;
-+ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ //reading depdmab in non desc dma mode would halt the ahb bus...
-+ if(core_if->dma_desc_enable){
-+ addr=&core_if->dev_if->in_ep_regs[i]->diepdmab;
-+ DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ }
-+ }
-+
-+
-+ for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
-+ DWC_PRINT("Device OUT EP %d Registers\n", i);
-+ addr=&core_if->dev_if->out_ep_regs[i]->doepctl;
-+ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->out_ep_regs[i]->doepfn;
-+ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->out_ep_regs[i]->doepint;
-+ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz;
-+ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->dev_if->out_ep_regs[i]->doepdma;
-+ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+
-+ //reading depdmab in non desc dma mode would halt the ahb bus...
-+ if(core_if->dma_desc_enable){
-+ addr=&core_if->dev_if->out_ep_regs[i]->doepdmab;
-+ DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ }
-+
-+ }
-+
-+
-+
-+ return;
-+}
-+
-+/**
-+ * This functions reads the SPRAM and prints its content
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if)
-+{
-+ volatile uint8_t *addr, *start_addr, *end_addr;
-+
-+ DWC_PRINT("SPRAM Data:\n");
-+ start_addr = (void*)core_if->core_global_regs;
-+ DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr);
-+ start_addr += 0x00028000;
-+ end_addr=(void*)core_if->core_global_regs;
-+ end_addr += 0x000280e0;
-+
-+ for(addr = start_addr; addr < end_addr; addr+=16)
-+ {
-+ DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr,
-+ addr[0],
-+ addr[1],
-+ addr[2],
-+ addr[3],
-+ addr[4],
-+ addr[5],
-+ addr[6],
-+ addr[7],
-+ addr[8],
-+ addr[9],
-+ addr[10],
-+ addr[11],
-+ addr[12],
-+ addr[13],
-+ addr[14],
-+ addr[15]
-+ );
-+ }
-+
-+ return;
-+}
-+/**
-+ * This function reads the host registers and prints them
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if)
-+{
-+ int i;
-+ volatile uint32_t *addr;
-+
-+ DWC_PRINT("Host Global Registers\n");
-+ addr=&core_if->host_if->host_global_regs->hcfg;
-+ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->host_global_regs->hfir;
-+ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->host_global_regs->hfnum;
-+ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->host_global_regs->hptxsts;
-+ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->host_global_regs->haint;
-+ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->host_global_regs->haintmsk;
-+ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=core_if->host_if->hprt0;
-+ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+
-+ for (i=0; i<core_if->core_params->host_channels; i++)
-+ {
-+ DWC_PRINT("Host Channel %d Specific Registers\n", i);
-+ addr=&core_if->host_if->hc_regs[i]->hcchar;
-+ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->hc_regs[i]->hcsplt;
-+ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->hc_regs[i]->hcint;
-+ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->hc_regs[i]->hcintmsk;
-+ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->hc_regs[i]->hctsiz;
-+ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->host_if->hc_regs[i]->hcdma;
-+ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ }
-+ return;
-+}
-+
-+/**
-+ * This function reads the core global registers and prints them
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if)
-+{
-+ int i,size;
-+ char* str;
-+ volatile uint32_t *addr;
-+
-+ DWC_PRINT("Core Global Registers\n");
-+ addr=&core_if->core_global_regs->gotgctl;
-+ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gotgint;
-+ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gahbcfg;
-+ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gusbcfg;
-+ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->grstctl;
-+ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gintsts;
-+ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gintmsk;
-+ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->grxstsr;
-+ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ //addr=&core_if->core_global_regs->grxstsp;
-+ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->grxfsiz;
-+ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gnptxfsiz;
-+ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gnptxsts;
-+ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gi2cctl;
-+ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gpvndctl;
-+ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->ggpio;
-+ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->guid;
-+ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->gsnpsid;
-+ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->ghwcfg1;
-+ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->ghwcfg2;
-+ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->ghwcfg3;
-+ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->ghwcfg4;
-+ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+ addr=&core_if->core_global_regs->hptxfsiz;
-+ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
-+
-+ size=(core_if->hwcfg4.b.ded_fifo_en)?
-+ core_if->hwcfg4.b.num_in_eps:core_if->hwcfg4.b.num_dev_perio_in_ep;
-+ str=(core_if->hwcfg4.b.ded_fifo_en)?"DIEPTXF":"DPTXFSIZ";
-+ for (i=0; i<size; i++)
-+ {
-+ addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i];
-+ DWC_PRINT("%s[%d] @0x%08X : 0x%08X\n",str,i,(uint32_t)addr,dwc_read_reg32(addr));
-+ }
-+}
-+
-+/**
-+ * Flush a Tx FIFO.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param num Tx FIFO to flush.
-+ */
-+void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if,
-+ const int num)
-+{
-+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
-+ volatile grstctl_t greset = { .d32 = 0};
-+ int count = 0;
-+
-+ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num);
-+
-+ greset.b.txfflsh = 1;
-+ greset.b.txfnum = num;
-+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
-+
-+ do {
-+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
-+ if (++count > 10000) {
-+ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
-+ __func__, greset.d32,
-+ dwc_read_reg32(&global_regs->gnptxsts));
-+ break;
-+ }
-+ }
-+ while (greset.b.txfflsh == 1);
-+
-+ /* Wait for 3 PHY Clocks*/
-+ UDELAY(1);
-+}
-+
-+/**
-+ * Flush Rx FIFO.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if)
-+{
-+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
-+ volatile grstctl_t greset = { .d32 = 0};
-+ int count = 0;
-+
-+ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
-+ /*
-+ *
-+ */
-+ greset.b.rxfflsh = 1;
-+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
-+
-+ do {
-+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
-+ if (++count > 10000) {
-+ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
-+ greset.d32);
-+ break;
-+ }
-+ }
-+ while (greset.b.rxfflsh == 1);
-+
-+ /* Wait for 3 PHY Clocks*/
-+ UDELAY(1);
-+}
-+
-+/**
-+ * Do core a soft reset of the core. Be careful with this because it
-+ * resets all the internal state machines of the core.
-+ */
-+void dwc_otg_core_reset(dwc_otg_core_if_t *core_if)
-+{
-+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
-+ volatile grstctl_t greset = { .d32 = 0};
-+ int count = 0;
-+
-+ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
-+ /* Wait for AHB master IDLE state. */
-+ do {
-+ UDELAY(10);
-+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
-+ if (++count > 100000) {
-+ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
-+ greset.d32);
-+ return;
-+ }
-+ }
-+ while (greset.b.ahbidle == 0);
-+
-+ /* Core Soft Reset */
-+ count = 0;
-+ greset.b.csftrst = 1;
-+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
-+ do {
-+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
-+ if (++count > 10000) {
-+ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
-+ greset.d32);
-+ break;
-+ }
-+ }
-+ while (greset.b.csftrst == 1);
-+
-+ /* Wait for 3 PHY Clocks*/
-+ MDELAY(100);
-+
-+ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
-+ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
-+ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
-+
-+}
-+
-+
-+
-+/**
-+ * Register HCD callbacks. The callbacks are used to start and stop
-+ * the HCD for interrupt processing.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param cb the HCD callback structure.
-+ * @param p pointer to be passed to callback function (usb_hcd*).
-+ */
-+void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if,
-+ dwc_otg_cil_callbacks_t *cb,
-+ void *p)
-+{
-+ core_if->hcd_cb = cb;
-+ cb->p = p;
-+}
-+
-+/**
-+ * Register PCD callbacks. The callbacks are used to start and stop
-+ * the PCD for interrupt processing.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param cb the PCD callback structure.
-+ * @param p pointer to be passed to callback function (pcd*).
-+ */
-+void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if,
-+ dwc_otg_cil_callbacks_t *cb,
-+ void *p)
-+{
-+ core_if->pcd_cb = cb;
-+ cb->p = p;
-+}
-+
-+#ifdef DWC_EN_ISOC
-+
-+/**
-+ * This function writes isoc data per 1 (micro)frame into tx fifo
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ *
-+ */
-+void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ dwc_otg_dev_in_ep_regs_t *ep_regs;
-+ dtxfsts_data_t txstatus = {.d32 = 0};
-+ uint32_t len = 0;
-+ uint32_t dwords;
-+
-+ ep->xfer_len = ep->data_per_frame;
-+ ep->xfer_count = 0;
-+
-+ ep_regs = core_if->dev_if->in_ep_regs[ep->num];
-+
-+ len = ep->xfer_len - ep->xfer_count;
-+
-+ if (len > ep->maxpacket) {
-+ len = ep->maxpacket;
-+ }
-+
-+ dwords = (len + 3)/4;
-+
-+ /* While there is space in the queue and space in the FIFO and
-+ * More data to tranfer, Write packets to the Tx FIFO */
-+ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
-+ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32);
-+
-+ while (txstatus.b.txfspcavail > dwords &&
-+ ep->xfer_count < ep->xfer_len &&
-+ ep->xfer_len != 0) {
-+ /* Write the FIFO */
-+ dwc_otg_ep_write_packet(core_if, ep, 0);
-+
-+ len = ep->xfer_len - ep->xfer_count;
-+ if (len > ep->maxpacket) {
-+ len = ep->maxpacket;
-+ }
-+
-+ dwords = (len + 3)/4;
-+ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
-+ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32);
-+ }
-+}
-+
-+
-+/**
-+ * This function initializes a descriptor chain for Isochronous transfer
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ *
-+ */
-+void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ deptsiz_data_t deptsiz = { .d32 = 0 };
-+ depctl_data_t depctl = { .d32 = 0 };
-+ dsts_data_t dsts = { .d32 = 0 };
-+ volatile uint32_t *addr;
-+
-+ if(ep->is_in) {
-+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
-+ } else {
-+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
-+ }
-+
-+ ep->xfer_len = ep->data_per_frame;
-+ ep->xfer_count = 0;
-+ ep->xfer_buff = ep->cur_pkt_addr;
-+ ep->dma_addr = ep->cur_pkt_dma_addr;
-+
-+ if(ep->is_in) {
-+ /* Program the transfer size and packet count
-+ * as follows: xfersize = N * maxpacket +
-+ * short_packet pktcnt = N + (short_packet
-+ * exist ? 1 : 0)
-+ */
-+ deptsiz.b.xfersize = ep->xfer_len;
-+ deptsiz.b.pktcnt =
-+ (ep->xfer_len - 1 + ep->maxpacket) /
-+ ep->maxpacket;
-+ deptsiz.b.mc = deptsiz.b.pktcnt;
-+ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
-+
-+ /* Write the DMA register */
-+ if (core_if->dma_enable) {
-+ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
-+ }
-+ } else {
-+ deptsiz.b.pktcnt =
-+ (ep->xfer_len + (ep->maxpacket - 1)) /
-+ ep->maxpacket;
-+ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
-+
-+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
-+
-+ if (core_if->dma_enable) {
-+ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma),
-+ (uint32_t)ep->dma_addr);
-+ }
-+ }
-+
-+
-+ /** Enable endpoint, clear nak */
-+
-+ depctl.d32 = 0;
-+ if(ep->bInterval == 1) {
-+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
-+ ep->next_frame = dsts.b.soffn + ep->bInterval;
-+
-+ if(ep->next_frame & 0x1) {
-+ depctl.b.setd1pid = 1;
-+ } else {
-+ depctl.b.setd0pid = 1;
-+ }
-+ } else {
-+ ep->next_frame += ep->bInterval;
-+
-+ if(ep->next_frame & 0x1) {
-+ depctl.b.setd1pid = 1;
-+ } else {
-+ depctl.b.setd0pid = 1;
-+ }
-+ }
-+ depctl.b.epena = 1;
-+ depctl.b.cnak = 1;
-+
-+ dwc_modify_reg32(addr, 0, depctl.d32);
-+ depctl.d32 = dwc_read_reg32(addr);
-+
-+ if(ep->is_in && core_if->dma_enable == 0) {
-+ write_isoc_frame_data(core_if, ep);
-+ }
-+
-+}
-+
-+#endif //DWC_EN_ISOC
---- /dev/null
-+++ b/drivers/usb/dwc/otg_cil.h
-@@ -0,0 +1,1106 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $
-+ * $Revision: #91 $
-+ * $Date: 2008/09/19 $
-+ * $Change: 1099526 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+#if !defined(__DWC_CIL_H__)
-+#define __DWC_CIL_H__
-+
-+#include <linux/workqueue.h>
-+#include <linux/version.h>
-+#include <asm/param.h>
-+//#include <asm/arch/regs-irq.h>
-+
-+#include "otg_plat.h"
-+#include "otg_regs.h"
-+#ifdef DEBUG
-+#include "linux/timer.h"
-+#endif
-+
-+/**
-+ * @file
-+ * This file contains the interface to the Core Interface Layer.
-+ */
-+
-+
-+/** Macros defined for DWC OTG HW Release verison */
-+#define OTG_CORE_REV_2_00 0x4F542000
-+#define OTG_CORE_REV_2_60a 0x4F54260A
-+#define OTG_CORE_REV_2_71a 0x4F54271A
-+#define OTG_CORE_REV_2_72a 0x4F54272A
-+
-+/**
-+*/
-+typedef struct iso_pkt_info
-+{
-+ uint32_t offset;
-+ uint32_t length;
-+ int32_t status;
-+} iso_pkt_info_t;
-+/**
-+ * The <code>dwc_ep</code> structure represents the state of a single
-+ * endpoint when acting in device mode. It contains the data items
-+ * needed for an endpoint to be activated and transfer packets.
-+ */
-+typedef struct dwc_ep
-+{
-+ /** EP number used for register address lookup */
-+ uint8_t num;
-+ /** EP direction 0 = OUT */
-+ unsigned is_in : 1;
-+ /** EP active. */
-+ unsigned active : 1;
-+
-+ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
-+ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
-+ unsigned tx_fifo_num : 4;
-+ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
-+ unsigned type : 2;
-+#define DWC_OTG_EP_TYPE_CONTROL 0
-+#define DWC_OTG_EP_TYPE_ISOC 1
-+#define DWC_OTG_EP_TYPE_BULK 2
-+#define DWC_OTG_EP_TYPE_INTR 3
-+
-+ /** DATA start PID for INTR and BULK EP */
-+ unsigned data_pid_start : 1;
-+ /** Frame (even/odd) for ISOC EP */
-+ unsigned even_odd_frame : 1;
-+ /** Max Packet bytes */
-+ unsigned maxpacket : 11;
-+
-+ /** Max Transfer size */
-+ unsigned maxxfer : 16;
-+
-+ /** @name Transfer state */
-+ /** @{ */
-+
-+ /**
-+ * Pointer to the beginning of the transfer buffer -- do not modify
-+ * during transfer.
-+ */
-+
-+ uint32_t dma_addr;
-+
-+ uint32_t dma_desc_addr;
-+ dwc_otg_dma_desc_t* desc_addr;
-+
-+
-+ uint8_t *start_xfer_buff;
-+ /** pointer to the transfer buffer */
-+ uint8_t *xfer_buff;
-+ /** Number of bytes to transfer */
-+ unsigned xfer_len : 19;
-+ /** Number of bytes transferred. */
-+ unsigned xfer_count : 19;
-+ /** Sent ZLP */
-+ unsigned sent_zlp : 1;
-+ /** Total len for control transfer */
-+ unsigned total_len : 19;
-+
-+ /** stall clear flag */
-+ unsigned stall_clear_flag : 1;
-+
-+ /** Allocated DMA Desc count */
-+ uint32_t desc_cnt;
-+
-+ uint32_t aligned_dma_addr;
-+ uint32_t aligned_buf_size;
-+ uint8_t *aligned_buf;
-+
-+
-+#ifdef DWC_EN_ISOC
-+ /**
-+ * Variables specific for ISOC EPs
-+ *
-+ */
-+ /** DMA addresses of ISOC buffers */
-+ uint32_t dma_addr0;
-+ uint32_t dma_addr1;
-+
-+ uint32_t iso_dma_desc_addr;
-+ dwc_otg_dma_desc_t* iso_desc_addr;
-+
-+ /** pointer to the transfer buffers */
-+ uint8_t *xfer_buff0;
-+ uint8_t *xfer_buff1;
-+
-+ /** number of ISOC Buffer is processing */
-+ uint32_t proc_buf_num;
-+ /** Interval of ISOC Buffer processing */
-+ uint32_t buf_proc_intrvl;
-+ /** Data size for regular frame */
-+ uint32_t data_per_frame;
-+
-+ /* todo - pattern data support is to be implemented in the future */
-+ /** Data size for pattern frame */
-+ uint32_t data_pattern_frame;
-+ /** Frame number of pattern data */
-+ uint32_t sync_frame;
-+
-+ /** bInterval */
-+ uint32_t bInterval;
-+ /** ISO Packet number per frame */
-+ uint32_t pkt_per_frm;
-+ /** Next frame num for which will be setup DMA Desc */
-+ uint32_t next_frame;
-+ /** Number of packets per buffer processing */
-+ uint32_t pkt_cnt;
-+ /** Info for all isoc packets */
-+ iso_pkt_info_t *pkt_info;
-+ /** current pkt number */
-+ uint32_t cur_pkt;
-+ /** current pkt number */
-+ uint8_t *cur_pkt_addr;
-+ /** current pkt number */
-+ uint32_t cur_pkt_dma_addr;
-+#endif //DWC_EN_ISOC
-+/** @} */
-+} dwc_ep_t;
-+
-+/*
-+ * Reasons for halting a host channel.
-+ */
-+typedef enum dwc_otg_halt_status
-+{
-+ DWC_OTG_HC_XFER_NO_HALT_STATUS,
-+ DWC_OTG_HC_XFER_COMPLETE,
-+ DWC_OTG_HC_XFER_URB_COMPLETE,
-+ DWC_OTG_HC_XFER_ACK,
-+ DWC_OTG_HC_XFER_NAK,
-+ DWC_OTG_HC_XFER_NYET,
-+ DWC_OTG_HC_XFER_STALL,
-+ DWC_OTG_HC_XFER_XACT_ERR,
-+ DWC_OTG_HC_XFER_FRAME_OVERRUN,
-+ DWC_OTG_HC_XFER_BABBLE_ERR,
-+ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
-+ DWC_OTG_HC_XFER_AHB_ERR,
-+ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
-+ DWC_OTG_HC_XFER_URB_DEQUEUE
-+} dwc_otg_halt_status_e;
-+
-+/**
-+ * Host channel descriptor. This structure represents the state of a single
-+ * host channel when acting in host mode. It contains the data items needed to
-+ * transfer packets to an endpoint via a host channel.
-+ */
-+typedef struct dwc_hc
-+{
-+ /** Host channel number used for register address lookup */
-+ uint8_t hc_num;
-+
-+ /** Device to access */
-+ unsigned dev_addr : 7;
-+
-+ /** EP to access */
-+ unsigned ep_num : 4;
-+
-+ /** EP direction. 0: OUT, 1: IN */
-+ unsigned ep_is_in : 1;
-+
-+ /**
-+ * EP speed.
-+ * One of the following values:
-+ * - DWC_OTG_EP_SPEED_LOW
-+ * - DWC_OTG_EP_SPEED_FULL
-+ * - DWC_OTG_EP_SPEED_HIGH
-+ */
-+ unsigned speed : 2;
-+#define DWC_OTG_EP_SPEED_LOW 0
-+#define DWC_OTG_EP_SPEED_FULL 1
-+#define DWC_OTG_EP_SPEED_HIGH 2
-+
-+ /**
-+ * Endpoint type.
-+ * One of the following values:
-+ * - DWC_OTG_EP_TYPE_CONTROL: 0
-+ * - DWC_OTG_EP_TYPE_ISOC: 1
-+ * - DWC_OTG_EP_TYPE_BULK: 2
-+ * - DWC_OTG_EP_TYPE_INTR: 3
-+ */
-+ unsigned ep_type : 2;
-+
-+ /** Max packet size in bytes */
-+ unsigned max_packet : 11;
-+
-+ /**
-+ * PID for initial transaction.
-+ * 0: DATA0,<br>
-+ * 1: DATA2,<br>
-+ * 2: DATA1,<br>
-+ * 3: MDATA (non-Control EP),
-+ * SETUP (Control EP)
-+ */
-+ unsigned data_pid_start : 2;
-+#define DWC_OTG_HC_PID_DATA0 0
-+#define DWC_OTG_HC_PID_DATA2 1
-+#define DWC_OTG_HC_PID_DATA1 2
-+#define DWC_OTG_HC_PID_MDATA 3
-+#define DWC_OTG_HC_PID_SETUP 3
-+
-+ /** Number of periodic transactions per (micro)frame */
-+ unsigned multi_count: 2;
-+
-+ /** @name Transfer State */
-+ /** @{ */
-+
-+ /** Pointer to the current transfer buffer position. */
-+ uint8_t *xfer_buff;
-+ /** Total number of bytes to transfer. */
-+ uint32_t xfer_len;
-+ /** Number of bytes transferred so far. */
-+ uint32_t xfer_count;
-+ /** Packet count at start of transfer.*/
-+ uint16_t start_pkt_count;
-+
-+ /**
-+ * Flag to indicate whether the transfer has been started. Set to 1 if
-+ * it has been started, 0 otherwise.
-+ */
-+ uint8_t xfer_started;
-+
-+ /**
-+ * Set to 1 to indicate that a PING request should be issued on this
-+ * channel. If 0, process normally.
-+ */
-+ uint8_t do_ping;
-+
-+ /**
-+ * Set to 1 to indicate that the error count for this transaction is
-+ * non-zero. Set to 0 if the error count is 0.
-+ */
-+ uint8_t error_state;
-+
-+ /**
-+ * Set to 1 to indicate that this channel should be halted the next
-+ * time a request is queued for the channel. This is necessary in
-+ * slave mode if no request queue space is available when an attempt
-+ * is made to halt the channel.
-+ */
-+ uint8_t halt_on_queue;
-+
-+ /**
-+ * Set to 1 if the host channel has been halted, but the core is not
-+ * finished flushing queued requests. Otherwise 0.
-+ */
-+ uint8_t halt_pending;
-+
-+ /**
-+ * Reason for halting the host channel.
-+ */
-+ dwc_otg_halt_status_e halt_status;
-+
-+ /*
-+ * Split settings for the host channel
-+ */
-+ uint8_t do_split; /**< Enable split for the channel */
-+ uint8_t complete_split; /**< Enable complete split */
-+ uint8_t hub_addr; /**< Address of high speed hub */
-+
-+ uint8_t port_addr; /**< Port of the low/full speed device */
-+ /** Split transaction position
-+ * One of the following values:
-+ * - DWC_HCSPLIT_XACTPOS_MID
-+ * - DWC_HCSPLIT_XACTPOS_BEGIN
-+ * - DWC_HCSPLIT_XACTPOS_END
-+ * - DWC_HCSPLIT_XACTPOS_ALL */
-+ uint8_t xact_pos;
-+
-+ /** Set when the host channel does a short read. */
-+ uint8_t short_read;
-+
-+ /**
-+ * Number of requests issued for this channel since it was assigned to
-+ * the current transfer (not counting PINGs).
-+ */
-+ uint8_t requests;
-+
-+ /**
-+ * Queue Head for the transfer being processed by this channel.
-+ */
-+ struct dwc_otg_qh *qh;
-+
-+ /** @} */
-+
-+ /** Entry in list of host channels. */
-+ struct list_head hc_list_entry;
-+} dwc_hc_t;
-+
-+/**
-+ * The following parameters may be specified when starting the module. These
-+ * parameters define how the DWC_otg controller should be configured.
-+ * Parameter values are passed to the CIL initialization function
-+ * dwc_otg_cil_init.
-+ */
-+typedef struct dwc_otg_core_params
-+{
-+ int32_t opt;
-+#define dwc_param_opt_default 1
-+
-+ /**
-+ * Specifies the OTG capabilities. The driver will automatically
-+ * detect the value for this parameter if none is specified.
-+ * 0 - HNP and SRP capable (default)
-+ * 1 - SRP Only capable
-+ * 2 - No HNP/SRP capable
-+ */
-+ int32_t otg_cap;
-+#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
-+#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
-+#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
-+//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
-+#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
-+
-+ /**
-+ * Specifies whether to use slave or DMA mode for accessing the data
-+ * FIFOs. The driver will automatically detect the value for this
-+ * parameter if none is specified.
-+ * 0 - Slave
-+ * 1 - DMA (default, if available)
-+ */
-+ int32_t dma_enable;
-+#define dwc_param_dma_enable_default 1
-+
-+ /**
-+ * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data
-+ * FIFOs in device mode. The driver will automatically detect the value for this
-+ * parameter if none is specified.
-+ * 0 - address DMA
-+ * 1 - DMA Descriptor(default, if available)
-+ */
-+ int32_t dma_desc_enable;
-+#define dwc_param_dma_desc_enable_default 0
-+ /** The DMA Burst size (applicable only for External DMA
-+ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
-+ */
-+ int32_t dma_burst_size; /* Translate this to GAHBCFG values */
-+//#define dwc_param_dma_burst_size_default 32
-+#define dwc_param_dma_burst_size_default 1
-+
-+ /**
-+ * Specifies the maximum speed of operation in host and device mode.
-+ * The actual speed depends on the speed of the attached device and
-+ * the value of phy_type. The actual speed depends on the speed of the
-+ * attached device.
-+ * 0 - High Speed (default)
-+ * 1 - Full Speed
-+ */
-+ int32_t speed;
-+#define dwc_param_speed_default 0
-+#define DWC_SPEED_PARAM_HIGH 0
-+#define DWC_SPEED_PARAM_FULL 1
-+
-+ /** Specifies whether low power mode is supported when attached
-+ * to a Full Speed or Low Speed device in host mode.
-+ * 0 - Don't support low power mode (default)
-+ * 1 - Support low power mode
-+ */
-+ int32_t host_support_fs_ls_low_power;
-+#define dwc_param_host_support_fs_ls_low_power_default 0
-+
-+ /** Specifies the PHY clock rate in low power mode when connected to a
-+ * Low Speed device in host mode. This parameter is applicable only if
-+ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
-+ * then defaults to 6 MHZ otherwise 48 MHZ.
-+ *
-+ * 0 - 48 MHz
-+ * 1 - 6 MHz
-+ */
-+ int32_t host_ls_low_power_phy_clk;
-+#define dwc_param_host_ls_low_power_phy_clk_default 0
-+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
-+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
-+
-+ /**
-+ * 0 - Use cC FIFO size parameters
-+ * 1 - Allow dynamic FIFO sizing (default)
-+ */
-+ int32_t enable_dynamic_fifo;
-+#define dwc_param_enable_dynamic_fifo_default 1
-+
-+ /** Total number of 4-byte words in the data FIFO memory. This
-+ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
-+ * Tx FIFOs.
-+ * 32 to 32768 (default 8192)
-+ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
-+ */
-+ int32_t data_fifo_size;
-+#define dwc_param_data_fifo_size_default 8192
-+
-+ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
-+ * FIFO sizing is enabled.
-+ * 16 to 32768 (default 1064)
-+ */
-+ int32_t dev_rx_fifo_size;
-+//#define dwc_param_dev_rx_fifo_size_default 1064
-+#define dwc_param_dev_rx_fifo_size_default 0x100
-+
-+ /**
-+ * Specifies whether dedicated transmit FIFOs are
-+ * enabled for non periodic IN endpoints in device mode
-+ * 0 - No
-+ * 1 - Yes
-+ */
-+ int32_t en_multiple_tx_fifo;
-+#define dwc_param_en_multiple_tx_fifo_default 1
-+
-+ /** Number of 4-byte words in each of the Tx FIFOs in device
-+ * mode when dynamic FIFO sizing is enabled.
-+ * 4 to 768 (default 256)
-+ */
-+ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
-+//#define dwc_param_dev_tx_fifo_size_default 256
-+#define dwc_param_dev_tx_fifo_size_default 0x80
-+
-+ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
-+ * when dynamic FIFO sizing is enabled.
-+ * 16 to 32768 (default 1024)
-+ */
-+ int32_t dev_nperio_tx_fifo_size;
-+//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
-+#define dwc_param_dev_nperio_tx_fifo_size_default 0x80
-+
-+ /** Number of 4-byte words in each of the periodic Tx FIFOs in device
-+ * mode when dynamic FIFO sizing is enabled.
-+ * 4 to 768 (default 256)
-+ */
-+ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
-+//#define dwc_param_dev_perio_tx_fifo_size_default 256
-+#define dwc_param_dev_perio_tx_fifo_size_default 0x80
-+
-+ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
-+ * FIFO sizing is enabled.
-+ * 16 to 32768 (default 1024)
-+ */
-+ int32_t host_rx_fifo_size;
-+//#define dwc_param_host_rx_fifo_size_default 1024
-+#define dwc_param_host_rx_fifo_size_default 0x292
-+
-+ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
-+ * when Dynamic FIFO sizing is enabled in the core.
-+ * 16 to 32768 (default 1024)
-+ */
-+ int32_t host_nperio_tx_fifo_size;
-+//#define dwc_param_host_nperio_tx_fifo_size_default 1024
-+//#define dwc_param_host_nperio_tx_fifo_size_default 0x292
-+#define dwc_param_host_nperio_tx_fifo_size_default 0x80
-+
-+ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
-+ * FIFO sizing is enabled.
-+ * 16 to 32768 (default 1024)
-+ */
-+ int32_t host_perio_tx_fifo_size;
-+//#define dwc_param_host_perio_tx_fifo_size_default 1024
-+#define dwc_param_host_perio_tx_fifo_size_default 0x292
-+
-+ /** The maximum transfer size supported in bytes.
-+ * 2047 to 65,535 (default 65,535)
-+ */
-+ int32_t max_transfer_size;
-+#define dwc_param_max_transfer_size_default 65535
-+
-+ /** The maximum number of packets in a transfer.
-+ * 15 to 511 (default 511)
-+ */
-+ int32_t max_packet_count;
-+#define dwc_param_max_packet_count_default 511
-+
-+ /** The number of host channel registers to use.
-+ * 1 to 16 (default 12)
-+ * Note: The FPGA configuration supports a maximum of 12 host channels.
-+ */
-+ int32_t host_channels;
-+//#define dwc_param_host_channels_default 12
-+#define dwc_param_host_channels_default 16
-+
-+ /** The number of endpoints in addition to EP0 available for device
-+ * mode operations.
-+ * 1 to 15 (default 6 IN and OUT)
-+ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
-+ * endpoints in addition to EP0.
-+ */
-+ int32_t dev_endpoints;
-+//#define dwc_param_dev_endpoints_default 6
-+#define dwc_param_dev_endpoints_default 8
-+
-+ /**
-+ * Specifies the type of PHY interface to use. By default, the driver
-+ * will automatically detect the phy_type.
-+ *
-+ * 0 - Full Speed PHY
-+ * 1 - UTMI+ (default)
-+ * 2 - ULPI
-+ */
-+ int32_t phy_type;
-+#define DWC_PHY_TYPE_PARAM_FS 0
-+#define DWC_PHY_TYPE_PARAM_UTMI 1
-+#define DWC_PHY_TYPE_PARAM_ULPI 2
-+#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
-+
-+ /**
-+ * Specifies the UTMI+ Data Width. This parameter is
-+ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
-+ * PHY_TYPE, this parameter indicates the data width between
-+ * the MAC and the ULPI Wrapper.) Also, this parameter is
-+ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
-+ * to "8 and 16 bits", meaning that the core has been
-+ * configured to work at either data path width.
-+ *
-+ * 8 or 16 bits (default 16)
-+ */
-+ int32_t phy_utmi_width;
-+#define dwc_param_phy_utmi_width_default 16
-+
-+ /**
-+ * Specifies whether the ULPI operates at double or single
-+ * data rate. This parameter is only applicable if PHY_TYPE is
-+ * ULPI.
-+ *
-+ * 0 - single data rate ULPI interface with 8 bit wide data
-+ * bus (default)
-+ * 1 - double data rate ULPI interface with 4 bit wide data
-+ * bus
-+ */
-+ int32_t phy_ulpi_ddr;
-+#define dwc_param_phy_ulpi_ddr_default 0
-+
-+ /**
-+ * Specifies whether to use the internal or external supply to
-+ * drive the vbus with a ULPI phy.
-+ */
-+ int32_t phy_ulpi_ext_vbus;
-+#define DWC_PHY_ULPI_INTERNAL_VBUS 0
-+#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
-+#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
-+
-+ /**
-+ * Specifies whether to use the I2Cinterface for full speed PHY. This
-+ * parameter is only applicable if PHY_TYPE is FS.
-+ * 0 - No (default)
-+ * 1 - Yes
-+ */
-+ int32_t i2c_enable;
-+#define dwc_param_i2c_enable_default 0
-+
-+ int32_t ulpi_fs_ls;
-+#define dwc_param_ulpi_fs_ls_default 0
-+
-+ int32_t ts_dline;
-+#define dwc_param_ts_dline_default 0
-+
-+ /** Thresholding enable flag-
-+ * bit 0 - enable non-ISO Tx thresholding
-+ * bit 1 - enable ISO Tx thresholding
-+ * bit 2 - enable Rx thresholding
-+ */
-+ uint32_t thr_ctl;
-+#define dwc_param_thr_ctl_default 0
-+
-+ /** Thresholding length for Tx
-+ * FIFOs in 32 bit DWORDs
-+ */
-+ uint32_t tx_thr_length;
-+#define dwc_param_tx_thr_length_default 64
-+
-+ /** Thresholding length for Rx
-+ * FIFOs in 32 bit DWORDs
-+ */
-+ uint32_t rx_thr_length;
-+#define dwc_param_rx_thr_length_default 64
-+
-+ /** Per Transfer Interrupt
-+ * mode enable flag
-+ * 1 - Enabled
-+ * 0 - Disabled
-+ */
-+ uint32_t pti_enable;
-+#define dwc_param_pti_enable_default 0
-+
-+ /** Molti Processor Interrupt
-+ * mode enable flag
-+ * 1 - Enabled
-+ * 0 - Disabled
-+ */
-+ uint32_t mpi_enable;
-+#define dwc_param_mpi_enable_default 0
-+
-+} dwc_otg_core_params_t;
-+
-+#ifdef DEBUG
-+struct dwc_otg_core_if;
-+typedef struct hc_xfer_info
-+{
-+ struct dwc_otg_core_if *core_if;
-+ dwc_hc_t *hc;
-+} hc_xfer_info_t;
-+#endif
-+
-+/**
-+ * The <code>dwc_otg_core_if</code> structure contains information needed to manage
-+ * the DWC_otg controller acting in either host or device mode. It
-+ * represents the programming view of the controller as a whole.
-+ */
-+typedef struct dwc_otg_core_if
-+{
-+ /** Parameters that define how the core should be configured.*/
-+ dwc_otg_core_params_t *core_params;
-+
-+ /** Core Global registers starting at offset 000h. */
-+ dwc_otg_core_global_regs_t *core_global_regs;
-+
-+ /** Device-specific information */
-+ dwc_otg_dev_if_t *dev_if;
-+ /** Host-specific information */
-+ dwc_otg_host_if_t *host_if;
-+
-+ /** Value from SNPSID register */
-+ uint32_t snpsid;
-+
-+ /*
-+ * Set to 1 if the core PHY interface bits in USBCFG have been
-+ * initialized.
-+ */
-+ uint8_t phy_init_done;
-+
-+ /*
-+ * SRP Success flag, set by srp success interrupt in FS I2C mode
-+ */
-+ uint8_t srp_success;
-+ uint8_t srp_timer_started;
-+
-+ /* Common configuration information */
-+ /** Power and Clock Gating Control Register */
-+ volatile uint32_t *pcgcctl;
-+#define DWC_OTG_PCGCCTL_OFFSET 0xE00
-+
-+ /** Push/pop addresses for endpoints or host channels.*/
-+ uint32_t *data_fifo[MAX_EPS_CHANNELS];
-+#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
-+#define DWC_OTG_DATA_FIFO_SIZE 0x1000
-+
-+ /** Total RAM for FIFOs (Bytes) */
-+ uint16_t total_fifo_size;
-+ /** Size of Rx FIFO (Bytes) */
-+ uint16_t rx_fifo_size;
-+ /** Size of Non-periodic Tx FIFO (Bytes) */
-+ uint16_t nperio_tx_fifo_size;
-+
-+
-+ /** 1 if DMA is enabled, 0 otherwise. */
-+ uint8_t dma_enable;
-+
-+ /** 1 if Descriptor DMA mode is enabled, 0 otherwise. */
-+ uint8_t dma_desc_enable;
-+
-+ /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
-+ uint8_t pti_enh_enable;
-+
-+ /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
-+ uint8_t multiproc_int_enable;
-+
-+ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
-+ uint8_t en_multiple_tx_fifo;
-+
-+ /** Set to 1 if multiple packets of a high-bandwidth transfer is in
-+ * process of being queued */
-+ uint8_t queuing_high_bandwidth;
-+
-+ /** Hardware Configuration -- stored here for convenience.*/
-+ hwcfg1_data_t hwcfg1;
-+ hwcfg2_data_t hwcfg2;
-+ hwcfg3_data_t hwcfg3;
-+ hwcfg4_data_t hwcfg4;
-+
-+ /** Host and Device Configuration -- stored here for convenience.*/
-+ hcfg_data_t hcfg;
-+ dcfg_data_t dcfg;
-+
-+ /** The operational State, during transations
-+ * (a_host>>a_peripherial and b_device=>b_host) this may not
-+ * match the core but allows the software to determine
-+ * transitions.
-+ */
-+ uint8_t op_state;
-+
-+ /**
-+ * Set to 1 if the HCD needs to be restarted on a session request
-+ * interrupt. This is required if no connector ID status change has
-+ * occurred since the HCD was last disconnected.
-+ */
-+ uint8_t restart_hcd_on_session_req;
-+
-+ /** HCD callbacks */
-+ /** A-Device is a_host */
-+#define A_HOST (1)
-+ /** A-Device is a_suspend */
-+#define A_SUSPEND (2)
-+ /** A-Device is a_peripherial */
-+#define A_PERIPHERAL (3)
-+ /** B-Device is operating as a Peripheral. */
-+#define B_PERIPHERAL (4)
-+ /** B-Device is operating as a Host. */
-+#define B_HOST (5)
-+
-+ /** HCD callbacks */
-+ struct dwc_otg_cil_callbacks *hcd_cb;
-+ /** PCD callbacks */
-+ struct dwc_otg_cil_callbacks *pcd_cb;
-+
-+ /** Device mode Periodic Tx FIFO Mask */
-+ uint32_t p_tx_msk;
-+ /** Device mode Periodic Tx FIFO Mask */
-+ uint32_t tx_msk;
-+
-+ /** Workqueue object used for handling several interrupts */
-+ struct workqueue_struct *wq_otg;
-+
-+ /** Work object used for handling "Connector ID Status Change" Interrupt */
-+ struct work_struct w_conn_id;
-+
-+ /** Work object used for handling "Wakeup Detected" Interrupt */
-+ struct delayed_work w_wkp;
-+
-+#ifdef DEBUG
-+ uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
-+
-+ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
-+ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
-+
-+ uint32_t hfnum_7_samples;
-+ uint64_t hfnum_7_frrem_accum;
-+ uint32_t hfnum_0_samples;
-+ uint64_t hfnum_0_frrem_accum;
-+ uint32_t hfnum_other_samples;
-+ uint64_t hfnum_other_frrem_accum;
-+#endif
-+
-+
-+} dwc_otg_core_if_t;
-+
-+/*We must clear S3C24XX_EINTPEND external interrupt register
-+ * because after clearing in this register trigerred IRQ from
-+ * H/W core in kernel interrupt can be occured again before OTG
-+ * handlers clear all IRQ sources of Core registers because of
-+ * timing latencies and Low Level IRQ Type.
-+ */
-+
-+#ifdef CONFIG_MACH_IPMATE
-+#define S3C2410X_CLEAR_EINTPEND() \
-+do { \
-+ if (!dwc_otg_read_core_intr(core_if)) { \
-+ __raw_writel(1UL << 11,S3C24XX_EINTPEND); \
-+ } \
-+} while (0)
-+#else
-+#define S3C2410X_CLEAR_EINTPEND() do { } while (0)
-+#endif
-+
-+/*
-+ * The following functions are functions for works
-+ * using during handling some interrupts
-+ */
-+extern void w_conn_id_status_change(struct work_struct *p);
-+extern void w_wakeup_detected(struct work_struct *p);
-+
-+
-+/*
-+ * The following functions support initialization of the CIL driver component
-+ * and the DWC_otg controller.
-+ */
-+extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
-+ dwc_otg_core_params_t *_core_params);
-+extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
-+extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
-+
-+/** @name Device CIL Functions
-+ * The following functions support managing the DWC_otg controller in device
-+ * mode.
-+ */
-+/**@{*/
-+extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
-+extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
-+extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
-+extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if);
-+#ifdef DWC_EN_ISOC
-+extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
-+extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
-+#endif //DWC_EN_ISOC
-+/**@}*/
-+
-+/** @name Host CIL Functions
-+ * The following functions support managing the DWC_otg controller in host
-+ * mode.
-+ */
-+/**@{*/
-+extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
-+extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
-+ dwc_hc_t *_hc,
-+ dwc_otg_halt_status_e _halt_status);
-+extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
-+extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
-+extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
-+extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
-+extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
-+extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
-+extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
-+
-+/**
-+ * This function Reads HPRT0 in preparation to modify. It keeps the
-+ * WC bits 0 so that if they are read as 1, they won't clear when you
-+ * write it back
-+ */
-+static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
-+{
-+ hprt0_data_t hprt0;
-+ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
-+ hprt0.b.prtena = 0;
-+ hprt0.b.prtconndet = 0;
-+ hprt0.b.prtenchng = 0;
-+ hprt0.b.prtovrcurrchng = 0;
-+ return hprt0.d32;
-+}
-+
-+extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
-+/**@}*/
-+
-+/** @name Common CIL Functions
-+ * The following functions support managing the DWC_otg controller in either
-+ * device or host mode.
-+ */
-+/**@{*/
-+
-+extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
-+ uint8_t *dest,
-+ uint16_t bytes);
-+
-+extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
-+
-+extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
-+ const int _num );
-+extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
-+extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
-+
-+extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count);
-+extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count);
-+
-+/**
-+ * This function returns the Core Interrupt register.
-+ */
-+static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if)
-+{
-+ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
-+ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
-+}
-+
-+/**
-+ * This function returns the OTG Interrupt register.
-+ */
-+static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if)
-+{
-+ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
-+}
-+
-+/**
-+ * This function reads the Device All Endpoints Interrupt register and
-+ * returns the IN endpoint interrupt bits.
-+ */
-+static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if)
-+{
-+ uint32_t v;
-+
-+ if(core_if->multiproc_int_enable) {
-+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
-+ } else {
-+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
-+ }
-+ return (v & 0xffff);
-+
-+}
-+
-+/**
-+ * This function reads the Device All Endpoints Interrupt register and
-+ * returns the OUT endpoint interrupt bits.
-+ */
-+static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if)
-+{
-+ uint32_t v;
-+
-+ if(core_if->multiproc_int_enable) {
-+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
-+ } else {
-+ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
-+ }
-+
-+ return ((v & 0xffff0000) >> 16);
-+}
-+
-+/**
-+ * This function returns the Device IN EP Interrupt register
-+ */
-+static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if,
-+ dwc_ep_t *ep)
-+{
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ uint32_t v, msk, emp;
-+
-+ if(core_if->multiproc_int_enable) {
-+ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]);
-+ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
-+ msk |= ((emp >> ep->num) & 0x1) << 7;
-+ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
-+ } else {
-+ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
-+ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
-+ msk |= ((emp >> ep->num) & 0x1) << 7;
-+ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
-+ }
-+
-+
-+ return v;
-+}
-+/**
-+ * This function returns the Device OUT EP Interrupt register
-+ */
-+static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
-+ dwc_ep_t *_ep)
-+{
-+ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
-+ uint32_t v;
-+ doepmsk_data_t msk = { .d32 = 0 };
-+
-+ if(_core_if->multiproc_int_enable) {
-+ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]);
-+ if(_core_if->pti_enh_enable) {
-+ msk.b.pktdrpsts = 1;
-+ }
-+ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
-+ } else {
-+ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
-+ if(_core_if->pti_enh_enable) {
-+ msk.b.pktdrpsts = 1;
-+ }
-+ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
-+ }
-+ return v;
-+}
-+
-+/**
-+ * This function returns the Host All Channel Interrupt register
-+ */
-+static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
-+{
-+ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
-+}
-+
-+static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
-+{
-+ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
-+}
-+
-+
-+/**
-+ * This function returns the mode of the operation, host or device.
-+ *
-+ * @return 0 - Device Mode, 1 - Host Mode
-+ */
-+static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if)
-+{
-+ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
-+}
-+
-+static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
-+{
-+ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
-+}
-+static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
-+{
-+ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
-+}
-+
-+extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
-+
-+
-+/**@}*/
-+
-+/**
-+ * DWC_otg CIL callback structure. This structure allows the HCD and
-+ * PCD to register functions used for starting and stopping the PCD
-+ * and HCD for role change on for a DRD.
-+ */
-+typedef struct dwc_otg_cil_callbacks
-+{
-+ /** Start function for role change */
-+ int (*start) (void *_p);
-+ /** Stop Function for role change */
-+ int (*stop) (void *_p);
-+ /** Disconnect Function for role change */
-+ int (*disconnect) (void *_p);
-+ /** Resume/Remote wakeup Function */
-+ int (*resume_wakeup) (void *_p);
-+ /** Suspend function */
-+ int (*suspend) (void *_p);
-+ /** Session Start (SRP) */
-+ int (*session_start) (void *_p);
-+ /** Pointer passed to start() and stop() */
-+ void *p;
-+} dwc_otg_cil_callbacks_t;
-+
-+extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
-+ dwc_otg_cil_callbacks_t *_cb,
-+ void *_p);
-+extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
-+ dwc_otg_cil_callbacks_t *_cb,
-+ void *_p);
-+#ifndef warn
-+#define warn printk
-+#endif
-+
-+#endif
-+
---- /dev/null
-+++ b/drivers/usb/dwc/otg_cil_intr.c
-@@ -0,0 +1,852 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $
-+ * $Revision: #10 $
-+ * $Date: 2008/07/16 $
-+ * $Change: 1065567 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+/** @file
-+ *
-+ * The Core Interface Layer provides basic services for accessing and
-+ * managing the DWC_otg hardware. These services are used by both the
-+ * Host Controller Driver and the Peripheral Controller Driver.
-+ *
-+ * This file contains the Common Interrupt handlers.
-+ */
-+#include "otg_plat.h"
-+#include "otg_regs.h"
-+#include "otg_cil.h"
-+#include "otg_pcd.h"
-+
-+#ifdef DEBUG
-+inline const char *op_state_str(dwc_otg_core_if_t *core_if)
-+{
-+ return (core_if->op_state==A_HOST?"a_host":
-+ (core_if->op_state==A_SUSPEND?"a_suspend":
-+ (core_if->op_state==A_PERIPHERAL?"a_peripheral":
-+ (core_if->op_state==B_PERIPHERAL?"b_peripheral":
-+ (core_if->op_state==B_HOST?"b_host":
-+ "unknown")))));
-+}
-+#endif
-+
-+/** This function will log a debug message
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if)
-+{
-+ gintsts_data_t gintsts;
-+ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
-+ dwc_otg_mode(core_if) ? "Host" : "Device");
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.modemismatch = 1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+ return 1;
-+}
-+
-+/** Start the HCD. Helper function for using the HCD callbacks.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static inline void hcd_start(dwc_otg_core_if_t *core_if)
-+{
-+ if (core_if->hcd_cb && core_if->hcd_cb->start) {
-+ core_if->hcd_cb->start(core_if->hcd_cb->p);
-+ }
-+}
-+/** Stop the HCD. Helper function for using the HCD callbacks.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static inline void hcd_stop(dwc_otg_core_if_t *core_if)
-+{
-+ if (core_if->hcd_cb && core_if->hcd_cb->stop) {
-+ core_if->hcd_cb->stop(core_if->hcd_cb->p);
-+ }
-+}
-+/** Disconnect the HCD. Helper function for using the HCD callbacks.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static inline void hcd_disconnect(dwc_otg_core_if_t *core_if)
-+{
-+ if (core_if->hcd_cb && core_if->hcd_cb->disconnect) {
-+ core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
-+ }
-+}
-+/** Inform the HCD the a New Session has begun. Helper function for
-+ * using the HCD callbacks.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static inline void hcd_session_start(dwc_otg_core_if_t *core_if)
-+{
-+ if (core_if->hcd_cb && core_if->hcd_cb->session_start) {
-+ core_if->hcd_cb->session_start(core_if->hcd_cb->p);
-+ }
-+}
-+
-+/** Start the PCD. Helper function for using the PCD callbacks.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static inline void pcd_start(dwc_otg_core_if_t *core_if)
-+{
-+ if (core_if->pcd_cb && core_if->pcd_cb->start) {
-+ core_if->pcd_cb->start(core_if->pcd_cb->p);
-+ }
-+}
-+/** Stop the PCD. Helper function for using the PCD callbacks.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static inline void pcd_stop(dwc_otg_core_if_t *core_if)
-+{
-+ if (core_if->pcd_cb && core_if->pcd_cb->stop) {
-+ core_if->pcd_cb->stop(core_if->pcd_cb->p);
-+ }
-+}
-+/** Suspend the PCD. Helper function for using the PCD callbacks.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static inline void pcd_suspend(dwc_otg_core_if_t *core_if)
-+{
-+ if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
-+ core_if->pcd_cb->suspend(core_if->pcd_cb->p);
-+ }
-+}
-+/** Resume the PCD. Helper function for using the PCD callbacks.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static inline void pcd_resume(dwc_otg_core_if_t *core_if)
-+{
-+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
-+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
-+ }
-+}
-+
-+/**
-+ * This function handles the OTG Interrupts. It reads the OTG
-+ * Interrupt Register (GOTGINT) to determine what interrupt has
-+ * occurred.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if)
-+{
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+ gotgint_data_t gotgint;
-+ gotgctl_data_t gotgctl;
-+ gintmsk_data_t gintmsk;
-+ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
-+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
-+ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
-+ op_state_str(core_if));
-+ //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32);
-+
-+ if (gotgint.b.sesenddet) {
-+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
-+ "Session End Detected++ (%s)\n",
-+ op_state_str(core_if));
-+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
-+
-+ if (core_if->op_state == B_HOST) {
-+
-+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_start(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ core_if->op_state = B_PERIPHERAL;
-+ } else {
-+ dwc_otg_pcd_t *pcd;
-+
-+ /* If not B_HOST and Device HNP still set. HNP
-+ * Did not succeed!*/
-+ if (gotgctl.b.devhnpen) {
-+ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
-+ DWC_ERROR("Device Not Connected/Responding!\n");
-+ }
-+
-+ /* If Session End Detected the B-Cable has
-+ * been disconnected. */
-+ /* Reset PCD and Gadget driver to a
-+ * clean state. */
-+
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_stop(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ }
-+ gotgctl.d32 = 0;
-+ gotgctl.b.devhnpen = 1;
-+ dwc_modify_reg32(&global_regs->gotgctl,
-+ gotgctl.d32, 0);
-+ }
-+ if (gotgint.b.sesreqsucstschng) {
-+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
-+ "Session Reqeust Success Status Change++\n");
-+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
-+ if (gotgctl.b.sesreqscs) {
-+ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
-+ (core_if->core_params->i2c_enable)) {
-+ core_if->srp_success = 1;
-+ }
-+ else {
-+ dwc_otg_pcd_t *pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_resume(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ /* Clear Session Request */
-+ gotgctl.d32 = 0;
-+ gotgctl.b.sesreq = 1;
-+ dwc_modify_reg32(&global_regs->gotgctl,
-+ gotgctl.d32, 0);
-+ }
-+ }
-+ }
-+ if (gotgint.b.hstnegsucstschng) {
-+ /* Print statements during the HNP interrupt handling
-+ * can cause it to fail.*/
-+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
-+ if (gotgctl.b.hstnegscs) {
-+ if (dwc_otg_is_host_mode(core_if)) {
-+ dwc_otg_pcd_t *pcd;
-+
-+ core_if->op_state = B_HOST;
-+ /*
-+ * Need to disable SOF interrupt immediately.
-+ * When switching from device to host, the PCD
-+ * interrupt handler won't handle the
-+ * interrupt if host mode is already set. The
-+ * HCD interrupt handler won't get called if
-+ * the HCD state is HALT. This means that the
-+ * interrupt does not get handled and Linux
-+ * complains loudly.
-+ */
-+ gintmsk.d32 = 0;
-+ gintmsk.b.sofintr = 1;
-+ dwc_modify_reg32(&global_regs->gintmsk,
-+ gintmsk.d32, 0);
-+
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_stop(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ /*
-+ * Initialize the Core for Host mode.
-+ */
-+ hcd_start(core_if);
-+ core_if->op_state = B_HOST;
-+ }
-+ } else {
-+ gotgctl.d32 = 0;
-+ gotgctl.b.hnpreq = 1;
-+ gotgctl.b.devhnpen = 1;
-+ dwc_modify_reg32(&global_regs->gotgctl,
-+ gotgctl.d32, 0);
-+ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
-+ DWC_ERROR("Device Not Connected/Responding\n");
-+ }
-+ }
-+ if (gotgint.b.hstnegdet) {
-+ /* The disconnect interrupt is set at the same time as
-+ * Host Negotiation Detected. During the mode
-+ * switch all interrupts are cleared so the disconnect
-+ * interrupt handler will not get executed.
-+ */
-+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
-+ "Host Negotiation Detected++ (%s)\n",
-+ (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
-+ if (dwc_otg_is_device_mode(core_if)){
-+ dwc_otg_pcd_t *pcd;
-+
-+ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state);
-+ hcd_disconnect(core_if);
-+
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_start(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ core_if->op_state = A_PERIPHERAL;
-+ } else {
-+ dwc_otg_pcd_t *pcd;
-+
-+ /*
-+ * Need to disable SOF interrupt immediately. When
-+ * switching from device to host, the PCD interrupt
-+ * handler won't handle the interrupt if host mode is
-+ * already set. The HCD interrupt handler won't get
-+ * called if the HCD state is HALT. This means that
-+ * the interrupt does not get handled and Linux
-+ * complains loudly.
-+ */
-+ gintmsk.d32 = 0;
-+ gintmsk.b.sofintr = 1;
-+ dwc_modify_reg32(&global_regs->gintmsk,
-+ gintmsk.d32, 0);
-+
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_stop(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ hcd_start(core_if);
-+ core_if->op_state = A_HOST;
-+ }
-+ }
-+ if (gotgint.b.adevtoutchng) {
-+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
-+ "A-Device Timeout Change++\n");
-+ }
-+ if (gotgint.b.debdone) {
-+ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
-+ "Debounce Done++\n");
-+ }
-+
-+ /* Clear GOTGINT */
-+ dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32);
-+
-+ return 1;
-+}
-+
-+
-+void w_conn_id_status_change(struct work_struct *p)
-+{
-+ dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id);
-+
-+ uint32_t count = 0;
-+ gotgctl_data_t gotgctl = { .d32 = 0 };
-+
-+ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
-+ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
-+ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
-+
-+ /* B-Device connector (Device Mode) */
-+ if (gotgctl.b.conidsts) {
-+ dwc_otg_pcd_t *pcd;
-+
-+ /* Wait for switch to device mode. */
-+ while (!dwc_otg_is_device_mode(core_if)){
-+ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
-+ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
-+ MDELAY(100);
-+ if (++count > 10000) *(uint32_t*)NULL=0;
-+ }
-+ core_if->op_state = B_PERIPHERAL;
-+ dwc_otg_core_init(core_if);
-+ dwc_otg_enable_global_interrupts(core_if);
-+
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_start(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ } else {
-+ /* A-Device connector (Host Mode) */
-+ while (!dwc_otg_is_host_mode(core_if)) {
-+ DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
-+ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
-+ MDELAY(100);
-+ if (++count > 10000) *(uint32_t*)NULL=0;
-+ }
-+ core_if->op_state = A_HOST;
-+ /*
-+ * Initialize the Core for Host mode.
-+ */
-+ dwc_otg_core_init(core_if);
-+ dwc_otg_enable_global_interrupts(core_if);
-+ hcd_start(core_if);
-+ }
-+}
-+
-+
-+/**
-+ * This function handles the Connector ID Status Change Interrupt. It
-+ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
-+ * is a Device to Host Mode transition or a Host Mode to Device
-+ * Transition.
-+ *
-+ * This only occurs when the cable is connected/removed from the PHY
-+ * connector.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if)
-+{
-+
-+ /*
-+ * Need to disable SOF interrupt immediately. If switching from device
-+ * to host, the PCD interrupt handler won't handle the interrupt if
-+ * host mode is already set. The HCD interrupt handler won't get
-+ * called if the HCD state is HALT. This means that the interrupt does
-+ * not get handled and Linux complains loudly.
-+ */
-+ gintmsk_data_t gintmsk = { .d32 = 0 };
-+ gintsts_data_t gintsts = { .d32 = 0 };
-+
-+ gintmsk.b.sofintr = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
-+
-+ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
-+ (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
-+
-+ /*
-+ * Need to schedule a work, as there are possible DELAY function calls
-+ */
-+ queue_work(core_if->wq_otg, &core_if->w_conn_id);
-+
-+ /* Set flag and clear interrupt */
-+ gintsts.b.conidstschng = 1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * This interrupt indicates that a device is initiating the Session
-+ * Request Protocol to request the host to turn on bus power so a new
-+ * session can begin. The handler responds by turning on bus power. If
-+ * the DWC_otg controller is in low power mode, the handler brings the
-+ * controller out of low power mode before turning on bus power.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if)
-+{
-+ hprt0_data_t hprt0;
-+ gintsts_data_t gintsts;
-+
-+#ifndef DWC_HOST_ONLY
-+ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
-+
-+ if (dwc_otg_is_device_mode(core_if)) {
-+ DWC_PRINT("SRP: Device mode\n");
-+ } else {
-+ DWC_PRINT("SRP: Host mode\n");
-+
-+ /* Turn on the port power bit. */
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtpwr = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+
-+ /* Start the Connection timer. So a message can be displayed
-+ * if connect does not occur within 10 seconds. */
-+ hcd_session_start(core_if);
-+ }
-+#endif
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.sessreqintr = 1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+
-+void w_wakeup_detected(struct work_struct *p)
-+{
-+ struct delayed_work *dw = container_of(p, struct delayed_work, work);
-+ dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp);
-+
-+ /*
-+ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
-+ * so that OPT tests pass with all PHYs).
-+ */
-+ hprt0_data_t hprt0 = {.d32=0};
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
-+// MDELAY(70);
-+ hprt0.b.prtres = 0; /* Resume */
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0));
-+}
-+/**
-+ * This interrupt indicates that the DWC_otg controller has detected a
-+ * resume or remote wakeup sequence. If the DWC_otg controller is in
-+ * low power mode, the handler must brings the controller out of low
-+ * power mode. The controller automatically begins resume
-+ * signaling. The handler schedules a time to stop resume signaling.
-+ */
-+int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if)
-+{
-+ gintsts_data_t gintsts;
-+
-+ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
-+
-+ if (dwc_otg_is_device_mode(core_if)) {
-+ dctl_data_t dctl = {.d32=0};
-+ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
-+ dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts));
-+#ifdef PARTIAL_POWER_DOWN
-+ if (core_if->hwcfg4.b.power_optimiz) {
-+ pcgcctl_data_t power = {.d32=0};
-+
-+ power.d32 = dwc_read_reg32(core_if->pcgcctl);
-+ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
-+
-+ power.b.stoppclk = 0;
-+ dwc_write_reg32(core_if->pcgcctl, power.d32);
-+
-+ power.b.pwrclmp = 0;
-+ dwc_write_reg32(core_if->pcgcctl, power.d32);
-+
-+ power.b.rstpdwnmodule = 0;
-+ dwc_write_reg32(core_if->pcgcctl, power.d32);
-+ }
-+#endif
-+ /* Clear the Remote Wakeup Signalling */
-+ dctl.b.rmtwkupsig = 1;
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
-+ dctl.d32, 0);
-+
-+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
-+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
-+ }
-+
-+ } else {
-+ pcgcctl_data_t pcgcctl = {.d32=0};
-+
-+ /* Restart the Phy Clock */
-+ pcgcctl.b.stoppclk = 1;
-+ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
-+
-+ queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1));
-+ }
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.wkupintr = 1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * This interrupt indicates that a device has been disconnected from
-+ * the root port.
-+ */
-+int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if)
-+{
-+ gintsts_data_t gintsts;
-+
-+ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
-+ (dwc_otg_is_host_mode(core_if)?"Host":"Device"),
-+ op_state_str(core_if));
-+
-+/** @todo Consolidate this if statement. */
-+#ifndef DWC_HOST_ONLY
-+ if (core_if->op_state == B_HOST) {
-+ dwc_otg_pcd_t *pcd;
-+
-+ /* If in device mode Disconnect and stop the HCD, then
-+ * start the PCD. */
-+ hcd_disconnect(core_if);
-+
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_start(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ core_if->op_state = B_PERIPHERAL;
-+ } else if (dwc_otg_is_device_mode(core_if)) {
-+ gotgctl_data_t gotgctl = { .d32 = 0 };
-+ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
-+ if (gotgctl.b.hstsethnpen==1) {
-+ /* Do nothing, if HNP in process the OTG
-+ * interrupt "Host Negotiation Detected"
-+ * interrupt will do the mode switch.
-+ */
-+ } else if (gotgctl.b.devhnpen == 0) {
-+ dwc_otg_pcd_t *pcd;
-+
-+ /* If in device mode Disconnect and stop the HCD, then
-+ * start the PCD. */
-+ hcd_disconnect(core_if);
-+
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_start(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+
-+ core_if->op_state = B_PERIPHERAL;
-+ } else {
-+ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
-+ }
-+ } else {
-+ if (core_if->op_state == A_HOST) {
-+ /* A-Cable still connected but device disconnected. */
-+ hcd_disconnect(core_if);
-+ }
-+ }
-+#endif
-+
-+ gintsts.d32 = 0;
-+ gintsts.b.disconnect = 1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+ return 1;
-+}
-+/**
-+ * This interrupt indicates that SUSPEND state has been detected on
-+ * the USB.
-+ *
-+ * For HNP the USB Suspend interrupt signals the change from
-+ * "a_peripheral" to "a_host".
-+ *
-+ * When power management is enabled the core will be put in low power
-+ * mode.
-+ */
-+int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if)
-+{
-+ dsts_data_t dsts;
-+ gintsts_data_t gintsts;
-+
-+ DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
-+
-+ if (dwc_otg_is_device_mode(core_if)) {
-+ dwc_otg_pcd_t *pcd;
-+
-+ /* Check the Device status register to determine if the Suspend
-+ * state is active. */
-+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
-+ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
-+ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
-+ "HWCFG4.power Optimize=%d\n",
-+ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
-+
-+
-+#ifdef PARTIAL_POWER_DOWN
-+/** @todo Add a module parameter for power management. */
-+ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
-+ pcgcctl_data_t power = {.d32=0};
-+ DWC_DEBUGPL(DBG_CIL, "suspend\n");
-+
-+ power.b.pwrclmp = 1;
-+ dwc_write_reg32(core_if->pcgcctl, power.d32);
-+
-+ power.b.rstpdwnmodule = 1;
-+ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
-+
-+ power.b.stoppclk = 1;
-+ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
-+ } else {
-+ DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
-+ }
-+#endif
-+ /* PCD callback for suspend. */
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_suspend(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+ } else {
-+ if (core_if->op_state == A_PERIPHERAL) {
-+ dwc_otg_pcd_t *pcd;
-+
-+ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
-+ /* Clear the a_peripheral flag, back to a_host. */
-+
-+ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
-+ if(unlikely(!pcd)) {
-+ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
-+ BUG();
-+ }
-+ SPIN_LOCK(&pcd->lock);
-+
-+ pcd_stop(core_if);
-+
-+ SPIN_UNLOCK(&pcd->lock);
-+
-+ hcd_start(core_if);
-+ core_if->op_state = A_HOST;
-+ }
-+ }
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.usbsuspend = 1;
-+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+
-+/**
-+ * This function returns the Core Interrupt register.
-+ */
-+static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if)
-+{
-+ gintsts_data_t gintsts;
-+ gintmsk_data_t gintmsk;
-+ gintmsk_data_t gintmsk_common = {.d32=0};
-+ gintmsk_common.b.wkupintr = 1;
-+ gintmsk_common.b.sessreqintr = 1;
-+ gintmsk_common.b.conidstschng = 1;
-+ gintmsk_common.b.otgintr = 1;
-+ gintmsk_common.b.modemismatch = 1;
-+ gintmsk_common.b.disconnect = 1;
-+ gintmsk_common.b.usbsuspend = 1;
-+ /** @todo: The port interrupt occurs while in device
-+ * mode. Added code to CIL to clear the interrupt for now!
-+ */
-+ gintmsk_common.b.portintr = 1;
-+
-+ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
-+ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
-+#ifdef DEBUG
-+ /* if any common interrupts set */
-+ if (gintsts.d32 & gintmsk_common.d32) {
-+ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
-+ gintsts.d32, gintmsk.d32);
-+ }
-+#endif
-+
-+ return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
-+
-+}
-+
-+/**
-+ * Common interrupt handler.
-+ *
-+ * The common interrupts are those that occur in both Host and Device mode.
-+ * This handler handles the following interrupts:
-+ * - Mode Mismatch Interrupt
-+ * - Disconnect Interrupt
-+ * - OTG Interrupt
-+ * - Connector ID Status Change Interrupt
-+ * - Session Request Interrupt.
-+ * - Resume / Remote Wakeup Detected Interrupt.
-+ *
-+ */
-+int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if)
-+{
-+ int retval = 0;
-+ gintsts_data_t gintsts;
-+
-+ gintsts.d32 = dwc_otg_read_common_intr(core_if);
-+
-+ if (gintsts.b.modemismatch) {
-+ retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
-+ }
-+ if (gintsts.b.otgintr) {
-+ retval |= dwc_otg_handle_otg_intr(core_if);
-+ }
-+ if (gintsts.b.conidstschng) {
-+ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
-+ }
-+ if (gintsts.b.disconnect) {
-+ retval |= dwc_otg_handle_disconnect_intr(core_if);
-+ }
-+ if (gintsts.b.sessreqintr) {
-+ retval |= dwc_otg_handle_session_req_intr(core_if);
-+ }
-+ if (gintsts.b.wkupintr) {
-+ retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
-+ }
-+ if (gintsts.b.usbsuspend) {
-+ retval |= dwc_otg_handle_usb_suspend_intr(core_if);
-+ }
-+ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
-+ /* The port interrupt occurs while in device mode with HPRT0
-+ * Port Enable/Disable.
-+ */
-+ gintsts.d32 = 0;
-+ gintsts.b.portintr = 1;
-+ dwc_write_reg32(&core_if->core_global_regs->gintsts,
-+ gintsts.d32);
-+ retval |= 1;
-+
-+ }
-+
-+ S3C2410X_CLEAR_EINTPEND();
-+
-+ return retval;
-+}
---- /dev/null
-+++ b/drivers/usb/dwc/otg_driver.c
-@@ -0,0 +1,965 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.c $
-+ * $Revision: #63 $
-+ * $Date: 2008/09/24 $
-+ * $Change: 1101777 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+/** @file
-+ * The dwc_otg_driver module provides the initialization and cleanup entry
-+ * points for the DWC_otg driver. This module will be dynamically installed
-+ * after Linux is booted using the insmod command. When the module is
-+ * installed, the dwc_otg_driver_init function is called. When the module is
-+ * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
-+ *
-+ * This module also defines a data structure for the dwc_otg_driver, which is
-+ * used in conjunction with the standard ARM lm_device structure. These
-+ * structures allow the OTG driver to comply with the standard Linux driver
-+ * model in which devices and drivers are registered with a bus driver. This
-+ * has the benefit that Linux can expose attributes of the driver and device
-+ * in its special sysfs file system. Users can then read or write files in
-+ * this file system to perform diagnostics on the driver components or the
-+ * device.
-+ */
-+
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/moduleparam.h>
-+#include <linux/init.h>
-+#include <linux/device.h>
-+#include <linux/errno.h>
-+#include <linux/types.h>
-+#include <linux/stat.h> /* permission constants */
-+#include <linux/version.h>
-+#include <linux/platform_device.h>
-+#include <linux/io.h>
-+#include <linux/irq.h>
-+#include <asm/io.h>
-+
-+#include <asm/sizes.h>
-+#include <mach/pm.h>
-+
-+#include "otg_plat.h"
-+#include "otg_attr.h"
-+#include "otg_driver.h"
-+#include "otg_cil.h"
-+#include "otg_pcd.h"
-+#include "otg_hcd.h"
-+
-+#define DWC_DRIVER_VERSION "2.72a 24-JUN-2008"
-+#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
-+
-+static const char dwc_driver_name[] = "dwc_otg";
-+
-+/*-------------------------------------------------------------------------*/
-+/* Encapsulate the module parameter settings */
-+
-+static dwc_otg_core_params_t dwc_otg_module_params = {
-+ .opt = -1,
-+ .otg_cap = -1,
-+ .dma_enable = -1,
-+ .dma_desc_enable = -1,
-+ .dma_burst_size = -1,
-+ .speed = -1,
-+ .host_support_fs_ls_low_power = -1,
-+ .host_ls_low_power_phy_clk = -1,
-+ .enable_dynamic_fifo = -1,
-+ .data_fifo_size = -1,
-+ .dev_rx_fifo_size = -1,
-+ .dev_nperio_tx_fifo_size = -1,
-+ .dev_perio_tx_fifo_size = {
-+ /* dev_perio_tx_fifo_size_1 */
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1
-+ /* 15 */
-+ },
-+ .host_rx_fifo_size = -1,
-+ .host_nperio_tx_fifo_size = -1,
-+ .host_perio_tx_fifo_size = -1,
-+ .max_transfer_size = -1,
-+ .max_packet_count = -1,
-+ .host_channels = -1,
-+ .dev_endpoints = -1,
-+ .phy_type = -1,
-+ .phy_utmi_width = -1,
-+ .phy_ulpi_ddr = -1,
-+ .phy_ulpi_ext_vbus = -1,
-+ .i2c_enable = -1,
-+ .ulpi_fs_ls = -1,
-+ .ts_dline = -1,
-+ .en_multiple_tx_fifo = -1,
-+ .dev_tx_fifo_size = {
-+ /* dev_tx_fifo_size */
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1,
-+ -1
-+ /* 15 */
-+ },
-+ .thr_ctl = -1,
-+ .tx_thr_length = -1,
-+ .rx_thr_length = -1,
-+ .pti_enable = -1,
-+ .mpi_enable = -1,
-+};
-+
-+/**
-+ * Global Debug Level Mask.
-+ */
-+uint32_t g_dbg_lvl = 0; /* OFF */
-+
-+/**
-+ * This function is called during module intialization to verify that
-+ * the module parameters are in a valid state.
-+ */
-+static int check_parameters(dwc_otg_core_if_t *core_if)
-+{
-+ int i;
-+ int retval = 0;
-+
-+/* Checks if the parameter is outside of its valid range of values */
-+#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
-+ ((dwc_otg_module_params._param_ < (_low_)) || \
-+ (dwc_otg_module_params._param_ > (_high_)))
-+
-+/* If the parameter has been set by the user, check that the parameter value is
-+ * within the value range of values. If not, report a module error. */
-+#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
-+ do { \
-+ if (dwc_otg_module_params._param_ != -1) { \
-+ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
-+ DWC_ERROR("`%d' invalid for parameter `%s'\n", \
-+ dwc_otg_module_params._param_, _string_); \
-+ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
-+ retval++; \
-+ } \
-+ } \
-+ } while (0)
-+
-+ DWC_OTG_PARAM_ERR(opt,0,1,"opt");
-+ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
-+ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
-+ DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable");
-+ DWC_OTG_PARAM_ERR(speed,0,1,"speed");
-+ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
-+ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
-+ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
-+ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
-+ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
-+ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
-+ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
-+ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
-+ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
-+ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
-+ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
-+ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
-+ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
-+ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
-+ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
-+ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
-+ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
-+ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
-+ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
-+
-+ if (dwc_otg_module_params.dma_burst_size != -1) {
-+ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
-+ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
-+ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
-+ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
-+ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
-+ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
-+ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
-+ DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) {
-+ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
-+ dwc_otg_module_params.dma_burst_size);
-+ dwc_otg_module_params.dma_burst_size = 32;
-+ retval++;
-+ }
-+
-+ {
-+ uint8_t brst_sz = 0;
-+ while(dwc_otg_module_params.dma_burst_size > 1) {
-+ brst_sz ++;
-+ dwc_otg_module_params.dma_burst_size >>= 1;
-+ }
-+ dwc_otg_module_params.dma_burst_size = brst_sz;
-+ }
-+ }
-+
-+ if (dwc_otg_module_params.phy_utmi_width != -1) {
-+ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
-+ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
-+ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
-+ dwc_otg_module_params.phy_utmi_width);
-+ dwc_otg_module_params.phy_utmi_width = 16;
-+ retval++;
-+ }
-+ }
-+
-+ for (i = 0; i < 15; i++) {
-+ /** @todo should be like above */
-+ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size");
-+ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
-+ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) {
-+ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
-+ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
-+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
-+ retval++;
-+ }
-+ }
-+ }
-+
-+ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
-+
-+ for (i = 0; i < 15; i++) {
-+ /** @todo should be like above */
-+ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size");
-+ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
-+ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
-+ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
-+ dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i);
-+ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
-+ retval++;
-+ }
-+ }
-+ }
-+
-+ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
-+ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
-+ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
-+
-+ DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable");
-+ DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable");
-+
-+ /* At this point, all module parameters that have been set by the user
-+ * are valid, and those that have not are left unset. Now set their
-+ * default values and/or check the parameters against the hardware
-+ * configurations of the OTG core. */
-+
-+/* This sets the parameter to the default value if it has not been set by the
-+ * user */
-+#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
-+ ({ \
-+ int changed = 1; \
-+ if (dwc_otg_module_params._param_ == -1) { \
-+ changed = 0; \
-+ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
-+ } \
-+ changed; \
-+ })
-+
-+/* This checks the macro agains the hardware configuration to see if it is
-+ * valid. It is possible that the default value could be invalid. In this
-+ * case, it will report a module error if the user touched the parameter.
-+ * Otherwise it will adjust the value without any error. */
-+#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
-+ ({ \
-+ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
-+ int error = 0; \
-+ if (!(_is_valid_)) { \
-+ if (changed) { \
-+ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
-+ error = 1; \
-+ } \
-+ dwc_otg_module_params._param_ = (_set_valid_); \
-+ } \
-+ error; \
-+ })
-+
-+ /* OTG Cap */
-+ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap",
-+ ({
-+ int valid;
-+ valid = 1;
-+ switch (dwc_otg_module_params.otg_cap) {
-+ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
-+ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
-+ valid = 0;
-+ break;
-+ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
-+ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
-+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
-+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
-+ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
-+ valid = 0;
-+ }
-+ break;
-+ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
-+ /* always valid */
-+ break;
-+ }
-+ valid;
-+ }),
-+ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
-+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
-+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
-+ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
-+ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
-+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable",
-+ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
-+ 0);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable",
-+ ((dwc_otg_module_params.dma_desc_enable == 1) &&
-+ ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1,
-+ 0);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0);
-+
-+ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
-+ "host_support_fs_ls_low_power",
-+ 1, 0);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
-+ "enable_dynamic_fifo",
-+ ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
-+ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
-+ "data_fifo_size",
-+ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
-+ core_if->hwcfg3.b.dfifo_depth);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
-+ "dev_rx_fifo_size",
-+ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
-+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
-+ "dev_nperio_tx_fifo_size",
-+ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
-+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
-+ "host_rx_fifo_size",
-+ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
-+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
-+ "host_nperio_tx_fifo_size",
-+ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
-+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
-+ "host_perio_tx_fifo_size",
-+ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
-+ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
-+ "max_transfer_size",
-+ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
-+ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
-+ "max_packet_count",
-+ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
-+ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
-+ "host_channels",
-+ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
-+ (core_if->hwcfg2.b.num_host_chan + 1));
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
-+ "dev_endpoints",
-+ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
-+ core_if->hwcfg2.b.num_dev_ep);
-+
-+/*
-+ * Define the following to disable the FS PHY Hardware checking. This is for
-+ * internal testing only.
-+ *
-+ * #define NO_FS_PHY_HW_CHECKS
-+ */
-+
-+#ifdef NO_FS_PHY_HW_CHECKS
-+ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
-+ "phy_type", 1, 0);
-+#else
-+ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
-+ "phy_type",
-+ ({
-+ int valid = 0;
-+ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
-+ ((core_if->hwcfg2.b.hs_phy_type == 1) ||
-+ (core_if->hwcfg2.b.hs_phy_type == 3))) {
-+ valid = 1;
-+ }
-+ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
-+ ((core_if->hwcfg2.b.hs_phy_type == 2) ||
-+ (core_if->hwcfg2.b.hs_phy_type == 3))) {
-+ valid = 1;
-+ }
-+ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
-+ (core_if->hwcfg2.b.fs_phy_type == 1)) {
-+ valid = 1;
-+ }
-+ valid;
-+ }),
-+ ({
-+ int set = DWC_PHY_TYPE_PARAM_FS;
-+ if (core_if->hwcfg2.b.hs_phy_type) {
-+ if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
-+ (core_if->hwcfg2.b.hs_phy_type == 1)) {
-+ set = DWC_PHY_TYPE_PARAM_UTMI;
-+ }
-+ else {
-+ set = DWC_PHY_TYPE_PARAM_ULPI;
-+ }
-+ }
-+ set;
-+ }));
-+#endif
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed",
-+ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
-+ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
-+ "host_ls_low_power_phy_clk",
-+ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
-+ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
-+
-+ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
-+ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
-+ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
-+ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
-+ DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
-+
-+#ifdef NO_FS_PHY_HW_CHECKS
-+ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
-+#else
-+ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
-+ "i2c_enable",
-+ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
-+ 0);
-+#endif
-+
-+ for (i = 0; i < 15; i++) {
-+ int changed = 1;
-+ int error = 0;
-+
-+ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
-+ changed = 0;
-+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
-+ }
-+ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
-+ if (changed) {
-+ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i);
-+ error = 1;
-+ }
-+ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
-+ }
-+ retval += error;
-+ }
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo",
-+ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1,
-+ 0);
-+
-+ for (i = 0; i < 15; i++) {
-+ int changed = 1;
-+ int error = 0;
-+
-+ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
-+ changed = 0;
-+ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
-+ }
-+ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
-+ if (changed) {
-+ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i);
-+ error = 1;
-+ }
-+ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
-+ }
-+ retval += error;
-+ }
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl",
-+ ((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1,
-+ 0);
-+
-+ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
-+ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable",
-+ ((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0,
-+ 0);
-+
-+ retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable",
-+ ((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0,
-+ 0);
-+ return retval;
-+}
-+
-+/**
-+ * This function is the top level interrupt handler for the Common
-+ * (Device and host modes) interrupts.
-+ */
-+static irqreturn_t dwc_otg_common_irq(int irq, void *dev)
-+{
-+ dwc_otg_device_t *otg_dev = dev;
-+ int32_t retval = IRQ_NONE;
-+
-+ retval = dwc_otg_handle_common_intr(otg_dev->core_if);
-+ return IRQ_RETVAL(retval);
-+}
-+
-+/**
-+ * This function is called when a lm_device is unregistered with the
-+ * dwc_otg_driver. This happens, for example, when the rmmod command is
-+ * executed. The device may or may not be electrically present. If it is
-+ * present, the driver stops device processing. Any resources used on behalf
-+ * of this device are freed.
-+ *
-+ * @param[in] lmdev
-+ */
-+static int dwc_otg_driver_cleanup(struct platform_device *pdev)
-+{
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
-+ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev);
-+
-+ if (!otg_dev) {
-+ /* Memory allocation for the dwc_otg_device failed. */
-+ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
-+ return 0;
-+ }
-+
-+ /*
-+ * Free the IRQ
-+ */
-+ if (otg_dev->common_irq_installed) {
-+ free_irq(otg_dev->irq, otg_dev);
-+ }
-+
-+#ifndef DWC_DEVICE_ONLY
-+ if (otg_dev->hcd) {
-+ dwc_otg_hcd_remove(pdev);
-+ } else {
-+ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
-+ return 0;
-+ }
-+#endif
-+
-+#ifndef DWC_HOST_ONLY
-+ if (otg_dev->pcd) {
-+ dwc_otg_pcd_remove(pdev);
-+ }
-+#endif
-+ if (otg_dev->core_if) {
-+ dwc_otg_cil_remove(otg_dev->core_if);
-+ }
-+
-+ /*
-+ * Remove the device attributes
-+ */
-+ dwc_otg_attr_remove(pdev);
-+
-+ /*
-+ * Return the memory.
-+ */
-+ if (otg_dev->base) {
-+ iounmap(otg_dev->base);
-+ }
-+ kfree(otg_dev);
-+
-+ /*
-+ * Clear the drvdata pointer.
-+ */
-+ platform_set_drvdata(pdev, 0);
-+
-+ return 0;
-+}
-+
-+/**
-+ * This function is called when an lm_device is bound to a
-+ * dwc_otg_driver. It creates the driver components required to
-+ * control the device (CIL, HCD, and PCD) and it initializes the
-+ * device. The driver components are stored in a dwc_otg_device
-+ * structure. A reference to the dwc_otg_device is saved in the
-+ * lm_device. This allows the driver to access the dwc_otg_device
-+ * structure on subsequent calls to driver methods for this device.
-+ *
-+ * @param[in] lmdev lm_device definition
-+ */
-+static int __devinit dwc_otg_driver_probe(struct platform_device *pdev)
-+{
-+ struct device *dev = &pdev->dev;
-+ int retval = 0;
-+ uint32_t snpsid;
-+ dwc_otg_device_t *dwc_otg_device;
-+ struct resource *res;
-+
-+ dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", pdev);
-+
-+ dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
-+
-+ if (!dwc_otg_device) {
-+ dev_err(dev, "kmalloc of dwc_otg_device failed\n");
-+ retval = -ENOMEM;
-+ goto fail;
-+ }
-+
-+ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
-+ dwc_otg_device->reg_offset = 0xFFFFFFFF;
-+
-+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-+ if (!res) {
-+ dev_err(dev, "Found OTG with no register addr.\n");
-+ retval = -ENODEV;
-+ goto fail;
-+ }
-+ dwc_otg_device->rsrc_start = res->start;
-+ dwc_otg_device->rsrc_len = res->end - res->start + 1;
-+
-+ dwc_otg_device->base = ioremap(dwc_otg_device->rsrc_start, dwc_otg_device->rsrc_len);
-+
-+ if (!dwc_otg_device->base) {
-+ dev_err(dev, "ioremap() failed\n");
-+ retval = -ENOMEM;
-+ goto fail;
-+ }
-+ dev_dbg(dev, "base=0x%08x\n", (unsigned)dwc_otg_device->base);
-+
-+ /*
-+ * Attempt to ensure this device is really a DWC_otg Controller.
-+ * Read and verify the SNPSID register contents. The value should be
-+ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
-+ */
-+ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
-+
-+ if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) {
-+ dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
-+ retval = -EINVAL;
-+ goto fail;
-+ }
-+
-+ DWC_PRINT("Core Release: %x.%x%x%x\n",
-+ (snpsid >> 12 & 0xF),
-+ (snpsid >> 8 & 0xF),
-+ (snpsid >> 4 & 0xF),
-+ (snpsid & 0xF));
-+
-+ /*
-+ * Initialize driver data to point to the global DWC_otg
-+ * Device structure.
-+ */
-+ platform_set_drvdata(pdev, dwc_otg_device);
-+
-+ dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
-+
-+ dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
-+ &dwc_otg_module_params);
-+
-+ dwc_otg_device->core_if->snpsid = snpsid;
-+
-+ if (!dwc_otg_device->core_if) {
-+ dev_err(dev, "CIL initialization failed!\n");
-+ retval = -ENOMEM;
-+ goto fail;
-+ }
-+
-+ /*
-+ * Validate parameter values.
-+ */
-+ if (check_parameters(dwc_otg_device->core_if)) {
-+ retval = -EINVAL;
-+ goto fail;
-+ }
-+
-+ /*
-+ * Create Device Attributes in sysfs
-+ */
-+ dwc_otg_attr_create(pdev);
-+
-+ /*
-+ * Disable the global interrupt until all the interrupt
-+ * handlers are installed.
-+ */
-+ dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
-+
-+ /*
-+ * Install the interrupt handler for the common interrupts before
-+ * enabling common interrupts in core_init below.
-+ */
-+ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
-+ if (!res) {
-+ dev_err(dev, "Fount OTG with to IRQ.\n");
-+ retval = -ENODEV;
-+ goto fail;
-+ }
-+ dwc_otg_device->irq = res->start;
-+
-+ retval = request_irq(res->start, dwc_otg_common_irq,
-+ IRQF_SHARED, "dwc_otg", dwc_otg_device);
-+ if (retval) {
-+ DWC_ERROR("request of irq%d failed\n", res->start);
-+ retval = -EBUSY;
-+ goto fail;
-+ } else {
-+ dwc_otg_device->common_irq_installed = 1;
-+ }
-+
-+ /*
-+ * Initialize the DWC_otg core.
-+ */
-+ dwc_otg_core_init(dwc_otg_device->core_if);
-+
-+#ifndef DWC_HOST_ONLY
-+ /*
-+ * Initialize the PCD
-+ */
-+ retval = dwc_otg_pcd_init(pdev);
-+ if (retval != 0) {
-+ DWC_ERROR("dwc_otg_pcd_init failed\n");
-+ dwc_otg_device->pcd = NULL;
-+ goto fail;
-+ }
-+#endif
-+#ifndef DWC_DEVICE_ONLY
-+ /*
-+ * Initialize the HCD
-+ */
-+ retval = dwc_otg_hcd_init(pdev);
-+ if (retval != 0) {
-+ DWC_ERROR("dwc_otg_hcd_init failed\n");
-+ dwc_otg_device->hcd = NULL;
-+ goto fail;
-+ }
-+#endif
-+
-+ /*
-+ * Enable the global interrupt after all the interrupt
-+ * handlers are installed.
-+ */
-+ dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
-+
-+ return 0;
-+
-+ fail:
-+ dwc_otg_driver_cleanup(pdev);
-+ return retval;
-+}
-+
-+static int __devexit dwc_otg_driver_remove(struct platform_device *pdev)
-+{
-+ return dwc_otg_driver_cleanup(pdev);
-+}
-+
-+static struct platform_driver dwc_otg_platform_driver = {
-+ .driver.name = "dwc_otg",
-+ .probe = dwc_otg_driver_probe,
-+ .remove = __devexit_p(dwc_otg_driver_remove),
-+};
-+
-+static int __init dwc_otg_init_module(void)
-+{
-+ return platform_driver_register(&dwc_otg_platform_driver);
-+}
-+
-+static void __exit dwc_otg_cleanup_module(void)
-+{
-+ platform_driver_unregister(&dwc_otg_platform_driver);
-+}
-+
-+module_init(dwc_otg_init_module);
-+module_exit(dwc_otg_cleanup_module);
-+
-+/**
-+ * This function is called when the driver is removed from the kernel
-+ * with the rmmod command. The driver unregisters itself with its bus
-+ * driver.
-+ *
-+ */
-+
-+MODULE_DESCRIPTION(DWC_DRIVER_DESC);
-+MODULE_AUTHOR("Synopsys Inc.");
-+MODULE_LICENSE("GPL");
-+
-+module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
-+MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
-+module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
-+MODULE_PARM_DESC(opt, "OPT Mode");
-+module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
-+MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
-+
-+module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444);
-+MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled");
-+
-+module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
-+MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
-+module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
-+MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
-+module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
-+MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
-+module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
-+MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
-+module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
-+MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
-+module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
-+MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
-+module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
-+MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
-+module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
-+MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
-+module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
-+MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
-+module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
-+MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
-+module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
-+MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
-+module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
-+MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
-+module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
-+/** @todo Set the max to 512K, modify checks */
-+MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
-+module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
-+MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
-+module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
-+MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
-+module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
-+MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
-+module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
-+MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
-+module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
-+MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
-+module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
-+MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
-+module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
-+MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
-+module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
-+MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
-+module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
-+MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
-+module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
-+MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
-+module_param_named(debug, g_dbg_lvl, int, 0444);
-+MODULE_PARM_DESC(debug, "");
-+
-+module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
-+MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
-+module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
-+module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
-+MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
-+
-+module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
-+MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
-+module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
-+MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
-+module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
-+MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
-+
-+module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444);
-+MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled");
-+
-+module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444);
-+MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled");
---- /dev/null
-+++ b/drivers/usb/dwc/otg_driver.h
-@@ -0,0 +1,62 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $
-+ * $Revision: #12 $
-+ * $Date: 2008/07/15 $
-+ * $Change: 1064918 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+#ifndef __DWC_OTG_DRIVER_H__
-+#define __DWC_OTG_DRIVER_H__
-+
-+/** @file
-+ * This file contains the interface to the Linux driver.
-+ */
-+#include "otg_cil.h"
-+
-+/* Type declarations */
-+struct dwc_otg_pcd;
-+struct dwc_otg_hcd;
-+
-+/**
-+ * This structure is a wrapper that encapsulates the driver components used to
-+ * manage a single DWC_otg controller.
-+ */
-+typedef struct dwc_otg_device {
-+ void *base;
-+ dwc_otg_core_if_t *core_if;
-+ uint32_t reg_offset;
-+ struct dwc_otg_pcd *pcd;
-+ struct dwc_otg_hcd *hcd;
-+ uint8_t common_irq_installed;
-+ int irq;
-+ uint32_t rsrc_start;
-+ uint32_t rsrc_len;
-+} dwc_otg_device_t;
-+
-+#endif
---- /dev/null
-+++ b/drivers/usb/dwc/otg_hcd.c
-@@ -0,0 +1,2752 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
-+ * $Revision: #75 $
-+ * $Date: 2008/07/15 $
-+ * $Change: 1064940 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+#ifndef DWC_DEVICE_ONLY
-+
-+/**
-+ * @file
-+ *
-+ * This file contains the implementation of the HCD. In Linux, the HCD
-+ * implements the hc_driver API.
-+ */
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/moduleparam.h>
-+#include <linux/init.h>
-+#include <linux/device.h>
-+#include <linux/platform_device.h>
-+#include <linux/errno.h>
-+#include <linux/list.h>
-+#include <linux/interrupt.h>
-+#include <linux/string.h>
-+#include <linux/dma-mapping.h>
-+#include <linux/version.h>
-+
-+#include <mach/irqs.h>
-+
-+#include "otg_driver.h"
-+#include "otg_hcd.h"
-+#include "otg_regs.h"
-+
-+static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
-+
-+static const struct hc_driver dwc_otg_hc_driver = {
-+
-+ .description = dwc_otg_hcd_name,
-+ .product_desc = "DWC OTG Controller",
-+ .hcd_priv_size = sizeof(dwc_otg_hcd_t),
-+ .irq = dwc_otg_hcd_irq,
-+ .flags = HCD_MEMORY | HCD_USB2,
-+ .start = dwc_otg_hcd_start,
-+ .stop = dwc_otg_hcd_stop,
-+ .urb_enqueue = dwc_otg_hcd_urb_enqueue,
-+ .urb_dequeue = dwc_otg_hcd_urb_dequeue,
-+ .endpoint_disable = dwc_otg_hcd_endpoint_disable,
-+ .get_frame_number = dwc_otg_hcd_get_frame_number,
-+ .hub_status_data = dwc_otg_hcd_hub_status_data,
-+ .hub_control = dwc_otg_hcd_hub_control,
-+};
-+
-+/**
-+ * Work queue function for starting the HCD when A-Cable is connected.
-+ * The dwc_otg_hcd_start() must be called in a process context.
-+ */
-+static void hcd_start_func(struct work_struct *_work)
-+{
-+ struct delayed_work *dw = container_of(_work, struct delayed_work, work);
-+ struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
-+ struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
-+ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
-+ if (usb_hcd) {
-+ dwc_otg_hcd_start(usb_hcd);
-+ }
-+}
-+
-+/**
-+ * HCD Callback function for starting the HCD when A-Cable is
-+ * connected.
-+ *
-+ * @param p void pointer to the <code>struct usb_hcd</code>
-+ */
-+static int32_t dwc_otg_hcd_start_cb(void *p)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
-+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
-+ hprt0_data_t hprt0;
-+
-+ if (core_if->op_state == B_HOST) {
-+ /*
-+ * Reset the port. During a HNP mode switch the reset
-+ * needs to occur within 1ms and have a duration of at
-+ * least 50ms.
-+ */
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtrst = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ ((struct usb_hcd *)p)->self.is_b_host = 1;
-+ } else {
-+ ((struct usb_hcd *)p)->self.is_b_host = 0;
-+ }
-+
-+ /* Need to start the HCD in a non-interrupt context. */
-+// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
-+ INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
-+// schedule_work(&dwc_otg_hcd->start_work);
-+ queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);
-+
-+ return 1;
-+}
-+
-+/**
-+ * HCD Callback function for stopping the HCD.
-+ *
-+ * @param p void pointer to the <code>struct usb_hcd</code>
-+ */
-+static int32_t dwc_otg_hcd_stop_cb(void *p)
-+{
-+ struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
-+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
-+ dwc_otg_hcd_stop(usb_hcd);
-+ return 1;
-+}
-+
-+static void del_xfer_timers(dwc_otg_hcd_t *hcd)
-+{
-+#ifdef DEBUG
-+ int i;
-+ int num_channels = hcd->core_if->core_params->host_channels;
-+ for (i = 0; i < num_channels; i++) {
-+ del_timer(&hcd->core_if->hc_xfer_timer[i]);
-+ }
-+#endif
-+}
-+
-+static void del_timers(dwc_otg_hcd_t *hcd)
-+{
-+ del_xfer_timers(hcd);
-+ del_timer(&hcd->conn_timer);
-+}
-+
-+/**
-+ * Processes all the URBs in a single list of QHs. Completes them with
-+ * -ETIMEDOUT and frees the QTD.
-+ */
-+static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
-+{
-+ struct list_head *qh_item;
-+ dwc_otg_qh_t *qh;
-+ struct list_head *qtd_item;
-+ dwc_otg_qtd_t *qtd;
-+ unsigned long flags;
-+
-+ SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
-+ list_for_each(qh_item, qh_list) {
-+ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
-+ for (qtd_item = qh->qtd_list.next;
-+ qtd_item != &qh->qtd_list;
-+ qtd_item = qh->qtd_list.next) {
-+ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
-+ if (qtd->urb != NULL) {
-+ dwc_otg_hcd_complete_urb(hcd, qtd->urb,
-+ -ETIMEDOUT);
-+ }
-+ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
-+ }
-+ }
-+ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
-+}
-+
-+/**
-+ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
-+ * and periodic schedules. The QTD associated with each URB is removed from
-+ * the schedule and freed. This function may be called when a disconnect is
-+ * detected or when the HCD is being stopped.
-+ */
-+static void kill_all_urbs(dwc_otg_hcd_t *hcd)
-+{
-+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
-+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
-+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
-+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
-+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
-+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
-+}
-+
-+/**
-+ * HCD Callback function for disconnect of the HCD.
-+ *
-+ * @param p void pointer to the <code>struct usb_hcd</code>
-+ */
-+static int32_t dwc_otg_hcd_disconnect_cb(void *p)
-+{
-+ gintsts_data_t intr;
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
-+
-+ //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
-+
-+ /*
-+ * Set status flags for the hub driver.
-+ */
-+ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
-+ dwc_otg_hcd->flags.b.port_connect_status = 0;
-+
-+ /*
-+ * Shutdown any transfers in process by clearing the Tx FIFO Empty
-+ * interrupt mask and status bits and disabling subsequent host
-+ * channel interrupts.
-+ */
-+ intr.d32 = 0;
-+ intr.b.nptxfempty = 1;
-+ intr.b.ptxfempty = 1;
-+ intr.b.hcintr = 1;
-+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
-+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
-+
-+ del_timers(dwc_otg_hcd);
-+
-+ /*
-+ * Turn off the vbus power only if the core has transitioned to device
-+ * mode. If still in host mode, need to keep power on to detect a
-+ * reconnection.
-+ */
-+ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
-+ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
-+ hprt0_data_t hprt0 = { .d32=0 };
-+ DWC_PRINT("Disconnect: PortPower off\n");
-+ hprt0.b.prtpwr = 0;
-+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
-+ }
-+
-+ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
-+ }
-+
-+ /* Respond with an error status to all URBs in the schedule. */
-+ kill_all_urbs(dwc_otg_hcd);
-+
-+ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
-+ /* Clean up any host channels that were in use. */
-+ int num_channels;
-+ int i;
-+ dwc_hc_t *channel;
-+ dwc_otg_hc_regs_t *hc_regs;
-+ hcchar_data_t hcchar;
-+
-+ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
-+
-+ if (!dwc_otg_hcd->core_if->dma_enable) {
-+ /* Flush out any channel requests in slave mode. */
-+ for (i = 0; i < num_channels; i++) {
-+ channel = dwc_otg_hcd->hc_ptr_array[i];
-+ if (list_empty(&channel->hc_list_entry)) {
-+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (hcchar.b.chen) {
-+ hcchar.b.chen = 0;
-+ hcchar.b.chdis = 1;
-+ hcchar.b.epdir = 0;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+ }
-+ }
-+ }
-+ }
-+
-+ for (i = 0; i < num_channels; i++) {
-+ channel = dwc_otg_hcd->hc_ptr_array[i];
-+ if (list_empty(&channel->hc_list_entry)) {
-+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (hcchar.b.chen) {
-+ /* Halt the channel. */
-+ hcchar.b.chdis = 1;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+ }
-+
-+ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
-+ list_add_tail(&channel->hc_list_entry,
-+ &dwc_otg_hcd->free_hc_list);
-+ }
-+ }
-+ }
-+
-+ /* A disconnect will end the session so the B-Device is no
-+ * longer a B-host. */
-+ ((struct usb_hcd *)p)->self.is_b_host = 0;
-+ return 1;
-+}
-+
-+/**
-+ * Connection timeout function. An OTG host is required to display a
-+ * message if the device does not connect within 10 seconds.
-+ */
-+void dwc_otg_hcd_connect_timeout(unsigned long ptr)
-+{
-+ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
-+ DWC_PRINT("Connect Timeout\n");
-+ DWC_ERROR("Device Not Connected/Responding\n");
-+}
-+
-+/**
-+ * Start the connection timer. An OTG host is required to display a
-+ * message if the device does not connect within 10 seconds. The
-+ * timer is deleted if a port connect interrupt occurs before the
-+ * timer expires.
-+ */
-+static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
-+{
-+ init_timer(&hcd->conn_timer);
-+ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
-+ hcd->conn_timer.data = 0;
-+ hcd->conn_timer.expires = jiffies + (HZ * 10);
-+ add_timer(&hcd->conn_timer);
-+}
-+
-+/**
-+ * HCD Callback function for disconnect of the HCD.
-+ *
-+ * @param p void pointer to the <code>struct usb_hcd</code>
-+ */
-+static int32_t dwc_otg_hcd_session_start_cb(void *p)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
-+ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
-+ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
-+ return 1;
-+}
-+
-+/**
-+ * HCD Callback structure for handling mode switching.
-+ */
-+static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
-+ .start = dwc_otg_hcd_start_cb,
-+ .stop = dwc_otg_hcd_stop_cb,
-+ .disconnect = dwc_otg_hcd_disconnect_cb,
-+ .session_start = dwc_otg_hcd_session_start_cb,
-+ .p = 0,
-+};
-+
-+/**
-+ * Reset tasklet function
-+ */
-+static void reset_tasklet_func(unsigned long data)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
-+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
-+ hprt0_data_t hprt0;
-+
-+ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
-+
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtrst = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ mdelay(60);
-+
-+ hprt0.b.prtrst = 0;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ dwc_otg_hcd->flags.b.port_reset_change = 1;
-+}
-+
-+static struct tasklet_struct reset_tasklet = {
-+ .next = NULL,
-+ .state = 0,
-+ .count = ATOMIC_INIT(0),
-+ .func = reset_tasklet_func,
-+ .data = 0,
-+};
-+
-+/**
-+ * Initializes the HCD. This function allocates memory for and initializes the
-+ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
-+ * USB bus with the core and calls the hc_driver->start() function. It returns
-+ * a negative error on failure.
-+ */
-+int dwc_otg_hcd_init(struct platform_device *pdev)
-+{
-+ struct usb_hcd *hcd = NULL;
-+ dwc_otg_hcd_t *dwc_otg_hcd = NULL;
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
-+
-+ int num_channels;
-+ int i;
-+ dwc_hc_t *channel;
-+
-+ int retval = 0;
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
-+
-+ /* Set device flags indicating whether the HCD supports DMA. */
-+ if (otg_dev->core_if->dma_enable) {
-+ DWC_PRINT("Using DMA mode\n");
-+
-+ if (otg_dev->core_if->dma_desc_enable) {
-+ DWC_PRINT("Device using Descriptor DMA mode\n");
-+ } else {
-+ DWC_PRINT("Device using Buffer DMA mode\n");
-+ }
-+ }
-+ /*
-+ * Allocate memory for the base HCD plus the DWC OTG HCD.
-+ * Initialize the base HCD.
-+ */
-+
-+ hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget");
-+ if (!hcd) {
-+ retval = -ENOMEM;
-+ goto error1;
-+ }
-+
-+ hcd->regs = otg_dev->base;
-+ hcd->self.otg_port = 1;
-+
-+ /* Integrate TT in root hub, by default this is disbled. */
-+ hcd->has_tt = 1;
-+
-+ /* Initialize the DWC OTG HCD. */
-+ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ dwc_otg_hcd->core_if = otg_dev->core_if;
-+ otg_dev->hcd = dwc_otg_hcd;
-+ init_hcd_usecs(dwc_otg_hcd);
-+
-+ /* */
-+ spin_lock_init(&dwc_otg_hcd->lock);
-+
-+ /* Register the HCD CIL Callbacks */
-+ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
-+ &hcd_cil_callbacks, hcd);
-+
-+ /* Initialize the non-periodic schedule. */
-+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
-+ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
-+
-+ /* Initialize the periodic schedule. */
-+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
-+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
-+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
-+ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
-+
-+ /*
-+ * Create a host channel descriptor for each host channel implemented
-+ * in the controller. Initialize the channel descriptor array.
-+ */
-+ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
-+ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
-+ memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
-+ for (i = 0; i < num_channels; i++) {
-+ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
-+ if (channel == NULL) {
-+ retval = -ENOMEM;
-+ DWC_ERROR("%s: host channel allocation failed\n", __func__);
-+ goto error2;
-+ }
-+ memset(channel, 0, sizeof(dwc_hc_t));
-+ channel->hc_num = i;
-+ dwc_otg_hcd->hc_ptr_array[i] = channel;
-+#ifdef DEBUG
-+ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
-+#endif
-+ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
-+ }
-+
-+ /* Initialize the Connection timeout timer. */
-+ init_timer(&dwc_otg_hcd->conn_timer);
-+
-+ /* Initialize reset tasklet. */
-+ reset_tasklet.data = (unsigned long) dwc_otg_hcd;
-+ dwc_otg_hcd->reset_tasklet = &reset_tasklet;
-+
-+ /*
-+ * Finish generic HCD initialization and start the HCD. This function
-+ * allocates the DMA buffer pool, registers the USB bus, requests the
-+ * IRQ line, and calls dwc_otg_hcd_start method.
-+ */
-+ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
-+ if (retval < 0) {
-+ goto error2;
-+ }
-+
-+ /*
-+ * Allocate space for storing data on status transactions. Normally no
-+ * data is sent, but this space acts as a bit bucket. This must be
-+ * done after usb_add_hcd since that function allocates the DMA buffer
-+ * pool.
-+ */
-+ if (otg_dev->core_if->dma_enable) {
-+ dwc_otg_hcd->status_buf =
-+ dma_alloc_coherent(&pdev->dev,
-+ DWC_OTG_HCD_STATUS_BUF_SIZE,
-+ &dwc_otg_hcd->status_buf_dma,
-+ GFP_KERNEL | GFP_DMA);
-+ } else {
-+ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
-+ GFP_KERNEL);
-+ }
-+ if (!dwc_otg_hcd->status_buf) {
-+ retval = -ENOMEM;
-+ DWC_ERROR("%s: status_buf allocation failed\n", __func__);
-+ goto error3;
-+ }
-+
-+ dwc_otg_hcd->otg_dev = otg_dev;
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
-+ hcd->self.busnum);
-+ return 0;
-+
-+ /* Error conditions */
-+ error3:
-+ usb_remove_hcd(hcd);
-+ error2:
-+ dwc_otg_hcd_free(hcd);
-+ usb_put_hcd(hcd);
-+ error1:
-+ return retval;
-+}
-+
-+/**
-+ * Removes the HCD.
-+ * Frees memory and resources associated with the HCD and deregisters the bus.
-+ */
-+void dwc_otg_hcd_remove(struct platform_device *pdev)
-+{
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
-+ dwc_otg_hcd_t *dwc_otg_hcd;
-+ struct usb_hcd *hcd;
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
-+
-+ if (!otg_dev) {
-+ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
-+ return;
-+ }
-+
-+ dwc_otg_hcd = otg_dev->hcd;
-+
-+ if (!dwc_otg_hcd) {
-+ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
-+ return;
-+ }
-+
-+ hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
-+
-+ if (!hcd) {
-+ DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
-+ return;
-+ }
-+
-+ /* Turn off all interrupts */
-+ dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
-+ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
-+
-+ usb_remove_hcd(hcd);
-+ dwc_otg_hcd_free(hcd);
-+ usb_put_hcd(hcd);
-+}
-+
-+/* =========================================================================
-+ * Linux HC Driver Functions
-+ * ========================================================================= */
-+
-+/**
-+ * Initializes dynamic portions of the DWC_otg HCD state.
-+ */
-+static void hcd_reinit(dwc_otg_hcd_t *hcd)
-+{
-+ struct list_head *item;
-+ int num_channels;
-+ int i;
-+ dwc_hc_t *channel;
-+
-+ hcd->flags.d32 = 0;
-+
-+ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
-+ hcd->non_periodic_channels = 0;
-+ hcd->periodic_channels = 0;
-+
-+ /*
-+ * Put all channels in the free channel list and clean up channel
-+ * states.
-+ */
-+ item = hcd->free_hc_list.next;
-+ while (item != &hcd->free_hc_list) {
-+ list_del(item);
-+ item = hcd->free_hc_list.next;
-+ }
-+ num_channels = hcd->core_if->core_params->host_channels;
-+ for (i = 0; i < num_channels; i++) {
-+ channel = hcd->hc_ptr_array[i];
-+ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
-+ dwc_otg_hc_cleanup(hcd->core_if, channel);
-+ }
-+
-+ /* Initialize the DWC core for host mode operation. */
-+ dwc_otg_core_host_init(hcd->core_if);
-+}
-+
-+/** Initializes the DWC_otg controller and its root hub and prepares it for host
-+ * mode operation. Activates the root port. Returns 0 on success and a negative
-+ * error code on failure. */
-+int dwc_otg_hcd_start(struct usb_hcd *hcd)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
-+ struct usb_bus *bus;
-+
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
-+
-+ bus = hcd_to_bus(hcd);
-+
-+ /* Initialize the bus state. If the core is in Device Mode
-+ * HALT the USB bus and return. */
-+ if (dwc_otg_is_device_mode(core_if)) {
-+ hcd->state = HC_STATE_RUNNING;
-+ return 0;
-+ }
-+ hcd->state = HC_STATE_RUNNING;
-+
-+ /* Initialize and connect root hub if one is not already attached */
-+ if (bus->root_hub) {
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
-+ /* Inform the HUB driver to resume. */
-+ usb_hcd_resume_root_hub(hcd);
-+ }
-+ else {
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
-+ }
-+
-+ hcd_reinit(dwc_otg_hcd);
-+
-+ return 0;
-+}
-+
-+static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
-+{
-+ struct list_head *item;
-+ dwc_otg_qh_t *qh;
-+ unsigned long flags;
-+
-+ if (!qh_list->next) {
-+ /* The list hasn't been initialized yet. */
-+ return;
-+ }
-+
-+ /* Ensure there are no QTDs or URBs left. */
-+ kill_urbs_in_qh_list(hcd, qh_list);
-+
-+ SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
-+ for (item = qh_list->next; item != qh_list; item = qh_list->next) {
-+ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
-+ dwc_otg_hcd_qh_remove_and_free(hcd, qh);
-+ }
-+ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
-+}
-+
-+/**
-+ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
-+ * stopped.
-+ */
-+void dwc_otg_hcd_stop(struct usb_hcd *hcd)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ hprt0_data_t hprt0 = { .d32=0 };
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
-+
-+ /* Turn off all host-specific interrupts. */
-+ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
-+
-+ /*
-+ * The root hub should be disconnected before this function is called.
-+ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
-+ * and the QH lists (via ..._hcd_endpoint_disable).
-+ */
-+
-+ /* Turn off the vbus power */
-+ DWC_PRINT("PortPower off\n");
-+ hprt0.b.prtpwr = 0;
-+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
-+}
-+
-+/** Returns the current frame number. */
-+int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ hfnum_data_t hfnum;
-+
-+ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
-+ host_if->host_global_regs->hfnum);
-+
-+#ifdef DEBUG_SOF
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
-+#endif
-+ return hfnum.b.frnum;
-+}
-+
-+/**
-+ * Frees secondary storage associated with the dwc_otg_hcd structure contained
-+ * in the struct usb_hcd field.
-+ */
-+void dwc_otg_hcd_free(struct usb_hcd *hcd)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ int i;
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
-+
-+ del_timers(dwc_otg_hcd);
-+
-+ /* Free memory for QH/QTD lists */
-+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
-+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
-+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
-+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
-+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
-+ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
-+
-+ /* Free memory for the host channels. */
-+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
-+ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
-+ if (hc != NULL) {
-+ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
-+ kfree(hc);
-+ }
-+ }
-+
-+ if (dwc_otg_hcd->core_if->dma_enable) {
-+ if (dwc_otg_hcd->status_buf_dma) {
-+ dma_free_coherent(hcd->self.controller,
-+ DWC_OTG_HCD_STATUS_BUF_SIZE,
-+ dwc_otg_hcd->status_buf,
-+ dwc_otg_hcd->status_buf_dma);
-+ }
-+ } else if (dwc_otg_hcd->status_buf != NULL) {
-+ kfree(dwc_otg_hcd->status_buf);
-+ }
-+}
-+
-+#ifdef DEBUG
-+static void dump_urb_info(struct urb *urb, char* fn_name)
-+{
-+ DWC_PRINT("%s, urb %p\n", fn_name, urb);
-+ DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
-+ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
-+ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
-+ DWC_PRINT(" Endpoint type: %s\n",
-+ ({char *pipetype;
-+ switch (usb_pipetype(urb->pipe)) {
-+ case PIPE_CONTROL: pipetype = "CONTROL"; break;
-+ case PIPE_BULK: pipetype = "BULK"; break;
-+ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
-+ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
-+ default: pipetype = "UNKNOWN"; break;
-+ }; pipetype;}));
-+ DWC_PRINT(" Speed: %s\n",
-+ ({char *speed;
-+ switch (urb->dev->speed) {
-+ case USB_SPEED_HIGH: speed = "HIGH"; break;
-+ case USB_SPEED_FULL: speed = "FULL"; break;
-+ case USB_SPEED_LOW: speed = "LOW"; break;
-+ default: speed = "UNKNOWN"; break;
-+ }; speed;}));
-+ DWC_PRINT(" Max packet size: %d\n",
-+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
-+ DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
-+ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
-+ urb->transfer_buffer, (void *)urb->transfer_dma);
-+ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
-+ urb->setup_packet, (void *)urb->setup_dma);
-+ DWC_PRINT(" Interval: %d\n", urb->interval);
-+ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
-+ int i;
-+ for (i = 0; i < urb->number_of_packets; i++) {
-+ DWC_PRINT(" ISO Desc %d:\n", i);
-+ DWC_PRINT(" offset: %d, length %d\n",
-+ urb->iso_frame_desc[i].offset,
-+ urb->iso_frame_desc[i].length);
-+ }
-+ }
-+}
-+
-+static void dump_channel_info(dwc_otg_hcd_t *hcd,
-+ dwc_otg_qh_t *qh)
-+{
-+ if (qh->channel != NULL) {
-+ dwc_hc_t *hc = qh->channel;
-+ struct list_head *item;
-+ dwc_otg_qh_t *qh_item;
-+ int num_channels = hcd->core_if->core_params->host_channels;
-+ int i;
-+
-+ dwc_otg_hc_regs_t *hc_regs;
-+ hcchar_data_t hcchar;
-+ hcsplt_data_t hcsplt;
-+ hctsiz_data_t hctsiz;
-+ uint32_t hcdma;
-+
-+ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
-+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
-+ hcdma = dwc_read_reg32(&hc_regs->hcdma);
-+
-+ DWC_PRINT(" Assigned to channel %p:\n", hc);
-+ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
-+ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
-+ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
-+ hc->dev_addr, hc->ep_num, hc->ep_is_in);
-+ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
-+ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
-+ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
-+ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
-+ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
-+ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
-+ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
-+ DWC_PRINT(" qh: %p\n", hc->qh);
-+ DWC_PRINT(" NP inactive sched:\n");
-+ list_for_each(item, &hcd->non_periodic_sched_inactive) {
-+ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
-+ DWC_PRINT(" %p\n", qh_item);
-+ }
-+ DWC_PRINT(" NP active sched:\n");
-+ list_for_each(item, &hcd->non_periodic_sched_active) {
-+ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
-+ DWC_PRINT(" %p\n", qh_item);
-+ }
-+ DWC_PRINT(" Channels: \n");
-+ for (i = 0; i < num_channels; i++) {
-+ dwc_hc_t *hc = hcd->hc_ptr_array[i];
-+ DWC_PRINT(" %2d: %p\n", i, hc);
-+ }
-+ }
-+}
-+#endif
-+
-+
-+//OTG host require the DMA addr is DWORD-aligned,
-+//patch it if the buffer is not DWORD-aligned
-+inline
-+void hcd_check_and_patch_dma_addr(struct urb *urb){
-+
-+ if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff)
-+ return;
-+
-+ if(((u32)urb->transfer_buffer)& 0x3){
-+ /*
-+ printk("%s: "
-+ "urb(%.8x) "
-+ "transfer_buffer=%.8x, "
-+ "transfer_dma=%.8x, "
-+ "transfer_buffer_length=%d, "
-+ "actual_length=%d(%x), "
-+ "\n",
-+ ((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN",
-+ urb,
-+ urb->transfer_buffer,
-+ urb->transfer_dma,
-+ urb->transfer_buffer_length,
-+ urb->actual_length,urb->actual_length
-+ );
-+ */
-+ if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){
-+ urb->aligned_transfer_buffer_length=urb->transfer_buffer_length;
-+ if(urb->aligned_transfer_buffer) {
-+ kfree(urb->aligned_transfer_buffer);
-+ }
-+ urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
-+ urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE);
-+ if(!urb->aligned_transfer_buffer){
-+ DWC_ERROR("Cannot alloc required buffer!!\n");
-+ BUG();
-+ }
-+ //printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length);
-+ }
-+ urb->transfer_dma=urb->aligned_transfer_dma;
-+ if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) {
-+ memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length);
-+ dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE);
-+ }
-+ }
-+}
-+
-+
-+
-+/** Starts processing a USB transfer request specified by a USB Request Block
-+ * (URB). mem_flags indicates the type of memory allocation to use while
-+ * processing this URB. */
-+int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
-+// struct usb_host_endpoint *ep,
-+ struct urb *urb,
-+ gfp_t mem_flags
-+ )
-+{
-+ int retval = 0;
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ dwc_otg_qtd_t *qtd;
-+
-+#ifdef DEBUG
-+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
-+ dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
-+ }
-+#endif
-+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
-+ /* No longer connected. */
-+ return -ENODEV;
-+ }
-+
-+ hcd_check_and_patch_dma_addr(urb);
-+ qtd = dwc_otg_hcd_qtd_create(urb);
-+ if (qtd == NULL) {
-+ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
-+ return -ENOMEM;
-+ }
-+
-+ retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
-+ if (retval < 0) {
-+ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
-+ "Error status %d\n", retval);
-+ dwc_otg_hcd_qtd_free(qtd);
-+ }
-+
-+ return retval;
-+}
-+
-+/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
-+ * success. */
-+int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
-+ struct urb *urb, int status)
-+{
-+ unsigned long flags;
-+ dwc_otg_hcd_t *dwc_otg_hcd;
-+ dwc_otg_qtd_t *urb_qtd;
-+ dwc_otg_qh_t *qh;
-+ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
-+
-+ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+
-+ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
-+
-+ urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
-+ qh = (dwc_otg_qh_t *)ep->hcpriv;
-+
-+ if (urb_qtd == NULL) {
-+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
-+ return 0;
-+ }
-+#ifdef DEBUG
-+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
-+ dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
-+ if (urb_qtd == qh->qtd_in_process) {
-+ dump_channel_info(dwc_otg_hcd, qh);
-+ }
-+ }
-+#endif
-+
-+ if (urb_qtd == qh->qtd_in_process) {
-+ /* The QTD is in process (it has been assigned to a channel). */
-+
-+ if (dwc_otg_hcd->flags.b.port_connect_status) {
-+ /*
-+ * If still connected (i.e. in host mode), halt the
-+ * channel so it can be used for other transfers. If
-+ * no longer connected, the host registers can't be
-+ * written to halt the channel since the core is in
-+ * device mode.
-+ */
-+ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
-+ DWC_OTG_HC_XFER_URB_DEQUEUE);
-+ }
-+ }
-+
-+ /*
-+ * Free the QTD and clean up the associated QH. Leave the QH in the
-+ * schedule if it has any remaining QTDs.
-+ */
-+ dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
-+ if (urb_qtd == qh->qtd_in_process) {
-+ /* Note that dwc_otg_hcd_qh_deactivate() locks the spin_lock again */
-+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
-+ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
-+ qh->channel = NULL;
-+ qh->qtd_in_process = NULL;
-+ } else {
-+ if (list_empty(&qh->qtd_list))
-+ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
-+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
-+ }
-+
-+ urb->hcpriv = NULL;
-+
-+ /* Higher layer software sets URB status. */
-+ usb_hcd_giveback_urb(hcd, urb, status);
-+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
-+ DWC_PRINT("Called usb_hcd_giveback_urb()\n");
-+ DWC_PRINT(" urb->status = %d\n", urb->status);
-+ }
-+
-+ return 0;
-+}
-+
-+/** Frees resources in the DWC_otg controller related to a given endpoint. Also
-+ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
-+ * must already be dequeued. */
-+void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
-+ struct usb_host_endpoint *ep)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ dwc_otg_qh_t *qh;
-+
-+ unsigned long flags;
-+ int retry = 0;
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
-+ "endpoint=%d\n", ep->desc.bEndpointAddress,
-+ dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
-+
-+rescan:
-+ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
-+ qh = (dwc_otg_qh_t *)(ep->hcpriv);
-+ if (!qh)
-+ goto done;
-+
-+ /** Check that the QTD list is really empty */
-+ if (!list_empty(&qh->qtd_list)) {
-+ if (retry++ < 250) {
-+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
-+ schedule_timeout_uninterruptible(1);
-+ goto rescan;
-+ }
-+
-+ DWC_WARN("DWC OTG HCD EP DISABLE:"
-+ " QTD List for this endpoint is not empty\n");
-+ }
-+
-+ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
-+ ep->hcpriv = NULL;
-+done:
-+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
-+}
-+
-+/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
-+ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
-+ * interrupt.
-+ *
-+ * This function is called by the USB core when an interrupt occurs */
-+irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
-+{
-+ int retVal = 0;
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
-+ if (dwc_otg_hcd->flags.b.port_connect_status_change == 1)
-+ usb_hcd_poll_rh_status(hcd);
-+ return IRQ_RETVAL(retVal);
-+}
-+
-+/** Creates Status Change bitmap for the root hub and root port. The bitmap is
-+ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
-+ * is the status change indicator for the single root port. Returns 1 if either
-+ * change indicator is 1, otherwise returns 0. */
-+int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
-+{
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+
-+ buf[0] = 0;
-+ buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
-+ dwc_otg_hcd->flags.b.port_reset_change ||
-+ dwc_otg_hcd->flags.b.port_enable_change ||
-+ dwc_otg_hcd->flags.b.port_suspend_change ||
-+ dwc_otg_hcd->flags.b.port_over_current_change) << 1;
-+
-+#ifdef DEBUG
-+ if (buf[0]) {
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
-+ " Root port status changed\n");
-+ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
-+ dwc_otg_hcd->flags.b.port_connect_status_change);
-+ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
-+ dwc_otg_hcd->flags.b.port_reset_change);
-+ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
-+ dwc_otg_hcd->flags.b.port_enable_change);
-+ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
-+ dwc_otg_hcd->flags.b.port_suspend_change);
-+ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
-+ dwc_otg_hcd->flags.b.port_over_current_change);
-+ }
-+#endif
-+ return (buf[0] != 0);
-+}
-+
-+#ifdef DWC_HS_ELECT_TST
-+/*
-+ * Quick and dirty hack to implement the HS Electrical Test
-+ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
-+ *
-+ * This code was copied from our userspace app "hset". It sends a
-+ * Get Device Descriptor control sequence in two parts, first the
-+ * Setup packet by itself, followed some time later by the In and
-+ * Ack packets. Rather than trying to figure out how to add this
-+ * functionality to the normal driver code, we just hijack the
-+ * hardware, using these two function to drive the hardware
-+ * directly.
-+ */
-+
-+dwc_otg_core_global_regs_t *global_regs;
-+dwc_otg_host_global_regs_t *hc_global_regs;
-+dwc_otg_hc_regs_t *hc_regs;
-+uint32_t *data_fifo;
-+
-+static void do_setup(void)
-+{
-+ gintsts_data_t gintsts;
-+ hctsiz_data_t hctsiz;
-+ hcchar_data_t hcchar;
-+ haint_data_t haint;
-+ hcint_data_t hcint;
-+
-+ /* Enable HAINTs */
-+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
-+
-+ /* Enable HCINTs */
-+ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+ /*
-+ * Send Setup packet (Get Device Descriptor)
-+ */
-+
-+ /* Make sure channel is disabled */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (hcchar.b.chen) {
-+ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
-+ hcchar.b.chdis = 1;
-+// hcchar.b.chen = 1;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+ //sleep(1);
-+ mdelay(1000);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //if (hcchar.b.chen) {
-+ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
-+ //}
-+ }
-+
-+ /* Set HCTSIZ */
-+ hctsiz.d32 = 0;
-+ hctsiz.b.xfersize = 8;
-+ hctsiz.b.pktcnt = 1;
-+ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
-+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
-+
-+ /* Set HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
-+ hcchar.b.epdir = 0;
-+ hcchar.b.epnum = 0;
-+ hcchar.b.mps = 8;
-+ hcchar.b.chen = 1;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+
-+ /* Fill FIFO with Setup data for Get Device Descriptor */
-+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
-+ dwc_write_reg32(data_fifo++, 0x01000680);
-+ dwc_write_reg32(data_fifo++, 0x00080000);
-+
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Wait for host channel interrupt */
-+ do {
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ } while (gintsts.b.hcintr == 0);
-+
-+ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Disable HCINTs */
-+ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
-+
-+ /* Disable HAINTs */
-+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+}
-+
-+static void do_in_ack(void)
-+{
-+ gintsts_data_t gintsts;
-+ hctsiz_data_t hctsiz;
-+ hcchar_data_t hcchar;
-+ haint_data_t haint;
-+ hcint_data_t hcint;
-+ host_grxsts_data_t grxsts;
-+
-+ /* Enable HAINTs */
-+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
-+
-+ /* Enable HCINTs */
-+ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+ /*
-+ * Receive Control In packet
-+ */
-+
-+ /* Make sure channel is disabled */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (hcchar.b.chen) {
-+ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
-+ hcchar.b.chdis = 1;
-+ hcchar.b.chen = 1;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+ //sleep(1);
-+ mdelay(1000);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //if (hcchar.b.chen) {
-+ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
-+ //}
-+ }
-+
-+ /* Set HCTSIZ */
-+ hctsiz.d32 = 0;
-+ hctsiz.b.xfersize = 8;
-+ hctsiz.b.pktcnt = 1;
-+ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
-+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
-+
-+ /* Set HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
-+ hcchar.b.epdir = 1;
-+ hcchar.b.epnum = 0;
-+ hcchar.b.mps = 8;
-+ hcchar.b.chen = 1;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Wait for receive status queue interrupt */
-+ do {
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ } while (gintsts.b.rxstsqlvl == 0);
-+
-+ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Read RXSTS */
-+ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
-+ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
-+
-+ /* Clear RXSTSQLVL in GINTSTS */
-+ gintsts.d32 = 0;
-+ gintsts.b.rxstsqlvl = 1;
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ switch (grxsts.b.pktsts) {
-+ case DWC_GRXSTS_PKTSTS_IN:
-+ /* Read the data into the host buffer */
-+ if (grxsts.b.bcnt > 0) {
-+ int i;
-+ int word_count = (grxsts.b.bcnt + 3) / 4;
-+
-+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
-+
-+ for (i = 0; i < word_count; i++) {
-+ (void)dwc_read_reg32(data_fifo++);
-+ }
-+ }
-+
-+ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
-+ break;
-+
-+ default:
-+ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
-+ break;
-+ }
-+
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Wait for receive status queue interrupt */
-+ do {
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ } while (gintsts.b.rxstsqlvl == 0);
-+
-+ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Read RXSTS */
-+ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
-+ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
-+
-+ /* Clear RXSTSQLVL in GINTSTS */
-+ gintsts.d32 = 0;
-+ gintsts.b.rxstsqlvl = 1;
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ switch (grxsts.b.pktsts) {
-+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
-+ break;
-+
-+ default:
-+ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
-+ break;
-+ }
-+
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Wait for host channel interrupt */
-+ do {
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ } while (gintsts.b.hcintr == 0);
-+
-+ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+// usleep(100000);
-+// mdelay(100);
-+ mdelay(1);
-+
-+ /*
-+ * Send handshake packet
-+ */
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+ /* Make sure channel is disabled */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (hcchar.b.chen) {
-+ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
-+ hcchar.b.chdis = 1;
-+ hcchar.b.chen = 1;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+ //sleep(1);
-+ mdelay(1000);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //if (hcchar.b.chen) {
-+ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
-+ //}
-+ }
-+
-+ /* Set HCTSIZ */
-+ hctsiz.d32 = 0;
-+ hctsiz.b.xfersize = 0;
-+ hctsiz.b.pktcnt = 1;
-+ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
-+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
-+
-+ /* Set HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
-+ hcchar.b.epdir = 0;
-+ hcchar.b.epnum = 0;
-+ hcchar.b.mps = 8;
-+ hcchar.b.chen = 1;
-+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
-+
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Wait for host channel interrupt */
-+ do {
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ } while (gintsts.b.hcintr == 0);
-+
-+ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
-+
-+ /* Disable HCINTs */
-+ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
-+
-+ /* Disable HAINTs */
-+ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
-+
-+ /* Read HAINT */
-+ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
-+ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
-+
-+ /* Read HCINT */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
-+
-+ /* Read HCCHAR */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
-+
-+ /* Clear HCINT */
-+ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
-+
-+ /* Clear HAINT */
-+ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
-+
-+ /* Clear GINTSTS */
-+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
-+
-+ /* Read GINTSTS */
-+ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
-+ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
-+}
-+#endif /* DWC_HS_ELECT_TST */
-+
-+/** Handles hub class-specific requests. */
-+int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
-+ u16 typeReq,
-+ u16 wValue,
-+ u16 wIndex,
-+ char *buf,
-+ u16 wLength)
-+{
-+ int retval = 0;
-+
-+ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
-+ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
-+ struct usb_hub_descriptor *desc;
-+ hprt0_data_t hprt0 = {.d32 = 0};
-+
-+ uint32_t port_status;
-+
-+ switch (typeReq) {
-+ case ClearHubFeature:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearHubFeature 0x%x\n", wValue);
-+ switch (wValue) {
-+ case C_HUB_LOCAL_POWER:
-+ case C_HUB_OVER_CURRENT:
-+ /* Nothing required here */
-+ break;
-+ default:
-+ retval = -EINVAL;
-+ DWC_ERROR("DWC OTG HCD - "
-+ "ClearHubFeature request %xh unknown\n", wValue);
-+ }
-+ break;
-+ case ClearPortFeature:
-+ if (!wIndex || wIndex > 1)
-+ goto error;
-+
-+ switch (wValue) {
-+ case USB_PORT_FEAT_ENABLE:
-+ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtena = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ break;
-+ case USB_PORT_FEAT_SUSPEND:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtres = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ /* Clear Resume bit */
-+ mdelay(100);
-+ hprt0.b.prtres = 0;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ break;
-+ case USB_PORT_FEAT_POWER:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_POWER\n");
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtpwr = 0;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ break;
-+ case USB_PORT_FEAT_INDICATOR:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
-+ /* Port inidicator not supported */
-+ break;
-+ case USB_PORT_FEAT_C_CONNECTION:
-+ /* Clears drivers internal connect status change
-+ * flag */
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
-+ dwc_otg_hcd->flags.b.port_connect_status_change = 0;
-+ break;
-+ case USB_PORT_FEAT_C_RESET:
-+ /* Clears the driver's internal Port Reset Change
-+ * flag */
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
-+ dwc_otg_hcd->flags.b.port_reset_change = 0;
-+ break;
-+ case USB_PORT_FEAT_C_ENABLE:
-+ /* Clears the driver's internal Port
-+ * Enable/Disable Change flag */
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
-+ dwc_otg_hcd->flags.b.port_enable_change = 0;
-+ break;
-+ case USB_PORT_FEAT_C_SUSPEND:
-+ /* Clears the driver's internal Port Suspend
-+ * Change flag, which is set when resume signaling on
-+ * the host port is complete */
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
-+ dwc_otg_hcd->flags.b.port_suspend_change = 0;
-+ break;
-+ case USB_PORT_FEAT_C_OVER_CURRENT:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
-+ dwc_otg_hcd->flags.b.port_over_current_change = 0;
-+ break;
-+ default:
-+ retval = -EINVAL;
-+ DWC_ERROR("DWC OTG HCD - "
-+ "ClearPortFeature request %xh "
-+ "unknown or unsupported\n", wValue);
-+ }
-+ break;
-+ case GetHubDescriptor:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "GetHubDescriptor\n");
-+ desc = (struct usb_hub_descriptor *)buf;
-+ desc->bDescLength = 9;
-+ desc->bDescriptorType = 0x29;
-+ desc->bNbrPorts = 1;
-+ desc->wHubCharacteristics = 0x08;
-+ desc->bPwrOn2PwrGood = 1;
-+ desc->bHubContrCurrent = 0;
-+ desc->u.hs.DeviceRemovable[0] = 0;
-+ desc->u.hs.DeviceRemovable[1] = 0xff;
-+ break;
-+ case GetHubStatus:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "GetHubStatus\n");
-+ memset(buf, 0, 4);
-+ break;
-+ case GetPortStatus:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "GetPortStatus\n");
-+
-+ if (!wIndex || wIndex > 1)
-+ goto error;
-+
-+ port_status = 0;
-+
-+ if (dwc_otg_hcd->flags.b.port_connect_status_change)
-+ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
-+
-+ if (dwc_otg_hcd->flags.b.port_enable_change)
-+ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
-+
-+ if (dwc_otg_hcd->flags.b.port_suspend_change)
-+ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
-+
-+ if (dwc_otg_hcd->flags.b.port_reset_change)
-+ port_status |= (1 << USB_PORT_FEAT_C_RESET);
-+
-+ if (dwc_otg_hcd->flags.b.port_over_current_change) {
-+ DWC_ERROR("Device Not Supported\n");
-+ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
-+ }
-+
-+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
-+ /*
-+ * The port is disconnected, which means the core is
-+ * either in device mode or it soon will be. Just
-+ * return 0's for the remainder of the port status
-+ * since the port register can't be read if the core
-+ * is in device mode.
-+ */
-+ *((__le32 *) buf) = cpu_to_le32(port_status);
-+ break;
-+ }
-+
-+ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
-+ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
-+
-+ if (hprt0.b.prtconnsts)
-+ port_status |= (1 << USB_PORT_FEAT_CONNECTION);
-+
-+ if (hprt0.b.prtena)
-+ port_status |= (1 << USB_PORT_FEAT_ENABLE);
-+
-+ if (hprt0.b.prtsusp)
-+ port_status |= (1 << USB_PORT_FEAT_SUSPEND);
-+
-+ if (hprt0.b.prtovrcurract)
-+ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
-+
-+ if (hprt0.b.prtrst)
-+ port_status |= (1 << USB_PORT_FEAT_RESET);
-+
-+ if (hprt0.b.prtpwr)
-+ port_status |= (1 << USB_PORT_FEAT_POWER);
-+
-+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
-+ port_status |= (USB_PORT_STAT_HIGH_SPEED);
-+ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
-+ port_status |= (USB_PORT_STAT_LOW_SPEED);
-+
-+ if (hprt0.b.prttstctl)
-+ port_status |= (1 << USB_PORT_FEAT_TEST);
-+
-+ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
-+
-+ *((__le32 *) buf) = cpu_to_le32(port_status);
-+
-+ break;
-+ case SetHubFeature:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "SetHubFeature\n");
-+ /* No HUB features supported */
-+ break;
-+ case SetPortFeature:
-+ if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
-+ goto error;
-+
-+ if (!dwc_otg_hcd->flags.b.port_connect_status) {
-+ /*
-+ * The port is disconnected, which means the core is
-+ * either in device mode or it soon will be. Just
-+ * return without doing anything since the port
-+ * register can't be written if the core is in device
-+ * mode.
-+ */
-+ break;
-+ }
-+
-+ switch (wValue) {
-+ case USB_PORT_FEAT_SUSPEND:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
-+ if (hcd->self.otg_port == wIndex &&
-+ hcd->self.b_hnp_enable) {
-+ gotgctl_data_t gotgctl = {.d32=0};
-+ gotgctl.b.hstsethnpen = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
-+ 0, gotgctl.d32);
-+ core_if->op_state = A_SUSPEND;
-+ }
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtsusp = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ //DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
-+ /* Suspend the Phy Clock */
-+ {
-+ pcgcctl_data_t pcgcctl = {.d32=0};
-+ pcgcctl.b.stoppclk = 1;
-+ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
-+ }
-+
-+ /* For HNP the bus must be suspended for at least 200ms. */
-+ if (hcd->self.b_hnp_enable) {
-+ mdelay(200);
-+ //DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
-+ }
-+ break;
-+ case USB_PORT_FEAT_POWER:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "SetPortFeature - USB_PORT_FEAT_POWER\n");
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtpwr = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ break;
-+ case USB_PORT_FEAT_RESET:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "SetPortFeature - USB_PORT_FEAT_RESET\n");
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ /* When B-Host the Port reset bit is set in
-+ * the Start HCD Callback function, so that
-+ * the reset is started within 1ms of the HNP
-+ * success interrupt. */
-+ if (!hcd->self.is_b_host) {
-+ hprt0.b.prtrst = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ }
-+ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
-+ MDELAY(60);
-+ hprt0.b.prtrst = 0;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ break;
-+
-+#ifdef DWC_HS_ELECT_TST
-+ case USB_PORT_FEAT_TEST:
-+ {
-+ uint32_t t;
-+ gintmsk_data_t gintmsk;
-+
-+ t = (wIndex >> 8); /* MSB wIndex USB */
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
-+ warn("USB_PORT_FEAT_TEST %d\n", t);
-+ if (t < 6) {
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prttstctl = t;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ } else {
-+ /* Setup global vars with reg addresses (quick and
-+ * dirty hack, should be cleaned up)
-+ */
-+ global_regs = core_if->core_global_regs;
-+ hc_global_regs = core_if->host_if->host_global_regs;
-+ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
-+ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
-+
-+ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
-+ /* Save current interrupt mask */
-+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
-+
-+ /* Disable all interrupts while we muck with
-+ * the hardware directly
-+ */
-+ dwc_write_reg32(&global_regs->gintmsk, 0);
-+
-+ /* 15 second delay per the test spec */
-+ mdelay(15000);
-+
-+ /* Drive suspend on the root port */
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtsusp = 1;
-+ hprt0.b.prtres = 0;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+
-+ /* 15 second delay per the test spec */
-+ mdelay(15000);
-+
-+ /* Drive resume on the root port */
-+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
-+ hprt0.b.prtsusp = 0;
-+ hprt0.b.prtres = 1;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+ mdelay(100);
-+
-+ /* Clear the resume bit */
-+ hprt0.b.prtres = 0;
-+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
-+
-+ /* Restore interrupts */
-+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
-+ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
-+ /* Save current interrupt mask */
-+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
-+
-+ /* Disable all interrupts while we muck with
-+ * the hardware directly
-+ */
-+ dwc_write_reg32(&global_regs->gintmsk, 0);
-+
-+ /* 15 second delay per the test spec */
-+ mdelay(15000);
-+
-+ /* Send the Setup packet */
-+ do_setup();
-+
-+ /* 15 second delay so nothing else happens for awhile */
-+ mdelay(15000);
-+
-+ /* Restore interrupts */
-+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
-+ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
-+ /* Save current interrupt mask */
-+ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
-+
-+ /* Disable all interrupts while we muck with
-+ * the hardware directly
-+ */
-+ dwc_write_reg32(&global_regs->gintmsk, 0);
-+
-+ /* Send the Setup packet */
-+ do_setup();
-+
-+ /* 15 second delay so nothing else happens for awhile */
-+ mdelay(15000);
-+
-+ /* Send the In and Ack packets */
-+ do_in_ack();
-+
-+ /* 15 second delay so nothing else happens for awhile */
-+ mdelay(15000);
-+
-+ /* Restore interrupts */
-+ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
-+ }
-+ }
-+ break;
-+ }
-+#endif /* DWC_HS_ELECT_TST */
-+
-+ case USB_PORT_FEAT_INDICATOR:
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
-+ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
-+ /* Not supported */
-+ break;
-+ default:
-+ retval = -EINVAL;
-+ DWC_ERROR("DWC OTG HCD - "
-+ "SetPortFeature request %xh "
-+ "unknown or unsupported\n", wValue);
-+ break;
-+ }
-+ break;
-+ default:
-+ error:
-+ retval = -EINVAL;
-+ DWC_WARN("DWC OTG HCD - "
-+ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
-+ typeReq, wIndex, wValue);
-+ break;
-+ }
-+
-+ return retval;
-+}
-+
-+/**
-+ * Assigns transactions from a QTD to a free host channel and initializes the
-+ * host channel to perform the transactions. The host channel is removed from
-+ * the free list.
-+ *
-+ * @param hcd The HCD state structure.
-+ * @param qh Transactions from the first QTD for this QH are selected and
-+ * assigned to a free host channel.
-+ */
-+static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ dwc_hc_t *hc;
-+ dwc_otg_qtd_t *qtd;
-+ struct urb *urb;
-+
-+ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh);
-+
-+ hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
-+
-+ /* Remove the host channel from the free list. */
-+ list_del_init(&hc->hc_list_entry);
-+
-+ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
-+ urb = qtd->urb;
-+ qh->channel = hc;
-+ qh->qtd_in_process = qtd;
-+
-+ /*
-+ * Use usb_pipedevice to determine device address. This address is
-+ * 0 before the SET_ADDRESS command and the correct address afterward.
-+ */
-+ hc->dev_addr = usb_pipedevice(urb->pipe);
-+ hc->ep_num = usb_pipeendpoint(urb->pipe);
-+
-+ if (urb->dev->speed == USB_SPEED_LOW) {
-+ hc->speed = DWC_OTG_EP_SPEED_LOW;
-+ } else if (urb->dev->speed == USB_SPEED_FULL) {
-+ hc->speed = DWC_OTG_EP_SPEED_FULL;
-+ } else {
-+ hc->speed = DWC_OTG_EP_SPEED_HIGH;
-+ }
-+
-+ hc->max_packet = dwc_max_packet(qh->maxp);
-+
-+ hc->xfer_started = 0;
-+ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
-+ hc->error_state = (qtd->error_count > 0);
-+ hc->halt_on_queue = 0;
-+ hc->halt_pending = 0;
-+ hc->requests = 0;
-+
-+ /*
-+ * The following values may be modified in the transfer type section
-+ * below. The xfer_len value may be reduced when the transfer is
-+ * started to accommodate the max widths of the XferSize and PktCnt
-+ * fields in the HCTSIZn register.
-+ */
-+ hc->do_ping = qh->ping_state;
-+ hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
-+ hc->data_pid_start = qh->data_toggle;
-+ hc->multi_count = 1;
-+
-+ if (hcd->core_if->dma_enable) {
-+ hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
-+ } else {
-+ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
-+ }
-+ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
-+ hc->xfer_count = 0;
-+
-+ /*
-+ * Set the split attributes
-+ */
-+ hc->do_split = 0;
-+ if (qh->do_split) {
-+ hc->do_split = 1;
-+ hc->xact_pos = qtd->isoc_split_pos;
-+ hc->complete_split = qtd->complete_split;
-+ hc->hub_addr = urb->dev->tt->hub->devnum;
-+ hc->port_addr = urb->dev->ttport;
-+ }
-+
-+ switch (usb_pipetype(urb->pipe)) {
-+ case PIPE_CONTROL:
-+ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
-+ switch (qtd->control_phase) {
-+ case DWC_OTG_CONTROL_SETUP:
-+ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
-+ hc->do_ping = 0;
-+ hc->ep_is_in = 0;
-+ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
-+ if (hcd->core_if->dma_enable) {
-+ hc->xfer_buff = (uint8_t *)urb->setup_dma;
-+ } else {
-+ hc->xfer_buff = (uint8_t *)urb->setup_packet;
-+ }
-+ hc->xfer_len = 8;
-+ break;
-+ case DWC_OTG_CONTROL_DATA:
-+ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
-+ hc->data_pid_start = qtd->data_toggle;
-+ break;
-+ case DWC_OTG_CONTROL_STATUS:
-+ /*
-+ * Direction is opposite of data direction or IN if no
-+ * data.
-+ */
-+ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
-+ if (urb->transfer_buffer_length == 0) {
-+ hc->ep_is_in = 1;
-+ } else {
-+ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
-+ }
-+ if (hc->ep_is_in) {
-+ hc->do_ping = 0;
-+ }
-+ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
-+ hc->xfer_len = 0;
-+ if (hcd->core_if->dma_enable) {
-+ hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
-+ } else {
-+ hc->xfer_buff = (uint8_t *)hcd->status_buf;
-+ }
-+ break;
-+ }
-+ break;
-+ case PIPE_BULK:
-+ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
-+ break;
-+ case PIPE_INTERRUPT:
-+ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
-+ break;
-+ case PIPE_ISOCHRONOUS:
-+ {
-+ struct usb_iso_packet_descriptor *frame_desc;
-+ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
-+ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
-+ if (hcd->core_if->dma_enable) {
-+ hc->xfer_buff = (uint8_t *)urb->transfer_dma;
-+ } else {
-+ hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
-+ }
-+ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
-+ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
-+
-+ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
-+ if (hc->xfer_len <= 188) {
-+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
-+ }
-+ else {
-+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
-+ }
-+ }
-+ }
-+ break;
-+ }
-+
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
-+ /*
-+ * This value may be modified when the transfer is started to
-+ * reflect the actual transfer length.
-+ */
-+ hc->multi_count = dwc_hb_mult(qh->maxp);
-+ }
-+
-+ dwc_otg_hc_init(hcd->core_if, hc);
-+ hc->qh = qh;
-+}
-+
-+/**
-+ * This function selects transactions from the HCD transfer schedule and
-+ * assigns them to available host channels. It is called from HCD interrupt
-+ * handler functions.
-+ *
-+ * @param hcd The HCD state structure.
-+ *
-+ * @return The types of new transactions that were assigned to host channels.
-+ */
-+dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
-+{
-+ struct list_head *qh_ptr;
-+ dwc_otg_qh_t *qh;
-+ int num_channels;
-+ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
-+
-+#ifdef DEBUG_SOF
-+ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
-+#endif
-+
-+ spin_lock(&hcd->lock);
-+ /* Process entries in the periodic ready list. */
-+ qh_ptr = hcd->periodic_sched_ready.next;
-+ while (qh_ptr != &hcd->periodic_sched_ready &&
-+ !list_empty(&hcd->free_hc_list)) {
-+
-+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
-+ assign_and_init_hc(hcd, qh);
-+
-+ /*
-+ * Move the QH from the periodic ready schedule to the
-+ * periodic assigned schedule.
-+ */
-+ qh_ptr = qh_ptr->next;
-+ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
-+
-+ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
-+ }
-+
-+ /*
-+ * Process entries in the inactive portion of the non-periodic
-+ * schedule. Some free host channels may not be used if they are
-+ * reserved for periodic transfers.
-+ */
-+ qh_ptr = hcd->non_periodic_sched_inactive.next;
-+ num_channels = hcd->core_if->core_params->host_channels;
-+ while (qh_ptr != &hcd->non_periodic_sched_inactive &&
-+ (hcd->non_periodic_channels <
-+ num_channels - hcd->periodic_channels) &&
-+ !list_empty(&hcd->free_hc_list)) {
-+
-+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
-+ assign_and_init_hc(hcd, qh);
-+
-+ /*
-+ * Move the QH from the non-periodic inactive schedule to the
-+ * non-periodic active schedule.
-+ */
-+ qh_ptr = qh_ptr->next;
-+ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
-+
-+ if (ret_val == DWC_OTG_TRANSACTION_NONE) {
-+ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
-+ } else {
-+ ret_val = DWC_OTG_TRANSACTION_ALL;
-+ }
-+
-+ hcd->non_periodic_channels++;
-+ }
-+ spin_unlock(&hcd->lock);
-+
-+ return ret_val;
-+}
-+
-+/**
-+ * Attempts to queue a single transaction request for a host channel
-+ * associated with either a periodic or non-periodic transfer. This function
-+ * assumes that there is space available in the appropriate request queue. For
-+ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
-+ * is available in the appropriate Tx FIFO.
-+ *
-+ * @param hcd The HCD state structure.
-+ * @param hc Host channel descriptor associated with either a periodic or
-+ * non-periodic transfer.
-+ * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
-+ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
-+ * transfers.
-+ *
-+ * @return 1 if a request is queued and more requests may be needed to
-+ * complete the transfer, 0 if no more requests are required for this
-+ * transfer, -1 if there is insufficient space in the Tx FIFO.
-+ */
-+static int queue_transaction(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ uint16_t fifo_dwords_avail)
-+{
-+ int retval;
-+
-+ if (hcd->core_if->dma_enable) {
-+ if (!hc->xfer_started) {
-+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
-+ hc->qh->ping_state = 0;
-+ }
-+ retval = 0;
-+ } else if (hc->halt_pending) {
-+ /* Don't queue a request if the channel has been halted. */
-+ retval = 0;
-+ } else if (hc->halt_on_queue) {
-+ dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
-+ retval = 0;
-+ } else if (hc->do_ping) {
-+ if (!hc->xfer_started) {
-+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
-+ }
-+ retval = 0;
-+ } else if (!hc->ep_is_in ||
-+ hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
-+ if ((fifo_dwords_avail * 4) >= hc->max_packet) {
-+ if (!hc->xfer_started) {
-+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
-+ retval = 1;
-+ } else {
-+ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
-+ }
-+ } else {
-+ retval = -1;
-+ }
-+ } else {
-+ if (!hc->xfer_started) {
-+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
-+ retval = 1;
-+ } else {
-+ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
-+ }
-+ }
-+
-+ return retval;
-+}
-+
-+/**
-+ * Processes active non-periodic channels and queues transactions for these
-+ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
-+ * FIFO Empty interrupt is enabled if there are more transactions to queue as
-+ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
-+ * FIFO Empty interrupt is disabled.
-+ */
-+static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
-+{
-+ gnptxsts_data_t tx_status;
-+ struct list_head *orig_qh_ptr;
-+ dwc_otg_qh_t *qh;
-+ int status;
-+ int no_queue_space = 0;
-+ int no_fifo_space = 0;
-+ int more_to_do = 0;
-+
-+ dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;
-+
-+ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
-+#ifdef DEBUG
-+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
-+ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
-+ tx_status.b.nptxqspcavail);
-+ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
-+ tx_status.b.nptxfspcavail);
-+#endif
-+ /*
-+ * Keep track of the starting point. Skip over the start-of-list
-+ * entry.
-+ */
-+ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
-+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
-+ }
-+ orig_qh_ptr = hcd->non_periodic_qh_ptr;
-+
-+ /*
-+ * Process once through the active list or until no more space is
-+ * available in the request queue or the Tx FIFO.
-+ */
-+ do {
-+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
-+ if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
-+ no_queue_space = 1;
-+ break;
-+ }
-+
-+ qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
-+ status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);
-+
-+ if (status > 0) {
-+ more_to_do = 1;
-+ } else if (status < 0) {
-+ no_fifo_space = 1;
-+ break;
-+ }
-+
-+ /* Advance to next QH, skipping start-of-list entry. */
-+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
-+ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
-+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
-+ }
-+
-+ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
-+
-+ if (!hcd->core_if->dma_enable) {
-+ gintmsk_data_t intr_mask = {.d32 = 0};
-+ intr_mask.b.nptxfempty = 1;
-+
-+#ifdef DEBUG
-+ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
-+ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
-+ tx_status.b.nptxqspcavail);
-+ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
-+ tx_status.b.nptxfspcavail);
-+#endif
-+ if (more_to_do || no_queue_space || no_fifo_space) {
-+ /*
-+ * May need to queue more transactions as the request
-+ * queue or Tx FIFO empties. Enable the non-periodic
-+ * Tx FIFO empty interrupt. (Always use the half-empty
-+ * level to ensure that new requests are loaded as
-+ * soon as possible.)
-+ */
-+ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
-+ } else {
-+ /*
-+ * Disable the Tx FIFO empty interrupt since there are
-+ * no more transactions that need to be queued right
-+ * now. This function is called from interrupt
-+ * handlers to queue more transactions as transfer
-+ * states change.
-+ */
-+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
-+ }
-+ }
-+}
-+
-+/**
-+ * Processes periodic channels for the next frame and queues transactions for
-+ * these channels to the DWC_otg controller. After queueing transactions, the
-+ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
-+ * to queue as Periodic Tx FIFO or request queue space becomes available.
-+ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
-+ */
-+static void process_periodic_channels(dwc_otg_hcd_t *hcd)
-+{
-+ hptxsts_data_t tx_status;
-+ struct list_head *qh_ptr;
-+ dwc_otg_qh_t *qh;
-+ int status;
-+ int no_queue_space = 0;
-+ int no_fifo_space = 0;
-+
-+ dwc_otg_host_global_regs_t *host_regs;
-+ host_regs = hcd->core_if->host_if->host_global_regs;
-+
-+ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
-+#ifdef DEBUG
-+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
-+ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
-+ tx_status.b.ptxqspcavail);
-+ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
-+ tx_status.b.ptxfspcavail);
-+#endif
-+
-+ qh_ptr = hcd->periodic_sched_assigned.next;
-+ while (qh_ptr != &hcd->periodic_sched_assigned) {
-+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
-+ if (tx_status.b.ptxqspcavail == 0) {
-+ no_queue_space = 1;
-+ break;
-+ }
-+
-+ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
-+
-+ /*
-+ * Set a flag if we're queuing high-bandwidth in slave mode.
-+ * The flag prevents any halts to get into the request queue in
-+ * the middle of multiple high-bandwidth packets getting queued.
-+ */
-+ if (!hcd->core_if->dma_enable &&
-+ qh->channel->multi_count > 1)
-+ {
-+ hcd->core_if->queuing_high_bandwidth = 1;
-+ }
-+
-+ status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
-+ if (status < 0) {
-+ no_fifo_space = 1;
-+ break;
-+ }
-+
-+ /*
-+ * In Slave mode, stay on the current transfer until there is
-+ * nothing more to do or the high-bandwidth request count is
-+ * reached. In DMA mode, only need to queue one request. The
-+ * controller automatically handles multiple packets for
-+ * high-bandwidth transfers.
-+ */
-+ if (hcd->core_if->dma_enable || status == 0 ||
-+ qh->channel->requests == qh->channel->multi_count) {
-+ qh_ptr = qh_ptr->next;
-+ /*
-+ * Move the QH from the periodic assigned schedule to
-+ * the periodic queued schedule.
-+ */
-+ list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);
-+
-+ /* done queuing high bandwidth */
-+ hcd->core_if->queuing_high_bandwidth = 0;
-+ }
-+ }
-+
-+ if (!hcd->core_if->dma_enable) {
-+ dwc_otg_core_global_regs_t *global_regs;
-+ gintmsk_data_t intr_mask = {.d32 = 0};
-+
-+ global_regs = hcd->core_if->core_global_regs;
-+ intr_mask.b.ptxfempty = 1;
-+#ifdef DEBUG
-+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
-+ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
-+ tx_status.b.ptxqspcavail);
-+ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
-+ tx_status.b.ptxfspcavail);
-+#endif
-+ if (!list_empty(&hcd->periodic_sched_assigned) ||
-+ no_queue_space || no_fifo_space) {
-+ /*
-+ * May need to queue more transactions as the request
-+ * queue or Tx FIFO empties. Enable the periodic Tx
-+ * FIFO empty interrupt. (Always use the half-empty
-+ * level to ensure that new requests are loaded as
-+ * soon as possible.)
-+ */
-+ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
-+ } else {
-+ /*
-+ * Disable the Tx FIFO empty interrupt since there are
-+ * no more transactions that need to be queued right
-+ * now. This function is called from interrupt
-+ * handlers to queue more transactions as transfer
-+ * states change.
-+ */
-+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
-+ }
-+ }
-+}
-+
-+/**
-+ * This function processes the currently active host channels and queues
-+ * transactions for these channels to the DWC_otg controller. It is called
-+ * from HCD interrupt handler functions.
-+ *
-+ * @param hcd The HCD state structure.
-+ * @param tr_type The type(s) of transactions to queue (non-periodic,
-+ * periodic, or both).
-+ */
-+void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
-+ dwc_otg_transaction_type_e tr_type)
-+{
-+#ifdef DEBUG_SOF
-+ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
-+#endif
-+ /* Process host channels associated with periodic transfers. */
-+ if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
-+ tr_type == DWC_OTG_TRANSACTION_ALL) &&
-+ !list_empty(&hcd->periodic_sched_assigned)) {
-+
-+ process_periodic_channels(hcd);
-+ }
-+
-+ /* Process host channels associated with non-periodic transfers. */
-+ if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
-+ tr_type == DWC_OTG_TRANSACTION_ALL) {
-+ if (!list_empty(&hcd->non_periodic_sched_active)) {
-+ process_non_periodic_channels(hcd);
-+ } else {
-+ /*
-+ * Ensure NP Tx FIFO empty interrupt is disabled when
-+ * there are no non-periodic transfers to process.
-+ */
-+ gintmsk_data_t gintmsk = {.d32 = 0};
-+ gintmsk.b.nptxfempty = 1;
-+ dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
-+ gintmsk.d32, 0);
-+ }
-+ }
-+}
-+
-+/**
-+ * Sets the final status of an URB and returns it to the device driver. Any
-+ * required cleanup of the URB is performed.
-+ */
-+void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
-+{
-+#ifdef DEBUG
-+ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
-+ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
-+ __func__, urb, usb_pipedevice(urb->pipe),
-+ usb_pipeendpoint(urb->pipe),
-+ usb_pipein(urb->pipe) ? "IN" : "OUT", status);
-+ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
-+ int i;
-+ for (i = 0; i < urb->number_of_packets; i++) {
-+ DWC_PRINT(" ISO Desc %d status: %d\n",
-+ i, urb->iso_frame_desc[i].status);
-+ }
-+ }
-+ }
-+#endif
-+
-+ //if we use the aligned buffer instead of the original unaligned buffer,
-+ //for IN data, we have to move the data to the original buffer
-+ if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){
-+ dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE);
-+ memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length);
-+ }
-+
-+
-+ urb->status = status;
-+ urb->hcpriv = NULL;
-+ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
-+}
-+
-+/*
-+ * Returns the Queue Head for an URB.
-+ */
-+dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
-+{
-+ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
-+ return (dwc_otg_qh_t *)ep->hcpriv;
-+}
-+
-+#ifdef DEBUG
-+void dwc_print_setup_data(uint8_t *setup)
-+{
-+ int i;
-+ if (CHK_DEBUG_LEVEL(DBG_HCD)){
-+ DWC_PRINT("Setup Data = MSB ");
-+ for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
-+ DWC_PRINT("\n");
-+ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
-+ DWC_PRINT(" bmRequestType Type = ");
-+ switch ((setup[0] & 0x60) >> 5) {
-+ case 0: DWC_PRINT("Standard\n"); break;
-+ case 1: DWC_PRINT("Class\n"); break;
-+ case 2: DWC_PRINT("Vendor\n"); break;
-+ case 3: DWC_PRINT("Reserved\n"); break;
-+ }
-+ DWC_PRINT(" bmRequestType Recipient = ");
-+ switch (setup[0] & 0x1f) {
-+ case 0: DWC_PRINT("Device\n"); break;
-+ case 1: DWC_PRINT("Interface\n"); break;
-+ case 2: DWC_PRINT("Endpoint\n"); break;
-+ case 3: DWC_PRINT("Other\n"); break;
-+ default: DWC_PRINT("Reserved\n"); break;
-+ }
-+ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
-+ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
-+ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
-+ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
-+ }
-+}
-+#endif
-+
-+void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
-+}
-+
-+void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
-+{
-+#ifdef DEBUG
-+ int num_channels;
-+ int i;
-+ gnptxsts_data_t np_tx_status;
-+ hptxsts_data_t p_tx_status;
-+
-+ num_channels = hcd->core_if->core_params->host_channels;
-+ DWC_PRINT("\n");
-+ DWC_PRINT("************************************************************\n");
-+ DWC_PRINT("HCD State:\n");
-+ DWC_PRINT(" Num channels: %d\n", num_channels);
-+ for (i = 0; i < num_channels; i++) {
-+ dwc_hc_t *hc = hcd->hc_ptr_array[i];
-+ DWC_PRINT(" Channel %d:\n", i);
-+ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
-+ hc->dev_addr, hc->ep_num, hc->ep_is_in);
-+ DWC_PRINT(" speed: %d\n", hc->speed);
-+ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
-+ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
-+ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
-+ DWC_PRINT(" multi_count: %d\n", hc->multi_count);
-+ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
-+ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
-+ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
-+ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
-+ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
-+ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
-+ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
-+ DWC_PRINT(" do_split: %d\n", hc->do_split);
-+ DWC_PRINT(" complete_split: %d\n", hc->complete_split);
-+ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
-+ DWC_PRINT(" port_addr: %d\n", hc->port_addr);
-+ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
-+ DWC_PRINT(" requests: %d\n", hc->requests);
-+ DWC_PRINT(" qh: %p\n", hc->qh);
-+ if (hc->xfer_started) {
-+ hfnum_data_t hfnum;
-+ hcchar_data_t hcchar;
-+ hctsiz_data_t hctsiz;
-+ hcint_data_t hcint;
-+ hcintmsk_data_t hcintmsk;
-+ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
-+ hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
-+ hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
-+ hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
-+ hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
-+ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
-+ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
-+ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
-+ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
-+ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
-+ }
-+ if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
-+ dwc_otg_qtd_t *qtd;
-+ struct urb *urb;
-+ qtd = hc->qh->qtd_in_process;
-+ urb = qtd->urb;
-+ DWC_PRINT(" URB Info:\n");
-+ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
-+ if (urb) {
-+ DWC_PRINT(" Dev: %d, EP: %d %s\n",
-+ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
-+ usb_pipein(urb->pipe) ? "IN" : "OUT");
-+ DWC_PRINT(" Max packet size: %d\n",
-+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
-+ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
-+ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
-+ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
-+ DWC_PRINT(" actual_length: %d\n", urb->actual_length);
-+ }
-+ }
-+ }
-+ DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
-+ DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
-+ DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
-+ np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
-+ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
-+ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
-+ p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
-+ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
-+ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
-+ dwc_otg_hcd_dump_frrem(hcd);
-+ dwc_otg_dump_global_registers(hcd->core_if);
-+ dwc_otg_dump_host_registers(hcd->core_if);
-+ DWC_PRINT("************************************************************\n");
-+ DWC_PRINT("\n");
-+#endif
-+}
-+#endif /* DWC_DEVICE_ONLY */
---- /dev/null
-+++ b/drivers/usb/dwc/otg_hcd.h
-@@ -0,0 +1,652 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
-+ * $Revision: #45 $
-+ * $Date: 2008/07/15 $
-+ * $Change: 1064918 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+#ifndef DWC_DEVICE_ONLY
-+#ifndef __DWC_HCD_H__
-+#define __DWC_HCD_H__
-+
-+#include <linux/list.h>
-+#include <linux/usb.h>
-+#include <linux/usb/hcd.h>
-+
-+struct dwc_otg_device;
-+
-+#include "otg_cil.h"
-+
-+/**
-+ * @file
-+ *
-+ * This file contains the structures, constants, and interfaces for
-+ * the Host Contoller Driver (HCD).
-+ *
-+ * The Host Controller Driver (HCD) is responsible for translating requests
-+ * from the USB Driver into the appropriate actions on the DWC_otg controller.
-+ * It isolates the USBD from the specifics of the controller by providing an
-+ * API to the USBD.
-+ */
-+
-+/**
-+ * Phases for control transfers.
-+ */
-+typedef enum dwc_otg_control_phase {
-+ DWC_OTG_CONTROL_SETUP,
-+ DWC_OTG_CONTROL_DATA,
-+ DWC_OTG_CONTROL_STATUS
-+} dwc_otg_control_phase_e;
-+
-+/** Transaction types. */
-+typedef enum dwc_otg_transaction_type {
-+ DWC_OTG_TRANSACTION_NONE,
-+ DWC_OTG_TRANSACTION_PERIODIC,
-+ DWC_OTG_TRANSACTION_NON_PERIODIC,
-+ DWC_OTG_TRANSACTION_ALL
-+} dwc_otg_transaction_type_e;
-+
-+/**
-+ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
-+ * interrupt, or isochronous transfer. A single QTD is created for each URB
-+ * (of one of these types) submitted to the HCD. The transfer associated with
-+ * a QTD may require one or multiple transactions.
-+ *
-+ * A QTD is linked to a Queue Head, which is entered in either the
-+ * non-periodic or periodic schedule for execution. When a QTD is chosen for
-+ * execution, some or all of its transactions may be executed. After
-+ * execution, the state of the QTD is updated. The QTD may be retired if all
-+ * its transactions are complete or if an error occurred. Otherwise, it
-+ * remains in the schedule so more transactions can be executed later.
-+ */
-+typedef struct dwc_otg_qtd {
-+ /**
-+ * Determines the PID of the next data packet for the data phase of
-+ * control transfers. Ignored for other transfer types.<br>
-+ * One of the following values:
-+ * - DWC_OTG_HC_PID_DATA0
-+ * - DWC_OTG_HC_PID_DATA1
-+ */
-+ uint8_t data_toggle;
-+
-+ /** Current phase for control transfers (Setup, Data, or Status). */
-+ dwc_otg_control_phase_e control_phase;
-+
-+ /** Keep track of the current split type
-+ * for FS/LS endpoints on a HS Hub */
-+ uint8_t complete_split;
-+
-+ /** How many bytes transferred during SSPLIT OUT */
-+ uint32_t ssplit_out_xfer_count;
-+
-+ /**
-+ * Holds the number of bus errors that have occurred for a transaction
-+ * within this transfer.
-+ */
-+ uint8_t error_count;
-+
-+ /**
-+ * Index of the next frame descriptor for an isochronous transfer. A
-+ * frame descriptor describes the buffer position and length of the
-+ * data to be transferred in the next scheduled (micro)frame of an
-+ * isochronous transfer. It also holds status for that transaction.
-+ * The frame index starts at 0.
-+ */
-+ int isoc_frame_index;
-+
-+ /** Position of the ISOC split on full/low speed */
-+ uint8_t isoc_split_pos;
-+
-+ /** Position of the ISOC split in the buffer for the current frame */
-+ uint16_t isoc_split_offset;
-+
-+ /** URB for this transfer */
-+ struct urb *urb;
-+
-+ /** This list of QTDs */
-+ struct list_head qtd_list_entry;
-+
-+} dwc_otg_qtd_t;
-+
-+/**
-+ * A Queue Head (QH) holds the static characteristics of an endpoint and
-+ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
-+ * be entered in either the non-periodic or periodic schedule.
-+ */
-+typedef struct dwc_otg_qh {
-+ /**
-+ * Endpoint type.
-+ * One of the following values:
-+ * - USB_ENDPOINT_XFER_CONTROL
-+ * - USB_ENDPOINT_XFER_ISOC
-+ * - USB_ENDPOINT_XFER_BULK
-+ * - USB_ENDPOINT_XFER_INT
-+ */
-+ uint8_t ep_type;
-+ uint8_t ep_is_in;
-+
-+ /** wMaxPacketSize Field of Endpoint Descriptor. */
-+ uint16_t maxp;
-+
-+ /**
-+ * Determines the PID of the next data packet for non-control
-+ * transfers. Ignored for control transfers.<br>
-+ * One of the following values:
-+ * - DWC_OTG_HC_PID_DATA0
-+ * - DWC_OTG_HC_PID_DATA1
-+ */
-+ uint8_t data_toggle;
-+
-+ /** Ping state if 1. */
-+ uint8_t ping_state;
-+
-+ /**
-+ * List of QTDs for this QH.
-+ */
-+ struct list_head qtd_list;
-+
-+ /** Host channel currently processing transfers for this QH. */
-+ dwc_hc_t *channel;
-+
-+ /** QTD currently assigned to a host channel for this QH. */
-+ dwc_otg_qtd_t *qtd_in_process;
-+
-+ /** Full/low speed endpoint on high-speed hub requires split. */
-+ uint8_t do_split;
-+
-+ /** @name Periodic schedule information */
-+ /** @{ */
-+
-+ /** Bandwidth in microseconds per (micro)frame. */
-+ uint8_t usecs;
-+
-+ /** Interval between transfers in (micro)frames. */
-+ uint16_t interval;
-+
-+ /**
-+ * (micro)frame to initialize a periodic transfer. The transfer
-+ * executes in the following (micro)frame.
-+ */
-+ uint16_t sched_frame;
-+
-+ /** (micro)frame at which last start split was initialized. */
-+ uint16_t start_split_frame;
-+
-+ u16 speed;
-+ u16 frame_usecs[8];
-+
-+ /** @} */
-+
-+ /** Entry for QH in either the periodic or non-periodic schedule. */
-+ struct list_head qh_list_entry;
-+} dwc_otg_qh_t;
-+
-+/**
-+ * This structure holds the state of the HCD, including the non-periodic and
-+ * periodic schedules.
-+ */
-+typedef struct dwc_otg_hcd {
-+ /** The DWC otg device pointer */
-+ struct dwc_otg_device *otg_dev;
-+
-+ /** DWC OTG Core Interface Layer */
-+ dwc_otg_core_if_t *core_if;
-+
-+ /** Internal DWC HCD Flags */
-+ volatile union dwc_otg_hcd_internal_flags {
-+ uint32_t d32;
-+ struct {
-+ unsigned port_connect_status_change : 1;
-+ unsigned port_connect_status : 1;
-+ unsigned port_reset_change : 1;
-+ unsigned port_enable_change : 1;
-+ unsigned port_suspend_change : 1;
-+ unsigned port_over_current_change : 1;
-+ unsigned reserved : 27;
-+ } b;
-+ } flags;
-+
-+ /**
-+ * Inactive items in the non-periodic schedule. This is a list of
-+ * Queue Heads. Transfers associated with these Queue Heads are not
-+ * currently assigned to a host channel.
-+ */
-+ struct list_head non_periodic_sched_inactive;
-+
-+ /**
-+ * Active items in the non-periodic schedule. This is a list of
-+ * Queue Heads. Transfers associated with these Queue Heads are
-+ * currently assigned to a host channel.
-+ */
-+ struct list_head non_periodic_sched_active;
-+
-+ /**
-+ * Pointer to the next Queue Head to process in the active
-+ * non-periodic schedule.
-+ */
-+ struct list_head *non_periodic_qh_ptr;
-+
-+ /**
-+ * Inactive items in the periodic schedule. This is a list of QHs for
-+ * periodic transfers that are _not_ scheduled for the next frame.
-+ * Each QH in the list has an interval counter that determines when it
-+ * needs to be scheduled for execution. This scheduling mechanism
-+ * allows only a simple calculation for periodic bandwidth used (i.e.
-+ * must assume that all periodic transfers may need to execute in the
-+ * same frame). However, it greatly simplifies scheduling and should
-+ * be sufficient for the vast majority of OTG hosts, which need to
-+ * connect to a small number of peripherals at one time.
-+ *
-+ * Items move from this list to periodic_sched_ready when the QH
-+ * interval counter is 0 at SOF.
-+ */
-+ struct list_head periodic_sched_inactive;
-+
-+ /**
-+ * List of periodic QHs that are ready for execution in the next
-+ * frame, but have not yet been assigned to host channels.
-+ *
-+ * Items move from this list to periodic_sched_assigned as host
-+ * channels become available during the current frame.
-+ */
-+ struct list_head periodic_sched_ready;
-+
-+ /**
-+ * List of periodic QHs to be executed in the next frame that are
-+ * assigned to host channels.
-+ *
-+ * Items move from this list to periodic_sched_queued as the
-+ * transactions for the QH are queued to the DWC_otg controller.
-+ */
-+ struct list_head periodic_sched_assigned;
-+
-+ /**
-+ * List of periodic QHs that have been queued for execution.
-+ *
-+ * Items move from this list to either periodic_sched_inactive or
-+ * periodic_sched_ready when the channel associated with the transfer
-+ * is released. If the interval for the QH is 1, the item moves to
-+ * periodic_sched_ready because it must be rescheduled for the next
-+ * frame. Otherwise, the item moves to periodic_sched_inactive.
-+ */
-+ struct list_head periodic_sched_queued;
-+
-+ /**
-+ * Total bandwidth claimed so far for periodic transfers. This value
-+ * is in microseconds per (micro)frame. The assumption is that all
-+ * periodic transfers may occur in the same (micro)frame.
-+ */
-+ uint16_t periodic_usecs;
-+
-+ /*
-+ * Total bandwidth claimed so far for all periodic transfers
-+ * in a frame.
-+ * This will include a mixture of HS and FS transfers.
-+ * Units are microseconds per (micro)frame.
-+ * We have a budget per frame and have to schedule
-+ * transactions accordingly.
-+ * Watch out for the fact that things are actually scheduled for the
-+ * "next frame".
-+ */
-+ u16 frame_usecs[8];
-+
-+ /**
-+ * Frame number read from the core at SOF. The value ranges from 0 to
-+ * DWC_HFNUM_MAX_FRNUM.
-+ */
-+ uint16_t frame_number;
-+
-+ /**
-+ * Free host channels in the controller. This is a list of
-+ * dwc_hc_t items.
-+ */
-+ struct list_head free_hc_list;
-+
-+ /**
-+ * Number of host channels assigned to periodic transfers. Currently
-+ * assuming that there is a dedicated host channel for each periodic
-+ * transaction and at least one host channel available for
-+ * non-periodic transactions.
-+ */
-+ int periodic_channels;
-+
-+ /**
-+ * Number of host channels assigned to non-periodic transfers.
-+ */
-+ int non_periodic_channels;
-+
-+ /**
-+ * Array of pointers to the host channel descriptors. Allows accessing
-+ * a host channel descriptor given the host channel number. This is
-+ * useful in interrupt handlers.
-+ */
-+ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
-+
-+ /**
-+ * Buffer to use for any data received during the status phase of a
-+ * control transfer. Normally no data is transferred during the status
-+ * phase. This buffer is used as a bit bucket.
-+ */
-+ uint8_t *status_buf;
-+
-+ /**
-+ * DMA address for status_buf.
-+ */
-+ dma_addr_t status_buf_dma;
-+#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
-+
-+ /**
-+ * Structure to allow starting the HCD in a non-interrupt context
-+ * during an OTG role change.
-+ */
-+ struct delayed_work start_work;
-+
-+ /**
-+ * Connection timer. An OTG host must display a message if the device
-+ * does not connect. Started when the VBus power is turned on via
-+ * sysfs attribute "buspower".
-+ */
-+ struct timer_list conn_timer;
-+
-+ /* Tasket to do a reset */
-+ struct tasklet_struct *reset_tasklet;
-+
-+ /* */
-+ spinlock_t lock;
-+
-+#ifdef DEBUG
-+ uint32_t frrem_samples;
-+ uint64_t frrem_accum;
-+
-+ uint32_t hfnum_7_samples_a;
-+ uint64_t hfnum_7_frrem_accum_a;
-+ uint32_t hfnum_0_samples_a;
-+ uint64_t hfnum_0_frrem_accum_a;
-+ uint32_t hfnum_other_samples_a;
-+ uint64_t hfnum_other_frrem_accum_a;
-+
-+ uint32_t hfnum_7_samples_b;
-+ uint64_t hfnum_7_frrem_accum_b;
-+ uint32_t hfnum_0_samples_b;
-+ uint64_t hfnum_0_frrem_accum_b;
-+ uint32_t hfnum_other_samples_b;
-+ uint64_t hfnum_other_frrem_accum_b;
-+#endif
-+} dwc_otg_hcd_t;
-+
-+/** Gets the dwc_otg_hcd from a struct usb_hcd */
-+static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
-+{
-+ return (dwc_otg_hcd_t *)(hcd->hcd_priv);
-+}
-+
-+/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
-+static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
-+{
-+ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
-+}
-+
-+/** @name HCD Create/Destroy Functions */
-+/** @{ */
-+extern int dwc_otg_hcd_init(struct platform_device *pdev);
-+extern void dwc_otg_hcd_remove(struct platform_device *pdev);
-+/** @} */
-+
-+/** @name Linux HC Driver API Functions */
-+/** @{ */
-+
-+extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
-+extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
-+extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
-+extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
-+extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
-+ // struct usb_host_endpoint *ep,
-+ struct urb *urb,
-+ gfp_t mem_flags
-+ );
-+extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
-+ struct urb *urb, int status);
-+extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
-+ struct usb_host_endpoint *ep);
-+extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
-+extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
-+ char *buf);
-+extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
-+ u16 typeReq,
-+ u16 wValue,
-+ u16 wIndex,
-+ char *buf,
-+ u16 wLength);
-+
-+/** @} */
-+
-+/** @name Transaction Execution Functions */
-+/** @{ */
-+extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd);
-+extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
-+ dwc_otg_transaction_type_e tr_type);
-+extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb,
-+ int status);
-+/** @} */
-+
-+/** @name Interrupt Handler Functions */
-+/** @{ */
-+extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num);
-+extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd);
-+/** @} */
-+
-+
-+/** @name Schedule Queue Functions */
-+/** @{ */
-+
-+/* Implemented in dwc_otg_hcd_queue.c */
-+extern int init_hcd_usecs(dwc_otg_hcd_t *hcd);
-+extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb);
-+extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb);
-+extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
-+extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
-+extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
-+extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit);
-+
-+/** Remove and free a QH */
-+static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd,
-+ dwc_otg_qh_t *qh)
-+{
-+ dwc_otg_hcd_qh_remove(hcd, qh);
-+ dwc_otg_hcd_qh_free(hcd, qh);
-+}
-+
-+/** Allocates memory for a QH structure.
-+ * @return Returns the memory allocate or NULL on error. */
-+static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void)
-+{
-+ return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL);
-+}
-+
-+extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb);
-+extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb);
-+extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
-+
-+/** Allocates memory for a QTD structure.
-+ * @return Returns the memory allocate or NULL on error. */
-+static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void)
-+{
-+ return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL);
-+}
-+
-+/** Frees the memory for a QTD structure. QTD should already be removed from
-+ * list.
-+ * @param[in] qtd QTD to free.*/
-+static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd)
-+{
-+ kfree(qtd);
-+}
-+
-+/** Remove and free a QTD */
-+static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
-+{
-+ list_del(&qtd->qtd_list_entry);
-+ dwc_otg_hcd_qtd_free(qtd);
-+}
-+
-+/** @} */
-+
-+
-+/** @name Internal Functions */
-+/** @{ */
-+dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb);
-+void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd);
-+void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd);
-+/** @} */
-+
-+/** Gets the usb_host_endpoint associated with an URB. */
-+static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
-+{
-+ struct usb_device *dev = urb->dev;
-+ int ep_num = usb_pipeendpoint(urb->pipe);
-+
-+ if (usb_pipein(urb->pipe))
-+ return dev->ep_in[ep_num];
-+ else
-+ return dev->ep_out[ep_num];
-+}
-+
-+/**
-+ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
-+ * qualified with its direction (possible 32 endpoints per device).
-+ */
-+#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
-+ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
-+
-+/** Gets the QH that contains the list_head */
-+#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
-+
-+/** Gets the QTD that contains the list_head */
-+#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
-+
-+/** Check if QH is non-periodic */
-+#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
-+ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
-+
-+/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
-+#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
-+
-+/** Packet size for any kind of endpoint descriptor */
-+#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
-+
-+/**
-+ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
-+ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
-+ * frame number when the max frame number is reached.
-+ */
-+static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
-+{
-+ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
-+ (DWC_HFNUM_MAX_FRNUM >> 1);
-+}
-+
-+/**
-+ * Returns true if _frame1 is greater than _frame2. The comparison is done
-+ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
-+ * number when the max frame number is reached.
-+ */
-+static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
-+{
-+ return (frame1 != frame2) &&
-+ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
-+ (DWC_HFNUM_MAX_FRNUM >> 1));
-+}
-+
-+/**
-+ * Increments _frame by the amount specified by _inc. The addition is done
-+ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
-+ */
-+static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
-+{
-+ return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
-+}
-+
-+static inline uint16_t dwc_full_frame_num(uint16_t frame)
-+{
-+ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
-+}
-+
-+static inline uint16_t dwc_micro_frame_num(uint16_t frame)
-+{
-+ return frame & 0x7;
-+}
-+
-+#ifdef DEBUG
-+/**
-+ * Macro to sample the remaining PHY clocks left in the current frame. This
-+ * may be used during debugging to determine the average time it takes to
-+ * execute sections of code. There are two possible sample points, "a" and
-+ * "b", so the _letter argument must be one of these values.
-+ *
-+ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
-+ * example, "cat /sys/devices/lm0/hcd_frrem".
-+ */
-+#define dwc_sample_frrem(_hcd, _qh, _letter) \
-+{ \
-+ hfnum_data_t hfnum; \
-+ dwc_otg_qtd_t *qtd; \
-+ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
-+ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
-+ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
-+ switch (hfnum.b.frnum & 0x7) { \
-+ case 7: \
-+ _hcd->hfnum_7_samples_##_letter++; \
-+ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
-+ break; \
-+ case 0: \
-+ _hcd->hfnum_0_samples_##_letter++; \
-+ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
-+ break; \
-+ default: \
-+ _hcd->hfnum_other_samples_##_letter++; \
-+ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
-+ break; \
-+ } \
-+ } \
-+}
-+#else
-+#define dwc_sample_frrem(_hcd, _qh, _letter)
-+#endif
-+#endif
-+#endif /* DWC_DEVICE_ONLY */
---- /dev/null
-+++ b/drivers/usb/dwc/otg_hcd_intr.c
-@@ -0,0 +1,1828 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
-+ * $Revision: #70 $
-+ * $Date: 2008/10/16 $
-+ * $Change: 1117667 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+#ifndef DWC_DEVICE_ONLY
-+
-+#include <linux/version.h>
-+
-+#include "otg_driver.h"
-+#include "otg_hcd.h"
-+#include "otg_regs.h"
-+
-+/** @file
-+ * This file contains the implementation of the HCD Interrupt handlers.
-+ */
-+
-+/** This function handles interrupts for the HCD. */
-+int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd)
-+{
-+ int retval = 0;
-+
-+ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
-+ gintsts_data_t gintsts;
-+#ifdef DEBUG
-+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
-+#endif
-+
-+ /* Check if HOST Mode */
-+ if (dwc_otg_is_host_mode(core_if)) {
-+ gintsts.d32 = dwc_otg_read_core_intr(core_if);
-+ if (!gintsts.d32) {
-+ return 0;
-+ }
-+
-+#ifdef DEBUG
-+ /* Don't print debug message in the interrupt handler on SOF */
-+# ifndef DEBUG_SOF
-+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
-+# endif
-+ DWC_DEBUGPL(DBG_HCD, "\n");
-+#endif
-+
-+#ifdef DEBUG
-+# ifndef DEBUG_SOF
-+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
-+# endif
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
-+#endif
-+ if (gintsts.b.usbreset) {
-+ DWC_PRINT("Usb Reset In Host Mode\n");
-+ }
-+ if (gintsts.b.sofintr) {
-+ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
-+ }
-+ if (gintsts.b.rxstsqlvl) {
-+ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
-+ }
-+ if (gintsts.b.nptxfempty) {
-+ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
-+ }
-+ if (gintsts.b.i2cintr) {
-+ /** @todo Implement i2cintr handler. */
-+ }
-+ if (gintsts.b.portintr) {
-+ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
-+ }
-+ if (gintsts.b.hcintr) {
-+ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
-+ }
-+ if (gintsts.b.ptxfempty) {
-+ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd);
-+ }
-+#ifdef DEBUG
-+# ifndef DEBUG_SOF
-+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
-+# endif
-+ {
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
-+ dwc_read_reg32(&global_regs->gintsts));
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
-+ dwc_read_reg32(&global_regs->gintmsk));
-+ }
-+#endif
-+
-+#ifdef DEBUG
-+# ifndef DEBUG_SOF
-+ if (gintsts.d32 != DWC_SOF_INTR_MASK)
-+# endif
-+ DWC_DEBUGPL(DBG_HCD, "\n");
-+#endif
-+
-+ }
-+ S3C2410X_CLEAR_EINTPEND();
-+
-+ return retval;
-+}
-+
-+#ifdef DWC_TRACK_MISSED_SOFS
-+#warning Compiling code to track missed SOFs
-+#define FRAME_NUM_ARRAY_SIZE 1000
-+/**
-+ * This function is for debug only.
-+ */
-+static inline void track_missed_sofs(uint16_t curr_frame_number)
-+{
-+ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
-+ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
-+ static int frame_num_idx = 0;
-+ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
-+ static int dumped_frame_num_array = 0;
-+
-+ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
-+ if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) {
-+ frame_num_array[frame_num_idx] = curr_frame_number;
-+ last_frame_num_array[frame_num_idx++] = last_frame_num;
-+ }
-+ } else if (!dumped_frame_num_array) {
-+ int i;
-+ printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
-+ printk(KERN_EMERG USB_DWC "----- ----------\n");
-+ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
-+ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
-+ frame_num_array[i], last_frame_num_array[i]);
-+ }
-+ dumped_frame_num_array = 1;
-+ }
-+ last_frame_num = curr_frame_number;
-+}
-+#endif
-+
-+/**
-+ * Handles the start-of-frame interrupt in host mode. Non-periodic
-+ * transactions may be queued to the DWC_otg controller for the current
-+ * (micro)frame. Periodic transactions may be queued to the controller for the
-+ * next (micro)frame.
-+ */
-+int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd)
-+{
-+ hfnum_data_t hfnum;
-+ struct list_head *qh_entry;
-+ dwc_otg_qh_t *qh;
-+ dwc_otg_transaction_type_e tr_type;
-+ gintsts_data_t gintsts = {.d32 = 0};
-+
-+ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
-+
-+#ifdef DEBUG_SOF
-+ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
-+#endif
-+ hcd->frame_number = hfnum.b.frnum;
-+
-+#ifdef DEBUG
-+ hcd->frrem_accum += hfnum.b.frrem;
-+ hcd->frrem_samples++;
-+#endif
-+
-+#ifdef DWC_TRACK_MISSED_SOFS
-+ track_missed_sofs(hcd->frame_number);
-+#endif
-+
-+ /* Determine whether any periodic QHs should be executed. */
-+ qh_entry = hcd->periodic_sched_inactive.next;
-+ while (qh_entry != &hcd->periodic_sched_inactive) {
-+ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
-+ qh_entry = qh_entry->next;
-+ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
-+ /*
-+ * Move QH to the ready list to be executed next
-+ * (micro)frame.
-+ */
-+ list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready);
-+ }
-+ }
-+
-+ tr_type = dwc_otg_hcd_select_transactions(hcd);
-+ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
-+ dwc_otg_hcd_queue_transactions(hcd, tr_type);
-+ }
-+
-+ /* Clear interrupt */
-+ gintsts.b.sofintr = 1;
-+ dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
-+ * least one packet in the Rx FIFO. The packets are moved from the FIFO to
-+ * memory if the DWC_otg controller is operating in Slave mode. */
-+int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd)
-+{
-+ host_grxsts_data_t grxsts;
-+ dwc_hc_t *hc = NULL;
-+
-+ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
-+
-+ grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
-+
-+ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
-+
-+ /* Packet Status */
-+ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
-+ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
-+ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
-+ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
-+
-+ switch (grxsts.b.pktsts) {
-+ case DWC_GRXSTS_PKTSTS_IN:
-+ /* Read the data into the host buffer. */
-+ if (grxsts.b.bcnt > 0) {
-+ dwc_otg_read_packet(dwc_otg_hcd->core_if,
-+ hc->xfer_buff,
-+ grxsts.b.bcnt);
-+
-+ /* Update the HC fields for the next packet received. */
-+ hc->xfer_count += grxsts.b.bcnt;
-+ hc->xfer_buff += grxsts.b.bcnt;
-+ }
-+
-+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
-+ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
-+ case DWC_GRXSTS_PKTSTS_CH_HALTED:
-+ /* Handled in interrupt, just ignore data */
-+ break;
-+ default:
-+ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
-+ break;
-+ }
-+
-+ return 1;
-+}
-+
-+/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
-+ * data packets may be written to the FIFO for OUT transfers. More requests
-+ * may be written to the non-periodic request queue for IN transfers. This
-+ * interrupt is enabled only in Slave mode. */
-+int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
-+ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
-+ DWC_OTG_TRANSACTION_NON_PERIODIC);
-+ return 1;
-+}
-+
-+/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
-+ * packets may be written to the FIFO for OUT transfers. More requests may be
-+ * written to the periodic request queue for IN transfers. This interrupt is
-+ * enabled only in Slave mode. */
-+int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
-+ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
-+ DWC_OTG_TRANSACTION_PERIODIC);
-+ return 1;
-+}
-+
-+/** There are multiple conditions that can cause a port interrupt. This function
-+ * determines which interrupt conditions have occurred and handles them
-+ * appropriately. */
-+int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd)
-+{
-+ int retval = 0;
-+ hprt0_data_t hprt0;
-+ hprt0_data_t hprt0_modify;
-+
-+ hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
-+ hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
-+
-+ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
-+ * GINTSTS */
-+
-+ hprt0_modify.b.prtena = 0;
-+ hprt0_modify.b.prtconndet = 0;
-+ hprt0_modify.b.prtenchng = 0;
-+ hprt0_modify.b.prtovrcurrchng = 0;
-+
-+ /* Port Connect Detected
-+ * Set flag and clear if detected */
-+ if (hprt0.b.prtconndet) {
-+ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
-+ "Port Connect Detected--\n", hprt0.d32);
-+ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
-+ dwc_otg_hcd->flags.b.port_connect_status = 1;
-+ hprt0_modify.b.prtconndet = 1;
-+
-+ /* B-Device has connected, Delete the connection timer. */
-+ del_timer( &dwc_otg_hcd->conn_timer );
-+
-+ /* The Hub driver asserts a reset when it sees port connect
-+ * status change flag */
-+ retval |= 1;
-+ }
-+
-+ /* Port Enable Changed
-+ * Clear if detected - Set internal flag if disabled */
-+ if (hprt0.b.prtenchng) {
-+ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
-+ "Port Enable Changed--\n", hprt0.d32);
-+ hprt0_modify.b.prtenchng = 1;
-+ if (hprt0.b.prtena == 1) {
-+ int do_reset = 0;
-+ dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params;
-+ dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs;
-+ dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if;
-+
-+ /* Check if we need to adjust the PHY clock speed for
-+ * low power and adjust it */
-+ if (params->host_support_fs_ls_low_power) {
-+ gusbcfg_data_t usbcfg;
-+
-+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
-+
-+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
-+ hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
-+ /*
-+ * Low power
-+ */
-+ hcfg_data_t hcfg;
-+ if (usbcfg.b.phylpwrclksel == 0) {
-+ /* Set PHY low power clock select for FS/LS devices */
-+ usbcfg.b.phylpwrclksel = 1;
-+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
-+ do_reset = 1;
-+ }
-+
-+ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
-+
-+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
-+ params->host_ls_low_power_phy_clk ==
-+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
-+ /* 6 MHZ */
-+ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
-+ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
-+ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
-+ dwc_write_reg32(&host_if->host_global_regs->hcfg,
-+ hcfg.d32);
-+ do_reset = 1;
-+ }
-+ } else {
-+ /* 48 MHZ */
-+ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
-+ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
-+ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
-+ dwc_write_reg32(&host_if->host_global_regs->hcfg,
-+ hcfg.d32);
-+ do_reset = 1;
-+ }
-+ }
-+ } else {
-+ /*
-+ * Not low power
-+ */
-+ if (usbcfg.b.phylpwrclksel == 1) {
-+ usbcfg.b.phylpwrclksel = 0;
-+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
-+ do_reset = 1;
-+ }
-+ }
-+
-+ if (do_reset) {
-+ tasklet_schedule(dwc_otg_hcd->reset_tasklet);
-+ }
-+ }
-+
-+ if (!do_reset) {
-+ /* Port has been enabled set the reset change flag */
-+ dwc_otg_hcd->flags.b.port_reset_change = 1;
-+ }
-+ } else {
-+ dwc_otg_hcd->flags.b.port_enable_change = 1;
-+ }
-+ retval |= 1;
-+ }
-+
-+ /** Overcurrent Change Interrupt */
-+ if (hprt0.b.prtovrcurrchng) {
-+ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
-+ "Port Overcurrent Changed--\n", hprt0.d32);
-+ dwc_otg_hcd->flags.b.port_over_current_change = 1;
-+ hprt0_modify.b.prtovrcurrchng = 1;
-+ retval |= 1;
-+ }
-+
-+ /* Clear Port Interrupts */
-+ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
-+
-+ return retval;
-+}
-+
-+/** This interrupt indicates that one or more host channels has a pending
-+ * interrupt. There are multiple conditions that can cause each host channel
-+ * interrupt. This function determines which conditions have occurred for each
-+ * host channel interrupt and handles them appropriately. */
-+int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd)
-+{
-+ int i;
-+ int retval = 0;
-+ haint_data_t haint;
-+
-+ /* Clear appropriate bits in HCINTn to clear the interrupt bit in
-+ * GINTSTS */
-+
-+ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
-+
-+ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
-+ if (haint.b2.chint & (1 << i)) {
-+ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
-+ }
-+ }
-+
-+ return retval;
-+}
-+
-+/* Macro used to clear one channel interrupt */
-+#define clear_hc_int(_hc_regs_, _intr_) \
-+do { \
-+ hcint_data_t hcint_clear = {.d32 = 0}; \
-+ hcint_clear.b._intr_ = 1; \
-+ dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \
-+} while (0)
-+
-+/*
-+ * Macro used to disable one channel interrupt. Channel interrupts are
-+ * disabled when the channel is halted or released by the interrupt handler.
-+ * There is no need to handle further interrupts of that type until the
-+ * channel is re-assigned. In fact, subsequent handling may cause crashes
-+ * because the channel structures are cleaned up when the channel is released.
-+ */
-+#define disable_hc_int(_hc_regs_, _intr_) \
-+do { \
-+ hcintmsk_data_t hcintmsk = {.d32 = 0}; \
-+ hcintmsk.b._intr_ = 1; \
-+ dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
-+} while (0)
-+
-+/**
-+ * Gets the actual length of a transfer after the transfer halts. _halt_status
-+ * holds the reason for the halt.
-+ *
-+ * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
-+ * *short_read is set to 1 upon return if less than the requested
-+ * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
-+ * return. short_read may also be NULL on entry, in which case it remains
-+ * unchanged.
-+ */
-+static uint32_t get_actual_xfer_length(dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd,
-+ dwc_otg_halt_status_e halt_status,
-+ int *short_read)
-+{
-+ hctsiz_data_t hctsiz;
-+ uint32_t length;
-+
-+ if (short_read != NULL) {
-+ *short_read = 0;
-+ }
-+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
-+
-+ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
-+ if (hc->ep_is_in) {
-+ length = hc->xfer_len - hctsiz.b.xfersize;
-+ if (short_read != NULL) {
-+ *short_read = (hctsiz.b.xfersize != 0);
-+ }
-+ } else if (hc->qh->do_split) {
-+ length = qtd->ssplit_out_xfer_count;
-+ } else {
-+ length = hc->xfer_len;
-+ }
-+ } else {
-+ /*
-+ * Must use the hctsiz.pktcnt field to determine how much data
-+ * has been transferred. This field reflects the number of
-+ * packets that have been transferred via the USB. This is
-+ * always an integral number of packets if the transfer was
-+ * halted before its normal completion. (Can't use the
-+ * hctsiz.xfersize field because that reflects the number of
-+ * bytes transferred via the AHB, not the USB).
-+ */
-+ length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
-+ }
-+
-+ return length;
-+}
-+
-+/**
-+ * Updates the state of the URB after a Transfer Complete interrupt on the
-+ * host channel. Updates the actual_length field of the URB based on the
-+ * number of bytes transferred via the host channel. Sets the URB status
-+ * if the data transfer is finished.
-+ *
-+ * @return 1 if the data transfer specified by the URB is completely finished,
-+ * 0 otherwise.
-+ */
-+static int update_urb_state_xfer_comp(dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ struct urb *urb,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ int xfer_done = 0;
-+ int short_read = 0;
-+
-+ urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
-+ DWC_OTG_HC_XFER_COMPLETE,
-+ &short_read);
-+
-+ if (short_read || urb->actual_length == urb->transfer_buffer_length) {
-+ xfer_done = 1;
-+ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) {
-+ urb->status = -EREMOTEIO;
-+ } else {
-+ urb->status = 0;
-+ }
-+ }
-+
-+#ifdef DEBUG
-+ {
-+ hctsiz_data_t hctsiz;
-+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
-+ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
-+ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
-+ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
-+ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
-+ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
-+ urb->transfer_buffer_length);
-+ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
-+ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
-+ short_read, xfer_done);
-+ }
-+#endif
-+
-+ return xfer_done;
-+}
-+
-+/*
-+ * Save the starting data toggle for the next transfer. The data toggle is
-+ * saved in the QH for non-control transfers and it's saved in the QTD for
-+ * control transfers.
-+ */
-+static void save_data_toggle(dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ hctsiz_data_t hctsiz;
-+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
-+
-+ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
-+ dwc_otg_qh_t *qh = hc->qh;
-+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
-+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
-+ } else {
-+ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
-+ }
-+ } else {
-+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
-+ qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
-+ } else {
-+ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
-+ }
-+ }
-+}
-+
-+/**
-+ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
-+ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
-+ * still linked to the QH, the QH is added to the end of the inactive
-+ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
-+ * schedule if no more QTDs are linked to the QH.
-+ */
-+static void deactivate_qh(dwc_otg_hcd_t *hcd,
-+ dwc_otg_qh_t *qh,
-+ int free_qtd)
-+{
-+ int continue_split = 0;
-+ dwc_otg_qtd_t *qtd;
-+
-+ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
-+
-+ spin_lock(&hcd->lock);
-+ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
-+
-+ if (qtd->complete_split) {
-+ continue_split = 1;
-+ } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
-+ qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
-+ continue_split = 1;
-+ }
-+
-+ if (free_qtd) {
-+ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
-+ continue_split = 0;
-+ }
-+
-+ qh->channel = NULL;
-+ qh->qtd_in_process = NULL;
-+ spin_unlock(&hcd->lock);
-+ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
-+}
-+
-+/**
-+ * Updates the state of an Isochronous URB when the transfer is stopped for
-+ * any reason. The fields of the current entry in the frame descriptor array
-+ * are set based on the transfer state and the input _halt_status. Completes
-+ * the Isochronous URB if all the URB frames have been completed.
-+ *
-+ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
-+ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
-+ */
-+static dwc_otg_halt_status_e
-+update_isoc_urb_state(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd,
-+ dwc_otg_halt_status_e halt_status)
-+{
-+ struct urb *urb = qtd->urb;
-+ dwc_otg_halt_status_e ret_val = halt_status;
-+ struct usb_iso_packet_descriptor *frame_desc;
-+
-+ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
-+ switch (halt_status) {
-+ case DWC_OTG_HC_XFER_COMPLETE:
-+ frame_desc->status = 0;
-+ frame_desc->actual_length =
-+ get_actual_xfer_length(hc, hc_regs, qtd,
-+ halt_status, NULL);
-+ break;
-+ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
-+ urb->error_count++;
-+ if (hc->ep_is_in) {
-+ frame_desc->status = -ENOSR;
-+ } else {
-+ frame_desc->status = -ECOMM;
-+ }
-+ frame_desc->actual_length = 0;
-+ break;
-+ case DWC_OTG_HC_XFER_BABBLE_ERR:
-+ urb->error_count++;
-+ frame_desc->status = -EOVERFLOW;
-+ /* Don't need to update actual_length in this case. */
-+ break;
-+ case DWC_OTG_HC_XFER_XACT_ERR:
-+ urb->error_count++;
-+ frame_desc->status = -EPROTO;
-+ frame_desc->actual_length =
-+ get_actual_xfer_length(hc, hc_regs, qtd,
-+ halt_status, NULL);
-+ default:
-+ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
-+ halt_status);
-+ BUG();
-+ break;
-+ }
-+
-+ if (++qtd->isoc_frame_index == urb->number_of_packets) {
-+ /*
-+ * urb->status is not used for isoc transfers.
-+ * The individual frame_desc statuses are used instead.
-+ */
-+ dwc_otg_hcd_complete_urb(hcd, urb, 0);
-+ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
-+ } else {
-+ ret_val = DWC_OTG_HC_XFER_COMPLETE;
-+ }
-+
-+ return ret_val;
-+}
-+
-+/**
-+ * Releases a host channel for use by other transfers. Attempts to select and
-+ * queue more transactions since at least one host channel is available.
-+ *
-+ * @param hcd The HCD state structure.
-+ * @param hc The host channel to release.
-+ * @param qtd The QTD associated with the host channel. This QTD may be freed
-+ * if the transfer is complete or an error has occurred.
-+ * @param halt_status Reason the channel is being released. This status
-+ * determines the actions taken by this function.
-+ */
-+static void release_channel(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_qtd_t *qtd,
-+ dwc_otg_halt_status_e halt_status)
-+{
-+ dwc_otg_transaction_type_e tr_type;
-+ int free_qtd;
-+
-+ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
-+ __func__, hc->hc_num, halt_status);
-+
-+ switch (halt_status) {
-+ case DWC_OTG_HC_XFER_URB_COMPLETE:
-+ free_qtd = 1;
-+ break;
-+ case DWC_OTG_HC_XFER_AHB_ERR:
-+ case DWC_OTG_HC_XFER_STALL:
-+ case DWC_OTG_HC_XFER_BABBLE_ERR:
-+ free_qtd = 1;
-+ break;
-+ case DWC_OTG_HC_XFER_XACT_ERR:
-+ if (qtd->error_count >= 3) {
-+ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
-+ free_qtd = 1;
-+ qtd->urb->status = -EPROTO;
-+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
-+ } else {
-+ free_qtd = 0;
-+ }
-+ break;
-+ case DWC_OTG_HC_XFER_URB_DEQUEUE:
-+ /*
-+ * The QTD has already been removed and the QH has been
-+ * deactivated. Don't want to do anything except release the
-+ * host channel and try to queue more transfers.
-+ */
-+ goto cleanup;
-+ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
-+ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num);
-+ free_qtd = 0;
-+ break;
-+ default:
-+ free_qtd = 0;
-+ break;
-+ }
-+
-+ deactivate_qh(hcd, hc->qh, free_qtd);
-+
-+ cleanup:
-+ /*
-+ * Release the host channel for use by other transfers. The cleanup
-+ * function clears the channel interrupt enables and conditions, so
-+ * there's no need to clear the Channel Halted interrupt separately.
-+ */
-+ dwc_otg_hc_cleanup(hcd->core_if, hc);
-+ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
-+
-+ switch (hc->ep_type) {
-+ case DWC_OTG_EP_TYPE_CONTROL:
-+ case DWC_OTG_EP_TYPE_BULK:
-+ hcd->non_periodic_channels--;
-+ break;
-+
-+ default:
-+ /*
-+ * Don't release reservations for periodic channels here.
-+ * That's done when a periodic transfer is descheduled (i.e.
-+ * when the QH is removed from the periodic schedule).
-+ */
-+ break;
-+ }
-+
-+ /* Try to queue more transfers now that there's a free channel. */
-+ tr_type = dwc_otg_hcd_select_transactions(hcd);
-+ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
-+ dwc_otg_hcd_queue_transactions(hcd, tr_type);
-+ }
-+}
-+
-+/**
-+ * Halts a host channel. If the channel cannot be halted immediately because
-+ * the request queue is full, this function ensures that the FIFO empty
-+ * interrupt for the appropriate queue is enabled so that the halt request can
-+ * be queued when there is space in the request queue.
-+ *
-+ * This function may also be called in DMA mode. In that case, the channel is
-+ * simply released since the core always halts the channel automatically in
-+ * DMA mode.
-+ */
-+static void halt_channel(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_qtd_t *qtd,
-+ dwc_otg_halt_status_e halt_status)
-+{
-+ if (hcd->core_if->dma_enable) {
-+ release_channel(hcd, hc, qtd, halt_status);
-+ return;
-+ }
-+
-+ /* Slave mode processing... */
-+ dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
-+
-+ if (hc->halt_on_queue) {
-+ gintmsk_data_t gintmsk = {.d32 = 0};
-+ dwc_otg_core_global_regs_t *global_regs;
-+ global_regs = hcd->core_if->core_global_regs;
-+
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
-+ /*
-+ * Make sure the Non-periodic Tx FIFO empty interrupt
-+ * is enabled so that the non-periodic schedule will
-+ * be processed.
-+ */
-+ gintmsk.b.nptxfempty = 1;
-+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
-+ } else {
-+ /*
-+ * Move the QH from the periodic queued schedule to
-+ * the periodic assigned schedule. This allows the
-+ * halt to be queued when the periodic schedule is
-+ * processed.
-+ */
-+ list_move(&hc->qh->qh_list_entry,
-+ &hcd->periodic_sched_assigned);
-+
-+ /*
-+ * Make sure the Periodic Tx FIFO Empty interrupt is
-+ * enabled so that the periodic schedule will be
-+ * processed.
-+ */
-+ gintmsk.b.ptxfempty = 1;
-+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
-+ }
-+ }
-+}
-+
-+/**
-+ * Performs common cleanup for non-periodic transfers after a Transfer
-+ * Complete interrupt. This function should be called after any endpoint type
-+ * specific handling is finished to release the host channel.
-+ */
-+static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd,
-+ dwc_otg_halt_status_e halt_status)
-+{
-+ hcint_data_t hcint;
-+
-+ qtd->error_count = 0;
-+
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ if (hcint.b.nyet) {
-+ /*
-+ * Got a NYET on the last transaction of the transfer. This
-+ * means that the endpoint should be in the PING state at the
-+ * beginning of the next transfer.
-+ */
-+ hc->qh->ping_state = 1;
-+ clear_hc_int(hc_regs, nyet);
-+ }
-+
-+ /*
-+ * Always halt and release the host channel to make it available for
-+ * more transfers. There may still be more phases for a control
-+ * transfer or more data packets for a bulk transfer at this point,
-+ * but the host channel is still halted. A channel will be reassigned
-+ * to the transfer when the non-periodic schedule is processed after
-+ * the channel is released. This allows transactions to be queued
-+ * properly via dwc_otg_hcd_queue_transactions, which also enables the
-+ * Tx FIFO Empty interrupt if necessary.
-+ */
-+ if (hc->ep_is_in) {
-+ /*
-+ * IN transfers in Slave mode require an explicit disable to
-+ * halt the channel. (In DMA mode, this call simply releases
-+ * the channel.)
-+ */
-+ halt_channel(hcd, hc, qtd, halt_status);
-+ } else {
-+ /*
-+ * The channel is automatically disabled by the core for OUT
-+ * transfers in Slave mode.
-+ */
-+ release_channel(hcd, hc, qtd, halt_status);
-+ }
-+}
-+
-+/**
-+ * Performs common cleanup for periodic transfers after a Transfer Complete
-+ * interrupt. This function should be called after any endpoint type specific
-+ * handling is finished to release the host channel.
-+ */
-+static void complete_periodic_xfer(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd,
-+ dwc_otg_halt_status_e halt_status)
-+{
-+ hctsiz_data_t hctsiz;
-+ qtd->error_count = 0;
-+
-+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
-+ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
-+ /* Core halts channel in these cases. */
-+ release_channel(hcd, hc, qtd, halt_status);
-+ } else {
-+ /* Flush any outstanding requests from the Tx queue. */
-+ halt_channel(hcd, hc, qtd, halt_status);
-+ }
-+}
-+
-+/**
-+ * Handles a host channel Transfer Complete interrupt. This handler may be
-+ * called in either DMA mode or Slave mode.
-+ */
-+static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ int urb_xfer_done;
-+ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
-+ struct urb *urb = qtd->urb;
-+ int pipe_type = usb_pipetype(urb->pipe);
-+
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "Transfer Complete--\n", hc->hc_num);
-+
-+ /*
-+ * Handle xfer complete on CSPLIT.
-+ */
-+ if (hc->qh->do_split) {
-+ qtd->complete_split = 0;
-+ }
-+
-+ /* Update the QTD and URB states. */
-+ switch (pipe_type) {
-+ case PIPE_CONTROL:
-+ switch (qtd->control_phase) {
-+ case DWC_OTG_CONTROL_SETUP:
-+ if (urb->transfer_buffer_length > 0) {
-+ qtd->control_phase = DWC_OTG_CONTROL_DATA;
-+ } else {
-+ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
-+ }
-+ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
-+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
-+ break;
-+ case DWC_OTG_CONTROL_DATA: {
-+ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
-+ if (urb_xfer_done) {
-+ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
-+ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
-+ } else {
-+ save_data_toggle(hc, hc_regs, qtd);
-+ }
-+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
-+ break;
-+ }
-+ case DWC_OTG_CONTROL_STATUS:
-+ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
-+ if (urb->status == -EINPROGRESS) {
-+ urb->status = 0;
-+ }
-+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
-+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
-+ break;
-+ }
-+
-+ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
-+ break;
-+ case PIPE_BULK:
-+ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
-+ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
-+ if (urb_xfer_done) {
-+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
-+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
-+ } else {
-+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
-+ }
-+
-+ save_data_toggle(hc, hc_regs, qtd);
-+ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
-+ break;
-+ case PIPE_INTERRUPT:
-+ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
-+ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
-+
-+ /*
-+ * Interrupt URB is done on the first transfer complete
-+ * interrupt.
-+ */
-+ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
-+ save_data_toggle(hc, hc_regs, qtd);
-+ complete_periodic_xfer(hcd, hc, hc_regs, qtd,
-+ DWC_OTG_HC_XFER_URB_COMPLETE);
-+ break;
-+ case PIPE_ISOCHRONOUS:
-+ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
-+ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
-+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
-+ DWC_OTG_HC_XFER_COMPLETE);
-+ }
-+ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
-+ break;
-+ }
-+
-+ disable_hc_int(hc_regs, xfercompl);
-+
-+ return 1;
-+}
-+
-+/**
-+ * Handles a host channel STALL interrupt. This handler may be called in
-+ * either DMA mode or Slave mode.
-+ */
-+static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ struct urb *urb = qtd->urb;
-+ int pipe_type = usb_pipetype(urb->pipe);
-+
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "STALL Received--\n", hc->hc_num);
-+
-+ if (pipe_type == PIPE_CONTROL) {
-+ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
-+ }
-+
-+ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
-+ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
-+ /*
-+ * USB protocol requires resetting the data toggle for bulk
-+ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
-+ * setup command is issued to the endpoint. Anticipate the
-+ * CLEAR_FEATURE command since a STALL has occurred and reset
-+ * the data toggle now.
-+ */
-+ hc->qh->data_toggle = 0;
-+ }
-+
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
-+
-+ disable_hc_int(hc_regs, stall);
-+
-+ return 1;
-+}
-+
-+/*
-+ * Updates the state of the URB when a transfer has been stopped due to an
-+ * abnormal condition before the transfer completes. Modifies the
-+ * actual_length field of the URB to reflect the number of bytes that have
-+ * actually been transferred via the host channel.
-+ */
-+static void update_urb_state_xfer_intr(dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ struct urb *urb,
-+ dwc_otg_qtd_t *qtd,
-+ dwc_otg_halt_status_e halt_status)
-+{
-+ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
-+ halt_status, NULL);
-+ urb->actual_length += bytes_transferred;
-+
-+#ifdef DEBUG
-+ {
-+ hctsiz_data_t hctsiz;
-+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
-+ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
-+ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
-+ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count);
-+ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
-+ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet);
-+ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
-+ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
-+ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
-+ urb->transfer_buffer_length);
-+ }
-+#endif
-+}
-+
-+/**
-+ * Handles a host channel NAK interrupt. This handler may be called in either
-+ * DMA mode or Slave mode.
-+ */
-+static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "NAK Received--\n", hc->hc_num);
-+
-+ /*
-+ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
-+ * interrupt. Re-start the SSPLIT transfer.
-+ */
-+ if (hc->do_split) {
-+ if (hc->complete_split) {
-+ qtd->error_count = 0;
-+ }
-+ qtd->complete_split = 0;
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
-+ goto handle_nak_done;
-+ }
-+
-+ switch (usb_pipetype(qtd->urb->pipe)) {
-+ case PIPE_CONTROL:
-+ case PIPE_BULK:
-+ if (hcd->core_if->dma_enable && hc->ep_is_in) {
-+ /*
-+ * NAK interrupts are enabled on bulk/control IN
-+ * transfers in DMA mode for the sole purpose of
-+ * resetting the error count after a transaction error
-+ * occurs. The core will continue transferring data.
-+ */
-+ qtd->error_count = 0;
-+ goto handle_nak_done;
-+ }
-+
-+ /*
-+ * NAK interrupts normally occur during OUT transfers in DMA
-+ * or Slave mode. For IN transfers, more requests will be
-+ * queued as request queue space is available.
-+ */
-+ qtd->error_count = 0;
-+
-+ if (!hc->qh->ping_state) {
-+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
-+ qtd, DWC_OTG_HC_XFER_NAK);
-+ save_data_toggle(hc, hc_regs, qtd);
-+ if (qtd->urb->dev->speed == USB_SPEED_HIGH) {
-+ hc->qh->ping_state = 1;
-+ }
-+ }
-+
-+ /*
-+ * Halt the channel so the transfer can be re-started from
-+ * the appropriate point or the PING protocol will
-+ * start/continue.
-+ */
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
-+ break;
-+ case PIPE_INTERRUPT:
-+ qtd->error_count = 0;
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
-+ break;
-+ case PIPE_ISOCHRONOUS:
-+ /* Should never get called for isochronous transfers. */
-+ BUG();
-+ break;
-+ }
-+
-+ handle_nak_done:
-+ disable_hc_int(hc_regs, nak);
-+
-+ return 1;
-+}
-+
-+/**
-+ * Handles a host channel ACK interrupt. This interrupt is enabled when
-+ * performing the PING protocol in Slave mode, when errors occur during
-+ * either Slave mode or DMA mode, and during Start Split transactions.
-+ */
-+static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "ACK Received--\n", hc->hc_num);
-+
-+ if (hc->do_split) {
-+ /*
-+ * Handle ACK on SSPLIT.
-+ * ACK should not occur in CSPLIT.
-+ */
-+ if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
-+ qtd->ssplit_out_xfer_count = hc->xfer_len;
-+ }
-+ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
-+ /* Don't need complete for isochronous out transfers. */
-+ qtd->complete_split = 1;
-+ }
-+
-+ /* ISOC OUT */
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
-+ switch (hc->xact_pos) {
-+ case DWC_HCSPLIT_XACTPOS_ALL:
-+ break;
-+ case DWC_HCSPLIT_XACTPOS_END:
-+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
-+ qtd->isoc_split_offset = 0;
-+ break;
-+ case DWC_HCSPLIT_XACTPOS_BEGIN:
-+ case DWC_HCSPLIT_XACTPOS_MID:
-+ /*
-+ * For BEGIN or MID, calculate the length for
-+ * the next microframe to determine the correct
-+ * SSPLIT token, either MID or END.
-+ */
-+ {
-+ struct usb_iso_packet_descriptor *frame_desc;
-+
-+ frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
-+ qtd->isoc_split_offset += 188;
-+
-+ if ((frame_desc->length - qtd->isoc_split_offset) <= 188) {
-+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
-+ } else {
-+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
-+ }
-+
-+ }
-+ break;
-+ }
-+ } else {
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
-+ }
-+ } else {
-+ qtd->error_count = 0;
-+
-+ if (hc->qh->ping_state) {
-+ hc->qh->ping_state = 0;
-+ /*
-+ * Halt the channel so the transfer can be re-started
-+ * from the appropriate point. This only happens in
-+ * Slave mode. In DMA mode, the ping_state is cleared
-+ * when the transfer is started because the core
-+ * automatically executes the PING, then the transfer.
-+ */
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
-+ }
-+ }
-+
-+ /*
-+ * If the ACK occurred when _not_ in the PING state, let the channel
-+ * continue transferring data after clearing the error count.
-+ */
-+
-+ disable_hc_int(hc_regs, ack);
-+
-+ return 1;
-+}
-+
-+/**
-+ * Handles a host channel NYET interrupt. This interrupt should only occur on
-+ * Bulk and Control OUT endpoints and for complete split transactions. If a
-+ * NYET occurs at the same time as a Transfer Complete interrupt, it is
-+ * handled in the xfercomp interrupt handler, not here. This handler may be
-+ * called in either DMA mode or Slave mode.
-+ */
-+static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "NYET Received--\n", hc->hc_num);
-+
-+ /*
-+ * NYET on CSPLIT
-+ * re-do the CSPLIT immediately on non-periodic
-+ */
-+ if (hc->do_split && hc->complete_split) {
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
-+ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
-+
-+ if (dwc_full_frame_num(frnum) !=
-+ dwc_full_frame_num(hc->qh->sched_frame)) {
-+ /*
-+ * No longer in the same full speed frame.
-+ * Treat this as a transaction error.
-+ */
-+#if 0
-+ /** @todo Fix system performance so this can
-+ * be treated as an error. Right now complete
-+ * splits cannot be scheduled precisely enough
-+ * due to other system activity, so this error
-+ * occurs regularly in Slave mode.
-+ */
-+ qtd->error_count++;
-+#endif
-+ qtd->complete_split = 0;
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
-+ /** @todo add support for isoc release */
-+ goto handle_nyet_done;
-+ }
-+ }
-+
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
-+ goto handle_nyet_done;
-+ }
-+
-+ hc->qh->ping_state = 1;
-+ qtd->error_count = 0;
-+
-+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
-+ DWC_OTG_HC_XFER_NYET);
-+ save_data_toggle(hc, hc_regs, qtd);
-+
-+ /*
-+ * Halt the channel and re-start the transfer so the PING
-+ * protocol will start.
-+ */
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
-+
-+handle_nyet_done:
-+ disable_hc_int(hc_regs, nyet);
-+ return 1;
-+}
-+
-+/**
-+ * Handles a host channel babble interrupt. This handler may be called in
-+ * either DMA mode or Slave mode.
-+ */
-+static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "Babble Error--\n", hc->hc_num);
-+ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
-+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
-+ } else {
-+ dwc_otg_halt_status_e halt_status;
-+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
-+ DWC_OTG_HC_XFER_BABBLE_ERR);
-+ halt_channel(hcd, hc, qtd, halt_status);
-+ }
-+ disable_hc_int(hc_regs, bblerr);
-+ return 1;
-+}
-+
-+/**
-+ * Handles a host channel AHB error interrupt. This handler is only called in
-+ * DMA mode.
-+ */
-+static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ hcchar_data_t hcchar;
-+ hcsplt_data_t hcsplt;
-+ hctsiz_data_t hctsiz;
-+ uint32_t hcdma;
-+ struct urb *urb = qtd->urb;
-+
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "AHB Error--\n", hc->hc_num);
-+
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
-+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
-+ hcdma = dwc_read_reg32(&hc_regs->hcdma);
-+
-+ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
-+ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
-+ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
-+ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
-+ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
-+ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
-+ DWC_ERROR(" Endpoint type: %s\n",
-+ ({char *pipetype;
-+ switch (usb_pipetype(urb->pipe)) {
-+ case PIPE_CONTROL: pipetype = "CONTROL"; break;
-+ case PIPE_BULK: pipetype = "BULK"; break;
-+ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
-+ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
-+ default: pipetype = "UNKNOWN"; break;
-+ }; pipetype;}));
-+ DWC_ERROR(" Speed: %s\n",
-+ ({char *speed;
-+ switch (urb->dev->speed) {
-+ case USB_SPEED_HIGH: speed = "HIGH"; break;
-+ case USB_SPEED_FULL: speed = "FULL"; break;
-+ case USB_SPEED_LOW: speed = "LOW"; break;
-+ default: speed = "UNKNOWN"; break;
-+ }; speed;}));
-+ DWC_ERROR(" Max packet size: %d\n",
-+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
-+ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
-+ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
-+ urb->transfer_buffer, (void *)urb->transfer_dma);
-+ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
-+ urb->setup_packet, (void *)urb->setup_dma);
-+ DWC_ERROR(" Interval: %d\n", urb->interval);
-+
-+ dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
-+
-+ /*
-+ * Force a channel halt. Don't call halt_channel because that won't
-+ * write to the HCCHARn register in DMA mode to force the halt.
-+ */
-+ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
-+
-+ disable_hc_int(hc_regs, ahberr);
-+ return 1;
-+}
-+
-+/**
-+ * Handles a host channel transaction error interrupt. This handler may be
-+ * called in either DMA mode or Slave mode.
-+ */
-+static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "Transaction Error--\n", hc->hc_num);
-+
-+ switch (usb_pipetype(qtd->urb->pipe)) {
-+ case PIPE_CONTROL:
-+ case PIPE_BULK:
-+ qtd->error_count++;
-+ if (!hc->qh->ping_state) {
-+ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
-+ qtd, DWC_OTG_HC_XFER_XACT_ERR);
-+ save_data_toggle(hc, hc_regs, qtd);
-+ if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) {
-+ hc->qh->ping_state = 1;
-+ }
-+ }
-+
-+ /*
-+ * Halt the channel so the transfer can be re-started from
-+ * the appropriate point or the PING protocol will start.
-+ */
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
-+ break;
-+ case PIPE_INTERRUPT:
-+ qtd->error_count++;
-+ if (hc->do_split && hc->complete_split) {
-+ qtd->complete_split = 0;
-+ }
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
-+ break;
-+ case PIPE_ISOCHRONOUS:
-+ {
-+ dwc_otg_halt_status_e halt_status;
-+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
-+ DWC_OTG_HC_XFER_XACT_ERR);
-+
-+ halt_channel(hcd, hc, qtd, halt_status);
-+ }
-+ break;
-+ }
-+
-+ disable_hc_int(hc_regs, xacterr);
-+
-+ return 1;
-+}
-+
-+/**
-+ * Handles a host channel frame overrun interrupt. This handler may be called
-+ * in either DMA mode or Slave mode.
-+ */
-+static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "Frame Overrun--\n", hc->hc_num);
-+
-+ switch (usb_pipetype(qtd->urb->pipe)) {
-+ case PIPE_CONTROL:
-+ case PIPE_BULK:
-+ break;
-+ case PIPE_INTERRUPT:
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
-+ break;
-+ case PIPE_ISOCHRONOUS:
-+ {
-+ dwc_otg_halt_status_e halt_status;
-+ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
-+ DWC_OTG_HC_XFER_FRAME_OVERRUN);
-+
-+ halt_channel(hcd, hc, qtd, halt_status);
-+ }
-+ break;
-+ }
-+
-+ disable_hc_int(hc_regs, frmovrun);
-+
-+ return 1;
-+}
-+
-+/**
-+ * Handles a host channel data toggle error interrupt. This handler may be
-+ * called in either DMA mode or Slave mode.
-+ */
-+static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "Data Toggle Error--\n", hc->hc_num);
-+
-+ if (hc->ep_is_in) {
-+ qtd->error_count = 0;
-+ } else {
-+ DWC_ERROR("Data Toggle Error on OUT transfer,"
-+ "channel %d\n", hc->hc_num);
-+ }
-+
-+ disable_hc_int(hc_regs, datatglerr);
-+
-+ return 1;
-+}
-+
-+#ifdef DEBUG
-+/**
-+ * This function is for debug only. It checks that a valid halt status is set
-+ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
-+ * taken and a warning is issued.
-+ * @return 1 if halt status is ok, 0 otherwise.
-+ */
-+static inline int halt_status_ok(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ hcchar_data_t hcchar;
-+ hctsiz_data_t hctsiz;
-+ hcint_data_t hcint;
-+ hcintmsk_data_t hcintmsk;
-+ hcsplt_data_t hcsplt;
-+
-+ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
-+ /*
-+ * This code is here only as a check. This condition should
-+ * never happen. Ignore the halt if it does occur.
-+ */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
-+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
-+ DWC_WARN("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
-+ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
-+ "hcint 0x%08x, hcintmsk 0x%08x, "
-+ "hcsplt 0x%08x, qtd->complete_split %d\n",
-+ __func__, hc->hc_num, hcchar.d32, hctsiz.d32,
-+ hcint.d32, hcintmsk.d32,
-+ hcsplt.d32, qtd->complete_split);
-+
-+ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
-+ __func__, hc->hc_num);
-+ DWC_WARN("\n");
-+ clear_hc_int(hc_regs, chhltd);
-+ return 0;
-+ }
-+
-+ /*
-+ * This code is here only as a check. hcchar.chdis should
-+ * never be set when the halt interrupt occurs. Halt the
-+ * channel again if it does occur.
-+ */
-+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
-+ if (hcchar.b.chdis) {
-+ DWC_WARN("%s: hcchar.chdis set unexpectedly, "
-+ "hcchar 0x%08x, trying to halt again\n",
-+ __func__, hcchar.d32);
-+ clear_hc_int(hc_regs, chhltd);
-+ hc->halt_pending = 0;
-+ halt_channel(hcd, hc, qtd, hc->halt_status);
-+ return 0;
-+ }
-+
-+ return 1;
-+}
-+#endif
-+
-+/**
-+ * Handles a host Channel Halted interrupt in DMA mode. This handler
-+ * determines the reason the channel halted and proceeds accordingly.
-+ */
-+static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ hcint_data_t hcint;
-+ hcintmsk_data_t hcintmsk;
-+ int out_nak_enh = 0;
-+
-+ /* For core with OUT NAK enhancement, the flow for high-
-+ * speed CONTROL/BULK OUT is handled a little differently.
-+ */
-+ if (hcd->core_if->snpsid >= 0x4F54271A) {
-+ if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
-+ (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
-+ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement enabled\n");
-+ out_nak_enh = 1;
-+ } else {
-+ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n");
-+ }
-+ } else {
-+ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, no core support\n");
-+ }
-+
-+ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
-+ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
-+ /*
-+ * Just release the channel. A dequeue can happen on a
-+ * transfer timeout. In the case of an AHB Error, the channel
-+ * was forced to halt because there's no way to gracefully
-+ * recover.
-+ */
-+ release_channel(hcd, hc, qtd, hc->halt_status);
-+ return;
-+ }
-+
-+ /* Read the HCINTn register to determine the cause for the halt. */
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
-+
-+ if (hcint.b.xfercomp) {
-+ /** @todo This is here because of a possible hardware bug. Spec
-+ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
-+ * interrupt w/ACK bit set should occur, but I only see the
-+ * XFERCOMP bit, even with it masked out. This is a workaround
-+ * for that behavior. Should fix this when hardware is fixed.
-+ */
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
-+ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
-+ }
-+ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
-+ } else if (hcint.b.stall) {
-+ handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
-+ } else if (hcint.b.xacterr) {
-+ if (out_nak_enh) {
-+ if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
-+ printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n");
-+ qtd->error_count = 0;
-+ } else {
-+ printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n");
-+ }
-+ }
-+
-+ /*
-+ * Must handle xacterr before nak or ack. Could get a xacterr
-+ * at the same time as either of these on a BULK/CONTROL OUT
-+ * that started with a PING. The xacterr takes precedence.
-+ */
-+ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
-+ } else if (!out_nak_enh) {
-+ if (hcint.b.nyet) {
-+ /*
-+ * Must handle nyet before nak or ack. Could get a nyet at the
-+ * same time as either of those on a BULK/CONTROL OUT that
-+ * started with a PING. The nyet takes precedence.
-+ */
-+ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
-+ } else if (hcint.b.bblerr) {
-+ handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
-+ } else if (hcint.b.frmovrun) {
-+ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
-+ } else if (hcint.b.nak && !hcintmsk.b.nak) {
-+ /*
-+ * If nak is not masked, it's because a non-split IN transfer
-+ * is in an error state. In that case, the nak is handled by
-+ * the nak interrupt handler, not here. Handle nak here for
-+ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
-+ * rewinding the buffer pointer.
-+ */
-+ handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
-+ } else if (hcint.b.ack && !hcintmsk.b.ack) {
-+ /*
-+ * If ack is not masked, it's because a non-split IN transfer
-+ * is in an error state. In that case, the ack is handled by
-+ * the ack interrupt handler, not here. Handle ack here for
-+ * split transfers. Start splits halt on ACK.
-+ */
-+ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
-+ } else {
-+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
-+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
-+ /*
-+ * A periodic transfer halted with no other channel
-+ * interrupts set. Assume it was halted by the core
-+ * because it could not be completed in its scheduled
-+ * (micro)frame.
-+ */
-+#ifdef DEBUG
-+ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
-+ __func__, hc->hc_num);
-+#endif
-+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
-+ } else {
-+ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
-+ "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
-+ __func__, hc->hc_num, hcint.d32,
-+ dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts));
-+ }
-+ }
-+ } else {
-+ printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32);
-+ }
-+}
-+
-+/**
-+ * Handles a host channel Channel Halted interrupt.
-+ *
-+ * In slave mode, this handler is called only when the driver specifically
-+ * requests a halt. This occurs during handling other host channel interrupts
-+ * (e.g. nak, xacterr, stall, nyet, etc.).
-+ *
-+ * In DMA mode, this is the interrupt that occurs when the core has finished
-+ * processing a transfer on a channel. Other host channel interrupts (except
-+ * ahberr) are disabled in DMA mode.
-+ */
-+static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd,
-+ dwc_hc_t *hc,
-+ dwc_otg_hc_regs_t *hc_regs,
-+ dwc_otg_qtd_t *qtd)
-+{
-+ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
-+ "Channel Halted--\n", hc->hc_num);
-+
-+ if (hcd->core_if->dma_enable) {
-+ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
-+ } else {
-+#ifdef DEBUG
-+ if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
-+ return 1;
-+ }
-+#endif
-+ release_channel(hcd, hc, qtd, hc->halt_status);
-+ }
-+
-+ return 1;
-+}
-+
-+/** Handles interrupt for a specific Host Channel */
-+int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num)
-+{
-+ int retval = 0;
-+ hcint_data_t hcint;
-+ hcintmsk_data_t hcintmsk;
-+ dwc_hc_t *hc;
-+ dwc_otg_hc_regs_t *hc_regs;
-+ dwc_otg_qtd_t *qtd;
-+
-+ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
-+
-+ hc = dwc_otg_hcd->hc_ptr_array[num];
-+ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
-+ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
-+
-+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
-+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
-+ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
-+ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
-+ hcint.d32 = hcint.d32 & hcintmsk.d32;
-+
-+ if (!dwc_otg_hcd->core_if->dma_enable) {
-+ if (hcint.b.chhltd && hcint.d32 != 0x2) {
-+ hcint.b.chhltd = 0;
-+ }
-+ }
-+
-+ if (hcint.b.xfercomp) {
-+ retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ /*
-+ * If NYET occurred at same time as Xfer Complete, the NYET is
-+ * handled by the Xfer Complete interrupt handler. Don't want
-+ * to call the NYET interrupt handler in this case.
-+ */
-+ hcint.b.nyet = 0;
-+ }
-+ if (hcint.b.chhltd) {
-+ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.ahberr) {
-+ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.stall) {
-+ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.nak) {
-+ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.ack) {
-+ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.nyet) {
-+ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.xacterr) {
-+ retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.bblerr) {
-+ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.frmovrun) {
-+ retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+ if (hcint.b.datatglerr) {
-+ retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
-+ }
-+
-+ return retval;
-+}
-+
-+#endif /* DWC_DEVICE_ONLY */
---- /dev/null
-+++ b/drivers/usb/dwc/otg_hcd_queue.c
-@@ -0,0 +1,794 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
-+ * $Revision: #33 $
-+ * $Date: 2008/07/15 $
-+ * $Change: 1064918 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+#ifndef DWC_DEVICE_ONLY
-+
-+/**
-+ * @file
-+ *
-+ * This file contains the functions to manage Queue Heads and Queue
-+ * Transfer Descriptors.
-+ */
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/moduleparam.h>
-+#include <linux/init.h>
-+#include <linux/device.h>
-+#include <linux/errno.h>
-+#include <linux/list.h>
-+#include <linux/interrupt.h>
-+#include <linux/string.h>
-+#include <linux/version.h>
-+
-+#include <mach/irqs.h>
-+
-+#include "otg_driver.h"
-+#include "otg_hcd.h"
-+#include "otg_regs.h"
-+
-+/**
-+ * This function allocates and initializes a QH.
-+ *
-+ * @param hcd The HCD state structure for the DWC OTG controller.
-+ * @param[in] urb Holds the information about the device/endpoint that we need
-+ * to initialize the QH.
-+ *
-+ * @return Returns pointer to the newly allocated QH, or NULL on error. */
-+dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb)
-+{
-+ dwc_otg_qh_t *qh;
-+
-+ /* Allocate memory */
-+ /** @todo add memflags argument */
-+ qh = dwc_otg_hcd_qh_alloc ();
-+ if (qh == NULL) {
-+ return NULL;
-+ }
-+
-+ dwc_otg_hcd_qh_init (hcd, qh, urb);
-+ return qh;
-+}
-+
-+/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
-+ * removed from a list. QTD list should already be empty if called from URB
-+ * Dequeue.
-+ *
-+ * @param[in] hcd HCD instance.
-+ * @param[in] qh The QH to free.
-+ */
-+void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ dwc_otg_qtd_t *qtd;
-+ struct list_head *pos;
-+ //unsigned long flags;
-+
-+ /* Free each QTD in the QTD list */
-+
-+#ifdef CONFIG_SMP
-+ //the spinlock is locked before this function get called,
-+ //but in case the lock is needed, the check function is preserved
-+
-+ //but in non-SMP mode, all spinlock is lockable.
-+ //don't do the test in non-SMP mode
-+
-+ if(spin_trylock(&hcd->lock)) {
-+ printk("%s: It is not supposed to be lockable!!\n",__func__);
-+ BUG();
-+ }
-+#endif
-+// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
-+ for (pos = qh->qtd_list.next;
-+ pos != &qh->qtd_list;
-+ pos = qh->qtd_list.next)
-+ {
-+ list_del (pos);
-+ qtd = dwc_list_to_qtd (pos);
-+ dwc_otg_hcd_qtd_free (qtd);
-+ }
-+// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
-+
-+ kfree (qh);
-+ return;
-+}
-+
-+/** Initializes a QH structure.
-+ *
-+ * @param[in] hcd The HCD state structure for the DWC OTG controller.
-+ * @param[in] qh The QH to init.
-+ * @param[in] urb Holds the information about the device/endpoint that we need
-+ * to initialize the QH. */
-+#define SCHEDULE_SLOP 10
-+void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
-+{
-+ char *speed, *type;
-+ memset (qh, 0, sizeof (dwc_otg_qh_t));
-+
-+ /* Initialize QH */
-+ switch (usb_pipetype(urb->pipe)) {
-+ case PIPE_CONTROL:
-+ qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
-+ break;
-+ case PIPE_BULK:
-+ qh->ep_type = USB_ENDPOINT_XFER_BULK;
-+ break;
-+ case PIPE_ISOCHRONOUS:
-+ qh->ep_type = USB_ENDPOINT_XFER_ISOC;
-+ break;
-+ case PIPE_INTERRUPT:
-+ qh->ep_type = USB_ENDPOINT_XFER_INT;
-+ break;
-+ }
-+
-+ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
-+
-+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
-+ qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
-+ INIT_LIST_HEAD(&qh->qtd_list);
-+ INIT_LIST_HEAD(&qh->qh_list_entry);
-+ qh->channel = NULL;
-+ qh->speed = urb->dev->speed;
-+
-+ /* FS/LS Enpoint on HS Hub
-+ * NOT virtual root hub */
-+ qh->do_split = 0;
-+ if (((urb->dev->speed == USB_SPEED_LOW) ||
-+ (urb->dev->speed == USB_SPEED_FULL)) &&
-+ (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1))
-+ {
-+ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
-+ usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum,
-+ urb->dev->ttport);
-+ qh->do_split = 1;
-+ }
-+
-+ if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
-+ qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
-+ /* Compute scheduling parameters once and save them. */
-+ hprt0_data_t hprt;
-+
-+ /** @todo Account for split transfers in the bus time. */
-+ int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
-+ qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed,
-+ usb_pipein(urb->pipe),
-+ (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
-+ bytecount));
-+
-+ /* Start in a slightly future (micro)frame. */
-+ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
-+ SCHEDULE_SLOP);
-+ qh->interval = urb->interval;
-+#if 0
-+ /* Increase interrupt polling rate for debugging. */
-+ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
-+ qh->interval = 8;
-+ }
-+#endif
-+ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
-+ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
-+ ((urb->dev->speed == USB_SPEED_LOW) ||
-+ (urb->dev->speed == USB_SPEED_FULL))) {
-+ qh->interval *= 8;
-+ qh->sched_frame |= 0x7;
-+ qh->start_split_frame = qh->sched_frame;
-+ }
-+
-+ }
-+
-+ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
-+ urb->dev->devnum);
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
-+ usb_pipeendpoint(urb->pipe),
-+ usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
-+
-+ switch(urb->dev->speed) {
-+ case USB_SPEED_LOW:
-+ speed = "low";
-+ break;
-+ case USB_SPEED_FULL:
-+ speed = "full";
-+ break;
-+ case USB_SPEED_HIGH:
-+ speed = "high";
-+ break;
-+ default:
-+ speed = "?";
-+ break;
-+ }
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
-+
-+ switch (qh->ep_type) {
-+ case USB_ENDPOINT_XFER_ISOC:
-+ type = "isochronous";
-+ break;
-+ case USB_ENDPOINT_XFER_INT:
-+ type = "interrupt";
-+ break;
-+ case USB_ENDPOINT_XFER_CONTROL:
-+ type = "control";
-+ break;
-+ case USB_ENDPOINT_XFER_BULK:
-+ type = "bulk";
-+ break;
-+ default:
-+ type = "?";
-+ break;
-+ }
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type);
-+
-+#ifdef DEBUG
-+ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
-+ qh->usecs);
-+ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
-+ qh->interval);
-+ }
-+#endif
-+
-+ return;
-+}
-+
-+/**
-+ * Microframe scheduler
-+ * track the total use in hcd->frame_usecs
-+ * keep each qh use in qh->frame_usecs
-+ * when surrendering the qh then donate the time back
-+ */
-+static const u16 max_uframe_usecs[] = { 100, 100, 100, 100, 100, 100, 30, 0 };
-+
-+/*
-+ * called from dwc_otg_hcd.c:dwc_otg_hcd_init
-+ */
-+int init_hcd_usecs(dwc_otg_hcd_t *hcd)
-+{
-+ int i;
-+
-+ for (i = 0; i < 8; i++)
-+ hcd->frame_usecs[i] = max_uframe_usecs[i];
-+
-+ return 0;
-+}
-+
-+static int find_single_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ int i;
-+ u16 utime;
-+ int t_left;
-+ int ret;
-+ int done;
-+
-+ ret = -1;
-+ utime = qh->usecs;
-+ t_left = utime;
-+ i = 0;
-+ done = 0;
-+ while (done == 0) {
-+ /* At the start hcd->frame_usecs[i] = max_uframe_usecs[i]; */
-+ if (utime <= hcd->frame_usecs[i]) {
-+ hcd->frame_usecs[i] -= utime;
-+ qh->frame_usecs[i] += utime;
-+ t_left -= utime;
-+ ret = i;
-+ done = 1;
-+ return ret;
-+ } else {
-+ i++;
-+ if (i == 8) {
-+ done = 1;
-+ ret = -1;
-+ }
-+ }
-+ }
-+ return ret;
-+}
-+
-+/*
-+ * use this for FS apps that can span multiple uframes
-+ */
-+static int find_multi_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ int i;
-+ int j;
-+ u16 utime;
-+ int t_left;
-+ int ret;
-+ int done;
-+ u16 xtime;
-+
-+ ret = -1;
-+ utime = qh->usecs;
-+ t_left = utime;
-+ i = 0;
-+ done = 0;
-+loop:
-+ while (done == 0) {
-+ if (hcd->frame_usecs[i] <= 0) {
-+ i++;
-+ if (i == 8) {
-+ done = 1;
-+ ret = -1;
-+ }
-+ goto loop;
-+ }
-+
-+ /*
-+ * We need n consequtive slots so use j as a start slot.
-+ * j plus j+1 must be enough time (for now)
-+ */
-+ xtime = hcd->frame_usecs[i];
-+ for (j = i + 1; j < 8; j++) {
-+ /*
-+ * if we add this frame remaining time to xtime we may
-+ * be OK, if not we need to test j for a complete frame.
-+ */
-+ if ((xtime + hcd->frame_usecs[j]) < utime) {
-+ if (hcd->frame_usecs[j] < max_uframe_usecs[j]) {
-+ j = 8;
-+ ret = -1;
-+ continue;
-+ }
-+ }
-+ if (xtime >= utime) {
-+ ret = i;
-+ j = 8; /* stop loop with a good value ret */
-+ continue;
-+ }
-+ /* add the frame time to x time */
-+ xtime += hcd->frame_usecs[j];
-+ /* we must have a fully available next frame or break */
-+ if ((xtime < utime) &&
-+ (hcd->frame_usecs[j] == max_uframe_usecs[j])) {
-+ ret = -1;
-+ j = 8; /* stop loop with a bad value ret */
-+ continue;
-+ }
-+ }
-+ if (ret >= 0) {
-+ t_left = utime;
-+ for (j = i; (t_left > 0) && (j < 8); j++) {
-+ t_left -= hcd->frame_usecs[j];
-+ if (t_left <= 0) {
-+ qh->frame_usecs[j] +=
-+ hcd->frame_usecs[j] + t_left;
-+ hcd->frame_usecs[j] = -t_left;
-+ ret = i;
-+ done = 1;
-+ } else {
-+ qh->frame_usecs[j] +=
-+ hcd->frame_usecs[j];
-+ hcd->frame_usecs[j] = 0;
-+ }
-+ }
-+ } else {
-+ i++;
-+ if (i == 8) {
-+ done = 1;
-+ ret = -1;
-+ }
-+ }
-+ }
-+ return ret;
-+}
-+
-+static int find_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ int ret = -1;
-+
-+ if (qh->speed == USB_SPEED_HIGH)
-+ /* if this is a hs transaction we need a full frame */
-+ ret = find_single_uframe(hcd, qh);
-+ else
-+ /* FS transaction may need a sequence of frames */
-+ ret = find_multi_uframe(hcd, qh);
-+
-+ return ret;
-+}
-+
-+/**
-+ * Checks that the max transfer size allowed in a host channel is large enough
-+ * to handle the maximum data transfer in a single (micro)frame for a periodic
-+ * transfer.
-+ *
-+ * @param hcd The HCD state structure for the DWC OTG controller.
-+ * @param qh QH for a periodic endpoint.
-+ *
-+ * @return 0 if successful, negative error code otherwise.
-+ */
-+static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ int status;
-+ uint32_t max_xfer_size;
-+ uint32_t max_channel_xfer_size;
-+
-+ status = 0;
-+
-+ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
-+ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
-+
-+ if (max_xfer_size > max_channel_xfer_size) {
-+ DWC_NOTICE("%s: Periodic xfer length %d > "
-+ "max xfer length for channel %d\n",
-+ __func__, max_xfer_size, max_channel_xfer_size);
-+ status = -ENOSPC;
-+ }
-+
-+ return status;
-+}
-+
-+/**
-+ * Schedules an interrupt or isochronous transfer in the periodic schedule.
-+ */
-+static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ int status;
-+ struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
-+ int frame;
-+
-+ status = find_uframe(hcd, qh);
-+ frame = -1;
-+ if (status == 0) {
-+ frame = 7;
-+ } else {
-+ if (status > 0)
-+ frame = status - 1;
-+ }
-+ /* Set the new frame up */
-+ if (frame > -1) {
-+ qh->sched_frame &= ~0x7;
-+ qh->sched_frame |= (frame & 7);
-+ }
-+ if (status != -1)
-+ status = 0;
-+ if (status) {
-+ pr_notice("%s: Insufficient periodic bandwidth for "
-+ "periodic transfer.\n", __func__);
-+ return status;
-+ }
-+ status = check_max_xfer_size(hcd, qh);
-+ if (status) {
-+ pr_notice("%s: Channel max transfer size too small "
-+ "for periodic transfer.\n", __func__);
-+ return status;
-+ }
-+ /* Always start in the inactive schedule. */
-+ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
-+
-+ /* Update claimed usecs per (micro)frame. */
-+ hcd->periodic_usecs += qh->usecs;
-+
-+ /*
-+ * Update average periodic bandwidth claimed and # periodic reqs for
-+ * usbfs.
-+ */
-+ bus->bandwidth_allocated += qh->usecs / qh->interval;
-+
-+ if (qh->ep_type == USB_ENDPOINT_XFER_INT)
-+ bus->bandwidth_int_reqs++;
-+ else
-+ bus->bandwidth_isoc_reqs++;
-+
-+ return status;
-+}
-+
-+/**
-+ * This function adds a QH to either the non periodic or periodic schedule if
-+ * it is not already in the schedule. If the QH is already in the schedule, no
-+ * action is taken.
-+ *
-+ * @return 0 if successful, negative error code otherwise.
-+ */
-+int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ //unsigned long flags;
-+ int status = 0;
-+
-+#ifdef CONFIG_SMP
-+ //the spinlock is locked before this function get called,
-+ //but in case the lock is needed, the check function is preserved
-+ //but in non-SMP mode, all spinlock is lockable.
-+ //don't do the test in non-SMP mode
-+
-+ if(spin_trylock(&hcd->lock)) {
-+ printk("%s: It is not supposed to be lockable!!\n",__func__);
-+ BUG();
-+ }
-+#endif
-+// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
-+
-+ if (!list_empty(&qh->qh_list_entry)) {
-+ /* QH already in a schedule. */
-+ goto done;
-+ }
-+
-+ /* Add the new QH to the appropriate schedule */
-+ if (dwc_qh_is_non_per(qh)) {
-+ /* Always start in the inactive schedule. */
-+ list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive);
-+ } else {
-+ status = schedule_periodic(hcd, qh);
-+ }
-+
-+ done:
-+// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
-+
-+ return status;
-+}
-+
-+/**
-+ * Removes an interrupt or isochronous transfer from the periodic schedule.
-+ */
-+static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
-+ int i;
-+
-+ list_del_init(&qh->qh_list_entry);
-+ /* Update claimed usecs per (micro)frame. */
-+ hcd->periodic_usecs -= qh->usecs;
-+ for (i = 0; i < 8; i++) {
-+ hcd->frame_usecs[i] += qh->frame_usecs[i];
-+ qh->frame_usecs[i] = 0;
-+ }
-+ /*
-+ * Update average periodic bandwidth claimed and # periodic reqs for
-+ * usbfs.
-+ */
-+ bus->bandwidth_allocated -= qh->usecs / qh->interval;
-+
-+ if (qh->ep_type == USB_ENDPOINT_XFER_INT)
-+ bus->bandwidth_int_reqs--;
-+ else
-+ bus->bandwidth_isoc_reqs--;
-+}
-+
-+/**
-+ * Removes a QH from either the non-periodic or periodic schedule. Memory is
-+ * not freed.
-+ *
-+ * @param[in] hcd The HCD state structure.
-+ * @param[in] qh QH to remove from schedule. */
-+void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
-+{
-+ //unsigned long flags;
-+
-+#ifdef CONFIG_SMP
-+ //the spinlock is locked before this function get called,
-+ //but in case the lock is needed, the check function is preserved
-+ //but in non-SMP mode, all spinlock is lockable.
-+ //don't do the test in non-SMP mode
-+
-+ if(spin_trylock(&hcd->lock)) {
-+ printk("%s: It is not supposed to be lockable!!\n",__func__);
-+ BUG();
-+ }
-+#endif
-+// SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
-+
-+ if (list_empty(&qh->qh_list_entry)) {
-+ /* QH is not in a schedule. */
-+ goto done;
-+ }
-+
-+ if (dwc_qh_is_non_per(qh)) {
-+ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
-+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
-+ }
-+ list_del_init(&qh->qh_list_entry);
-+ } else {
-+ deschedule_periodic(hcd, qh);
-+ }
-+
-+ done:
-+// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
-+ return;
-+}
-+
-+/**
-+ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
-+ * non-periodic schedule. The QH is added to the inactive non-periodic
-+ * schedule if any QTDs are still attached to the QH.
-+ *
-+ * For periodic QHs, the QH is removed from the periodic queued schedule. If
-+ * there are any QTDs still attached to the QH, the QH is added to either the
-+ * periodic inactive schedule or the periodic ready schedule and its next
-+ * scheduled frame is calculated. The QH is placed in the ready schedule if
-+ * the scheduled frame has been reached already. Otherwise it's placed in the
-+ * inactive schedule. If there are no QTDs attached to the QH, the QH is
-+ * completely removed from the periodic schedule.
-+ */
-+void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split)
-+{
-+ unsigned long flags;
-+ SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
-+
-+ if (dwc_qh_is_non_per(qh)) {
-+ dwc_otg_hcd_qh_remove(hcd, qh);
-+ if (!list_empty(&qh->qtd_list)) {
-+ /* Add back to inactive non-periodic schedule. */
-+ dwc_otg_hcd_qh_add(hcd, qh);
-+ }
-+ } else {
-+ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
-+
-+ if (qh->do_split) {
-+ /* Schedule the next continuing periodic split transfer */
-+ if (sched_next_periodic_split) {
-+
-+ qh->sched_frame = frame_number;
-+ if (dwc_frame_num_le(frame_number,
-+ dwc_frame_num_inc(qh->start_split_frame, 1))) {
-+ /*
-+ * Allow one frame to elapse after start
-+ * split microframe before scheduling
-+ * complete split, but DONT if we are
-+ * doing the next start split in the
-+ * same frame for an ISOC out.
-+ */
-+ if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) {
-+ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1);
-+ }
-+ }
-+ } else {
-+ qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
-+ qh->interval);
-+ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
-+ qh->sched_frame = frame_number;
-+ }
-+ qh->sched_frame |= 0x7;
-+ qh->start_split_frame = qh->sched_frame;
-+ }
-+ } else {
-+ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval);
-+ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
-+ qh->sched_frame = frame_number;
-+ }
-+ }
-+
-+ if (list_empty(&qh->qtd_list)) {
-+ dwc_otg_hcd_qh_remove(hcd, qh);
-+ } else {
-+ /*
-+ * Remove from periodic_sched_queued and move to
-+ * appropriate queue.
-+ */
-+ if (qh->sched_frame == frame_number) {
-+ list_move(&qh->qh_list_entry,
-+ &hcd->periodic_sched_ready);
-+ } else {
-+ list_move(&qh->qh_list_entry,
-+ &hcd->periodic_sched_inactive);
-+ }
-+ }
-+ }
-+
-+ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
-+}
-+
-+/**
-+ * This function allocates and initializes a QTD.
-+ *
-+ * @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up
-+ * pointing to each other so each pair should have a unique correlation.
-+ *
-+ * @return Returns pointer to the newly allocated QTD, or NULL on error. */
-+dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb)
-+{
-+ dwc_otg_qtd_t *qtd;
-+
-+ qtd = dwc_otg_hcd_qtd_alloc ();
-+ if (qtd == NULL) {
-+ return NULL;
-+ }
-+
-+ dwc_otg_hcd_qtd_init (qtd, urb);
-+ return qtd;
-+}
-+
-+/**
-+ * Initializes a QTD structure.
-+ *
-+ * @param[in] qtd The QTD to initialize.
-+ * @param[in] urb The URB to use for initialization. */
-+void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb)
-+{
-+ memset (qtd, 0, sizeof (dwc_otg_qtd_t));
-+ qtd->urb = urb;
-+ if (usb_pipecontrol(urb->pipe)) {
-+ /*
-+ * The only time the QTD data toggle is used is on the data
-+ * phase of control transfers. This phase always starts with
-+ * DATA1.
-+ */
-+ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
-+ qtd->control_phase = DWC_OTG_CONTROL_SETUP;
-+ }
-+
-+ /* start split */
-+ qtd->complete_split = 0;
-+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
-+ qtd->isoc_split_offset = 0;
-+
-+ /* Store the qtd ptr in the urb to reference what QTD. */
-+ urb->hcpriv = qtd;
-+ return;
-+}
-+
-+/**
-+ * This function adds a QTD to the QTD-list of a QH. It will find the correct
-+ * QH to place the QTD into. If it does not find a QH, then it will create a
-+ * new QH. If the QH to which the QTD is added is not currently scheduled, it
-+ * is placed into the proper schedule based on its EP type.
-+ *
-+ * @param[in] qtd The QTD to add
-+ * @param[in] dwc_otg_hcd The DWC HCD structure
-+ *
-+ * @return 0 if successful, negative error code otherwise.
-+ */
-+int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd,
-+ dwc_otg_hcd_t *dwc_otg_hcd)
-+{
-+ struct usb_host_endpoint *ep;
-+ dwc_otg_qh_t *qh;
-+ unsigned long flags;
-+ int retval = 0;
-+
-+ struct urb *urb = qtd->urb;
-+
-+ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
-+
-+ /*
-+ * Get the QH which holds the QTD-list to insert to. Create QH if it
-+ * doesn't exist.
-+ */
-+ ep = dwc_urb_to_endpoint(urb);
-+ qh = (dwc_otg_qh_t *)ep->hcpriv;
-+ if (qh == NULL) {
-+ qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb);
-+ if (qh == NULL) {
-+ goto done;
-+ }
-+ ep->hcpriv = qh;
-+ }
-+
-+ retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
-+ if (retval == 0) {
-+ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
-+ }
-+
-+ done:
-+ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
-+
-+ return retval;
-+}
-+
-+#endif /* DWC_DEVICE_ONLY */
---- /dev/null
-+++ b/drivers/usb/dwc/otg_pcd.c
-@@ -0,0 +1,2502 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $
-+ * $Revision: #70 $
-+ * $Date: 2008/10/14 $
-+ * $Change: 1115682 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+#ifndef DWC_HOST_ONLY
-+
-+/** @file
-+ * This file implements the Peripheral Controller Driver.
-+ *
-+ * The Peripheral Controller Driver (PCD) is responsible for
-+ * translating requests from the Function Driver into the appropriate
-+ * actions on the DWC_otg controller. It isolates the Function Driver
-+ * from the specifics of the controller by providing an API to the
-+ * Function Driver.
-+ *
-+ * The Peripheral Controller Driver for Linux will implement the
-+ * Gadget API, so that the existing Gadget drivers can be used.
-+ * (Gadget Driver is the Linux terminology for a Function Driver.)
-+ *
-+ * The Linux Gadget API is defined in the header file
-+ * <code><linux/usb_gadget.h></code>. The USB EP operations API is
-+ * defined in the structure <code>usb_ep_ops</code> and the USB
-+ * Controller API is defined in the structure
-+ * <code>usb_gadget_ops</code>.
-+ *
-+ * An important function of the PCD is managing interrupts generated
-+ * by the DWC_otg controller. The implementation of the DWC_otg device
-+ * mode interrupt service routines is in dwc_otg_pcd_intr.c.
-+ *
-+ * @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
-+ * @todo Does it work when the request size is greater than DEPTSIZ
-+ * transfer size
-+ *
-+ */
-+
-+
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/moduleparam.h>
-+#include <linux/init.h>
-+#include <linux/device.h>
-+#include <linux/platform_device.h>
-+#include <linux/errno.h>
-+#include <linux/list.h>
-+#include <linux/interrupt.h>
-+#include <linux/string.h>
-+#include <linux/dma-mapping.h>
-+#include <linux/version.h>
-+
-+#include <mach/irqs.h>
-+#include <linux/usb/ch9.h>
-+
-+//#include <linux/usb_gadget.h>
-+
-+#include "otg_driver.h"
-+#include "otg_pcd.h"
-+
-+
-+
-+/**
-+ * Static PCD pointer for use in usb_gadget_register_driver and
-+ * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init.
-+ */
-+static dwc_otg_pcd_t *s_pcd = 0;
-+
-+
-+/* Display the contents of the buffer */
-+extern void dump_msg(const u8 *buf, unsigned int length);
-+
-+
-+/**
-+ * This function completes a request. It call's the request call back.
-+ */
-+void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req,
-+ int status)
-+{
-+ unsigned stopped = ep->stopped;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep);
-+ list_del_init(&req->queue);
-+
-+ if (req->req.status == -EINPROGRESS) {
-+ req->req.status = status;
-+ } else {
-+ status = req->req.status;
-+ }
-+
-+ /* don't modify queue heads during completion callback */
-+ ep->stopped = 1;
-+ SPIN_UNLOCK(&ep->pcd->lock);
-+ req->req.complete(&ep->ep, &req->req);
-+ SPIN_LOCK(&ep->pcd->lock);
-+
-+ if (ep->pcd->request_pending > 0) {
-+ --ep->pcd->request_pending;
-+ }
-+
-+ ep->stopped = stopped;
-+}
-+
-+/**
-+ * This function terminates all the requsts in the EP request queue.
-+ */
-+void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep)
-+{
-+ dwc_otg_pcd_request_t *req;
-+
-+ ep->stopped = 1;
-+
-+ /* called with irqs blocked?? */
-+ while (!list_empty(&ep->queue)) {
-+ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
-+ queue);
-+ dwc_otg_request_done(ep, req, -ESHUTDOWN);
-+ }
-+}
-+
-+/* USB Endpoint Operations */
-+/*
-+ * The following sections briefly describe the behavior of the Gadget
-+ * API endpoint operations implemented in the DWC_otg driver
-+ * software. Detailed descriptions of the generic behavior of each of
-+ * these functions can be found in the Linux header file
-+ * include/linux/usb_gadget.h.
-+ *
-+ * The Gadget API provides wrapper functions for each of the function
-+ * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
-+ * function, which then calls the underlying PCD function. The
-+ * following sections are named according to the wrapper
-+ * functions. Within each section, the corresponding DWC_otg PCD
-+ * function name is specified.
-+ *
-+ */
-+
-+/**
-+ * This function assigns periodic Tx FIFO to an periodic EP
-+ * in shared Tx FIFO mode
-+ */
-+static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t *core_if)
-+{
-+ uint32_t PerTxMsk = 1;
-+ int i;
-+ for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i)
-+ {
-+ if((PerTxMsk & core_if->p_tx_msk) == 0) {
-+ core_if->p_tx_msk |= PerTxMsk;
-+ return i + 1;
-+ }
-+ PerTxMsk <<= 1;
-+ }
-+ return 0;
-+}
-+/**
-+ * This function releases periodic Tx FIFO
-+ * in shared Tx FIFO mode
-+ */
-+static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
-+{
-+ core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
-+}
-+/**
-+ * This function assigns periodic Tx FIFO to an periodic EP
-+ * in shared Tx FIFO mode
-+ */
-+static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if)
-+{
-+ uint32_t TxMsk = 1;
-+ int i;
-+
-+ for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i)
-+ {
-+ if((TxMsk & core_if->tx_msk) == 0) {
-+ core_if->tx_msk |= TxMsk;
-+ return i + 1;
-+ }
-+ TxMsk <<= 1;
-+ }
-+ return 0;
-+}
-+/**
-+ * This function releases periodic Tx FIFO
-+ * in shared Tx FIFO mode
-+ */
-+static void release_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
-+{
-+ core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
-+}
-+
-+/**
-+ * This function is called by the Gadget Driver for each EP to be
-+ * configured for the current configuration (SET_CONFIGURATION).
-+ *
-+ * This function initializes the dwc_otg_ep_t data structure, and then
-+ * calls dwc_otg_ep_activate.
-+ */
-+static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep,
-+ const struct usb_endpoint_descriptor *ep_desc)
-+{
-+ dwc_otg_pcd_ep_t *ep = 0;
-+ dwc_otg_pcd_t *pcd = 0;
-+ unsigned long flags;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc);
-+
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+ if (!usb_ep || !ep_desc || ep->desc ||
-+ ep_desc->bDescriptorType != USB_DT_ENDPOINT) {
-+ DWC_WARN("%s, bad ep or descriptor\n", __func__);
-+ return -EINVAL;
-+ }
-+ if (ep == &ep->pcd->ep0) {
-+ DWC_WARN("%s, bad ep(0)\n", __func__);
-+ return -EINVAL;
-+ }
-+
-+ /* Check FIFO size? */
-+ if (!ep_desc->wMaxPacketSize) {
-+ DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name);
-+ return -ERANGE;
-+ }
-+
-+ pcd = ep->pcd;
-+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
-+ DWC_WARN("%s, bogus device state\n", __func__);
-+ return -ESHUTDOWN;
-+ }
-+
-+ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
-+
-+ ep->desc = ep_desc;
-+ ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize);
-+
-+ /*
-+ * Activate the EP
-+ */
-+ ep->stopped = 0;
-+
-+ ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0;
-+ ep->dwc_ep.maxpacket = ep->ep.maxpacket;
-+
-+ ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
-+
-+ if(ep->dwc_ep.is_in) {
-+ if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) {
-+ ep->dwc_ep.tx_fifo_num = 0;
-+
-+ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) {
-+ /*
-+ * if ISOC EP then assign a Periodic Tx FIFO.
-+ */
-+ ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if);
-+ }
-+ } else {
-+ /*
-+ * if Dedicated FIFOs mode is on then assign a Tx FIFO.
-+ */
-+ ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if);
-+
-+ }
-+ }
-+ /* Set initial data PID. */
-+ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) {
-+ ep->dwc_ep.data_pid_start = 0;
-+ }
-+
-+ DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n",
-+ ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"),
-+ ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
-+
-+ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) {
-+ ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
-+ }
-+
-+ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
-+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
-+
-+ return 0;
-+}
-+
-+/**
-+ * This function is called when an EP is disabled due to disconnect or
-+ * change in configuration. Any pending requests will terminate with a
-+ * status of -ESHUTDOWN.
-+ *
-+ * This function modifies the dwc_otg_ep_t data structure for this EP,
-+ * and then calls dwc_otg_ep_deactivate.
-+ */
-+static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep)
-+{
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_otg_pcd_t *pcd = 0;
-+ unsigned long flags;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep);
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+ if (!usb_ep || !ep->desc) {
-+ DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
-+ usb_ep ? ep->ep.name : NULL);
-+ return -EINVAL;
-+ }
-+
-+ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
-+
-+ dwc_otg_request_nuke(ep);
-+
-+ dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
-+ ep->desc = 0;
-+ ep->stopped = 1;
-+
-+ if(ep->dwc_ep.is_in) {
-+ dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
-+ release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
-+ release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
-+ }
-+
-+ /* Free DMA Descriptors */
-+ pcd = ep->pcd;
-+
-+ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
-+
-+ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) {
-+ dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
-+ }
-+
-+ DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name);
-+ return 0;
-+}
-+
-+
-+/**
-+ * This function allocates a request object to use with the specified
-+ * endpoint.
-+ *
-+ * @param ep The endpoint to be used with with the request
-+ * @param gfp_flags the GFP_* flags to use.
-+ */
-+static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep,
-+ gfp_t gfp_flags)
-+{
-+ dwc_otg_pcd_request_t *req;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags);
-+ if (0 == ep) {
-+ DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
-+ return 0;
-+ }
-+ req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags);
-+ if (0 == req) {
-+ DWC_WARN("%s() %s\n", __func__,
-+ "request allocation failed!\n");
-+ return 0;
-+ }
-+ memset(req, 0, sizeof(dwc_otg_pcd_request_t));
-+ req->req.dma = DMA_ADDR_INVALID;
-+ INIT_LIST_HEAD(&req->queue);
-+ return &req->req;
-+}
-+
-+/**
-+ * This function frees a request object.
-+ *
-+ * @param ep The endpoint associated with the request
-+ * @param req The request being freed
-+ */
-+static void dwc_otg_pcd_free_request(struct usb_ep *ep,
-+ struct usb_request *req)
-+{
-+ dwc_otg_pcd_request_t *request;
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req);
-+
-+ if (0 == ep || 0 == req) {
-+ DWC_WARN("%s() %s\n", __func__,
-+ "Invalid ep or req argument!\n");
-+ return;
-+ }
-+
-+ request = container_of(req, dwc_otg_pcd_request_t, req);
-+ kfree(request);
-+}
-+
-+#if 0
-+/**
-+ * This function allocates an I/O buffer to be used for a transfer
-+ * to/from the specified endpoint.
-+ *
-+ * @param usb_ep The endpoint to be used with with the request
-+ * @param bytes The desired number of bytes for the buffer
-+ * @param dma Pointer to the buffer's DMA address; must be valid
-+ * @param gfp_flags the GFP_* flags to use.
-+ * @return address of a new buffer or null is buffer could not be allocated.
-+ */
-+static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes,
-+ dma_addr_t *dma,
-+ gfp_t gfp_flags)
-+{
-+ void *buf;
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_otg_pcd_t *pcd = 0;
-+
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+ pcd = ep->pcd;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes,
-+ dma, gfp_flags);
-+
-+ /* Check dword alignment */
-+ if ((bytes & 0x3UL) != 0) {
-+ DWC_WARN("%s() Buffer size is not a multiple of"
-+ "DWORD size (%d)",__func__, bytes);
-+ }
-+
-+ if (GET_CORE_IF(pcd)->dma_enable) {
-+ buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags);
-+ }
-+ else {
-+ buf = kmalloc(bytes, gfp_flags);
-+ }
-+
-+ /* Check dword alignment */
-+ if (((int)buf & 0x3UL) != 0) {
-+ DWC_WARN("%s() Buffer is not DWORD aligned (%p)",
-+ __func__, buf);
-+ }
-+
-+ return buf;
-+}
-+
-+/**
-+ * This function frees an I/O buffer that was allocated by alloc_buffer.
-+ *
-+ * @param usb_ep the endpoint associated with the buffer
-+ * @param buf address of the buffer
-+ * @param dma The buffer's DMA address
-+ * @param bytes The number of bytes of the buffer
-+ */
-+static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf,
-+ dma_addr_t dma, unsigned bytes)
-+{
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_otg_pcd_t *pcd = 0;
-+
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+ pcd = ep->pcd;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes);
-+
-+ if (GET_CORE_IF(pcd)->dma_enable) {
-+ dma_free_coherent (NULL, bytes, buf, dma);
-+ }
-+ else {
-+ kfree(buf);
-+ }
-+}
-+#endif
-+
-+/**
-+ * This function is used to submit an I/O Request to an EP.
-+ *
-+ * - When the request completes the request's completion callback
-+ * is called to return the request to the driver.
-+ * - An EP, except control EPs, may have multiple requests
-+ * pending.
-+ * - Once submitted the request cannot be examined or modified.
-+ * - Each request is turned into one or more packets.
-+ * - A BULK EP can queue any amount of data; the transfer is
-+ * packetized.
-+ * - Zero length Packets are specified with the request 'zero'
-+ * flag.
-+ */
-+static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep,
-+ struct usb_request *usb_req,
-+ gfp_t gfp_flags)
-+{
-+ int prevented = 0;
-+ dwc_otg_pcd_request_t *req;
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_otg_pcd_t *pcd;
-+ unsigned long flags = 0;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n",
-+ __func__, usb_ep, usb_req, gfp_flags);
-+
-+ req = container_of(usb_req, dwc_otg_pcd_request_t, req);
-+ if (!usb_req || !usb_req->complete || !usb_req->buf ||
-+ !list_empty(&req->queue)) {
-+ DWC_WARN("%s, bad params\n", __func__);
-+ return -EINVAL;
-+ }
-+
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+ if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) {
-+ DWC_WARN("%s, bad ep\n", __func__);
-+ return -EINVAL;
-+ }
-+
-+ pcd = ep->pcd;
-+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
-+ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
-+ DWC_WARN("%s, bogus device state\n", __func__);
-+ return -ESHUTDOWN;
-+ }
-+
-+
-+ DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n",
-+ usb_ep->name, usb_req, usb_req->length, usb_req->buf);
-+
-+ if (!GET_CORE_IF(pcd)->core_params->opt) {
-+ if (ep->dwc_ep.num != 0) {
-+ DWC_ERROR("%s queue req %p, len %d buf %p\n",
-+ usb_ep->name, usb_req, usb_req->length, usb_req->buf);
-+ }
-+ }
-+
-+ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
-+
-+#if defined(DEBUG) & defined(VERBOSE)
-+ dump_msg(usb_req->buf, usb_req->length);
-+#endif
-+
-+ usb_req->status = -EINPROGRESS;
-+ usb_req->actual = 0;
-+
-+ /*
-+ * For EP0 IN without premature status, zlp is required?
-+ */
-+ if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
-+ DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name);
-+ //_req->zero = 1;
-+ }
-+
-+ /* Start the transfer */
-+ if (list_empty(&ep->queue) && !ep->stopped) {
-+ /* EP0 Transfer? */
-+ if (ep->dwc_ep.num == 0) {
-+ switch (pcd->ep0state) {
-+ case EP0_IN_DATA_PHASE:
-+ DWC_DEBUGPL(DBG_PCD,
-+ "%s ep0: EP0_IN_DATA_PHASE\n",
-+ __func__);
-+ break;
-+
-+ case EP0_OUT_DATA_PHASE:
-+ DWC_DEBUGPL(DBG_PCD,
-+ "%s ep0: EP0_OUT_DATA_PHASE\n",
-+ __func__);
-+ if (pcd->request_config) {
-+ /* Complete STATUS PHASE */
-+ ep->dwc_ep.is_in = 1;
-+ pcd->ep0state = EP0_IN_STATUS_PHASE;
-+ }
-+ break;
-+
-+ case EP0_IN_STATUS_PHASE:
-+ DWC_DEBUGPL(DBG_PCD,
-+ "%s ep0: EP0_IN_STATUS_PHASE\n",
-+ __func__);
-+ break;
-+
-+ default:
-+ DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
-+ pcd->ep0state);
-+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
-+ return -EL2HLT;
-+ }
-+ ep->dwc_ep.dma_addr = usb_req->dma;
-+ ep->dwc_ep.start_xfer_buff = usb_req->buf;
-+ ep->dwc_ep.xfer_buff = usb_req->buf;
-+ ep->dwc_ep.xfer_len = usb_req->length;
-+ ep->dwc_ep.xfer_count = 0;
-+ ep->dwc_ep.sent_zlp = 0;
-+ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
-+
-+ if(usb_req->zero) {
-+ if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0)
-+ && (ep->dwc_ep.xfer_len != 0)) {
-+ ep->dwc_ep.sent_zlp = 1;
-+ }
-+
-+ }
-+
-+ ep_check_and_patch_dma_addr(ep);
-+ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
-+ }
-+ else {
-+
-+ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
-+
-+ /* Setup and start the Transfer */
-+ ep->dwc_ep.dma_addr = usb_req->dma;
-+ ep->dwc_ep.start_xfer_buff = usb_req->buf;
-+ ep->dwc_ep.xfer_buff = usb_req->buf;
-+ ep->dwc_ep.sent_zlp = 0;
-+ ep->dwc_ep.total_len = usb_req->length;
-+ ep->dwc_ep.xfer_len = 0;
-+ ep->dwc_ep.xfer_count = 0;
-+
-+ if(max_transfer > MAX_TRANSFER_SIZE) {
-+ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
-+ } else {
-+ ep->dwc_ep.maxxfer = max_transfer;
-+ }
-+
-+ if(usb_req->zero) {
-+ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
-+ && (ep->dwc_ep.total_len != 0)) {
-+ ep->dwc_ep.sent_zlp = 1;
-+ }
-+
-+ }
-+
-+ ep_check_and_patch_dma_addr(ep);
-+ dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
-+ }
-+ }
-+
-+ if ((req != 0) || prevented) {
-+ ++pcd->request_pending;
-+ list_add_tail(&req->queue, &ep->queue);
-+ if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) {
-+ /** @todo NGS Create a function for this. */
-+ diepmsk_data_t diepmsk = { .d32 = 0};
-+ diepmsk.b.intktxfemp = 1;
-+ if(&GET_CORE_IF(pcd)->multiproc_int_enable) {
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num],
-+ 0, diepmsk.d32);
-+ } else {
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32);
-+ }
-+ }
-+ }
-+
-+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
-+ return 0;
-+}
-+
-+/**
-+ * This function cancels an I/O request from an EP.
-+ */
-+static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep,
-+ struct usb_request *usb_req)
-+{
-+ dwc_otg_pcd_request_t *req;
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_otg_pcd_t *pcd;
-+ unsigned long flags;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req);
-+
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+ if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) {
-+ DWC_WARN("%s, bad argument\n", __func__);
-+ return -EINVAL;
-+ }
-+ pcd = ep->pcd;
-+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
-+ DWC_WARN("%s, bogus device state\n", __func__);
-+ return -ESHUTDOWN;
-+ }
-+
-+ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
-+ DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name,
-+ ep->dwc_ep.is_in ? "IN" : "OUT",
-+ usb_req);
-+
-+ /* make sure it's actually queued on this endpoint */
-+ list_for_each_entry(req, &ep->queue, queue)
-+ {
-+ if (&req->req == usb_req) {
-+ break;
-+ }
-+ }
-+
-+ if (&req->req != usb_req) {
-+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
-+ return -EINVAL;
-+ }
-+
-+ if (!list_empty(&req->queue)) {
-+ dwc_otg_request_done(ep, req, -ECONNRESET);
-+ }
-+ else {
-+ req = 0;
-+ }
-+
-+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
-+
-+ return req ? 0 : -EOPNOTSUPP;
-+}
-+
-+/**
-+ * usb_ep_set_halt stalls an endpoint.
-+ *
-+ * usb_ep_clear_halt clears an endpoint halt and resets its data
-+ * toggle.
-+ *
-+ * Both of these functions are implemented with the same underlying
-+ * function. The behavior depends on the value argument.
-+ *
-+ * @param[in] usb_ep the Endpoint to halt or clear halt.
-+ * @param[in] value
-+ * - 0 means clear_halt.
-+ * - 1 means set_halt,
-+ * - 2 means clear stall lock flag.
-+ * - 3 means set stall lock flag.
-+ */
-+static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value)
-+{
-+ int retval = 0;
-+ unsigned long flags;
-+ dwc_otg_pcd_ep_t *ep = 0;
-+
-+
-+ DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value);
-+
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+
-+ if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) ||
-+ ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
-+ DWC_WARN("%s, bad ep\n", __func__);
-+ return -EINVAL;
-+ }
-+
-+ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
-+ if (!list_empty(&ep->queue)) {
-+ DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name);
-+ retval = -EAGAIN;
-+ }
-+ else if (value == 0) {
-+ dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,
-+ &ep->dwc_ep);
-+ }
-+ else if(value == 1) {
-+ if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) {
-+ dtxfsts_data_t txstatus;
-+ fifosize_data_t txfifosize;
-+
-+ txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]);
-+ txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts);
-+
-+ if(txstatus.b.txfspcavail < txfifosize.b.depth) {
-+ DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name);
-+ retval = -EAGAIN;
-+ }
-+ else {
-+ if (ep->dwc_ep.num == 0) {
-+ ep->pcd->ep0state = EP0_STALL;
-+ }
-+
-+ ep->stopped = 1;
-+ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
-+ &ep->dwc_ep);
-+ }
-+ }
-+ else {
-+ if (ep->dwc_ep.num == 0) {
-+ ep->pcd->ep0state = EP0_STALL;
-+ }
-+
-+ ep->stopped = 1;
-+ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
-+ &ep->dwc_ep);
-+ }
-+ }
-+ else if (value == 2) {
-+ ep->dwc_ep.stall_clear_flag = 0;
-+ }
-+ else if (value == 3) {
-+ ep->dwc_ep.stall_clear_flag = 1;
-+ }
-+
-+ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
-+ return retval;
-+}
-+
-+/**
-+ * This function allocates a DMA Descriptor chain for the Endpoint
-+ * buffer to be used for a transfer to/from the specified endpoint.
-+ */
-+dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count)
-+{
-+
-+ return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL);
-+}
-+
-+LIST_HEAD(tofree_list);
-+DEFINE_SPINLOCK(tofree_list_lock);
-+
-+struct free_param {
-+ struct list_head list;
-+
-+ void* addr;
-+ dma_addr_t dma_addr;
-+ uint32_t size;
-+};
-+void free_list_agent_fn(void *data){
-+ struct list_head free_list;
-+ struct free_param *cur,*next;
-+
-+ spin_lock(&tofree_list_lock);
-+ list_add(&free_list,&tofree_list);
-+ list_del_init(&tofree_list);
-+ spin_unlock(&tofree_list_lock);
-+
-+ list_for_each_entry_safe(cur,next,&free_list,list){
-+ if(cur==&free_list) break;
-+ dma_free_coherent(NULL,cur->size,cur->addr,cur->dma_addr);
-+ list_del(&cur->list);
-+ kfree(cur);
-+ }
-+}
-+DECLARE_WORK(free_list_agent,free_list_agent_fn);
-+/**
-+ * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc.
-+ */
-+void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count)
-+{
-+ if(irqs_disabled()){
-+ struct free_param* fp=kmalloc(sizeof(struct free_param),GFP_KERNEL);
-+ fp->addr=desc_addr;
-+ fp->dma_addr=dma_desc_addr;
-+ fp->size=count*sizeof(dwc_otg_dma_desc_t);
-+
-+ spin_lock(&tofree_list_lock);
-+ list_add(&fp->list,&tofree_list);
-+ spin_unlock(&tofree_list_lock);
-+
-+ schedule_work(&free_list_agent);
-+ return ;
-+ }
-+ dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr);
-+}
-+
-+#ifdef DWC_EN_ISOC
-+
-+/**
-+ * This function initializes a descriptor chain for Isochronous transfer
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param dwc_ep The EP to start the transfer on.
-+ *
-+ */
-+void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
-+{
-+
-+ dsts_data_t dsts = { .d32 = 0};
-+ depctl_data_t depctl = { .d32 = 0 };
-+ volatile uint32_t *addr;
-+ int i, j;
-+
-+ if(dwc_ep->is_in)
-+ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval;
-+ else
-+ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
-+
-+
-+ /** Allocate descriptors for double buffering */
-+ dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2);
-+ if(dwc_ep->desc_addr) {
-+ DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__);
-+ return;
-+ }
-+
-+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
-+
-+ /** ISO OUT EP */
-+ if(dwc_ep->is_in == 0) {
-+ desc_sts_data_t sts = { .d32 =0 };
-+ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
-+ dma_addr_t dma_ad;
-+ uint32_t data_per_desc;
-+ dwc_otg_dev_out_ep_regs_t *out_regs =
-+ core_if->dev_if->out_ep_regs[dwc_ep->num];
-+ int offset;
-+
-+ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
-+ dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma));
-+
-+ /** Buffer 0 descriptors setup */
-+ dma_ad = dwc_ep->dma_addr0;
-+
-+ sts.b_iso_out.bs = BS_HOST_READY;
-+ sts.b_iso_out.rxsts = 0;
-+ sts.b_iso_out.l = 0;
-+ sts.b_iso_out.sp = 0;
-+ sts.b_iso_out.ioc = 0;
-+ sts.b_iso_out.pid = 0;
-+ sts.b_iso_out.framenum = 0;
-+
-+ offset = 0;
-+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
-+ {
-+
-+ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
-+ {
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ offset += data_per_desc;
-+ dma_desc ++;
-+ //(uint32_t)dma_ad += data_per_desc;
-+ dma_ad = (uint32_t)dma_ad + data_per_desc;
-+ }
-+ }
-+
-+ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
-+ {
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ offset += data_per_desc;
-+ dma_desc ++;
-+ //(uint32_t)dma_ad += data_per_desc;
-+ dma_ad = (uint32_t)dma_ad + data_per_desc;
-+ }
-+
-+ sts.b_iso_out.ioc = 1;
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+ dma_desc ++;
-+
-+ /** Buffer 1 descriptors setup */
-+ sts.b_iso_out.ioc = 0;
-+ dma_ad = dwc_ep->dma_addr1;
-+
-+ offset = 0;
-+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
-+ {
-+ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
-+ {
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ offset += data_per_desc;
-+ dma_desc ++;
-+ //(uint32_t)dma_ad += data_per_desc;
-+ dma_ad = (uint32_t)dma_ad + data_per_desc;
-+ }
-+ }
-+ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
-+ {
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ offset += data_per_desc;
-+ dma_desc ++;
-+ //(uint32_t)dma_ad += data_per_desc;
-+ dma_ad = (uint32_t)dma_ad + data_per_desc;
-+ }
-+
-+ sts.b_iso_out.ioc = 1;
-+ sts.b_iso_out.l = 1;
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ dwc_ep->next_frame = 0;
-+
-+ /** Write dma_ad into DOEPDMA register */
-+ dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
-+
-+ }
-+ /** ISO IN EP */
-+ else {
-+ desc_sts_data_t sts = { .d32 =0 };
-+ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
-+ dma_addr_t dma_ad;
-+ dwc_otg_dev_in_ep_regs_t *in_regs =
-+ core_if->dev_if->in_ep_regs[dwc_ep->num];
-+ unsigned int frmnumber;
-+ fifosize_data_t txfifosize,rxfifosize;
-+
-+ txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts);
-+ rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz);
-+
-+
-+ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
-+
-+ dma_ad = dwc_ep->dma_addr0;
-+
-+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
-+
-+ sts.b_iso_in.bs = BS_HOST_READY;
-+ sts.b_iso_in.txsts = 0;
-+ sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0;
-+ sts.b_iso_in.ioc = 0;
-+ sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
-+
-+
-+ frmnumber = dwc_ep->next_frame;
-+
-+ sts.b_iso_in.framenum = frmnumber;
-+ sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
-+ sts.b_iso_in.l = 0;
-+
-+ /** Buffer 0 descriptors setup */
-+ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
-+ {
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+ dma_desc ++;
-+
-+ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
-+ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
-+ sts.b_iso_in.framenum += dwc_ep->bInterval;
-+ }
-+
-+ sts.b_iso_in.ioc = 1;
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+ ++dma_desc;
-+
-+ /** Buffer 1 descriptors setup */
-+ sts.b_iso_in.ioc = 0;
-+ dma_ad = dwc_ep->dma_addr1;
-+
-+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
-+ {
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+ dma_desc ++;
-+
-+ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
-+ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
-+ sts.b_iso_in.framenum += dwc_ep->bInterval;
-+
-+ sts.b_iso_in.ioc = 0;
-+ }
-+ sts.b_iso_in.ioc = 1;
-+ sts.b_iso_in.l = 1;
-+
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval;
-+
-+ /** Write dma_ad into diepdma register */
-+ dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
-+ }
-+ /** Enable endpoint, clear nak */
-+ depctl.d32 = 0;
-+ depctl.b.epena = 1;
-+ depctl.b.usbactep = 1;
-+ depctl.b.cnak = 1;
-+
-+ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
-+ depctl.d32 = dwc_read_reg32(addr);
-+}
-+
-+/**
-+ * This function initializes a descriptor chain for Isochronous transfer
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ *
-+ */
-+
-+void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ depctl_data_t depctl = { .d32 = 0 };
-+ volatile uint32_t *addr;
-+
-+
-+ if(ep->is_in) {
-+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
-+ } else {
-+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
-+ }
-+
-+
-+ if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) {
-+ return;
-+ } else {
-+ deptsiz_data_t deptsiz = { .d32 = 0 };
-+
-+ ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval;
-+ ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) /
-+ ep->maxpacket;
-+ ep->xfer_count = 0;
-+ ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
-+ ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
-+
-+ if(ep->is_in) {
-+ /* Program the transfer size and packet count
-+ * as follows: xfersize = N * maxpacket +
-+ * short_packet pktcnt = N + (short_packet
-+ * exist ? 1 : 0)
-+ */
-+ deptsiz.b.mc = ep->pkt_per_frm;
-+ deptsiz.b.xfersize = ep->xfer_len;
-+ deptsiz.b.pktcnt =
-+ (ep->xfer_len - 1 + ep->maxpacket) /
-+ ep->maxpacket;
-+ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
-+
-+ /* Write the DMA register */
-+ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
-+
-+ } else {
-+ deptsiz.b.pktcnt =
-+ (ep->xfer_len + (ep->maxpacket - 1)) /
-+ ep->maxpacket;
-+ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
-+
-+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
-+
-+ /* Write the DMA register */
-+ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr);
-+
-+ }
-+ /** Enable endpoint, clear nak */
-+ depctl.d32 = 0;
-+ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
-+
-+ depctl.b.epena = 1;
-+ depctl.b.cnak = 1;
-+
-+ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
-+ }
-+}
-+
-+
-+/**
-+ * This function does the setup for a data transfer for an EP and
-+ * starts the transfer. For an IN transfer, the packets will be
-+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
-+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ */
-+
-+void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ if(core_if->dma_enable) {
-+ if(core_if->dma_desc_enable) {
-+ if(ep->is_in) {
-+ ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm;
-+ } else {
-+ ep->desc_cnt = ep->pkt_cnt;
-+ }
-+ dwc_otg_iso_ep_start_ddma_transfer(core_if, ep);
-+ } else {
-+ if(core_if->pti_enh_enable) {
-+ dwc_otg_iso_ep_start_buf_transfer(core_if, ep);
-+ } else {
-+ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
-+ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
-+ dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
-+ }
-+ }
-+ } else {
-+ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
-+ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
-+ dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
-+ }
-+}
-+
-+/**
-+ * This function does the setup for a data transfer for an EP and
-+ * starts the transfer. For an IN transfer, the packets will be
-+ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
-+ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ */
-+
-+void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ depctl_data_t depctl = { .d32 = 0 };
-+ volatile uint32_t *addr;
-+
-+ if(ep->is_in == 1) {
-+ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
-+ }
-+ else {
-+ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
-+ }
-+
-+ /* disable the ep */
-+ depctl.d32 = dwc_read_reg32(addr);
-+
-+ depctl.b.epdis = 1;
-+ depctl.b.snak = 1;
-+
-+ dwc_write_reg32(addr, depctl.d32);
-+
-+ if(core_if->dma_desc_enable &&
-+ ep->iso_desc_addr && ep->iso_dma_desc_addr) {
-+ dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2);
-+ }
-+
-+ /* reset varibales */
-+ ep->dma_addr0 = 0;
-+ ep->dma_addr1 = 0;
-+ ep->xfer_buff0 = 0;
-+ ep->xfer_buff1 = 0;
-+ ep->data_per_frame = 0;
-+ ep->data_pattern_frame = 0;
-+ ep->sync_frame = 0;
-+ ep->buf_proc_intrvl = 0;
-+ ep->bInterval = 0;
-+ ep->proc_buf_num = 0;
-+ ep->pkt_per_frm = 0;
-+ ep->pkt_per_frm = 0;
-+ ep->desc_cnt = 0;
-+ ep->iso_desc_addr = 0;
-+ ep->iso_dma_desc_addr = 0;
-+}
-+
-+
-+/**
-+ * This function is used to submit an ISOC Transfer Request to an EP.
-+ *
-+ * - Every time a sync period completes the request's completion callback
-+ * is called to provide data to the gadget driver.
-+ * - Once submitted the request cannot be modified.
-+ * - Each request is turned into periodic data packets untill ISO
-+ * Transfer is stopped..
-+ */
-+static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req,
-+ gfp_t gfp_flags)
-+{
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_otg_pcd_t *pcd;
-+ dwc_ep_t *dwc_ep;
-+ unsigned long flags = 0;
-+ int32_t frm_data;
-+ dwc_otg_core_if_t *core_if;
-+ dcfg_data_t dcfg;
-+ dsts_data_t dsts;
-+
-+
-+ if (!req || !req->process_buffer || !req->buf0 || !req->buf1) {
-+ DWC_WARN("%s, bad params\n", __func__);
-+ return -EINVAL;
-+ }
-+
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+
-+ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
-+ DWC_WARN("%s, bad ep\n", __func__);
-+ return -EINVAL;
-+ }
-+
-+ pcd = ep->pcd;
-+ core_if = GET_CORE_IF(pcd);
-+
-+ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
-+
-+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
-+ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
-+ DWC_WARN("%s, bogus device state\n", __func__);
-+ return -ESHUTDOWN;
-+ }
-+
-+ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
-+
-+ dwc_ep = &ep->dwc_ep;
-+
-+ if(ep->iso_req) {
-+ DWC_WARN("%s, iso request in progress\n", __func__);
-+ }
-+ req->status = -EINPROGRESS;
-+
-+ dwc_ep->dma_addr0 = req->dma0;
-+ dwc_ep->dma_addr1 = req->dma1;
-+
-+ dwc_ep->xfer_buff0 = req->buf0;
-+ dwc_ep->xfer_buff1 = req->buf1;
-+
-+ ep->iso_req = req;
-+
-+ dwc_ep->data_per_frame = req->data_per_frame;
-+
-+ /** @todo - pattern data support is to be implemented in the future */
-+ dwc_ep->data_pattern_frame = req->data_pattern_frame;
-+ dwc_ep->sync_frame = req->sync_frame;
-+
-+ dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl;
-+
-+ dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1);
-+
-+ dwc_ep->proc_buf_num = 0;
-+
-+ dwc_ep->pkt_per_frm = 0;
-+ frm_data = ep->dwc_ep.data_per_frame;
-+ while(frm_data > 0) {
-+ dwc_ep->pkt_per_frm++;
-+ frm_data -= ep->dwc_ep.maxpacket;
-+ }
-+
-+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
-+
-+ if(req->flags & USB_REQ_ISO_ASAP) {
-+ dwc_ep->next_frame = dsts.b.soffn + 1;
-+ if(dwc_ep->bInterval != 1){
-+ dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval);
-+ }
-+ } else {
-+ dwc_ep->next_frame = req->start_frame;
-+ }
-+
-+
-+ if(!core_if->pti_enh_enable) {
-+ dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
-+ } else {
-+ dwc_ep->pkt_cnt =
-+ (dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval)
-+ - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket;
-+ }
-+
-+ if(core_if->dma_desc_enable) {
-+ dwc_ep->desc_cnt =
-+ dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
-+ }
-+
-+ dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL);
-+ if(!dwc_ep->pkt_info) {
-+ return -ENOMEM;
-+ }
-+ if(core_if->pti_enh_enable) {
-+ memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
-+ }
-+
-+ dwc_ep->cur_pkt = 0;
-+
-+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
-+
-+ dwc_otg_iso_ep_start_transfer(core_if, dwc_ep);
-+
-+ return 0;
-+}
-+
-+/**
-+ * This function stops ISO EP Periodic Data Transfer.
-+ */
-+static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req)
-+{
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_otg_pcd_t *pcd;
-+ dwc_ep_t *dwc_ep;
-+ unsigned long flags;
-+
-+ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
-+
-+ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
-+ DWC_WARN("%s, bad ep\n", __func__);
-+ return -EINVAL;
-+ }
-+
-+ pcd = ep->pcd;
-+
-+ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
-+ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
-+ DWC_WARN("%s, bogus device state\n", __func__);
-+ return -ESHUTDOWN;
-+ }
-+
-+ dwc_ep = &ep->dwc_ep;
-+
-+ dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep);
-+
-+ kfree(dwc_ep->pkt_info);
-+
-+ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
-+
-+ if(ep->iso_req != req) {
-+ return -EINVAL;
-+ }
-+
-+ req->status = -ECONNRESET;
-+
-+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
-+
-+
-+ ep->iso_req = 0;
-+
-+ return 0;
-+}
-+
-+/**
-+ * This function is used for perodical data exchnage between PCD and gadget drivers.
-+ * for Isochronous EPs
-+ *
-+ * - Every time a sync period completes this function is called to
-+ * perform data exchange between PCD and gadget
-+ */
-+void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req)
-+{
-+ int i;
-+ struct usb_gadget_iso_packet_descriptor *iso_packet;
-+ dwc_ep_t *dwc_ep;
-+
-+ dwc_ep = &ep->dwc_ep;
-+
-+ if(ep->iso_req->status == -ECONNRESET) {
-+ DWC_PRINT("Device has already disconnected\n");
-+ /*Device has been disconnected*/
-+ return;
-+ }
-+
-+ if(dwc_ep->proc_buf_num != 0) {
-+ iso_packet = ep->iso_req->iso_packet_desc0;
-+ }
-+
-+ else {
-+ iso_packet = ep->iso_req->iso_packet_desc1;
-+ }
-+
-+ /* Fill in ISOC packets descriptors & pass to gadget driver*/
-+
-+ for(i = 0; i < dwc_ep->pkt_cnt; ++i) {
-+ iso_packet[i].status = dwc_ep->pkt_info[i].status;
-+ iso_packet[i].offset = dwc_ep->pkt_info[i].offset;
-+ iso_packet[i].actual_length = dwc_ep->pkt_info[i].length;
-+ dwc_ep->pkt_info[i].status = 0;
-+ dwc_ep->pkt_info[i].offset = 0;
-+ dwc_ep->pkt_info[i].length = 0;
-+ }
-+
-+ /* Call callback function to process data buffer */
-+ ep->iso_req->status = 0;/* success */
-+
-+ SPIN_UNLOCK(&ep->pcd->lock);
-+ ep->iso_req->process_buffer(&ep->ep, ep->iso_req);
-+ SPIN_LOCK(&ep->pcd->lock);
-+}
-+
-+
-+static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets,
-+ gfp_t gfp_flags)
-+{
-+ struct usb_iso_request *pReq = NULL;
-+ uint32_t req_size;
-+
-+
-+ req_size = sizeof(struct usb_iso_request);
-+ req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor)));
-+
-+
-+ pReq = kmalloc(req_size, gfp_flags);
-+ if (!pReq) {
-+ DWC_WARN("%s, can't allocate Iso Request\n", __func__);
-+ return 0;
-+ }
-+ pReq->iso_packet_desc0 = (void*) (pReq + 1);
-+
-+ pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets;
-+
-+ return pReq;
-+}
-+
-+static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req)
-+{
-+ kfree(req);
-+}
-+
-+static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops =
-+{
-+ .ep_ops =
-+ {
-+ .enable = dwc_otg_pcd_ep_enable,
-+ .disable = dwc_otg_pcd_ep_disable,
-+
-+ .alloc_request = dwc_otg_pcd_alloc_request,
-+ .free_request = dwc_otg_pcd_free_request,
-+
-+ //.alloc_buffer = dwc_otg_pcd_alloc_buffer,
-+ //.free_buffer = dwc_otg_pcd_free_buffer,
-+
-+ .queue = dwc_otg_pcd_ep_queue,
-+ .dequeue = dwc_otg_pcd_ep_dequeue,
-+
-+ .set_halt = dwc_otg_pcd_ep_set_halt,
-+ .fifo_status = 0,
-+ .fifo_flush = 0,
-+ },
-+ .iso_ep_start = dwc_otg_pcd_iso_ep_start,
-+ .iso_ep_stop = dwc_otg_pcd_iso_ep_stop,
-+ .alloc_iso_request = dwc_otg_pcd_alloc_iso_request,
-+ .free_iso_request = dwc_otg_pcd_free_iso_request,
-+};
-+
-+#else
-+
-+
-+static struct usb_ep_ops dwc_otg_pcd_ep_ops =
-+{
-+ .enable = dwc_otg_pcd_ep_enable,
-+ .disable = dwc_otg_pcd_ep_disable,
-+
-+ .alloc_request = dwc_otg_pcd_alloc_request,
-+ .free_request = dwc_otg_pcd_free_request,
-+
-+// .alloc_buffer = dwc_otg_pcd_alloc_buffer,
-+// .free_buffer = dwc_otg_pcd_free_buffer,
-+
-+ .queue = dwc_otg_pcd_ep_queue,
-+ .dequeue = dwc_otg_pcd_ep_dequeue,
-+
-+ .set_halt = dwc_otg_pcd_ep_set_halt,
-+ .fifo_status = 0,
-+ .fifo_flush = 0,
-+
-+
-+};
-+
-+#endif /* DWC_EN_ISOC */
-+/* Gadget Operations */
-+/**
-+ * The following gadget operations will be implemented in the DWC_otg
-+ * PCD. Functions in the API that are not described below are not
-+ * implemented.
-+ *
-+ * The Gadget API provides wrapper functions for each of the function
-+ * pointers defined in usb_gadget_ops. The Gadget Driver calls the
-+ * wrapper function, which then calls the underlying PCD function. The
-+ * following sections are named according to the wrapper functions
-+ * (except for ioctl, which doesn't have a wrapper function). Within
-+ * each section, the corresponding DWC_otg PCD function name is
-+ * specified.
-+ *
-+ */
-+
-+/**
-+ *Gets the USB Frame number of the last SOF.
-+ */
-+static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget)
-+{
-+ dwc_otg_pcd_t *pcd;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
-+
-+ if (gadget == 0) {
-+ return -ENODEV;
-+ }
-+ else {
-+ pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
-+ dwc_otg_get_frame_number(GET_CORE_IF(pcd));
-+ }
-+
-+ return 0;
-+}
-+
-+void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd)
-+{
-+ uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl);
-+ gotgctl_data_t mem;
-+ gotgctl_data_t val;
-+
-+ val.d32 = dwc_read_reg32(addr);
-+ if (val.b.sesreq) {
-+ DWC_ERROR("Session Request Already active!\n");
-+ return;
-+ }
-+
-+ DWC_NOTICE("Session Request Initated\n");
-+ mem.d32 = dwc_read_reg32(addr);
-+ mem.b.sesreq = 1;
-+ dwc_write_reg32(addr, mem.d32);
-+
-+ /* Start the SRP timer */
-+ dwc_otg_pcd_start_srp_timer(pcd);
-+ return;
-+}
-+
-+void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set)
-+{
-+ dctl_data_t dctl = {.d32=0};
-+ volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl);
-+
-+ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
-+ if (pcd->remote_wakeup_enable) {
-+ if (set) {
-+ dctl.b.rmtwkupsig = 1;
-+ dwc_modify_reg32(addr, 0, dctl.d32);
-+ DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
-+ mdelay(1);
-+ dwc_modify_reg32(addr, dctl.d32, 0);
-+ DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
-+ }
-+ else {
-+ }
-+ }
-+ else {
-+ DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
-+ }
-+ }
-+ return;
-+}
-+
-+/**
-+ * Initiates Session Request Protocol (SRP) to wakeup the host if no
-+ * session is in progress. If a session is already in progress, but
-+ * the device is suspended, remote wakeup signaling is started.
-+ *
-+ */
-+static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget)
-+{
-+ unsigned long flags;
-+ dwc_otg_pcd_t *pcd;
-+ dsts_data_t dsts;
-+ gotgctl_data_t gotgctl;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
-+
-+ if (gadget == 0) {
-+ return -ENODEV;
-+ }
-+ else {
-+ pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
-+ }
-+ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
-+
-+ /*
-+ * This function starts the Protocol if no session is in progress. If
-+ * a session is already in progress, but the device is suspended,
-+ * remote wakeup signaling is started.
-+ */
-+
-+ /* Check if valid session */
-+ gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
-+ if (gotgctl.b.bsesvld) {
-+ /* Check if suspend state */
-+ dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts));
-+ if (dsts.b.suspsts) {
-+ dwc_otg_pcd_remote_wakeup(pcd, 1);
-+ }
-+ }
-+ else {
-+ dwc_otg_pcd_initiate_srp(pcd);
-+ }
-+
-+ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
-+ return 0;
-+}
-+
-+static const struct usb_gadget_ops dwc_otg_pcd_ops =
-+{
-+ .get_frame = dwc_otg_pcd_get_frame,
-+ .wakeup = dwc_otg_pcd_wakeup,
-+ // current versions must always be self-powered
-+};
-+
-+/**
-+ * This function updates the otg values in the gadget structure.
-+ */
-+void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset)
-+{
-+
-+ if (!pcd->gadget.is_otg)
-+ return;
-+
-+ if (reset) {
-+ pcd->b_hnp_enable = 0;
-+ pcd->a_hnp_support = 0;
-+ pcd->a_alt_hnp_support = 0;
-+ }
-+
-+ pcd->gadget.b_hnp_enable = pcd->b_hnp_enable;
-+ pcd->gadget.a_hnp_support = pcd->a_hnp_support;
-+ pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support;
-+}
-+
-+/**
-+ * This function is the top level PCD interrupt handler.
-+ */
-+static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev)
-+{
-+ dwc_otg_pcd_t *pcd = dev;
-+ int32_t retval = IRQ_NONE;
-+
-+ retval = dwc_otg_pcd_handle_intr(pcd);
-+ return IRQ_RETVAL(retval);
-+}
-+
-+/**
-+ * PCD Callback function for initializing the PCD when switching to
-+ * device mode.
-+ *
-+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
-+ */
-+static int32_t dwc_otg_pcd_start_cb(void *p)
-+{
-+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
-+
-+ /*
-+ * Initialized the Core for Device mode.
-+ */
-+ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
-+ dwc_otg_core_dev_init(GET_CORE_IF(pcd));
-+ }
-+ return 1;
-+}
-+
-+/**
-+ * PCD Callback function for stopping the PCD when switching to Host
-+ * mode.
-+ *
-+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
-+ */
-+static int32_t dwc_otg_pcd_stop_cb(void *p)
-+{
-+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
-+ extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd);
-+
-+ dwc_otg_pcd_stop(pcd);
-+ return 1;
-+}
-+
-+
-+/**
-+ * PCD Callback function for notifying the PCD when resuming from
-+ * suspend.
-+ *
-+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
-+ */
-+static int32_t dwc_otg_pcd_suspend_cb(void *p)
-+{
-+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
-+
-+ if (pcd->driver && pcd->driver->resume) {
-+ SPIN_UNLOCK(&pcd->lock);
-+ pcd->driver->suspend(&pcd->gadget);
-+ SPIN_LOCK(&pcd->lock);
-+ }
-+
-+ return 1;
-+}
-+
-+
-+/**
-+ * PCD Callback function for notifying the PCD when resuming from
-+ * suspend.
-+ *
-+ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
-+ */
-+static int32_t dwc_otg_pcd_resume_cb(void *p)
-+{
-+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
-+
-+ if (pcd->driver && pcd->driver->resume) {
-+ SPIN_UNLOCK(&pcd->lock);
-+ pcd->driver->resume(&pcd->gadget);
-+ SPIN_LOCK(&pcd->lock);
-+ }
-+
-+ /* Stop the SRP timeout timer. */
-+ if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) ||
-+ (!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
-+ if (GET_CORE_IF(pcd)->srp_timer_started) {
-+ GET_CORE_IF(pcd)->srp_timer_started = 0;
-+ del_timer(&pcd->srp_timer);
-+ }
-+ }
-+ return 1;
-+}
-+
-+
-+/**
-+ * PCD Callback structure for handling mode switching.
-+ */
-+static dwc_otg_cil_callbacks_t pcd_callbacks =
-+{
-+ .start = dwc_otg_pcd_start_cb,
-+ .stop = dwc_otg_pcd_stop_cb,
-+ .suspend = dwc_otg_pcd_suspend_cb,
-+ .resume_wakeup = dwc_otg_pcd_resume_cb,
-+ .p = 0, /* Set at registration */
-+};
-+
-+/**
-+ * This function is called when the SRP timer expires. The SRP should
-+ * complete within 6 seconds.
-+ */
-+static void srp_timeout(unsigned long ptr)
-+{
-+ gotgctl_data_t gotgctl;
-+ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr;
-+ volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
-+
-+ gotgctl.d32 = dwc_read_reg32(addr);
-+
-+ core_if->srp_timer_started = 0;
-+
-+ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
-+ (core_if->core_params->i2c_enable)) {
-+ DWC_PRINT("SRP Timeout\n");
-+
-+ if ((core_if->srp_success) &&
-+ (gotgctl.b.bsesvld)) {
-+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
-+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
-+ }
-+
-+ /* Clear Session Request */
-+ gotgctl.d32 = 0;
-+ gotgctl.b.sesreq = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
-+ gotgctl.d32, 0);
-+
-+ core_if->srp_success = 0;
-+ }
-+ else {
-+ DWC_ERROR("Device not connected/responding\n");
-+ gotgctl.b.sesreq = 0;
-+ dwc_write_reg32(addr, gotgctl.d32);
-+ }
-+ }
-+ else if (gotgctl.b.sesreq) {
-+ DWC_PRINT("SRP Timeout\n");
-+
-+ DWC_ERROR("Device not connected/responding\n");
-+ gotgctl.b.sesreq = 0;
-+ dwc_write_reg32(addr, gotgctl.d32);
-+ }
-+ else {
-+ DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32);
-+ }
-+}
-+
-+/**
-+ * Start the SRP timer to detect when the SRP does not complete within
-+ * 6 seconds.
-+ *
-+ * @param pcd the pcd structure.
-+ */
-+void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd)
-+{
-+ struct timer_list *srp_timer = &pcd->srp_timer;
-+ GET_CORE_IF(pcd)->srp_timer_started = 1;
-+ init_timer(srp_timer);
-+ srp_timer->function = srp_timeout;
-+ srp_timer->data = (unsigned long)GET_CORE_IF(pcd);
-+ srp_timer->expires = jiffies + (HZ*6);
-+ add_timer(srp_timer);
-+}
-+
-+/**
-+ * Tasklet
-+ *
-+ */
-+extern void start_next_request(dwc_otg_pcd_ep_t *ep);
-+
-+static void start_xfer_tasklet_func (unsigned long data)
-+{
-+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data;
-+ dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if;
-+
-+ int i;
-+ depctl_data_t diepctl;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
-+
-+ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
-+
-+ if (pcd->ep0.queue_sof) {
-+ pcd->ep0.queue_sof = 0;
-+ start_next_request (&pcd->ep0);
-+ // break;
-+ }
-+
-+ for (i=0; i<core_if->dev_if->num_in_eps; i++)
-+ {
-+ depctl_data_t diepctl;
-+ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl);
-+
-+ if (pcd->in_ep[i].queue_sof) {
-+ pcd->in_ep[i].queue_sof = 0;
-+ start_next_request (&pcd->in_ep[i]);
-+ // break;
-+ }
-+ }
-+
-+ return;
-+}
-+
-+
-+
-+
-+
-+
-+
-+static struct tasklet_struct start_xfer_tasklet = {
-+ .next = NULL,
-+ .state = 0,
-+ .count = ATOMIC_INIT(0),
-+ .func = start_xfer_tasklet_func,
-+ .data = 0,
-+};
-+/**
-+ * This function initialized the pcd Dp structures to there default
-+ * state.
-+ *
-+ * @param pcd the pcd structure.
-+ */
-+void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd)
-+{
-+ static const char * names[] =
-+ {
-+
-+ "ep0",
-+ "ep1in",
-+ "ep2in",
-+ "ep3in",
-+ "ep4in",
-+ "ep5in",
-+ "ep6in",
-+ "ep7in",
-+ "ep8in",
-+ "ep9in",
-+ "ep10in",
-+ "ep11in",
-+ "ep12in",
-+ "ep13in",
-+ "ep14in",
-+ "ep15in",
-+ "ep1out",
-+ "ep2out",
-+ "ep3out",
-+ "ep4out",
-+ "ep5out",
-+ "ep6out",
-+ "ep7out",
-+ "ep8out",
-+ "ep9out",
-+ "ep10out",
-+ "ep11out",
-+ "ep12out",
-+ "ep13out",
-+ "ep14out",
-+ "ep15out"
-+
-+ };
-+
-+ int i;
-+ int in_ep_cntr, out_ep_cntr;
-+ uint32_t hwcfg1;
-+ uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps;
-+ uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps;
-+ dwc_otg_pcd_ep_t *ep;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
-+
-+ INIT_LIST_HEAD (&pcd->gadget.ep_list);
-+ pcd->gadget.ep0 = &pcd->ep0.ep;
-+ pcd->gadget.speed = USB_SPEED_UNKNOWN;
-+
-+ INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list);
-+
-+ /**
-+ * Initialize the EP0 structure.
-+ */
-+ ep = &pcd->ep0;
-+
-+ /* Init EP structure */
-+ ep->desc = 0;
-+ ep->pcd = pcd;
-+ ep->stopped = 1;
-+
-+ /* Init DWC ep structure */
-+ ep->dwc_ep.num = 0;
-+ ep->dwc_ep.active = 0;
-+ ep->dwc_ep.tx_fifo_num = 0;
-+ /* Control until ep is actvated */
-+ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
-+ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
-+ ep->dwc_ep.dma_addr = 0;
-+ ep->dwc_ep.start_xfer_buff = 0;
-+ ep->dwc_ep.xfer_buff = 0;
-+ ep->dwc_ep.xfer_len = 0;
-+ ep->dwc_ep.xfer_count = 0;
-+ ep->dwc_ep.sent_zlp = 0;
-+ ep->dwc_ep.total_len = 0;
-+ ep->queue_sof = 0;
-+ ep->dwc_ep.desc_addr = 0;
-+ ep->dwc_ep.dma_desc_addr = 0;
-+
-+ ep->dwc_ep.aligned_buf=NULL;
-+ ep->dwc_ep.aligned_buf_size=0;
-+ ep->dwc_ep.aligned_dma_addr=0;
-+
-+
-+ /* Init the usb_ep structure. */
-+ ep->ep.name = names[0];
-+ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
-+
-+ /**
-+ * @todo NGS: What should the max packet size be set to
-+ * here? Before EP type is set?
-+ */
-+ ep->ep.maxpacket = MAX_PACKET_SIZE;
-+
-+ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
-+
-+ INIT_LIST_HEAD (&ep->queue);
-+ /**
-+ * Initialize the EP structures.
-+ */
-+ in_ep_cntr = 0;
-+ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3;
-+
-+ for (i = 1; in_ep_cntr < num_in_eps; i++)
-+ {
-+ if((hwcfg1 & 0x1) == 0) {
-+ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr];
-+ in_ep_cntr ++;
-+
-+ /* Init EP structure */
-+ ep->desc = 0;
-+ ep->pcd = pcd;
-+ ep->stopped = 1;
-+
-+ /* Init DWC ep structure */
-+ ep->dwc_ep.is_in = 1;
-+ ep->dwc_ep.num = i;
-+ ep->dwc_ep.active = 0;
-+ ep->dwc_ep.tx_fifo_num = 0;
-+
-+ /* Control until ep is actvated */
-+ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
-+ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
-+ ep->dwc_ep.dma_addr = 0;
-+ ep->dwc_ep.start_xfer_buff = 0;
-+ ep->dwc_ep.xfer_buff = 0;
-+ ep->dwc_ep.xfer_len = 0;
-+ ep->dwc_ep.xfer_count = 0;
-+ ep->dwc_ep.sent_zlp = 0;
-+ ep->dwc_ep.total_len = 0;
-+ ep->queue_sof = 0;
-+ ep->dwc_ep.desc_addr = 0;
-+ ep->dwc_ep.dma_desc_addr = 0;
-+
-+ /* Init the usb_ep structure. */
-+ ep->ep.name = names[i];
-+ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
-+
-+ /**
-+ * @todo NGS: What should the max packet size be set to
-+ * here? Before EP type is set?
-+ */
-+ ep->ep.maxpacket = MAX_PACKET_SIZE;
-+
-+ //add only even number ep as in
-+ if((i%2)==1)
-+ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
-+
-+ INIT_LIST_HEAD (&ep->queue);
-+ }
-+ hwcfg1 >>= 2;
-+ }
-+
-+ out_ep_cntr = 0;
-+ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2;
-+
-+ for (i = 1; out_ep_cntr < num_out_eps; i++)
-+ {
-+ if((hwcfg1 & 0x1) == 0) {
-+ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr];
-+ out_ep_cntr++;
-+
-+ /* Init EP structure */
-+ ep->desc = 0;
-+ ep->pcd = pcd;
-+ ep->stopped = 1;
-+
-+ /* Init DWC ep structure */
-+ ep->dwc_ep.is_in = 0;
-+ ep->dwc_ep.num = i;
-+ ep->dwc_ep.active = 0;
-+ ep->dwc_ep.tx_fifo_num = 0;
-+ /* Control until ep is actvated */
-+ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
-+ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
-+ ep->dwc_ep.dma_addr = 0;
-+ ep->dwc_ep.start_xfer_buff = 0;
-+ ep->dwc_ep.xfer_buff = 0;
-+ ep->dwc_ep.xfer_len = 0;
-+ ep->dwc_ep.xfer_count = 0;
-+ ep->dwc_ep.sent_zlp = 0;
-+ ep->dwc_ep.total_len = 0;
-+ ep->queue_sof = 0;
-+
-+ /* Init the usb_ep structure. */
-+ ep->ep.name = names[15 + i];
-+ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
-+ /**
-+ * @todo NGS: What should the max packet size be set to
-+ * here? Before EP type is set?
-+ */
-+ ep->ep.maxpacket = MAX_PACKET_SIZE;
-+
-+ //add only odd number ep as out
-+ if((i%2)==0)
-+ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
-+
-+ INIT_LIST_HEAD (&ep->queue);
-+ }
-+ hwcfg1 >>= 2;
-+ }
-+
-+ /* remove ep0 from the list. There is a ep0 pointer.*/
-+ list_del_init (&pcd->ep0.ep.ep_list);
-+
-+ pcd->ep0state = EP0_DISCONNECT;
-+ pcd->ep0.ep.maxpacket = MAX_EP0_SIZE;
-+ pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
-+ pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
-+}
-+
-+/**
-+ * This function releases the Gadget device.
-+ * required by device_unregister().
-+ *
-+ * @todo Should this do something? Should it free the PCD?
-+ */
-+static void dwc_otg_pcd_gadget_release(struct device *dev)
-+{
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev);
-+}
-+
-+
-+
-+/**
-+ * This function initialized the PCD portion of the driver.
-+ *
-+ */
-+u8 dev_id[]="gadget";
-+int dwc_otg_pcd_init(struct platform_device *pdev)
-+{
-+ static char pcd_name[] = "dwc_otg_pcd";
-+ dwc_otg_pcd_t *pcd;
-+ dwc_otg_core_if_t* core_if;
-+ dwc_otg_dev_if_t* dev_if;
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
-+ int retval = 0;
-+
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, pdev);
-+ /*
-+ * Allocate PCD structure
-+ */
-+ pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL);
-+
-+ if (pcd == 0) {
-+ return -ENOMEM;
-+ }
-+
-+ memset(pcd, 0, sizeof(dwc_otg_pcd_t));
-+ spin_lock_init(&pcd->lock);
-+
-+ otg_dev->pcd = pcd;
-+ s_pcd = pcd;
-+ pcd->gadget.name = pcd_name;
-+
-+ pcd->gadget.dev.init_name = dev_id;
-+ pcd->otg_dev = platform_get_drvdata(pdev);
-+
-+ pcd->gadget.dev.parent = &pdev->dev;
-+ pcd->gadget.dev.release = dwc_otg_pcd_gadget_release;
-+ pcd->gadget.ops = &dwc_otg_pcd_ops;
-+
-+ core_if = GET_CORE_IF(pcd);
-+ dev_if = core_if->dev_if;
-+
-+ if(core_if->hwcfg4.b.ded_fifo_en) {
-+ DWC_PRINT("Dedicated Tx FIFOs mode\n");
-+ }
-+ else {
-+ DWC_PRINT("Shared Tx FIFO mode\n");
-+ }
-+
-+ /* If the module is set to FS or if the PHY_TYPE is FS then the gadget
-+ * should not report as dual-speed capable. replace the following line
-+ * with the block of code below it once the software is debugged for
-+ * this. If is_dualspeed = 0 then the gadget driver should not report
-+ * a device qualifier descriptor when queried. */
-+ if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) ||
-+ ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) &&
-+ (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) &&
-+ (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) {
-+ pcd->gadget.max_speed = USB_SPEED_FULL;
-+ }
-+ else {
-+ pcd->gadget.max_speed = USB_SPEED_HIGH;
-+ }
-+
-+ if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) ||
-+ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) ||
-+ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
-+ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
-+ pcd->gadget.is_otg = 0;
-+ }
-+ else {
-+ pcd->gadget.is_otg = 1;
-+ }
-+
-+
-+ pcd->driver = 0;
-+ /* Register the gadget device */
-+printk("%s: 1\n",__func__);
-+ retval = device_register(&pcd->gadget.dev);
-+ if (retval != 0) {
-+ kfree (pcd);
-+printk("%s: 2\n",__func__);
-+ return retval;
-+ }
-+
-+
-+ /*
-+ * Initialized the Core for Device mode.
-+ */
-+ if (dwc_otg_is_device_mode(core_if)) {
-+ dwc_otg_core_dev_init(core_if);
-+ }
-+
-+ /*
-+ * Initialize EP structures
-+ */
-+ dwc_otg_pcd_reinit(pcd);
-+
-+ /*
-+ * Register the PCD Callbacks.
-+ */
-+ dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,
-+ pcd);
-+ /*
-+ * Setup interupt handler
-+ */
-+ DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq);
-+ retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq,
-+ IRQF_SHARED, pcd->gadget.name, pcd);
-+ if (retval != 0) {
-+ DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
-+ device_unregister(&pcd->gadget.dev);
-+ kfree (pcd);
-+ return -EBUSY;
-+ }
-+
-+ /*
-+ * Initialize the DMA buffer for SETUP packets
-+ */
-+ if (GET_CORE_IF(pcd)->dma_enable) {
-+ pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0);
-+ if (pcd->setup_pkt == 0) {
-+ free_irq(otg_dev->irq, pcd);
-+ device_unregister(&pcd->gadget.dev);
-+ kfree (pcd);
-+ return -ENOMEM;
-+ }
-+
-+ pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0);
-+ if (pcd->status_buf == 0) {
-+ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
-+ free_irq(otg_dev->irq, pcd);
-+ device_unregister(&pcd->gadget.dev);
-+ kfree (pcd);
-+ return -ENOMEM;
-+ }
-+
-+ if (GET_CORE_IF(pcd)->dma_desc_enable) {
-+ dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1);
-+ dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1);
-+ dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1);
-+ dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1);
-+
-+ if(dev_if->setup_desc_addr[0] == 0
-+ || dev_if->setup_desc_addr[1] == 0
-+ || dev_if->in_desc_addr == 0
-+ || dev_if->out_desc_addr == 0 ) {
-+
-+ if(dev_if->out_desc_addr)
-+ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
-+ if(dev_if->in_desc_addr)
-+ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
-+ if(dev_if->setup_desc_addr[1])
-+ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
-+ if(dev_if->setup_desc_addr[0])
-+ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
-+
-+
-+ dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle);
-+ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
-+
-+ free_irq(otg_dev->irq, pcd);
-+ device_unregister(&pcd->gadget.dev);
-+ kfree (pcd);
-+
-+ return -ENOMEM;
-+ }
-+ }
-+ }
-+ else {
-+ pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL);
-+ if (pcd->setup_pkt == 0) {
-+ free_irq(otg_dev->irq, pcd);
-+ device_unregister(&pcd->gadget.dev);
-+ kfree (pcd);
-+ return -ENOMEM;
-+ }
-+
-+ pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL);
-+ if (pcd->status_buf == 0) {
-+ kfree(pcd->setup_pkt);
-+ free_irq(otg_dev->irq, pcd);
-+ device_unregister(&pcd->gadget.dev);
-+ kfree (pcd);
-+ return -ENOMEM;
-+ }
-+ }
-+
-+
-+ /* Initialize tasklet */
-+ start_xfer_tasklet.data = (unsigned long)pcd;
-+ pcd->start_xfer_tasklet = &start_xfer_tasklet;
-+
-+ return 0;
-+}
-+
-+/**
-+ * Cleanup the PCD.
-+ */
-+void dwc_otg_pcd_remove(struct platform_device *pdev)
-+{
-+ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
-+ dwc_otg_pcd_t *pcd = otg_dev->pcd;
-+ dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pdev);
-+
-+ /*
-+ * Free the IRQ
-+ */
-+ free_irq(otg_dev->irq, pcd);
-+
-+ /* start with the driver above us */
-+ if (pcd->driver) {
-+ /* should have been done already by driver model core */
-+ DWC_WARN("driver '%s' is still registered\n",
-+ pcd->driver->driver.name);
-+ usb_gadget_unregister_driver(pcd->driver);
-+ }
-+ device_unregister(&pcd->gadget.dev);
-+
-+ if (GET_CORE_IF(pcd)->dma_enable) {
-+ dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle);
-+ dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle);
-+ if (GET_CORE_IF(pcd)->dma_desc_enable) {
-+ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
-+ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
-+ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
-+ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
-+ }
-+ }
-+ else {
-+ kfree (pcd->setup_pkt);
-+ kfree (pcd->status_buf);
-+ }
-+
-+ kfree(pcd);
-+ otg_dev->pcd = 0;
-+}
-+
-+/**
-+ * This function registers a gadget driver with the PCD.
-+ *
-+ * When a driver is successfully registered, it will receive control
-+ * requests including set_configuration(), which enables non-control
-+ * requests. then usb traffic follows until a disconnect is reported.
-+ * then a host may connect again, or the driver might get unbound.
-+ *
-+ * @param driver The driver being registered
-+ */
-+int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
-+ int (*bind)(struct usb_gadget *))
-+{
-+ int retval;
-+
-+ DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name);
-+
-+ if (!driver || driver->max_speed == USB_SPEED_UNKNOWN ||
-+ !bind ||
-+ !driver->unbind ||
-+ !driver->disconnect ||
-+ !driver->setup) {
-+ DWC_DEBUGPL(DBG_PCDV,"EINVAL\n");
-+ return -EINVAL;
-+ }
-+ if (s_pcd == 0) {
-+ DWC_DEBUGPL(DBG_PCDV,"ENODEV\n");
-+ return -ENODEV;
-+ }
-+ if (s_pcd->driver != 0) {
-+ DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver);
-+ return -EBUSY;
-+ }
-+
-+ /* hook up the driver */
-+ s_pcd->driver = driver;
-+ s_pcd->gadget.dev.driver = &driver->driver;
-+
-+ DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name);
-+ retval = bind(&s_pcd->gadget);
-+ if (retval) {
-+ DWC_ERROR("bind to driver %s --> error %d\n",
-+ driver->driver.name, retval);
-+ s_pcd->driver = 0;
-+ s_pcd->gadget.dev.driver = 0;
-+ return retval;
-+ }
-+ DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
-+ driver->driver.name);
-+ return 0;
-+}
-+
-+EXPORT_SYMBOL(usb_gadget_probe_driver);
-+
-+/**
-+ * This function unregisters a gadget driver
-+ *
-+ * @param driver The driver being unregistered
-+ */
-+int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
-+{
-+ //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
-+
-+ if (s_pcd == 0) {
-+ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,
-+ -ENODEV);
-+ return -ENODEV;
-+ }
-+ if (driver == 0 || driver != s_pcd->driver) {
-+ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,
-+ -EINVAL);
-+ return -EINVAL;
-+ }
-+
-+ driver->unbind(&s_pcd->gadget);
-+ s_pcd->driver = 0;
-+
-+ DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n",
-+ driver->driver.name);
-+ return 0;
-+}
-+EXPORT_SYMBOL(usb_gadget_unregister_driver);
-+
-+#endif /* DWC_HOST_ONLY */
---- /dev/null
-+++ b/drivers/usb/dwc/otg_pcd.h
-@@ -0,0 +1,292 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $
-+ * $Revision: #36 $
-+ * $Date: 2008/09/26 $
-+ * $Change: 1103515 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+#ifndef DWC_HOST_ONLY
-+#if !defined(__DWC_PCD_H__)
-+#define __DWC_PCD_H__
-+
-+#include <linux/types.h>
-+#include <linux/list.h>
-+#include <linux/errno.h>
-+#include <linux/device.h>
-+#include <linux/platform_device.h>
-+
-+#include <linux/usb/ch9.h>
-+#include <linux/usb/gadget.h>
-+
-+#include <linux/interrupt.h>
-+#include <linux/dma-mapping.h>
-+
-+struct dwc_otg_device;
-+
-+#include "otg_cil.h"
-+
-+/**
-+ * @file
-+ *
-+ * This file contains the structures, constants, and interfaces for
-+ * the Perpherial Contoller Driver (PCD).
-+ *
-+ * The Peripheral Controller Driver (PCD) for Linux will implement the
-+ * Gadget API, so that the existing Gadget drivers can be used. For
-+ * the Mass Storage Function driver the File-backed USB Storage Gadget
-+ * (FBS) driver will be used. The FBS driver supports the
-+ * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only
-+ * transports.
-+ *
-+ */
-+
-+/** Invalid DMA Address */
-+#define DMA_ADDR_INVALID (~(dma_addr_t)0)
-+/** Maxpacket size for EP0 */
-+#define MAX_EP0_SIZE 64
-+/** Maxpacket size for any EP */
-+#define MAX_PACKET_SIZE 1024
-+
-+/** Max Transfer size for any EP */
-+#define MAX_TRANSFER_SIZE 65535
-+
-+/** Max DMA Descriptor count for any EP */
-+#define MAX_DMA_DESC_CNT 64
-+
-+/**
-+ * Get the pointer to the core_if from the pcd pointer.
-+ */
-+#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if)
-+
-+/**
-+ * States of EP0.
-+ */
-+typedef enum ep0_state
-+{
-+ EP0_DISCONNECT, /* no host */
-+ EP0_IDLE,
-+ EP0_IN_DATA_PHASE,
-+ EP0_OUT_DATA_PHASE,
-+ EP0_IN_STATUS_PHASE,
-+ EP0_OUT_STATUS_PHASE,
-+ EP0_STALL,
-+} ep0state_e;
-+
-+/** Fordward declaration.*/
-+struct dwc_otg_pcd;
-+
-+/** DWC_otg iso request structure.
-+ *
-+ */
-+typedef struct usb_iso_request dwc_otg_pcd_iso_request_t;
-+
-+/** PCD EP structure.
-+ * This structure describes an EP, there is an array of EPs in the PCD
-+ * structure.
-+ */
-+typedef struct dwc_otg_pcd_ep
-+{
-+ /** USB EP data */
-+ struct usb_ep ep;
-+ /** USB EP Descriptor */
-+ const struct usb_endpoint_descriptor *desc;
-+
-+ /** queue of dwc_otg_pcd_requests. */
-+ struct list_head queue;
-+ unsigned stopped : 1;
-+ unsigned disabling : 1;
-+ unsigned dma : 1;
-+ unsigned queue_sof : 1;
-+
-+#ifdef DWC_EN_ISOC
-+ /** DWC_otg Isochronous Transfer */
-+ struct usb_iso_request* iso_req;
-+#endif //DWC_EN_ISOC
-+
-+ /** DWC_otg ep data. */
-+ dwc_ep_t dwc_ep;
-+
-+ /** Pointer to PCD */
-+ struct dwc_otg_pcd *pcd;
-+}dwc_otg_pcd_ep_t;
-+
-+
-+
-+/** DWC_otg PCD Structure.
-+ * This structure encapsulates the data for the dwc_otg PCD.
-+ */
-+typedef struct dwc_otg_pcd
-+{
-+ /** USB gadget */
-+ struct usb_gadget gadget;
-+ /** USB gadget driver pointer*/
-+ struct usb_gadget_driver *driver;
-+ /** The DWC otg device pointer. */
-+ struct dwc_otg_device *otg_dev;
-+
-+ /** State of EP0 */
-+ ep0state_e ep0state;
-+ /** EP0 Request is pending */
-+ unsigned ep0_pending : 1;
-+ /** Indicates when SET CONFIGURATION Request is in process */
-+ unsigned request_config : 1;
-+ /** The state of the Remote Wakeup Enable. */
-+ unsigned remote_wakeup_enable : 1;
-+ /** The state of the B-Device HNP Enable. */
-+ unsigned b_hnp_enable : 1;
-+ /** The state of A-Device HNP Support. */
-+ unsigned a_hnp_support : 1;
-+ /** The state of the A-Device Alt HNP support. */
-+ unsigned a_alt_hnp_support : 1;
-+ /** Count of pending Requests */
-+ unsigned request_pending;
-+
-+ /** SETUP packet for EP0
-+ * This structure is allocated as a DMA buffer on PCD initialization
-+ * with enough space for up to 3 setup packets.
-+ */
-+ union
-+ {
-+ struct usb_ctrlrequest req;
-+ uint32_t d32[2];
-+ } *setup_pkt;
-+
-+ dma_addr_t setup_pkt_dma_handle;
-+
-+ /** 2-byte dma buffer used to return status from GET_STATUS */
-+ uint16_t *status_buf;
-+ dma_addr_t status_buf_dma_handle;
-+
-+ /** EP0 */
-+ dwc_otg_pcd_ep_t ep0;
-+
-+ /** Array of IN EPs. */
-+ dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1];
-+ /** Array of OUT EPs. */
-+ dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1];
-+ /** number of valid EPs in the above array. */
-+// unsigned num_eps : 4;
-+ spinlock_t lock;
-+ /** Timer for SRP. If it expires before SRP is successful
-+ * clear the SRP. */
-+ struct timer_list srp_timer;
-+
-+ /** Tasklet to defer starting of TEST mode transmissions until
-+ * Status Phase has been completed.
-+ */
-+ struct tasklet_struct test_mode_tasklet;
-+
-+ /** Tasklet to delay starting of xfer in DMA mode */
-+ struct tasklet_struct *start_xfer_tasklet;
-+
-+ /** The test mode to enter when the tasklet is executed. */
-+ unsigned test_mode;
-+
-+} dwc_otg_pcd_t;
-+
-+
-+/** DWC_otg request structure.
-+ * This structure is a list of requests.
-+ */
-+typedef struct
-+{
-+ struct usb_request req; /**< USB Request. */
-+ struct list_head queue; /**< queue of these requests. */
-+} dwc_otg_pcd_request_t;
-+
-+
-+extern int dwc_otg_pcd_init(struct platform_device *pdev);
-+
-+//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev );
-+extern void dwc_otg_pcd_remove( struct platform_device *pdev );
-+extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd );
-+extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd );
-+
-+extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd);
-+extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set);
-+
-+extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req);
-+extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req,
-+ int status);
-+extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep);
-+extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd,
-+ const unsigned reset);
-+#ifndef VERBOSE
-+#define VERIFY_PCD_DMA_ADDR(_addr_) BUG_ON(((_addr_)==DMA_ADDR_INVALID)||\
-+ ((_addr_)==0)||\
-+ ((_addr_)&0x3))
-+#else
-+#define VERIFY_PCD_DMA_ADDR(_addr_) {\
-+ if(((_addr_)==DMA_ADDR_INVALID)||\
-+ ((_addr_)==0)||\
-+ ((_addr_)&0x3)) {\
-+ printk("%s: Invalid DMA address "#_addr_"(%.8x)\n",__func__,_addr_);\
-+ BUG();\
-+ }\
-+ }
-+#endif
-+
-+
-+static inline void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
-+//void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
-+ dwc_ep_t *dwc_ep=&ep->dwc_ep;
-+
-+DWC_DEBUGPL(DBG_PCDV,"%s: dwc_ep xfer_buf=%.8x, total_len=%d, dma_addr=%.8x\n",__func__,(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->dma_addr);
-+ if (/*(core_if->dma_enable)&&*/(dwc_ep->dma_addr==DMA_ADDR_INVALID)) {
-+ if((((u32)dwc_ep->xfer_buff)&0x3)==0){
-+ dwc_ep->dma_addr=dma_map_single(NULL,(void *)(dwc_ep->start_xfer_buff),(dwc_ep->total_len), DMA_TO_DEVICE);
-+DWC_DEBUGPL(DBG_PCDV," got dma_addr=%.8x\n",dwc_ep->dma_addr);
-+ }else{
-+DWC_DEBUGPL(DBG_PCDV," buf not aligned, use aligned_buf instead. xfer_buf=%.8x, total_len=%d, aligned_buf_size=%d\n",(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->aligned_buf_size);
-+ if(dwc_ep->aligned_buf_size<dwc_ep->total_len){
-+ if(dwc_ep->aligned_buf){
-+//printk(" free buff dwc_ep aligned_buf_size=%d, aligned_buf(%.8x), aligned_dma_addr(%.8x));\n",dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
-+ //dma_free_coherent(NULL,dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
-+ kfree(dwc_ep->aligned_buf);
-+ }
-+ dwc_ep->aligned_buf_size=((1<<20)>(dwc_ep->total_len<<1))?(dwc_ep->total_len<<1):(1<<20);
-+ //dwc_ep->aligned_buf = dma_alloc_coherent (NULL, dwc_ep->aligned_buf_size, &dwc_ep->aligned_dma_addr, GFP_KERNEL|GFP_DMA);
-+ dwc_ep->aligned_buf=kmalloc(dwc_ep->aligned_buf_size,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
-+ dwc_ep->aligned_dma_addr=dma_map_single(NULL,(void *)(dwc_ep->aligned_buf),(dwc_ep->aligned_buf_size),DMA_FROM_DEVICE);
-+ if(!dwc_ep->aligned_buf){
-+ DWC_ERROR("Cannot alloc required buffer!!\n");
-+ BUG();
-+ }
-+DWC_DEBUGPL(DBG_PCDV," dwc_ep allocated aligned buf=%.8x, dma_addr=%.8x, size=%d(0x%x)\n", (u32)dwc_ep->aligned_buf, dwc_ep->aligned_dma_addr, dwc_ep->aligned_buf_size, dwc_ep->aligned_buf_size);
-+ }
-+ dwc_ep->dma_addr=dwc_ep->aligned_dma_addr;
-+ if(dwc_ep->is_in) {
-+ memcpy(dwc_ep->aligned_buf,dwc_ep->xfer_buff,dwc_ep->total_len);
-+ dma_sync_single_for_device(NULL,dwc_ep->dma_addr,dwc_ep->total_len,DMA_TO_DEVICE);
-+ }
-+ }
-+ }
-+}
-+
-+#endif
-+#endif /* DWC_HOST_ONLY */
---- /dev/null
-+++ b/drivers/usb/dwc/otg_pcd_intr.c
-@@ -0,0 +1,3682 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $
-+ * $Revision: #83 $
-+ * $Date: 2008/10/14 $
-+ * $Change: 1115682 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+#ifndef DWC_HOST_ONLY
-+#include <linux/interrupt.h>
-+#include <linux/dma-mapping.h>
-+#include <linux/version.h>
-+#include <linux/pci.h>
-+
-+#include "otg_driver.h"
-+#include "otg_pcd.h"
-+
-+
-+#define DEBUG_EP0
-+
-+
-+/* request functions defined in "dwc_otg_pcd.c" */
-+
-+/** @file
-+ * This file contains the implementation of the PCD Interrupt handlers.
-+ *
-+ * The PCD handles the device interrupts. Many conditions can cause a
-+ * device interrupt. When an interrupt occurs, the device interrupt
-+ * service routine determines the cause of the interrupt and
-+ * dispatches handling to the appropriate function. These interrupt
-+ * handling functions are described below.
-+ * All interrupt registers are processed from LSB to MSB.
-+ */
-+
-+
-+/**
-+ * This function prints the ep0 state for debug purposes.
-+ */
-+static inline void print_ep0_state(dwc_otg_pcd_t *pcd)
-+{
-+#ifdef DEBUG
-+ char str[40];
-+
-+ switch (pcd->ep0state) {
-+ case EP0_DISCONNECT:
-+ strcpy(str, "EP0_DISCONNECT");
-+ break;
-+ case EP0_IDLE:
-+ strcpy(str, "EP0_IDLE");
-+ break;
-+ case EP0_IN_DATA_PHASE:
-+ strcpy(str, "EP0_IN_DATA_PHASE");
-+ break;
-+ case EP0_OUT_DATA_PHASE:
-+ strcpy(str, "EP0_OUT_DATA_PHASE");
-+ break;
-+ case EP0_IN_STATUS_PHASE:
-+ strcpy(str,"EP0_IN_STATUS_PHASE");
-+ break;
-+ case EP0_OUT_STATUS_PHASE:
-+ strcpy(str,"EP0_OUT_STATUS_PHASE");
-+ break;
-+ case EP0_STALL:
-+ strcpy(str,"EP0_STALL");
-+ break;
-+ default:
-+ strcpy(str,"EP0_INVALID");
-+ }
-+
-+ DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state);
-+#endif
-+}
-+
-+/**
-+ * This function returns pointer to in ep struct with number ep_num
-+ */
-+static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
-+{
-+ int i;
-+ int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
-+ if(ep_num == 0) {
-+ return &pcd->ep0;
-+ }
-+ else {
-+ for(i = 0; i < num_in_eps; ++i)
-+ {
-+ if(pcd->in_ep[i].dwc_ep.num == ep_num)
-+ return &pcd->in_ep[i];
-+ }
-+ return 0;
-+ }
-+}
-+/**
-+ * This function returns pointer to out ep struct with number ep_num
-+ */
-+static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
-+{
-+ int i;
-+ int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
-+ if(ep_num == 0) {
-+ return &pcd->ep0;
-+ }
-+ else {
-+ for(i = 0; i < num_out_eps; ++i)
-+ {
-+ if(pcd->out_ep[i].dwc_ep.num == ep_num)
-+ return &pcd->out_ep[i];
-+ }
-+ return 0;
-+ }
-+}
-+/**
-+ * This functions gets a pointer to an EP from the wIndex address
-+ * value of the control request.
-+ */
-+static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex)
-+{
-+ dwc_otg_pcd_ep_t *ep;
-+
-+ if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
-+ return &pcd->ep0;
-+ list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list)
-+ {
-+ u8 bEndpointAddress;
-+
-+ if (!ep->desc)
-+ continue;
-+
-+ bEndpointAddress = ep->desc->bEndpointAddress;
-+ if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))
-+ == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)))
-+ return ep;
-+ }
-+ return NULL;
-+}
-+
-+/**
-+ * This function checks the EP request queue, if the queue is not
-+ * empty the next request is started.
-+ */
-+void start_next_request(dwc_otg_pcd_ep_t *ep)
-+{
-+ dwc_otg_pcd_request_t *req = 0;
-+ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
-+ if (!list_empty(&ep->queue)) {
-+ req = list_entry(ep->queue.next,
-+ dwc_otg_pcd_request_t, queue);
-+
-+ /* Setup and start the Transfer */
-+ ep->dwc_ep.dma_addr = req->req.dma;
-+ ep->dwc_ep.start_xfer_buff = req->req.buf;
-+ ep->dwc_ep.xfer_buff = req->req.buf;
-+ ep->dwc_ep.sent_zlp = 0;
-+ ep->dwc_ep.total_len = req->req.length;
-+ ep->dwc_ep.xfer_len = 0;
-+ ep->dwc_ep.xfer_count = 0;
-+
-+ if(max_transfer > MAX_TRANSFER_SIZE) {
-+ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
-+ } else {
-+ ep->dwc_ep.maxxfer = max_transfer;
-+ }
-+
-+ if(req->req.zero) {
-+ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
-+ && (ep->dwc_ep.total_len != 0)) {
-+ ep->dwc_ep.sent_zlp = 1;
-+ }
-+
-+ }
-+ ep_check_and_patch_dma_addr(ep);
-+ dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
-+ }
-+}
-+
-+/**
-+ * This function handles the SOF Interrupts. At this time the SOF
-+ * Interrupt is disabled.
-+ */
-+int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+
-+ gintsts_data_t gintsts;
-+
-+ DWC_DEBUGPL(DBG_PCD, "SOF\n");
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.sofintr = 1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+
-+/**
-+ * This function handles the Rx Status Queue Level Interrupt, which
-+ * indicates that there is a least one packet in the Rx FIFO. The
-+ * packets are moved from the FIFO to memory, where they will be
-+ * processed when the Endpoint Interrupt Register indicates Transfer
-+ * Complete or SETUP Phase Done.
-+ *
-+ * Repeat the following until the Rx Status Queue is empty:
-+ * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet
-+ * info
-+ * -# If Receive FIFO is empty then skip to step Clear the interrupt
-+ * and exit
-+ * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the
-+ * SETUP data to the buffer
-+ * -# If OUT Data Packet call dwc_otg_read_packet to copy the data
-+ * to the destination buffer
-+ */
-+int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
-+ gintmsk_data_t gintmask = {.d32=0};
-+ device_grxsts_data_t status;
-+ dwc_otg_pcd_ep_t *ep;
-+ gintsts_data_t gintsts;
-+#ifdef DEBUG
-+ static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" };
-+#endif
-+
-+ //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
-+ /* Disable the Rx Status Queue Level interrupt */
-+ gintmask.b.rxstsqlvl= 1;
-+ dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0);
-+
-+ /* Get the Status from the top of the FIFO */
-+ status.d32 = dwc_read_reg32(&global_regs->grxstsp);
-+
-+ DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s "
-+ "pktsts:%x Frame:%d(0x%0x)\n",
-+ status.b.epnum, status.b.bcnt,
-+ dpid_str[status.b.dpid],
-+ status.b.pktsts, status.b.fn, status.b.fn);
-+ /* Get pointer to EP structure */
-+ ep = get_out_ep(pcd, status.b.epnum);
-+
-+ switch (status.b.pktsts) {
-+ case DWC_DSTS_GOUT_NAK:
-+ DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n");
-+ break;
-+ case DWC_STS_DATA_UPDT:
-+ DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n");
-+ if (status.b.bcnt && ep->dwc_ep.xfer_buff) {
-+ /** @todo NGS Check for buffer overflow? */
-+ dwc_otg_read_packet(core_if,
-+ ep->dwc_ep.xfer_buff,
-+ status.b.bcnt);
-+ ep->dwc_ep.xfer_count += status.b.bcnt;
-+ ep->dwc_ep.xfer_buff += status.b.bcnt;
-+ }
-+ break;
-+ case DWC_STS_XFER_COMP:
-+ DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n");
-+ break;
-+ case DWC_DSTS_SETUP_COMP:
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n");
-+#endif
-+ break;
-+case DWC_DSTS_SETUP_UPDT:
-+ dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32);
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCD,
-+ "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n",
-+ pcd->setup_pkt->req.bRequestType,
-+ pcd->setup_pkt->req.bRequest,
-+ pcd->setup_pkt->req.wValue,
-+ pcd->setup_pkt->req.wIndex,
-+ pcd->setup_pkt->req.wLength);
-+#endif
-+ ep->dwc_ep.xfer_count += status.b.bcnt;
-+ break;
-+ default:
-+ DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n",
-+ status.b.pktsts);
-+ break;
-+ }
-+
-+ /* Enable the Rx Status Queue Level interrupt */
-+ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32);
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.rxstsqlvl = 1;
-+ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
-+
-+ //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__);
-+ return 1;
-+}
-+/**
-+ * This function examines the Device IN Token Learning Queue to
-+ * determine the EP number of the last IN token received. This
-+ * implementation is for the Mass Storage device where there are only
-+ * 2 IN EPs (Control-IN and BULK-IN).
-+ *
-+ * The EP numbers for the first six IN Tokens are in DTKNQR1 and there
-+ * are 8 EP Numbers in each of the other possible DTKNQ Registers.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ *
-+ */
-+static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if)
-+{
-+ dwc_otg_device_global_regs_t *dev_global_regs =
-+ core_if->dev_if->dev_global_regs;
-+ const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
-+ /* Number of Token Queue Registers */
-+ const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
-+ dtknq1_data_t dtknqr1;
-+ uint32_t in_tkn_epnums[4];
-+ int ndx = 0;
-+ int i = 0;
-+ volatile uint32_t *addr = &dev_global_regs->dtknqr1;
-+ int epnum = 0;
-+
-+ //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
-+
-+ /* Read the DTKNQ Registers */
-+ for (i = 0; i < DTKNQ_REG_CNT; i++)
-+ {
-+ in_tkn_epnums[ i ] = dwc_read_reg32(addr);
-+ DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1,
-+ in_tkn_epnums[i]);
-+ if (addr == &dev_global_regs->dvbusdis) {
-+ addr = &dev_global_regs->dtknqr3_dthrctl;
-+ }
-+ else {
-+ ++addr;
-+ }
-+ }
-+
-+ /* Copy the DTKNQR1 data to the bit field. */
-+ dtknqr1.d32 = in_tkn_epnums[0];
-+ /* Get the EP numbers */
-+ in_tkn_epnums[0] = dtknqr1.b.epnums0_5;
-+ ndx = dtknqr1.b.intknwptr - 1;
-+
-+ //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx);
-+ if (ndx == -1) {
-+ /** @todo Find a simpler way to calculate the max
-+ * queue position.*/
-+ int cnt = TOKEN_Q_DEPTH;
-+ if (TOKEN_Q_DEPTH <= 6) {
-+ cnt = TOKEN_Q_DEPTH - 1;
-+ }
-+ else if (TOKEN_Q_DEPTH <= 14) {
-+ cnt = TOKEN_Q_DEPTH - 7;
-+ }
-+ else if (TOKEN_Q_DEPTH <= 22) {
-+ cnt = TOKEN_Q_DEPTH - 15;
-+ }
-+ else {
-+ cnt = TOKEN_Q_DEPTH - 23;
-+ }
-+ epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF;
-+ }
-+ else {
-+ if (ndx <= 5) {
-+ epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF;
-+ }
-+ else if (ndx <= 13) {
-+ ndx -= 6;
-+ epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF;
-+ }
-+ else if (ndx <= 21) {
-+ ndx -= 14;
-+ epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF;
-+ }
-+ else if (ndx <= 29) {
-+ ndx -= 22;
-+ epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF;
-+ }
-+ }
-+ //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum);
-+ return epnum;
-+}
-+
-+/**
-+ * This interrupt occurs when the non-periodic Tx FIFO is half-empty.
-+ * The active request is checked for the next packet to be loaded into
-+ * the non-periodic Tx FIFO.
-+ */
-+int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+ dwc_otg_dev_in_ep_regs_t *ep_regs;
-+ gnptxsts_data_t txstatus = {.d32 = 0};
-+ gintsts_data_t gintsts;
-+
-+ int epnum = 0;
-+ dwc_otg_pcd_ep_t *ep = 0;
-+ uint32_t len = 0;
-+ int dwords;
-+
-+ /* Get the epnum from the IN Token Learning Queue. */
-+ epnum = get_ep_of_last_in_token(core_if);
-+ ep = get_in_ep(pcd, epnum);
-+
-+ DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
-+ ep_regs = core_if->dev_if->in_ep_regs[epnum];
-+
-+ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
-+ if (len > ep->dwc_ep.maxpacket) {
-+ len = ep->dwc_ep.maxpacket;
-+ }
-+ dwords = (len + 3)/4;
-+
-+ /* While there is space in the queue and space in the FIFO and
-+ * More data to tranfer, Write packets to the Tx FIFO */
-+ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
-+ DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32);
-+
-+ while (txstatus.b.nptxqspcavail > 0 &&
-+ txstatus.b.nptxfspcavail > dwords &&
-+ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) {
-+ /* Write the FIFO */
-+ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
-+ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
-+
-+ if (len > ep->dwc_ep.maxpacket) {
-+ len = ep->dwc_ep.maxpacket;
-+ }
-+
-+ dwords = (len + 3)/4;
-+ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
-+ DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32);
-+ }
-+
-+ DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n",
-+ dwc_read_reg32(&global_regs->gnptxsts));
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.nptxfempty = 1;
-+ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * This function is called when dedicated Tx FIFO Empty interrupt occurs.
-+ * The active request is checked for the next packet to be loaded into
-+ * apropriate Tx FIFO.
-+ */
-+static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_dev_if_t* dev_if = core_if->dev_if;
-+ dwc_otg_dev_in_ep_regs_t *ep_regs;
-+ dtxfsts_data_t txstatus = {.d32 = 0};
-+ dwc_otg_pcd_ep_t *ep = 0;
-+ uint32_t len = 0;
-+ int dwords;
-+
-+ ep = get_in_ep(pcd, epnum);
-+
-+ DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
-+
-+ ep_regs = core_if->dev_if->in_ep_regs[epnum];
-+
-+ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
-+
-+ if (len > ep->dwc_ep.maxpacket) {
-+ len = ep->dwc_ep.maxpacket;
-+ }
-+
-+ dwords = (len + 3)/4;
-+
-+ /* While there is space in the queue and space in the FIFO and
-+ * More data to tranfer, Write packets to the Tx FIFO */
-+ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
-+ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32);
-+
-+ while (txstatus.b.txfspcavail > dwords &&
-+ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len &&
-+ ep->dwc_ep.xfer_len != 0) {
-+ /* Write the FIFO */
-+ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
-+
-+ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
-+ if (len > ep->dwc_ep.maxpacket) {
-+ len = ep->dwc_ep.maxpacket;
-+ }
-+
-+ dwords = (len + 3)/4;
-+ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
-+ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
-+ }
-+
-+ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts));
-+
-+ return 1;
-+}
-+
-+/**
-+ * This function is called when the Device is disconnected. It stops
-+ * any active requests and informs the Gadget driver of the
-+ * disconnect.
-+ */
-+void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd)
-+{
-+ int i, num_in_eps, num_out_eps;
-+ dwc_otg_pcd_ep_t *ep;
-+
-+ gintmsk_data_t intr_mask = {.d32 = 0};
-+
-+ num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
-+ num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__);
-+ /* don't disconnect drivers more than once */
-+ if (pcd->ep0state == EP0_DISCONNECT) {
-+ DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__);
-+ return;
-+ }
-+ pcd->ep0state = EP0_DISCONNECT;
-+
-+ /* Reset the OTG state. */
-+ dwc_otg_pcd_update_otg(pcd, 1);
-+
-+ /* Disable the NP Tx Fifo Empty Interrupt. */
-+ intr_mask.b.nptxfempty = 1;
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
-+ intr_mask.d32, 0);
-+
-+ /* Flush the FIFOs */
-+ /**@todo NGS Flush Periodic FIFOs */
-+ dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10);
-+ dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd));
-+
-+ /* prevent new request submissions, kill any outstanding requests */
-+ ep = &pcd->ep0;
-+ dwc_otg_request_nuke(ep);
-+ /* prevent new request submissions, kill any outstanding requests */
-+ for (i = 0; i < num_in_eps; i++)
-+ {
-+ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i];
-+ dwc_otg_request_nuke(ep);
-+ }
-+ /* prevent new request submissions, kill any outstanding requests */
-+ for (i = 0; i < num_out_eps; i++)
-+ {
-+ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i];
-+ dwc_otg_request_nuke(ep);
-+ }
-+
-+ /* report disconnect; the driver is already quiesced */
-+ if (pcd->driver && pcd->driver->disconnect) {
-+ SPIN_UNLOCK(&pcd->lock);
-+ pcd->driver->disconnect(&pcd->gadget);
-+ SPIN_LOCK(&pcd->lock);
-+ }
-+}
-+
-+/**
-+ * This interrupt indicates that ...
-+ */
-+int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd)
-+{
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ gintsts_data_t gintsts;
-+
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr");
-+ intr_mask.b.i2cintr = 1;
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
-+ intr_mask.d32, 0);
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.i2cintr = 1;
-+ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
-+ gintsts.d32);
-+ return 1;
-+}
-+
-+
-+/**
-+ * This interrupt indicates that ...
-+ */
-+int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd)
-+{
-+ gintsts_data_t gintsts;
-+#if defined(VERBOSE)
-+ DWC_PRINT("Early Suspend Detected\n");
-+#endif
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.erlysuspend = 1;
-+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
-+ gintsts.d32);
-+ return 1;
-+}
-+
-+/**
-+ * This function configures EPO to receive SETUP packets.
-+ *
-+ * @todo NGS: Update the comments from the HW FS.
-+ *
-+ * -# Program the following fields in the endpoint specific registers
-+ * for Control OUT EP 0, in order to receive a setup packet
-+ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
-+ * setup packets)
-+ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
-+ * to back setup packets)
-+ * - In DMA mode, DOEPDMA0 Register with a memory address to
-+ * store any setup packets received
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param pcd Programming view of the PCD.
-+ */
-+static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ deptsiz0_data_t doeptsize0 = { .d32 = 0};
-+ dwc_otg_dma_desc_t* dma_desc;
-+ depctl_data_t doepctl = { .d32 = 0 };
-+
-+#ifdef VERBOSE
-+ DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__,
-+ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
-+#endif
-+
-+ doeptsize0.b.supcnt = 3;
-+ doeptsize0.b.pktcnt = 1;
-+ doeptsize0.b.xfersize = 8*3;
-+
-+ if (core_if->dma_enable) {
-+ if (!core_if->dma_desc_enable) {
-+ /** put here as for Hermes mode deptisz register should not be written */
-+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
-+ doeptsize0.d32);
-+
-+ /** @todo dma needs to handle multiple setup packets (up to 3) */
-+ VERIFY_PCD_DMA_ADDR(pcd->setup_pkt_dma_handle);
-+
-+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma,
-+ pcd->setup_pkt_dma_handle);
-+ } else {
-+ dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1;
-+ dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index];
-+
-+ /** DMA Descriptor Setup */
-+ dma_desc->status.b.bs = BS_HOST_BUSY;
-+ dma_desc->status.b.l = 1;
-+ dma_desc->status.b.ioc = 1;
-+ dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket;
-+ dma_desc->buf = pcd->setup_pkt_dma_handle;
-+ dma_desc->status.b.bs = BS_HOST_READY;
-+
-+ /** DOEPDMA0 Register write */
-+ VERIFY_PCD_DMA_ADDR(dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
-+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
-+ }
-+
-+ } else {
-+ /** put here as for Hermes mode deptisz register should not be written */
-+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
-+ doeptsize0.d32);
-+ }
-+
-+ /** DOEPCTL0 Register write */
-+ doepctl.b.epena = 1;
-+ doepctl.b.cnak = 1;
-+ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
-+
-+#ifdef VERBOSE
-+ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
-+ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
-+ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
-+ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
-+#endif
-+}
-+
-+/**
-+ * This interrupt occurs when a USB Reset is detected. When the USB
-+ * Reset Interrupt occurs the device state is set to DEFAULT and the
-+ * EP0 state is set to IDLE.
-+ * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1)
-+ * -# Unmask the following interrupt bits
-+ * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint)
-+ * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint)
-+ * - DOEPMSK.SETUP = 1
-+ * - DOEPMSK.XferCompl = 1
-+ * - DIEPMSK.XferCompl = 1
-+ * - DIEPMSK.TimeOut = 1
-+ * -# Program the following fields in the endpoint specific registers
-+ * for Control OUT EP 0, in order to receive a setup packet
-+ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
-+ * setup packets)
-+ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
-+ * to back setup packets)
-+ * - In DMA mode, DOEPDMA0 Register with a memory address to
-+ * store any setup packets received
-+ * At this point, all the required initialization, except for enabling
-+ * the control 0 OUT endpoint is done, for receiving SETUP packets.
-+ */
-+int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ depctl_data_t doepctl = { .d32 = 0};
-+
-+ daint_data_t daintmsk = { .d32 = 0};
-+ doepmsk_data_t doepmsk = { .d32 = 0};
-+ diepmsk_data_t diepmsk = { .d32 = 0};
-+
-+ dcfg_data_t dcfg = { .d32=0 };
-+ grstctl_t resetctl = { .d32=0 };
-+ dctl_data_t dctl = {.d32=0};
-+ int i = 0;
-+ gintsts_data_t gintsts;
-+
-+ DWC_PRINT("USB RESET\n");
-+#ifdef DWC_EN_ISOC
-+ for(i = 1;i < 16; ++i)
-+ {
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_ep_t *dwc_ep;
-+ ep = get_in_ep(pcd,i);
-+ if(ep != 0){
-+ dwc_ep = &ep->dwc_ep;
-+ dwc_ep->next_frame = 0xffffffff;
-+ }
-+ }
-+#endif /* DWC_EN_ISOC */
-+
-+ /* reset the HNP settings */
-+ dwc_otg_pcd_update_otg(pcd, 1);
-+
-+ /* Clear the Remote Wakeup Signalling */
-+ dctl.b.rmtwkupsig = 1;
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
-+ dctl.d32, 0);
-+
-+ /* Set NAK for all OUT EPs */
-+ doepctl.b.snak = 1;
-+ for (i=0; i <= dev_if->num_out_eps; i++)
-+ {
-+ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl,
-+ doepctl.d32);
-+ }
-+
-+ /* Flush the NP Tx FIFO */
-+ dwc_otg_flush_tx_fifo(core_if, 0x10);
-+ /* Flush the Learning Queue */
-+ resetctl.b.intknqflsh = 1;
-+ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
-+
-+ if(core_if->multiproc_int_enable) {
-+ daintmsk.b.inep0 = 1;
-+ daintmsk.b.outep0 = 1;
-+ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32);
-+
-+ doepmsk.b.setup = 1;
-+ doepmsk.b.xfercompl = 1;
-+ doepmsk.b.ahberr = 1;
-+ doepmsk.b.epdisabled = 1;
-+
-+ if(core_if->dma_desc_enable) {
-+ doepmsk.b.stsphsercvd = 1;
-+ doepmsk.b.bna = 1;
-+ }
-+/*
-+ doepmsk.b.babble = 1;
-+ doepmsk.b.nyet = 1;
-+
-+ if(core_if->dma_enable) {
-+ doepmsk.b.nak = 1;
-+ }
-+*/
-+ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32);
-+
-+ diepmsk.b.xfercompl = 1;
-+ diepmsk.b.timeout = 1;
-+ diepmsk.b.epdisabled = 1;
-+ diepmsk.b.ahberr = 1;
-+ diepmsk.b.intknepmis = 1;
-+
-+ if(core_if->dma_desc_enable) {
-+ diepmsk.b.bna = 1;
-+ }
-+/*
-+ if(core_if->dma_enable) {
-+ diepmsk.b.nak = 1;
-+ }
-+*/
-+ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32);
-+ } else{
-+ daintmsk.b.inep0 = 1;
-+ daintmsk.b.outep0 = 1;
-+ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32);
-+
-+ doepmsk.b.setup = 1;
-+ doepmsk.b.xfercompl = 1;
-+ doepmsk.b.ahberr = 1;
-+ doepmsk.b.epdisabled = 1;
-+
-+ if(core_if->dma_desc_enable) {
-+ doepmsk.b.stsphsercvd = 1;
-+ doepmsk.b.bna = 1;
-+ }
-+/*
-+ doepmsk.b.babble = 1;
-+ doepmsk.b.nyet = 1;
-+ doepmsk.b.nak = 1;
-+*/
-+ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32);
-+
-+ diepmsk.b.xfercompl = 1;
-+ diepmsk.b.timeout = 1;
-+ diepmsk.b.epdisabled = 1;
-+ diepmsk.b.ahberr = 1;
-+ diepmsk.b.intknepmis = 1;
-+
-+ if(core_if->dma_desc_enable) {
-+ diepmsk.b.bna = 1;
-+ }
-+
-+// diepmsk.b.nak = 1;
-+
-+ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32);
-+ }
-+
-+ /* Reset Device Address */
-+ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
-+ dcfg.b.devaddr = 0;
-+ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
-+
-+ /* setup EP0 to receive SETUP packets */
-+ ep0_out_start(core_if, pcd);
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.usbreset = 1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * Get the device speed from the device status register and convert it
-+ * to USB speed constant.
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ */
-+static int get_device_speed(dwc_otg_core_if_t *core_if)
-+{
-+ dsts_data_t dsts;
-+ enum usb_device_speed speed = USB_SPEED_UNKNOWN;
-+ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
-+
-+ switch (dsts.b.enumspd) {
-+ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
-+ speed = USB_SPEED_HIGH;
-+ break;
-+ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
-+ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
-+ speed = USB_SPEED_FULL;
-+ break;
-+
-+ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
-+ speed = USB_SPEED_LOW;
-+ break;
-+ }
-+
-+ return speed;
-+}
-+
-+/**
-+ * Read the device status register and set the device speed in the
-+ * data structure.
-+ * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate.
-+ */
-+int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
-+ gintsts_data_t gintsts;
-+ gusbcfg_data_t gusbcfg;
-+ dwc_otg_core_global_regs_t *global_regs =
-+ GET_CORE_IF(pcd)->core_global_regs;
-+ uint8_t utmi16b, utmi8b;
-+// DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n");
-+ DWC_PRINT("SPEED ENUM\n");
-+
-+ if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) {
-+ utmi16b = 6;
-+ utmi8b = 9;
-+ } else {
-+ utmi16b = 4;
-+ utmi8b = 8;
-+ }
-+ dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep);
-+
-+#ifdef DEBUG_EP0
-+ print_ep0_state(pcd);
-+#endif
-+
-+ if (pcd->ep0state == EP0_DISCONNECT) {
-+ pcd->ep0state = EP0_IDLE;
-+ }
-+ else if (pcd->ep0state == EP0_STALL) {
-+ pcd->ep0state = EP0_IDLE;
-+ }
-+
-+ pcd->ep0state = EP0_IDLE;
-+
-+ ep0->stopped = 0;
-+
-+ pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd));
-+
-+ /* Set USB turnaround time based on device speed and PHY interface. */
-+ gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
-+ if (pcd->gadget.speed == USB_SPEED_HIGH) {
-+ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) {
-+ /* ULPI interface */
-+ gusbcfg.b.usbtrdtim = 9;
-+ }
-+ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) {
-+ /* UTMI+ interface */
-+ if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) {
-+ gusbcfg.b.usbtrdtim = utmi8b;
-+ }
-+ else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) {
-+ gusbcfg.b.usbtrdtim = utmi16b;
-+ }
-+ else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) {
-+ gusbcfg.b.usbtrdtim = utmi8b;
-+ }
-+ else {
-+ gusbcfg.b.usbtrdtim = utmi16b;
-+ }
-+ }
-+ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) {
-+ /* UTMI+ OR ULPI interface */
-+ if (gusbcfg.b.ulpi_utmi_sel == 1) {
-+ /* ULPI interface */
-+ gusbcfg.b.usbtrdtim = 9;
-+ }
-+ else {
-+ /* UTMI+ interface */
-+ if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) {
-+ gusbcfg.b.usbtrdtim = utmi16b;
-+ }
-+ else {
-+ gusbcfg.b.usbtrdtim = utmi8b;
-+ }
-+ }
-+ }
-+ }
-+ else {
-+ /* Full or low speed */
-+ gusbcfg.b.usbtrdtim = 9;
-+ }
-+ dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32);
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.enumdone = 1;
-+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
-+ gintsts.d32);
-+ return 1;
-+}
-+
-+/**
-+ * This interrupt indicates that the ISO OUT Packet was dropped due to
-+ * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs
-+ * read all the data from the Rx FIFO.
-+ */
-+int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd)
-+{
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ gintsts_data_t gintsts;
-+
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
-+ "ISOC Out Dropped");
-+
-+ intr_mask.b.isooutdrop = 1;
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
-+ intr_mask.d32, 0);
-+
-+ /* Clear interrupt */
-+
-+ gintsts.d32 = 0;
-+ gintsts.b.isooutdrop = 1;
-+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
-+ gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * This interrupt indicates the end of the portion of the micro-frame
-+ * for periodic transactions. If there is a periodic transaction for
-+ * the next frame, load the packets into the EP periodic Tx FIFO.
-+ */
-+int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd)
-+{
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ gintsts_data_t gintsts;
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP");
-+
-+ intr_mask.b.eopframe = 1;
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
-+ intr_mask.d32, 0);
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.eopframe = 1;
-+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * This interrupt indicates that EP of the packet on the top of the
-+ * non-periodic Tx FIFO does not match EP of the IN Token received.
-+ *
-+ * The "Device IN Token Queue" Registers are read to determine the
-+ * order the IN Tokens have been received. The non-periodic Tx FIFO
-+ * is flushed, so it can be reloaded in the order seen in the IN Token
-+ * Queue.
-+ */
-+int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if)
-+{
-+ gintsts_data_t gintsts;
-+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.epmismatch = 1;
-+ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * This funcion stalls EP0.
-+ */
-+static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val)
-+{
-+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
-+ struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req;
-+ DWC_WARN("req %02x.%02x protocol STALL; err %d\n",
-+ ctrl->bRequestType, ctrl->bRequest, err_val);
-+
-+ ep0->dwc_ep.is_in = 1;
-+ dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep);
-+ pcd->ep0.stopped = 1;
-+ pcd->ep0state = EP0_IDLE;
-+ ep0_out_start(GET_CORE_IF(pcd), pcd);
-+}
-+
-+/**
-+ * This functions delegates the setup command to the gadget driver.
-+ */
-+static inline void do_gadget_setup(dwc_otg_pcd_t *pcd,
-+ struct usb_ctrlrequest * ctrl)
-+{
-+ int ret = 0;
-+ if (pcd->driver && pcd->driver->setup) {
-+ SPIN_UNLOCK(&pcd->lock);
-+ ret = pcd->driver->setup(&pcd->gadget, ctrl);
-+ SPIN_LOCK(&pcd->lock);
-+ if (ret < 0) {
-+ ep0_do_stall(pcd, ret);
-+ }
-+
-+ /** @todo This is a g_file_storage gadget driver specific
-+ * workaround: a DELAYED_STATUS result from the fsg_setup
-+ * routine will result in the gadget queueing a EP0 IN status
-+ * phase for a two-stage control transfer. Exactly the same as
-+ * a SET_CONFIGURATION/SET_INTERFACE except that this is a class
-+ * specific request. Need a generic way to know when the gadget
-+ * driver will queue the status phase. Can we assume when we
-+ * call the gadget driver setup() function that it will always
-+ * queue and require the following flag? Need to look into
-+ * this.
-+ */
-+
-+ if (ret == 256 + 999) {
-+ pcd->request_config = 1;
-+ }
-+ }
-+}
-+
-+/**
-+ * This function starts the Zero-Length Packet for the IN status phase
-+ * of a 2 stage control transfer.
-+ */
-+static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
-+ if (pcd->ep0state == EP0_STALL) {
-+ return;
-+ }
-+
-+ pcd->ep0state = EP0_IN_STATUS_PHASE;
-+
-+ /* Prepare for more SETUP Packets */
-+ DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n");
-+ ep0->dwc_ep.xfer_len = 0;
-+ ep0->dwc_ep.xfer_count = 0;
-+ ep0->dwc_ep.is_in = 1;
-+ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
-+ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
-+
-+ /* Prepare for more SETUP Packets */
-+// if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd);
-+}
-+
-+/**
-+ * This function starts the Zero-Length Packet for the OUT status phase
-+ * of a 2 stage control transfer.
-+ */
-+static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
-+ if (pcd->ep0state == EP0_STALL) {
-+ DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n");
-+ return;
-+ }
-+ pcd->ep0state = EP0_OUT_STATUS_PHASE;
-+
-+ DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n");
-+ ep0->dwc_ep.xfer_len = 0;
-+ ep0->dwc_ep.xfer_count = 0;
-+ ep0->dwc_ep.is_in = 0;
-+ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
-+ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
-+
-+ /* Prepare for more SETUP Packets */
-+ if(GET_CORE_IF(pcd)->dma_enable == 0) {
-+ ep0_out_start(GET_CORE_IF(pcd), pcd);
-+ }
-+}
-+
-+/**
-+ * Clear the EP halt (STALL) and if pending requests start the
-+ * transfer.
-+ */
-+static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep)
-+{
-+ if(ep->dwc_ep.stall_clear_flag == 0)
-+ dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
-+
-+ /* Reactive the EP */
-+ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
-+ if (ep->stopped) {
-+ ep->stopped = 0;
-+ /* If there is a request in the EP queue start it */
-+
-+ /** @todo FIXME: this causes an EP mismatch in DMA mode.
-+ * epmismatch not yet implemented. */
-+
-+ /*
-+ * Above fixme is solved by implmenting a tasklet to call the
-+ * start_next_request(), outside of interrupt context at some
-+ * time after the current time, after a clear-halt setup packet.
-+ * Still need to implement ep mismatch in the future if a gadget
-+ * ever uses more than one endpoint at once
-+ */
-+ ep->queue_sof = 1;
-+ tasklet_schedule (pcd->start_xfer_tasklet);
-+ }
-+ /* Start Control Status Phase */
-+ do_setup_in_status_phase(pcd);
-+}
-+
-+/**
-+ * This function is called when the SET_FEATURE TEST_MODE Setup packet
-+ * is sent from the host. The Device Control register is written with
-+ * the Test Mode bits set to the specified Test Mode. This is done as
-+ * a tasklet so that the "Status" phase of the control transfer
-+ * completes before transmitting the TEST packets.
-+ *
-+ * @todo This has not been tested since the tasklet struct was put
-+ * into the PCD struct!
-+ *
-+ */
-+static void do_test_mode(unsigned long data)
-+{
-+ dctl_data_t dctl;
-+ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data;
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ int test_mode = pcd->test_mode;
-+
-+
-+// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__);
-+
-+ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
-+ switch (test_mode) {
-+ case 1: // TEST_J
-+ dctl.b.tstctl = 1;
-+ break;
-+
-+ case 2: // TEST_K
-+ dctl.b.tstctl = 2;
-+ break;
-+
-+ case 3: // TEST_SE0_NAK
-+ dctl.b.tstctl = 3;
-+ break;
-+
-+ case 4: // TEST_PACKET
-+ dctl.b.tstctl = 4;
-+ break;
-+
-+ case 5: // TEST_FORCE_ENABLE
-+ dctl.b.tstctl = 5;
-+ break;
-+ }
-+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
-+}
-+
-+/**
-+ * This function process the GET_STATUS Setup Commands.
-+ */
-+static inline void do_get_status(dwc_otg_pcd_t *pcd)
-+{
-+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
-+ uint16_t *status = pcd->status_buf;
-+
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCD,
-+ "GET_STATUS %02x.%02x v%04x i%04x l%04x\n",
-+ ctrl.bRequestType, ctrl.bRequest,
-+ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
-+#endif
-+
-+ switch (ctrl.bRequestType & USB_RECIP_MASK) {
-+ case USB_RECIP_DEVICE:
-+ *status = 0x1; /* Self powered */
-+ *status |= pcd->remote_wakeup_enable << 1;
-+ break;
-+
-+ case USB_RECIP_INTERFACE:
-+ *status = 0;
-+ break;
-+
-+ case USB_RECIP_ENDPOINT:
-+ ep = get_ep_by_addr(pcd, ctrl.wIndex);
-+ if (ep == 0 || ctrl.wLength > 2) {
-+ ep0_do_stall(pcd, -EOPNOTSUPP);
-+ return;
-+ }
-+ /** @todo check for EP stall */
-+ *status = ep->stopped;
-+ break;
-+ }
-+ pcd->ep0_pending = 1;
-+ ep0->dwc_ep.start_xfer_buff = (uint8_t *)status;
-+ ep0->dwc_ep.xfer_buff = (uint8_t *)status;
-+ ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle;
-+ ep0->dwc_ep.xfer_len = 2;
-+ ep0->dwc_ep.xfer_count = 0;
-+ ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
-+ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
-+}
-+/**
-+ * This function process the SET_FEATURE Setup Commands.
-+ */
-+static inline void do_set_feature(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
-+ dwc_otg_pcd_ep_t *ep = 0;
-+ int32_t otg_cap_param = core_if->core_params->otg_cap;
-+ gotgctl_data_t gotgctl = { .d32 = 0 };
-+
-+ DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
-+ ctrl.bRequestType, ctrl.bRequest,
-+ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
-+ DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param);
-+
-+
-+ switch (ctrl.bRequestType & USB_RECIP_MASK) {
-+ case USB_RECIP_DEVICE:
-+ switch (ctrl.wValue) {
-+ case USB_DEVICE_REMOTE_WAKEUP:
-+ pcd->remote_wakeup_enable = 1;
-+ break;
-+
-+ case USB_DEVICE_TEST_MODE:
-+ /* Setup the Test Mode tasklet to do the Test
-+ * Packet generation after the SETUP Status
-+ * phase has completed. */
-+
-+ /** @todo This has not been tested since the
-+ * tasklet struct was put into the PCD
-+ * struct! */
-+ pcd->test_mode_tasklet.next = 0;
-+ pcd->test_mode_tasklet.state = 0;
-+ atomic_set(&pcd->test_mode_tasklet.count, 0);
-+ pcd->test_mode_tasklet.func = do_test_mode;
-+ pcd->test_mode_tasklet.data = (unsigned long)pcd;
-+ pcd->test_mode = ctrl.wIndex >> 8;
-+ tasklet_schedule(&pcd->test_mode_tasklet);
-+ break;
-+
-+ case USB_DEVICE_B_HNP_ENABLE:
-+ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
-+
-+ /* dev may initiate HNP */
-+ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
-+ pcd->b_hnp_enable = 1;
-+ dwc_otg_pcd_update_otg(pcd, 0);
-+ DWC_DEBUGPL(DBG_PCD, "Request B HNP\n");
-+ /**@todo Is the gotgctl.devhnpen cleared
-+ * by a USB Reset? */
-+ gotgctl.b.devhnpen = 1;
-+ gotgctl.b.hnpreq = 1;
-+ dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32);
-+ }
-+ else {
-+ ep0_do_stall(pcd, -EOPNOTSUPP);
-+ }
-+ break;
-+
-+ case USB_DEVICE_A_HNP_SUPPORT:
-+ /* RH port supports HNP */
-+ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n");
-+ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
-+ pcd->a_hnp_support = 1;
-+ dwc_otg_pcd_update_otg(pcd, 0);
-+ }
-+ else {
-+ ep0_do_stall(pcd, -EOPNOTSUPP);
-+ }
-+ break;
-+
-+ case USB_DEVICE_A_ALT_HNP_SUPPORT:
-+ /* other RH port does */
-+ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
-+ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
-+ pcd->a_alt_hnp_support = 1;
-+ dwc_otg_pcd_update_otg(pcd, 0);
-+ }
-+ else {
-+ ep0_do_stall(pcd, -EOPNOTSUPP);
-+ }
-+ break;
-+ }
-+ do_setup_in_status_phase(pcd);
-+ break;
-+
-+ case USB_RECIP_INTERFACE:
-+ do_gadget_setup(pcd, &ctrl);
-+ break;
-+
-+ case USB_RECIP_ENDPOINT:
-+ if (ctrl.wValue == USB_ENDPOINT_HALT) {
-+ ep = get_ep_by_addr(pcd, ctrl.wIndex);
-+ if (ep == 0) {
-+ ep0_do_stall(pcd, -EOPNOTSUPP);
-+ return;
-+ }
-+ ep->stopped = 1;
-+ dwc_otg_ep_set_stall(core_if, &ep->dwc_ep);
-+ }
-+ do_setup_in_status_phase(pcd);
-+ break;
-+ }
-+}
-+
-+/**
-+ * This function process the CLEAR_FEATURE Setup Commands.
-+ */
-+static inline void do_clear_feature(dwc_otg_pcd_t *pcd)
-+{
-+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
-+ dwc_otg_pcd_ep_t *ep = 0;
-+
-+ DWC_DEBUGPL(DBG_PCD,
-+ "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
-+ ctrl.bRequestType, ctrl.bRequest,
-+ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
-+
-+ switch (ctrl.bRequestType & USB_RECIP_MASK) {
-+ case USB_RECIP_DEVICE:
-+ switch (ctrl.wValue) {
-+ case USB_DEVICE_REMOTE_WAKEUP:
-+ pcd->remote_wakeup_enable = 0;
-+ break;
-+
-+ case USB_DEVICE_TEST_MODE:
-+ /** @todo Add CLEAR_FEATURE for TEST modes. */
-+ break;
-+ }
-+ do_setup_in_status_phase(pcd);
-+ break;
-+
-+ case USB_RECIP_ENDPOINT:
-+ ep = get_ep_by_addr(pcd, ctrl.wIndex);
-+ if (ep == 0) {
-+ ep0_do_stall(pcd, -EOPNOTSUPP);
-+ return;
-+ }
-+
-+ pcd_clear_halt(pcd, ep);
-+
-+ break;
-+ }
-+}
-+
-+/**
-+ * This function process the SET_ADDRESS Setup Commands.
-+ */
-+static inline void do_set_address(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
-+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
-+
-+ if (ctrl.bRequestType == USB_RECIP_DEVICE) {
-+ dcfg_data_t dcfg = {.d32=0};
-+
-+#ifdef DEBUG_EP0
-+// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue);
-+#endif
-+ dcfg.b.devaddr = ctrl.wValue;
-+ dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32);
-+ do_setup_in_status_phase(pcd);
-+ }
-+}
-+
-+/**
-+ * This function processes SETUP commands. In Linux, the USB Command
-+ * processing is done in two places - the first being the PCD and the
-+ * second in the Gadget Driver (for example, the File-Backed Storage
-+ * Gadget Driver).
-+ *
-+ * <table>
-+ * <tr><td>Command </td><td>Driver </td><td>Description</td></tr>
-+ *
-+ * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as
-+ * defined in chapter 9 of the USB 2.0 Specification chapter 9
-+ * </td></tr>
-+ *
-+ * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint
-+ * requests are the ENDPOINT_HALT feature is procesed, all others the
-+ * interface requests are ignored.</td></tr>
-+ *
-+ * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint
-+ * requests are processed by the PCD. Interface requests are passed
-+ * to the Gadget Driver.</td></tr>
-+ *
-+ * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg,
-+ * with device address received </td></tr>
-+ *
-+ * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the
-+ * requested descriptor</td></tr>
-+ *
-+ * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional -
-+ * not implemented by any of the existing Gadget Drivers.</td></tr>
-+ *
-+ * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable
-+ * all EPs and enable EPs for new configuration.</td></tr>
-+ *
-+ * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return
-+ * the current configuration</td></tr>
-+ *
-+ * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all
-+ * EPs and enable EPs for new configuration.</td></tr>
-+ *
-+ * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the
-+ * current interface.</td></tr>
-+ *
-+ * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug
-+ * message.</td></tr>
-+ * </table>
-+ *
-+ * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are
-+ * processed by pcd_setup. Calling the Function Driver's setup function from
-+ * pcd_setup processes the gadget SETUP commands.
-+ */
-+static inline void pcd_setup(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
-+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
-+
-+ deptsiz0_data_t doeptsize0 = { .d32 = 0};
-+
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n",
-+ ctrl.bRequestType, ctrl.bRequest,
-+ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
-+#endif
-+
-+ doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz);
-+
-+ /** @todo handle > 1 setup packet , assert error for now */
-+
-+ if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) {
-+ DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n");
-+ }
-+
-+ /* Clean up the request queue */
-+ dwc_otg_request_nuke(ep0);
-+ ep0->stopped = 0;
-+
-+ if (ctrl.bRequestType & USB_DIR_IN) {
-+ ep0->dwc_ep.is_in = 1;
-+ pcd->ep0state = EP0_IN_DATA_PHASE;
-+ }
-+ else {
-+ ep0->dwc_ep.is_in = 0;
-+ pcd->ep0state = EP0_OUT_DATA_PHASE;
-+ }
-+
-+ if(ctrl.wLength == 0) {
-+ ep0->dwc_ep.is_in = 1;
-+ pcd->ep0state = EP0_IN_STATUS_PHASE;
-+ }
-+
-+ if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) {
-+ /* handle non-standard (class/vendor) requests in the gadget driver */
-+ do_gadget_setup(pcd, &ctrl);
-+ return;
-+ }
-+
-+ /** @todo NGS: Handle bad setup packet? */
-+
-+///////////////////////////////////////////
-+//// --- Standard Request handling --- ////
-+
-+ switch (ctrl.bRequest) {
-+ case USB_REQ_GET_STATUS:
-+ do_get_status(pcd);
-+ break;
-+
-+ case USB_REQ_CLEAR_FEATURE:
-+ do_clear_feature(pcd);
-+ break;
-+
-+ case USB_REQ_SET_FEATURE:
-+ do_set_feature(pcd);
-+ break;
-+
-+ case USB_REQ_SET_ADDRESS:
-+ do_set_address(pcd);
-+ break;
-+
-+ case USB_REQ_SET_INTERFACE:
-+ case USB_REQ_SET_CONFIGURATION:
-+// _pcd->request_config = 1; /* Configuration changed */
-+ do_gadget_setup(pcd, &ctrl);
-+ break;
-+
-+ case USB_REQ_SYNCH_FRAME:
-+ do_gadget_setup(pcd, &ctrl);
-+ break;
-+
-+ default:
-+ /* Call the Gadget Driver's setup functions */
-+ do_gadget_setup(pcd, &ctrl);
-+ break;
-+ }
-+}
-+
-+/**
-+ * This function completes the ep0 control transfer.
-+ */
-+static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ dwc_otg_dev_in_ep_regs_t *in_ep_regs =
-+ dev_if->in_ep_regs[ep->dwc_ep.num];
-+#ifdef DEBUG_EP0
-+ dwc_otg_dev_out_ep_regs_t *out_ep_regs =
-+ dev_if->out_ep_regs[ep->dwc_ep.num];
-+#endif
-+ deptsiz0_data_t deptsiz;
-+ desc_sts_data_t desc_sts;
-+ dwc_otg_pcd_request_t *req;
-+ int is_last = 0;
-+ dwc_otg_pcd_t *pcd = ep->pcd;
-+
-+ //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name);
-+
-+ if (pcd->ep0_pending && list_empty(&ep->queue)) {
-+ if (ep->dwc_ep.is_in) {
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n");
-+#endif
-+ do_setup_out_status_phase(pcd);
-+ }
-+ else {
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n");
-+#endif
-+ do_setup_in_status_phase(pcd);
-+ }
-+ pcd->ep0_pending = 0;
-+ return 1;
-+ }
-+
-+ if (list_empty(&ep->queue)) {
-+ return 0;
-+ }
-+ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue);
-+
-+
-+ if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) {
-+ is_last = 1;
-+ }
-+ else if (ep->dwc_ep.is_in) {
-+ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
-+ if(core_if->dma_desc_enable != 0)
-+ desc_sts.d32 = readl(dev_if->in_desc_addr);
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
-+ ep->ep.name, ep->dwc_ep.xfer_len,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
-+#endif
-+
-+ if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) ||
-+ ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) {
-+ req->req.actual = ep->dwc_ep.xfer_count;
-+ /* Is a Zero Len Packet needed? */
-+ if (req->req.zero) {
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n");
-+#endif
-+ req->req.zero = 0;
-+ }
-+ do_setup_out_status_phase(pcd);
-+ }
-+ }
-+ else {
-+ /* ep0-OUT */
-+#ifdef DEBUG_EP0
-+ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
-+ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n",
-+ ep->ep.name, ep->dwc_ep.xfer_len,
-+ deptsiz.b.xfersize,
-+ deptsiz.b.pktcnt);
-+#endif
-+ req->req.actual = ep->dwc_ep.xfer_count;
-+ /* Is a Zero Len Packet needed? */
-+ if (req->req.zero) {
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n");
-+#endif
-+ req->req.zero = 0;
-+ }
-+ if(core_if->dma_desc_enable == 0)
-+ do_setup_in_status_phase(pcd);
-+ }
-+
-+ /* Complete the request */
-+ if (is_last) {
-+ dwc_otg_request_done(ep, req, 0);
-+ ep->dwc_ep.start_xfer_buff = 0;
-+ ep->dwc_ep.xfer_buff = 0;
-+ ep->dwc_ep.xfer_len = 0;
-+ return 1;
-+ }
-+ return 0;
-+}
-+
-+inline void aligned_buf_patch_on_buf_dma_oep_completion(dwc_otg_pcd_ep_t *ep, uint32_t byte_count)
-+{
-+ dwc_ep_t *dwc_ep = &ep->dwc_ep;
-+ if(byte_count && dwc_ep->aligned_buf &&
-+ dwc_ep->dma_addr>=dwc_ep->aligned_dma_addr &&
-+ dwc_ep->dma_addr<=(dwc_ep->aligned_dma_addr+dwc_ep->aligned_buf_size))\
-+ {
-+ //aligned buf used, apply complete patch
-+ u32 offset=(dwc_ep->dma_addr-dwc_ep->aligned_dma_addr);
-+ memcpy(dwc_ep->start_xfer_buff+offset, dwc_ep->aligned_buf+offset, byte_count);
-+ }
-+}
-+
-+/**
-+ * This function completes the request for the EP. If there are
-+ * additional requests for the EP in the queue they will be started.
-+ */
-+static void complete_ep(dwc_otg_pcd_ep_t *ep)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ dwc_otg_dev_in_ep_regs_t *in_ep_regs =
-+ dev_if->in_ep_regs[ep->dwc_ep.num];
-+ deptsiz_data_t deptsiz;
-+ desc_sts_data_t desc_sts;
-+ dwc_otg_pcd_request_t *req = 0;
-+ dwc_otg_dma_desc_t* dma_desc;
-+ uint32_t byte_count = 0;
-+ int is_last = 0;
-+ int i;
-+
-+ DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name,
-+ (ep->dwc_ep.is_in?"IN":"OUT"));
-+
-+ /* Get any pending requests */
-+ if (!list_empty(&ep->queue)) {
-+ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
-+ queue);
-+ if (!req) {
-+ printk("complete_ep 0x%p, req = NULL!\n", ep);
-+ return;
-+ }
-+ }
-+ else {
-+ printk("complete_ep 0x%p, ep->queue empty!\n", ep);
-+ return;
-+ }
-+ DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending);
-+
-+ if (ep->dwc_ep.is_in) {
-+ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
-+
-+ if (core_if->dma_enable) {
-+ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
-+ if(core_if->dma_desc_enable == 0) {
-+ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
-+ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
-+ byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
-+DWC_DEBUGPL(DBG_PCDV,"byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x)\n", byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count );
-+
-+ ep->dwc_ep.xfer_buff += byte_count;
-+ ep->dwc_ep.dma_addr += byte_count;
-+ ep->dwc_ep.xfer_count += byte_count;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
-+ ep->ep.name, ep->dwc_ep.xfer_len,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
-+
-+ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
-+ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
-+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
-+ } else if(ep->dwc_ep.sent_zlp) {
-+ /*
-+ * This fragment of code should initiate 0
-+ * length trasfer in case if it is queued
-+ * a trasfer with size divisible to EPs max
-+ * packet size and with usb_request zero field
-+ * is set, which means that after data is transfered,
-+ * it is also should be transfered
-+ * a 0 length packet at the end. For Slave and
-+ * Buffer DMA modes in this case SW has
-+ * to initiate 2 transfers one with transfer size,
-+ * and the second with 0 size. For Desriptor
-+ * DMA mode SW is able to initiate a transfer,
-+ * which will handle all the packets including
-+ * the last 0 legth.
-+ */
-+ ep->dwc_ep.sent_zlp = 0;
-+ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
-+ } else {
-+ is_last = 1;
-+ }
-+ } else {
-+ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
-+ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
-+ }
-+ } else {
-+
-+ dma_desc = ep->dwc_ep.desc_addr;
-+ byte_count = 0;
-+ ep->dwc_ep.sent_zlp = 0;
-+
-+ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
-+ desc_sts.d32 = readl(dma_desc);
-+ byte_count += desc_sts.b.bytes;
-+ dma_desc++;
-+ }
-+
-+ if(byte_count == 0) {
-+ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len;
-+ is_last = 1;
-+ } else {
-+ DWC_WARN("Incomplete transfer\n");
-+ }
-+ }
-+ } else {
-+ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
-+ /* Check if the whole transfer was completed,
-+ * if no, setup transfer for next portion of data
-+ */
-+ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
-+ ep->ep.name, ep->dwc_ep.xfer_len,
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
-+ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
-+ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
-+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
-+ } else if(ep->dwc_ep.sent_zlp) {
-+ /*
-+ * This fragment of code should initiate 0
-+ * length trasfer in case if it is queued
-+ * a trasfer with size divisible to EPs max
-+ * packet size and with usb_request zero field
-+ * is set, which means that after data is transfered,
-+ * it is also should be transfered
-+ * a 0 length packet at the end. For Slave and
-+ * Buffer DMA modes in this case SW has
-+ * to initiate 2 transfers one with transfer size,
-+ * and the second with 0 size. For Desriptor
-+ * DMA mode SW is able to initiate a transfer,
-+ * which will handle all the packets including
-+ * the last 0 legth.
-+ */
-+ ep->dwc_ep.sent_zlp = 0;
-+ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
-+ } else {
-+ is_last = 1;
-+ }
-+ }
-+ else {
-+ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
-+ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
-+ deptsiz.b.xfersize, deptsiz.b.pktcnt);
-+ }
-+ }
-+ } else {
-+ dwc_otg_dev_out_ep_regs_t *out_ep_regs =
-+ dev_if->out_ep_regs[ep->dwc_ep.num];
-+ desc_sts.d32 = 0;
-+ if(core_if->dma_enable) {
-+ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_FROM_DEVICE);
-+ if(core_if->dma_desc_enable) {
-+ DWC_WARN("\n\n%s: we need a cache invalidation here!!\n\n",__func__);
-+ dma_desc = ep->dwc_ep.desc_addr;
-+ byte_count = 0;
-+ ep->dwc_ep.sent_zlp = 0;
-+ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
-+ desc_sts.d32 = readl(dma_desc);
-+ byte_count += desc_sts.b.bytes;
-+ dma_desc++;
-+ }
-+
-+ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len
-+ - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3);
-+
-+ //todo: invalidate cache & aligned buf patch on completion
-+ //
-+
-+ is_last = 1;
-+ } else {
-+ deptsiz.d32 = 0;
-+ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
-+
-+ byte_count = (ep->dwc_ep.xfer_len -
-+ ep->dwc_ep.xfer_count - deptsiz.b.xfersize);
-+
-+// dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
-+
-+DWC_DEBUGPL(DBG_PCDV,"ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
-+ //todo: invalidate cache & aligned buf patch on completion
-+ dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
-+ aligned_buf_patch_on_buf_dma_oep_completion(ep,byte_count);
-+
-+ ep->dwc_ep.xfer_buff += byte_count;
-+ ep->dwc_ep.dma_addr += byte_count;
-+ ep->dwc_ep.xfer_count += byte_count;
-+
-+ /* Check if the whole transfer was completed,
-+ * if no, setup transfer for next portion of data
-+ */
-+ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
-+ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
-+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
-+ }
-+ else if(ep->dwc_ep.sent_zlp) {
-+ /*
-+ * This fragment of code should initiate 0
-+ * length trasfer in case if it is queued
-+ * a trasfer with size divisible to EPs max
-+ * packet size and with usb_request zero field
-+ * is set, which means that after data is transfered,
-+ * it is also should be transfered
-+ * a 0 length packet at the end. For Slave and
-+ * Buffer DMA modes in this case SW has
-+ * to initiate 2 transfers one with transfer size,
-+ * and the second with 0 size. For Desriptor
-+ * DMA mode SW is able to initiate a transfer,
-+ * which will handle all the packets including
-+ * the last 0 legth.
-+ */
-+ ep->dwc_ep.sent_zlp = 0;
-+ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
-+ } else {
-+ is_last = 1;
-+ }
-+ }
-+ } else {
-+ /* Check if the whole transfer was completed,
-+ * if no, setup transfer for next portion of data
-+ */
-+ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
-+ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
-+printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
-+ }
-+ else if(ep->dwc_ep.sent_zlp) {
-+ /*
-+ * This fragment of code should initiate 0
-+ * length trasfer in case if it is queued
-+ * a trasfer with size divisible to EPs max
-+ * packet size and with usb_request zero field
-+ * is set, which means that after data is transfered,
-+ * it is also should be transfered
-+ * a 0 length packet at the end. For Slave and
-+ * Buffer DMA modes in this case SW has
-+ * to initiate 2 transfers one with transfer size,
-+ * and the second with 0 size. For Desriptor
-+ * DMA mode SW is able to initiate a transfer,
-+ * which will handle all the packets including
-+ * the last 0 legth.
-+ */
-+ ep->dwc_ep.sent_zlp = 0;
-+ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
-+ } else {
-+ is_last = 1;
-+ }
-+ }
-+
-+#ifdef DEBUG
-+
-+ DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n",
-+ &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len,
-+ ep->dwc_ep.xfer_count,
-+ deptsiz.b.xfersize,
-+ deptsiz.b.pktcnt);
-+#endif
-+ }
-+
-+ /* Complete the request */
-+ if (is_last) {
-+ req->req.actual = ep->dwc_ep.xfer_count;
-+
-+ dwc_otg_request_done(ep, req, 0);
-+
-+ ep->dwc_ep.start_xfer_buff = 0;
-+ ep->dwc_ep.xfer_buff = 0;
-+ ep->dwc_ep.xfer_len = 0;
-+
-+ /* If there is a request in the queue start it.*/
-+ start_next_request(ep);
-+ }
-+}
-+
-+
-+#ifdef DWC_EN_ISOC
-+
-+/**
-+ * This function BNA interrupt for Isochronous EPs
-+ *
-+ */
-+static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep)
-+{
-+ dwc_ep_t *dwc_ep = &ep->dwc_ep;
-+ volatile uint32_t *addr;
-+ depctl_data_t depctl = {.d32 = 0};
-+ dwc_otg_pcd_t *pcd = ep->pcd;
-+ dwc_otg_dma_desc_t *dma_desc;
-+ int i;
-+
-+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num);
-+
-+ if(dwc_ep->is_in) {
-+ desc_sts_data_t sts = {.d32 = 0};
-+ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
-+ {
-+ sts.d32 = readl(&dma_desc->status);
-+ sts.b_iso_in.bs = BS_HOST_READY;
-+ writel(sts.d32,&dma_desc->status);
-+ }
-+ }
-+ else {
-+ desc_sts_data_t sts = {.d32 = 0};
-+ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
-+ {
-+ sts.d32 = readl(&dma_desc->status);
-+ sts.b_iso_out.bs = BS_HOST_READY;
-+ writel(sts.d32,&dma_desc->status);
-+ }
-+ }
-+
-+ if(dwc_ep->is_in == 0){
-+ addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
-+ }
-+ else{
-+ addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
-+ }
-+ depctl.b.epena = 1;
-+ dwc_modify_reg32(addr,depctl.d32,depctl.d32);
-+}
-+
-+/**
-+ * This function sets latest iso packet information(non-PTI mode)
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ *
-+ */
-+void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ deptsiz_data_t deptsiz = { .d32 = 0 };
-+ dma_addr_t dma_addr;
-+ uint32_t offset;
-+
-+ if(ep->proc_buf_num)
-+ dma_addr = ep->dma_addr1;
-+ else
-+ dma_addr = ep->dma_addr0;
-+
-+ if(ep->is_in) {
-+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
-+ offset = ep->data_per_frame;
-+ } else {
-+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
-+ offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3)));
-+ }
-+
-+ if(!deptsiz.b.xfersize) {
-+ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
-+ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
-+ ep->pkt_info[ep->cur_pkt].status = 0;
-+ } else {
-+ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
-+ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
-+ ep->pkt_info[ep->cur_pkt].status = -ENODATA;
-+ }
-+ ep->cur_pkt_addr += offset;
-+ ep->cur_pkt_dma_addr += offset;
-+ ep->cur_pkt++;
-+}
-+
-+/**
-+ * This function sets latest iso packet information(DDMA mode)
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param dwc_ep The EP to start the transfer on.
-+ *
-+ */
-+static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
-+{
-+ dwc_otg_dma_desc_t* dma_desc;
-+ desc_sts_data_t sts = {.d32 = 0};
-+ iso_pkt_info_t *iso_packet;
-+ uint32_t data_per_desc;
-+ uint32_t offset;
-+ int i, j;
-+
-+ iso_packet = dwc_ep->pkt_info;
-+
-+ /** Reinit closed DMA Descriptors*/
-+ /** ISO OUT EP */
-+ if(dwc_ep->is_in == 0) {
-+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
-+ offset = 0;
-+
-+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
-+ {
-+ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
-+ {
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+
-+ sts.d32 = readl(&dma_desc->status);
-+
-+ /* Write status in iso_packet_decsriptor */
-+ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
-+ if(iso_packet->status) {
-+ iso_packet->status = -ENODATA;
-+ }
-+
-+ /* Received data length */
-+ if(!sts.b_iso_out.rxbytes){
-+ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes;
-+ } else {
-+ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes +
-+ (4 - dwc_ep->data_per_frame % 4);
-+ }
-+
-+ iso_packet->offset = offset;
-+
-+ offset += data_per_desc;
-+ dma_desc ++;
-+ iso_packet ++;
-+ }
-+ }
-+
-+ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
-+ {
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+
-+ sts.d32 = readl(&dma_desc->status);
-+
-+ /* Write status in iso_packet_decsriptor */
-+ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
-+ if(iso_packet->status) {
-+ iso_packet->status = -ENODATA;
-+ }
-+
-+ /* Received data length */
-+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
-+
-+ iso_packet->offset = offset;
-+
-+ offset += data_per_desc;
-+ iso_packet++;
-+ dma_desc++;
-+ }
-+
-+ sts.d32 = readl(&dma_desc->status);
-+
-+ /* Write status in iso_packet_decsriptor */
-+ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
-+ if(iso_packet->status) {
-+ iso_packet->status = -ENODATA;
-+ }
-+ /* Received data length */
-+ if(!sts.b_iso_out.rxbytes){
-+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
-+ } else {
-+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes +
-+ (4 - dwc_ep->data_per_frame % 4);
-+ }
-+
-+ iso_packet->offset = offset;
-+ }
-+ else /** ISO IN EP */
-+ {
-+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
-+
-+ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
-+ {
-+ sts.d32 = readl(&dma_desc->status);
-+
-+ /* Write status in iso packet descriptor */
-+ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
-+ if(iso_packet->status != 0) {
-+ iso_packet->status = -ENODATA;
-+
-+ }
-+ /* Bytes has been transfered */
-+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
-+
-+ dma_desc ++;
-+ iso_packet++;
-+ }
-+
-+ sts.d32 = readl(&dma_desc->status);
-+ while(sts.b_iso_in.bs == BS_DMA_BUSY) {
-+ sts.d32 = readl(&dma_desc->status);
-+ }
-+
-+ /* Write status in iso packet descriptor ??? do be done with ERROR codes*/
-+ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
-+ if(iso_packet->status != 0) {
-+ iso_packet->status = -ENODATA;
-+ }
-+
-+ /* Bytes has been transfered */
-+ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
-+ }
-+}
-+
-+/**
-+ * This function reinitialize DMA Descriptors for Isochronous transfer
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param dwc_ep The EP to start the transfer on.
-+ *
-+ */
-+static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
-+{
-+ int i, j;
-+ dwc_otg_dma_desc_t* dma_desc;
-+ dma_addr_t dma_ad;
-+ volatile uint32_t *addr;
-+ desc_sts_data_t sts = { .d32 =0 };
-+ uint32_t data_per_desc;
-+
-+ if(dwc_ep->is_in == 0) {
-+ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
-+ }
-+ else {
-+ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
-+ }
-+
-+
-+ if(dwc_ep->proc_buf_num == 0) {
-+ /** Buffer 0 descriptors setup */
-+ dma_ad = dwc_ep->dma_addr0;
-+ }
-+ else {
-+ /** Buffer 1 descriptors setup */
-+ dma_ad = dwc_ep->dma_addr1;
-+ }
-+
-+ /** Reinit closed DMA Descriptors*/
-+ /** ISO OUT EP */
-+ if(dwc_ep->is_in == 0) {
-+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
-+
-+ sts.b_iso_out.bs = BS_HOST_READY;
-+ sts.b_iso_out.rxsts = 0;
-+ sts.b_iso_out.l = 0;
-+ sts.b_iso_out.sp = 0;
-+ sts.b_iso_out.ioc = 0;
-+ sts.b_iso_out.pid = 0;
-+ sts.b_iso_out.framenum = 0;
-+
-+ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
-+ {
-+ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
-+ {
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ //(uint32_t)dma_ad += data_per_desc;
-+ dma_ad = (uint32_t)dma_ad + data_per_desc;
-+ dma_desc ++;
-+ }
-+ }
-+
-+ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
-+ {
-+
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ dma_desc++;
-+ //(uint32_t)dma_ad += data_per_desc;
-+ dma_ad = (uint32_t)dma_ad + data_per_desc;
-+ }
-+
-+ sts.b_iso_out.ioc = 1;
-+ sts.b_iso_out.l = dwc_ep->proc_buf_num;
-+
-+ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
-+ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
-+ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
-+ sts.b_iso_out.rxbytes = data_per_desc;
-+
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+ }
-+ else /** ISO IN EP */
-+ {
-+ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
-+
-+ sts.b_iso_in.bs = BS_HOST_READY;
-+ sts.b_iso_in.txsts = 0;
-+ sts.b_iso_in.sp = 0;
-+ sts.b_iso_in.ioc = 0;
-+ sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
-+ sts.b_iso_in.framenum = dwc_ep->next_frame;
-+ sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
-+ sts.b_iso_in.l = 0;
-+
-+ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
-+ {
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ sts.b_iso_in.framenum += dwc_ep->bInterval;
-+ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
-+ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
-+ dma_desc ++;
-+ }
-+
-+ sts.b_iso_in.ioc = 1;
-+ sts.b_iso_in.l = dwc_ep->proc_buf_num;
-+
-+ writel((uint32_t)dma_ad, &dma_desc->buf);
-+ writel(sts.d32, &dma_desc->status);
-+
-+ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1;
-+ }
-+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
-+}
-+
-+
-+/**
-+ * This function is to handle Iso EP transfer complete interrupt
-+ * in case Iso out packet was dropped
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param dwc_ep The EP for wihich transfer complete was asserted
-+ *
-+ */
-+static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
-+{
-+ uint32_t dma_addr;
-+ uint32_t drp_pkt;
-+ uint32_t drp_pkt_cnt;
-+ deptsiz_data_t deptsiz = { .d32 = 0 };
-+ depctl_data_t depctl = { .d32 = 0 };
-+ int i;
-+
-+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz);
-+
-+ drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt;
-+ drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm);
-+
-+ /* Setting dropped packets status */
-+ for(i = 0; i < drp_pkt_cnt; ++i) {
-+ dwc_ep->pkt_info[drp_pkt].status = -ENODATA;
-+ drp_pkt ++;
-+ deptsiz.b.pktcnt--;
-+ }
-+
-+
-+ if(deptsiz.b.pktcnt > 0) {
-+ deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket;
-+ } else {
-+ deptsiz.b.xfersize = 0;
-+ deptsiz.b.pktcnt = 0;
-+ }
-+
-+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32);
-+
-+ if(deptsiz.b.pktcnt > 0) {
-+ if(dwc_ep->proc_buf_num) {
-+ dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize;
-+ } else {
-+ dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;;
-+ }
-+
-+ VERIFY_PCD_DMA_ADDR(dma_addr);
-+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr);
-+
-+ /** Re-enable endpoint, clear nak */
-+ depctl.d32 = 0;
-+ depctl.b.epena = 1;
-+ depctl.b.cnak = 1;
-+
-+ dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl,
-+ depctl.d32,depctl.d32);
-+ return 0;
-+ } else {
-+ return 1;
-+ }
-+}
-+
-+/**
-+ * This function sets iso packets information(PTI mode)
-+ *
-+ * @param core_if Programming view of DWC_otg controller.
-+ * @param ep The EP to start the transfer on.
-+ *
-+ */
-+static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
-+{
-+ int i, j;
-+ dma_addr_t dma_ad;
-+ iso_pkt_info_t *packet_info = ep->pkt_info;
-+ uint32_t offset;
-+ uint32_t frame_data;
-+ deptsiz_data_t deptsiz;
-+
-+ if(ep->proc_buf_num == 0) {
-+ /** Buffer 0 descriptors setup */
-+ dma_ad = ep->dma_addr0;
-+ }
-+ else {
-+ /** Buffer 1 descriptors setup */
-+ dma_ad = ep->dma_addr1;
-+ }
-+
-+ if(ep->is_in) {
-+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
-+ } else {
-+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
-+ }
-+
-+ if(!deptsiz.b.xfersize) {
-+ offset = 0;
-+ for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm)
-+ {
-+ frame_data = ep->data_per_frame;
-+ for(j = 0; j < ep->pkt_per_frm; ++j) {
-+
-+ /* Packet status - is not set as initially
-+ * it is set to 0 and if packet was sent
-+ successfully, status field will remain 0*/
-+
-+ /* Bytes has been transfered */
-+ packet_info->length = (ep->maxpacket < frame_data) ?
-+ ep->maxpacket : frame_data;
-+
-+ /* Received packet offset */
-+ packet_info->offset = offset;
-+ offset += packet_info->length;
-+ frame_data -= packet_info->length;
-+
-+ packet_info ++;
-+ }
-+ }
-+ return 1;
-+ } else {
-+ /* This is a workaround for in case of Transfer Complete with
-+ * PktDrpSts interrupts merging - in this case Transfer complete
-+ * interrupt for Isoc Out Endpoint is asserted without PktDrpSts
-+ * set and with DOEPTSIZ register non zero. Investigations showed,
-+ * that this happens when Out packet is dropped, but because of
-+ * interrupts merging during first interrupt handling PktDrpSts
-+ * bit is cleared and for next merged interrupts it is not reset.
-+ * In this case SW hadles the interrupt as if PktDrpSts bit is set.
-+ */
-+ if(ep->is_in) {
-+ return 1;
-+ } else {
-+ return handle_iso_out_pkt_dropped(core_if, ep);
-+ }
-+ }
-+}
-+
-+/**
-+ * This function is to handle Iso EP transfer complete interrupt
-+ *
-+ * @param ep The EP for which transfer complete was asserted
-+ *
-+ */
-+static void complete_iso_ep(dwc_otg_pcd_ep_t *ep)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
-+ dwc_ep_t *dwc_ep = &ep->dwc_ep;
-+ uint8_t is_last = 0;
-+
-+ if(core_if->dma_enable) {
-+ if(core_if->dma_desc_enable) {
-+ set_ddma_iso_pkts_info(core_if, dwc_ep);
-+ reinit_ddma_iso_xfer(core_if, dwc_ep);
-+ is_last = 1;
-+ } else {
-+ if(core_if->pti_enh_enable) {
-+ if(set_iso_pkts_info(core_if, dwc_ep)) {
-+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
-+ dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep);
-+ is_last = 1;
-+ }
-+ } else {
-+ set_current_pkt_info(core_if, dwc_ep);
-+ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
-+ is_last = 1;
-+ dwc_ep->cur_pkt = 0;
-+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
-+ if(dwc_ep->proc_buf_num) {
-+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
-+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
-+ } else {
-+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
-+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
-+ }
-+ }
-+ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
-+ }
-+ }
-+ } else {
-+ set_current_pkt_info(core_if, dwc_ep);
-+ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
-+ is_last = 1;
-+ dwc_ep->cur_pkt = 0;
-+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
-+ if(dwc_ep->proc_buf_num) {
-+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
-+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
-+ } else {
-+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
-+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
-+ }
-+ }
-+ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
-+ }
-+ if(is_last)
-+ dwc_otg_iso_buffer_done(ep, ep->iso_req);
-+}
-+
-+#endif //DWC_EN_ISOC
-+
-+
-+/**
-+ * This function handles EP0 Control transfers.
-+ *
-+ * The state of the control tranfers are tracked in
-+ * <code>ep0state</code>.
-+ */
-+static void handle_ep0(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
-+ desc_sts_data_t desc_sts;
-+ deptsiz0_data_t deptsiz;
-+ uint32_t byte_count;
-+
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
-+ print_ep0_state(pcd);
-+#endif
-+
-+ switch (pcd->ep0state) {
-+ case EP0_DISCONNECT:
-+ break;
-+
-+ case EP0_IDLE:
-+ pcd->request_config = 0;
-+
-+ pcd_setup(pcd);
-+ break;
-+
-+ case EP0_IN_DATA_PHASE:
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n",
-+ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
-+ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
-+#endif
-+
-+ if (core_if->dma_enable != 0) {
-+ /*
-+ * For EP0 we can only program 1 packet at a time so we
-+ * need to do the make calculations after each complete.
-+ * Call write_packet to make the calculations, as in
-+ * slave mode, and use those values to determine if we
-+ * can complete.
-+ */
-+ if(core_if->dma_desc_enable == 0) {
-+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz);
-+ byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize;
-+ }
-+ else {
-+ desc_sts.d32 = readl(core_if->dev_if->in_desc_addr);
-+ byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes;
-+ }
-+
-+ ep0->dwc_ep.xfer_count += byte_count;
-+ ep0->dwc_ep.xfer_buff += byte_count;
-+ ep0->dwc_ep.dma_addr += byte_count;
-+ }
-+ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
-+ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
-+ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
-+ }
-+ else if(ep0->dwc_ep.sent_zlp) {
-+ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
-+ ep0->dwc_ep.sent_zlp = 0;
-+ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
-+ }
-+ else {
-+ ep0_complete_request(ep0);
-+ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
-+ }
-+ break;
-+ case EP0_OUT_DATA_PHASE:
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n",
-+ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
-+ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
-+#endif
-+ if (core_if->dma_enable != 0) {
-+ if(core_if->dma_desc_enable == 0) {
-+ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz);
-+ byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize;
-+
-+ //todo: invalidate cache & aligned buf patch on completion
-+ dma_sync_single_for_device(NULL,ep0->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
-+ aligned_buf_patch_on_buf_dma_oep_completion(ep0,byte_count);
-+ }
-+ else {
-+ desc_sts.d32 = readl(core_if->dev_if->out_desc_addr);
-+ byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes;
-+
-+ //todo: invalidate cache & aligned buf patch on completion
-+ //
-+
-+ }
-+ ep0->dwc_ep.xfer_count += byte_count;
-+ ep0->dwc_ep.xfer_buff += byte_count;
-+ ep0->dwc_ep.dma_addr += byte_count;
-+ }
-+ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
-+ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
-+ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
-+ }
-+ else if(ep0->dwc_ep.sent_zlp) {
-+ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
-+ ep0->dwc_ep.sent_zlp = 0;
-+ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
-+ }
-+ else {
-+ ep0_complete_request(ep0);
-+ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
-+ }
-+ break;
-+
-+ case EP0_IN_STATUS_PHASE:
-+ case EP0_OUT_STATUS_PHASE:
-+ DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n");
-+ ep0_complete_request(ep0);
-+ pcd->ep0state = EP0_IDLE;
-+ ep0->stopped = 1;
-+ ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */
-+
-+ /* Prepare for more SETUP Packets */
-+ if(core_if->dma_enable) {
-+ ep0_out_start(core_if, pcd);
-+ }
-+ break;
-+
-+ case EP0_STALL:
-+ DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n");
-+ break;
-+ }
-+#ifdef DEBUG_EP0
-+ print_ep0_state(pcd);
-+#endif
-+}
-+
-+
-+/**
-+ * Restart transfer
-+ */
-+static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum)
-+{
-+ dwc_otg_core_if_t *core_if;
-+ dwc_otg_dev_if_t *dev_if;
-+ deptsiz_data_t dieptsiz = {.d32=0};
-+ dwc_otg_pcd_ep_t *ep;
-+
-+ ep = get_in_ep(pcd, epnum);
-+
-+#ifdef DWC_EN_ISOC
-+ if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
-+ return;
-+ }
-+#endif /* DWC_EN_ISOC */
-+
-+ core_if = GET_CORE_IF(pcd);
-+ dev_if = core_if->dev_if;
-+
-+ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
-+
-+ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x"
-+ " stopped=%d\n", ep->dwc_ep.xfer_buff,
-+ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
-+ ep->stopped);
-+ /*
-+ * If xfersize is 0 and pktcnt in not 0, resend the last packet.
-+ */
-+ if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 &&
-+ ep->dwc_ep.start_xfer_buff != 0) {
-+ if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) {
-+ ep->dwc_ep.xfer_count = 0;
-+ ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff;
-+ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
-+ }
-+ else {
-+ ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket;
-+ /* convert packet size to dwords. */
-+ ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket;
-+ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
-+ }
-+ ep->stopped = 0;
-+ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x "
-+ "xfer_len=%0x stopped=%d\n",
-+ ep->dwc_ep.xfer_buff,
-+ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
-+ ep->stopped
-+ );
-+ if (epnum == 0) {
-+ dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep);
-+ }
-+ else {
-+ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
-+ }
-+ }
-+}
-+
-+
-+/**
-+ * handle the IN EP disable interrupt.
-+ */
-+static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd,
-+ const uint32_t epnum)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ deptsiz_data_t dieptsiz = {.d32=0};
-+ dctl_data_t dctl = {.d32=0};
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_ep_t *dwc_ep;
-+
-+ ep = get_in_ep(pcd, epnum);
-+ dwc_ep = &ep->dwc_ep;
-+
-+ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
-+ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
-+ return;
-+ }
-+
-+ DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum,
-+ dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl));
-+ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
-+
-+ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
-+ dieptsiz.b.pktcnt,
-+ dieptsiz.b.xfersize);
-+
-+ if (ep->stopped) {
-+ /* Flush the Tx FIFO */
-+ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
-+ /* Clear the Global IN NP NAK */
-+ dctl.d32 = 0;
-+ dctl.b.cgnpinnak = 1;
-+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
-+ dctl.d32, 0);
-+ /* Restart the transaction */
-+ if (dieptsiz.b.pktcnt != 0 ||
-+ dieptsiz.b.xfersize != 0) {
-+ restart_transfer(pcd, epnum);
-+ }
-+ }
-+ else {
-+ /* Restart the transaction */
-+ if (dieptsiz.b.pktcnt != 0 ||
-+ dieptsiz.b.xfersize != 0) {
-+ restart_transfer(pcd, epnum);
-+ }
-+ DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n");
-+ }
-+}
-+
-+/**
-+ * Handler for the IN EP timeout handshake interrupt.
-+ */
-+static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd,
-+ const uint32_t epnum)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+
-+#ifdef DEBUG
-+ deptsiz_data_t dieptsiz = {.d32=0};
-+ uint32_t num = 0;
-+#endif
-+ dctl_data_t dctl = {.d32=0};
-+ dwc_otg_pcd_ep_t *ep;
-+
-+ gintmsk_data_t intr_mask = {.d32 = 0};
-+
-+ ep = get_in_ep(pcd, epnum);
-+
-+ /* Disable the NP Tx Fifo Empty Interrrupt */
-+ if (!core_if->dma_enable) {
-+ intr_mask.b.nptxfempty = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
-+ }
-+ /** @todo NGS Check EP type.
-+ * Implement for Periodic EPs */
-+ /*
-+ * Non-periodic EP
-+ */
-+ /* Enable the Global IN NAK Effective Interrupt */
-+ intr_mask.b.ginnakeff = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
-+ 0, intr_mask.d32);
-+
-+ /* Set Global IN NAK */
-+ dctl.b.sgnpinnak = 1;
-+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
-+ dctl.d32, dctl.d32);
-+
-+ ep->stopped = 1;
-+
-+#ifdef DEBUG
-+ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz);
-+ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
-+ dieptsiz.b.pktcnt,
-+ dieptsiz.b.xfersize);
-+#endif
-+
-+#ifdef DISABLE_PERIODIC_EP
-+ /*
-+ * Set the NAK bit for this EP to
-+ * start the disable process.
-+ */
-+ diepctl.d32 = 0;
-+ diepctl.b.snak = 1;
-+ dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32);
-+ ep->disabling = 1;
-+ ep->stopped = 1;
-+#endif
-+}
-+
-+/**
-+ * Handler for the IN EP NAK interrupt.
-+ */
-+static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd,
-+ const uint32_t epnum)
-+{
-+ /** @todo implement ISR */
-+ dwc_otg_core_if_t* core_if;
-+ diepmsk_data_t intr_mask = { .d32 = 0};
-+
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK");
-+ core_if = GET_CORE_IF(pcd);
-+ intr_mask.b.nak = 1;
-+
-+ if(core_if->multiproc_int_enable) {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum],
-+ intr_mask.d32, 0);
-+ } else {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk,
-+ intr_mask.d32, 0);
-+ }
-+
-+ return 1;
-+}
-+
-+/**
-+ * Handler for the OUT EP Babble interrupt.
-+ */
-+static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd,
-+ const uint32_t epnum)
-+{
-+ /** @todo implement ISR */
-+ dwc_otg_core_if_t* core_if;
-+ doepmsk_data_t intr_mask = { .d32 = 0};
-+
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble");
-+ core_if = GET_CORE_IF(pcd);
-+ intr_mask.b.babble = 1;
-+
-+ if(core_if->multiproc_int_enable) {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
-+ intr_mask.d32, 0);
-+ } else {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
-+ intr_mask.d32, 0);
-+ }
-+
-+ return 1;
-+}
-+
-+/**
-+ * Handler for the OUT EP NAK interrupt.
-+ */
-+static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd,
-+ const uint32_t epnum)
-+{
-+ /** @todo implement ISR */
-+ dwc_otg_core_if_t* core_if;
-+ doepmsk_data_t intr_mask = { .d32 = 0};
-+
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK");
-+ core_if = GET_CORE_IF(pcd);
-+ intr_mask.b.nak = 1;
-+
-+ if(core_if->multiproc_int_enable) {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
-+ intr_mask.d32, 0);
-+ } else {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
-+ intr_mask.d32, 0);
-+ }
-+
-+ return 1;
-+}
-+
-+/**
-+ * Handler for the OUT EP NYET interrupt.
-+ */
-+static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd,
-+ const uint32_t epnum)
-+{
-+ /** @todo implement ISR */
-+ dwc_otg_core_if_t* core_if;
-+ doepmsk_data_t intr_mask = { .d32 = 0};
-+
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET");
-+ core_if = GET_CORE_IF(pcd);
-+ intr_mask.b.nyet = 1;
-+
-+ if(core_if->multiproc_int_enable) {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
-+ intr_mask.d32, 0);
-+ } else {
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
-+ intr_mask.d32, 0);
-+ }
-+
-+ return 1;
-+}
-+
-+/**
-+ * This interrupt indicates that an IN EP has a pending Interrupt.
-+ * The sequence for handling the IN EP interrupt is shown below:
-+ * -# Read the Device All Endpoint Interrupt register
-+ * -# Repeat the following for each IN EP interrupt bit set (from
-+ * LSB to MSB).
-+ * -# Read the Device Endpoint Interrupt (DIEPINTn) register
-+ * -# If "Transfer Complete" call the request complete function
-+ * -# If "Endpoint Disabled" complete the EP disable procedure.
-+ * -# If "AHB Error Interrupt" log error
-+ * -# If "Time-out Handshake" log error
-+ * -# If "IN Token Received when TxFIFO Empty" write packet to Tx
-+ * FIFO.
-+ * -# If "IN Token EP Mismatch" (disable, this is handled by EP
-+ * Mismatch Interrupt)
-+ */
-+static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd)
-+{
-+#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \
-+do { \
-+ diepint_data_t diepint = {.d32=0}; \
-+ diepint.b.__intr = 1; \
-+ dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \
-+ diepint.d32); \
-+} while (0)
-+
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ diepint_data_t diepint = {.d32=0};
-+ dctl_data_t dctl = {.d32=0};
-+ depctl_data_t depctl = {.d32=0};
-+ uint32_t ep_intr;
-+ uint32_t epnum = 0;
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_ep_t *dwc_ep;
-+ gintmsk_data_t intr_mask = {.d32 = 0};
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
-+
-+ /* Read in the device interrupt bits */
-+ ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if);
-+
-+ /* Service the Device IN interrupts for each endpoint */
-+ while(ep_intr) {
-+ if (ep_intr&0x1) {
-+ uint32_t empty_msk;
-+ /* Get EP pointer */
-+ ep = get_in_ep(pcd, epnum);
-+ dwc_ep = &ep->dwc_ep;
-+
-+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
-+ empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
-+
-+ DWC_DEBUGPL(DBG_PCDV,
-+ "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n",
-+ epnum,
-+ empty_msk,
-+ depctl.d32);
-+
-+ DWC_DEBUGPL(DBG_PCD,
-+ "EP%d-%s: type=%d, mps=%d\n",
-+ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
-+ dwc_ep->type, dwc_ep->maxpacket);
-+
-+ diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep);
-+
-+ DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32);
-+ /* Transfer complete */
-+ if (diepint.b.xfercompl) {
-+ /* Disable the NP Tx FIFO Empty
-+ * Interrrupt */
-+ if(core_if->en_multiple_tx_fifo == 0) {
-+ intr_mask.b.nptxfempty = 1;
-+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
-+ }
-+ else {
-+ /* Disable the Tx FIFO Empty Interrupt for this EP */
-+ uint32_t fifoemptymsk = 0x1 << dwc_ep->num;
-+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
-+ fifoemptymsk, 0);
-+ }
-+ /* Clear the bit in DIEPINTn for this interrupt */
-+ CLEAR_IN_EP_INTR(core_if,epnum,xfercompl);
-+
-+ /* Complete the transfer */
-+ if (epnum == 0) {
-+ handle_ep0(pcd);
-+ }
-+#ifdef DWC_EN_ISOC
-+ else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
-+ if(!ep->stopped)
-+ complete_iso_ep(ep);
-+ }
-+#endif //DWC_EN_ISOC
-+ else {
-+
-+ complete_ep(ep);
-+ }
-+ }
-+ /* Endpoint disable */
-+ if (diepint.b.epdisabled) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum);
-+ handle_in_ep_disable_intr(pcd, epnum);
-+
-+ /* Clear the bit in DIEPINTn for this interrupt */
-+ CLEAR_IN_EP_INTR(core_if,epnum,epdisabled);
-+ }
-+ /* AHB Error */
-+ if (diepint.b.ahberr) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum);
-+ /* Clear the bit in DIEPINTn for this interrupt */
-+ CLEAR_IN_EP_INTR(core_if,epnum,ahberr);
-+ }
-+ /* TimeOUT Handshake (non-ISOC IN EPs) */
-+ if (diepint.b.timeout) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum);
-+ handle_in_ep_timeout_intr(pcd, epnum);
-+
-+ CLEAR_IN_EP_INTR(core_if,epnum,timeout);
-+ }
-+ /** IN Token received with TxF Empty */
-+ if (diepint.b.intktxfemp) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n",
-+ epnum);
-+ if (!ep->stopped && epnum != 0) {
-+
-+ diepmsk_data_t diepmsk = { .d32 = 0};
-+ diepmsk.b.intktxfemp = 1;
-+
-+ if(core_if->multiproc_int_enable) {
-+ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum],
-+ diepmsk.d32, 0);
-+ } else {
-+ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0);
-+ }
-+ start_next_request(ep);
-+ }
-+ else if(core_if->dma_desc_enable && epnum == 0 &&
-+ pcd->ep0state == EP0_OUT_STATUS_PHASE) {
-+ // EP0 IN set STALL
-+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
-+
-+ /* set the disable and stall bits */
-+ if (depctl.b.epena) {
-+ depctl.b.epdis = 1;
-+ }
-+ depctl.b.stall = 1;
-+ dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32);
-+ }
-+ CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp);
-+ }
-+ /** IN Token Received with EP mismatch */
-+ if (diepint.b.intknepmis) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum);
-+ CLEAR_IN_EP_INTR(core_if,epnum,intknepmis);
-+ }
-+ /** IN Endpoint NAK Effective */
-+ if (diepint.b.inepnakeff) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum);
-+ /* Periodic EP */
-+ if (ep->disabling) {
-+ depctl.d32 = 0;
-+ depctl.b.snak = 1;
-+ depctl.b.epdis = 1;
-+ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
-+ }
-+ CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff);
-+
-+ }
-+
-+ /** IN EP Tx FIFO Empty Intr */
-+ if (diepint.b.emptyintr) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum);
-+ write_empty_tx_fifo(pcd, epnum);
-+
-+ CLEAR_IN_EP_INTR(core_if,epnum,emptyintr);
-+ }
-+
-+ /** IN EP BNA Intr */
-+ if (diepint.b.bna) {
-+ CLEAR_IN_EP_INTR(core_if,epnum,bna);
-+ if(core_if->dma_desc_enable) {
-+#ifdef DWC_EN_ISOC
-+ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
-+ /*
-+ * This checking is performed to prevent first "false" BNA
-+ * handling occuring right after reconnect
-+ */
-+ if(dwc_ep->next_frame != 0xffffffff)
-+ dwc_otg_pcd_handle_iso_bna(ep);
-+ }
-+ else
-+#endif //DWC_EN_ISOC
-+ {
-+ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
-+
-+ /* If Global Continue on BNA is disabled - disable EP */
-+ if(!dctl.b.gcontbna) {
-+ depctl.d32 = 0;
-+ depctl.b.snak = 1;
-+ depctl.b.epdis = 1;
-+ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
-+ } else {
-+ start_next_request(ep);
-+ }
-+ }
-+ }
-+ }
-+ /* NAK Interrutp */
-+ if (diepint.b.nak) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum);
-+ handle_in_ep_nak_intr(pcd, epnum);
-+
-+ CLEAR_IN_EP_INTR(core_if,epnum,nak);
-+ }
-+ }
-+ epnum++;
-+ ep_intr >>=1;
-+ }
-+
-+ return 1;
-+#undef CLEAR_IN_EP_INTR
-+}
-+
-+/**
-+ * This interrupt indicates that an OUT EP has a pending Interrupt.
-+ * The sequence for handling the OUT EP interrupt is shown below:
-+ * -# Read the Device All Endpoint Interrupt register
-+ * -# Repeat the following for each OUT EP interrupt bit set (from
-+ * LSB to MSB).
-+ * -# Read the Device Endpoint Interrupt (DOEPINTn) register
-+ * -# If "Transfer Complete" call the request complete function
-+ * -# If "Endpoint Disabled" complete the EP disable procedure.
-+ * -# If "AHB Error Interrupt" log error
-+ * -# If "Setup Phase Done" process Setup Packet (See Standard USB
-+ * Command Processing)
-+ */
-+static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd)
-+{
-+#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \
-+do { \
-+ doepint_data_t doepint = {.d32=0}; \
-+ doepint.b.__intr = 1; \
-+ dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \
-+ doepint.d32); \
-+} while (0)
-+
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
-+ uint32_t ep_intr;
-+ doepint_data_t doepint = {.d32=0};
-+ dctl_data_t dctl = {.d32=0};
-+ depctl_data_t doepctl = {.d32=0};
-+ uint32_t epnum = 0;
-+ dwc_otg_pcd_ep_t *ep;
-+ dwc_ep_t *dwc_ep;
-+
-+ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
-+
-+ /* Read in the device interrupt bits */
-+ ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if);
-+
-+ while(ep_intr) {
-+ if (ep_intr&0x1) {
-+ /* Get EP pointer */
-+ ep = get_out_ep(pcd, epnum);
-+ dwc_ep = &ep->dwc_ep;
-+
-+#ifdef VERBOSE
-+ DWC_DEBUGPL(DBG_PCDV,
-+ "EP%d-%s: type=%d, mps=%d\n",
-+ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
-+ dwc_ep->type, dwc_ep->maxpacket);
-+#endif
-+ doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep);
-+
-+ /* Transfer complete */
-+ if (doepint.b.xfercompl) {
-+ if (epnum == 0) {
-+ /* Clear the bit in DOEPINTn for this interrupt */
-+ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
-+ if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE)
-+ handle_ep0(pcd);
-+#ifdef DWC_EN_ISOC
-+ } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
-+ if (doepint.b.pktdrpsts == 0) {
-+ /* Clear the bit in DOEPINTn for this interrupt */
-+ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
-+ complete_iso_ep(ep);
-+ } else {
-+ doepint_data_t doepint = {.d32=0};
-+ doepint.b.xfercompl = 1;
-+ doepint.b.pktdrpsts = 1;
-+ dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint,
-+ doepint.d32);
-+ if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) {
-+ complete_iso_ep(ep);
-+ }
-+ }
-+#endif //DWC_EN_ISOC
-+ } else {
-+ /* Clear the bit in DOEPINTn for this interrupt */
-+ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
-+ complete_ep(ep);
-+ }
-+
-+ }
-+
-+ /* Endpoint disable */
-+ if (doepint.b.epdisabled) {
-+ /* Clear the bit in DOEPINTn for this interrupt */
-+ CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled);
-+ }
-+ /* AHB Error */
-+ if (doepint.b.ahberr) {
-+ DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum);
-+ DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma);
-+ CLEAR_OUT_EP_INTR(core_if,epnum,ahberr);
-+ }
-+ /* Setup Phase Done (contorl EPs) */
-+ if (doepint.b.setup) {
-+#ifdef DEBUG_EP0
-+ DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n",
-+ epnum);
-+#endif
-+ CLEAR_OUT_EP_INTR(core_if,epnum,setup);
-+ handle_ep0(pcd);
-+ }
-+
-+ /** OUT EP BNA Intr */
-+ if (doepint.b.bna) {
-+ CLEAR_OUT_EP_INTR(core_if,epnum,bna);
-+ if(core_if->dma_desc_enable) {
-+#ifdef DWC_EN_ISOC
-+ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
-+ /*
-+ * This checking is performed to prevent first "false" BNA
-+ * handling occuring right after reconnect
-+ */
-+ if(dwc_ep->next_frame != 0xffffffff)
-+ dwc_otg_pcd_handle_iso_bna(ep);
-+ }
-+ else
-+#endif //DWC_EN_ISOC
-+ {
-+ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
-+
-+ /* If Global Continue on BNA is disabled - disable EP*/
-+ if(!dctl.b.gcontbna) {
-+ doepctl.d32 = 0;
-+ doepctl.b.snak = 1;
-+ doepctl.b.epdis = 1;
-+ dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32);
-+ } else {
-+ start_next_request(ep);
-+ }
-+ }
-+ }
-+ }
-+ if (doepint.b.stsphsercvd) {
-+ CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd);
-+ if(core_if->dma_desc_enable) {
-+ do_setup_in_status_phase(pcd);
-+ }
-+ }
-+ /* Babble Interrutp */
-+ if (doepint.b.babble) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum);
-+ handle_out_ep_babble_intr(pcd, epnum);
-+
-+ CLEAR_OUT_EP_INTR(core_if,epnum,babble);
-+ }
-+ /* NAK Interrutp */
-+ if (doepint.b.nak) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum);
-+ handle_out_ep_nak_intr(pcd, epnum);
-+
-+ CLEAR_OUT_EP_INTR(core_if,epnum,nak);
-+ }
-+ /* NYET Interrutp */
-+ if (doepint.b.nyet) {
-+ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum);
-+ handle_out_ep_nyet_intr(pcd, epnum);
-+
-+ CLEAR_OUT_EP_INTR(core_if,epnum,nyet);
-+ }
-+ }
-+
-+ epnum++;
-+ ep_intr >>=1;
-+ }
-+
-+ return 1;
-+
-+#undef CLEAR_OUT_EP_INTR
-+}
-+
-+
-+/**
-+ * Incomplete ISO IN Transfer Interrupt.
-+ * This interrupt indicates one of the following conditions occurred
-+ * while transmitting an ISOC transaction.
-+ * - Corrupted IN Token for ISOC EP.
-+ * - Packet not complete in FIFO.
-+ * The follow actions will be taken:
-+ * -# Determine the EP
-+ * -# Set incomplete flag in dwc_ep structure
-+ * -# Disable EP; when "Endpoint Disabled" interrupt is received
-+ * Flush FIFO
-+ */
-+int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd)
-+{
-+ gintsts_data_t gintsts;
-+
-+
-+#ifdef DWC_EN_ISOC
-+ dwc_otg_dev_if_t *dev_if;
-+ deptsiz_data_t deptsiz = { .d32 = 0};
-+ depctl_data_t depctl = { .d32 = 0};
-+ dsts_data_t dsts = { .d32 = 0};
-+ dwc_ep_t *dwc_ep;
-+ int i;
-+
-+ dev_if = GET_CORE_IF(pcd)->dev_if;
-+
-+ for(i = 1; i <= dev_if->num_in_eps; ++i) {
-+ dwc_ep = &pcd->in_ep[i].dwc_ep;
-+ if(dwc_ep->active &&
-+ dwc_ep->type == USB_ENDPOINT_XFER_ISOC)
-+ {
-+ deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz);
-+ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
-+
-+ if(depctl.b.epdis && deptsiz.d32) {
-+ set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep);
-+ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
-+ dwc_ep->cur_pkt = 0;
-+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
-+
-+ if(dwc_ep->proc_buf_num) {
-+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
-+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
-+ } else {
-+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
-+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
-+ }
-+ }
-+
-+ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
-+ dwc_ep->next_frame = dsts.b.soffn;
-+
-+ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
-+ }
-+ }
-+ }
-+
-+#else
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
-+ "IN ISOC Incomplete");
-+
-+ intr_mask.b.incomplisoin = 1;
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
-+ intr_mask.d32, 0);
-+#endif //DWC_EN_ISOC
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.incomplisoin = 1;
-+ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
-+ gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * Incomplete ISO OUT Transfer Interrupt.
-+ *
-+ * This interrupt indicates that the core has dropped an ISO OUT
-+ * packet. The following conditions can be the cause:
-+ * - FIFO Full, the entire packet would not fit in the FIFO.
-+ * - CRC Error
-+ * - Corrupted Token
-+ * The follow actions will be taken:
-+ * -# Determine the EP
-+ * -# Set incomplete flag in dwc_ep structure
-+ * -# Read any data from the FIFO
-+ * -# Disable EP. when "Endpoint Disabled" interrupt is received
-+ * re-enable EP.
-+ */
-+int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd)
-+{
-+ /* @todo implement ISR */
-+ gintsts_data_t gintsts;
-+
-+#ifdef DWC_EN_ISOC
-+ dwc_otg_dev_if_t *dev_if;
-+ deptsiz_data_t deptsiz = { .d32 = 0};
-+ depctl_data_t depctl = { .d32 = 0};
-+ dsts_data_t dsts = { .d32 = 0};
-+ dwc_ep_t *dwc_ep;
-+ int i;
-+
-+ dev_if = GET_CORE_IF(pcd)->dev_if;
-+
-+ for(i = 1; i <= dev_if->num_out_eps; ++i) {
-+ dwc_ep = &pcd->in_ep[i].dwc_ep;
-+ if(pcd->out_ep[i].dwc_ep.active &&
-+ pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC)
-+ {
-+ deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz);
-+ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
-+
-+ if(depctl.b.epdis && deptsiz.d32) {
-+ set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep);
-+ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
-+ dwc_ep->cur_pkt = 0;
-+ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
-+
-+ if(dwc_ep->proc_buf_num) {
-+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
-+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
-+ } else {
-+ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
-+ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
-+ }
-+ }
-+
-+ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
-+ dwc_ep->next_frame = dsts.b.soffn;
-+
-+ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
-+ }
-+ }
-+ }
-+#else
-+ /** @todo implement ISR */
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
-+ "OUT ISOC Incomplete");
-+
-+ intr_mask.b.incomplisoout = 1;
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
-+ intr_mask.d32, 0);
-+
-+#endif // DWC_EN_ISOC
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.incomplisoout = 1;
-+ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
-+ gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * This function handles the Global IN NAK Effective interrupt.
-+ *
-+ */
-+int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
-+ depctl_data_t diepctl = { .d32 = 0};
-+ depctl_data_t diepctl_rd = { .d32 = 0};
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ gintsts_data_t gintsts;
-+ int i;
-+
-+ DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n");
-+
-+ /* Disable all active IN EPs */
-+ diepctl.b.epdis = 1;
-+ diepctl.b.snak = 1;
-+
-+ for (i=0; i <= dev_if->num_in_eps; i++)
-+ {
-+ diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
-+ if (diepctl_rd.b.epena) {
-+ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl,
-+ diepctl.d32);
-+ }
-+ }
-+ /* Disable the Global IN NAK Effective Interrupt */
-+ intr_mask.b.ginnakeff = 1;
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
-+ intr_mask.d32, 0);
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.ginnakeff = 1;
-+ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
-+ gintsts.d32);
-+
-+ return 1;
-+}
-+
-+/**
-+ * OUT NAK Effective.
-+ *
-+ */
-+int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd)
-+{
-+ gintmsk_data_t intr_mask = { .d32 = 0};
-+ gintsts_data_t gintsts;
-+
-+ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
-+ "Global IN NAK Effective\n");
-+ /* Disable the Global IN NAK Effective Interrupt */
-+ intr_mask.b.goutnakeff = 1;
-+ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
-+ intr_mask.d32, 0);
-+
-+ /* Clear interrupt */
-+ gintsts.d32 = 0;
-+ gintsts.b.goutnakeff = 1;
-+ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
-+ gintsts.d32);
-+
-+ return 1;
-+}
-+
-+
-+/**
-+ * PCD interrupt handler.
-+ *
-+ * The PCD handles the device interrupts. Many conditions can cause a
-+ * device interrupt. When an interrupt occurs, the device interrupt
-+ * service routine determines the cause of the interrupt and
-+ * dispatches handling to the appropriate function. These interrupt
-+ * handling functions are described below.
-+ *
-+ * All interrupt registers are processed from LSB to MSB.
-+ *
-+ */
-+int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd)
-+{
-+ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
-+#ifdef VERBOSE
-+ dwc_otg_core_global_regs_t *global_regs =
-+ core_if->core_global_regs;
-+#endif
-+ gintsts_data_t gintr_status;
-+ int32_t retval = 0;
-+
-+
-+#ifdef VERBOSE
-+ DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n",
-+ __func__,
-+ dwc_read_reg32(&global_regs->gintsts),
-+ dwc_read_reg32(&global_regs->gintmsk));
-+#endif
-+
-+ if (dwc_otg_is_device_mode(core_if)) {
-+ SPIN_LOCK(&pcd->lock);
-+#ifdef VERBOSE
-+ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n",
-+ __func__,
-+ dwc_read_reg32(&global_regs->gintsts),
-+ dwc_read_reg32(&global_regs->gintmsk));
-+#endif
-+
-+ gintr_status.d32 = dwc_otg_read_core_intr(core_if);
-+/*
-+ if (!gintr_status.d32) {
-+ SPIN_UNLOCK(&pcd->lock);
-+ return 0;
-+ }
-+*/
-+ DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n",
-+ __func__, gintr_status.d32);
-+
-+ if (gintr_status.b.sofintr) {
-+ retval |= dwc_otg_pcd_handle_sof_intr(pcd);
-+ }
-+ if (gintr_status.b.rxstsqlvl) {
-+ retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd);
-+ }
-+ if (gintr_status.b.nptxfempty) {
-+ retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd);
-+ }
-+ if (gintr_status.b.ginnakeff) {
-+ retval |= dwc_otg_pcd_handle_in_nak_effective(pcd);
-+ }
-+ if (gintr_status.b.goutnakeff) {
-+ retval |= dwc_otg_pcd_handle_out_nak_effective(pcd);
-+ }
-+ if (gintr_status.b.i2cintr) {
-+ retval |= dwc_otg_pcd_handle_i2c_intr(pcd);
-+ }
-+ if (gintr_status.b.erlysuspend) {
-+ retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd);
-+ }
-+ if (gintr_status.b.usbreset) {
-+ retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd);
-+ }
-+ if (gintr_status.b.enumdone) {
-+ retval |= dwc_otg_pcd_handle_enum_done_intr(pcd);
-+ }
-+ if (gintr_status.b.isooutdrop) {
-+ retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd);
-+ }
-+ if (gintr_status.b.eopframe) {
-+ retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd);
-+ }
-+ if (gintr_status.b.epmismatch) {
-+ retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if);
-+ }
-+ if (gintr_status.b.inepint) {
-+ if(!core_if->multiproc_int_enable) {
-+ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
-+ }
-+ }
-+ if (gintr_status.b.outepintr) {
-+ if(!core_if->multiproc_int_enable) {
-+ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
-+ }
-+ }
-+ if (gintr_status.b.incomplisoin) {
-+ retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd);
-+ }
-+ if (gintr_status.b.incomplisoout) {
-+ retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd);
-+ }
-+
-+ /* In MPI mode De vice Endpoints intterrupts are asserted
-+ * without setting outepintr and inepint bits set, so these
-+ * Interrupt handlers are called without checking these bit-fields
-+ */
-+ if(core_if->multiproc_int_enable) {
-+ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
-+ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
-+ }
-+#ifdef VERBOSE
-+ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__,
-+ dwc_read_reg32(&global_regs->gintsts));
-+#endif
-+ SPIN_UNLOCK(&pcd->lock);
-+ }
-+ S3C2410X_CLEAR_EINTPEND();
-+
-+ return retval;
-+}
-+
-+#endif /* DWC_HOST_ONLY */
---- /dev/null
-+++ b/drivers/usb/dwc/otg_plat.h
-@@ -0,0 +1,266 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $
-+ * $Revision: #23 $
-+ * $Date: 2008/07/15 $
-+ * $Change: 1064915 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+#if !defined(__DWC_OTG_PLAT_H__)
-+#define __DWC_OTG_PLAT_H__
-+
-+#include <linux/types.h>
-+#include <linux/slab.h>
-+#include <linux/list.h>
-+#include <linux/delay.h>
-+#include <asm/io.h>
-+
-+/* Changed all readl and writel to __raw_readl, __raw_writel */
-+
-+/**
-+ * @file
-+ *
-+ * This file contains the Platform Specific constants, interfaces
-+ * (functions and macros) for Linux.
-+ *
-+ */
-+//#if !defined(__LINUX_ARM_ARCH__)
-+//#error "The contents of this file is Linux specific!!!"
-+//#endif
-+
-+/**
-+ * Reads the content of a register.
-+ *
-+ * @param reg address of register to read.
-+ * @return contents of the register.
-+ *
-+
-+ * Usage:<br>
-+ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
-+ */
-+static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg)
-+{
-+ return __raw_readl(reg);
-+ // return readl(reg);
-+};
-+
-+/**
-+ * Writes a register with a 32 bit value.
-+ *
-+ * @param reg address of register to read.
-+ * @param value to write to _reg.
-+ *
-+ * Usage:<br>
-+ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
-+ */
-+static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value)
-+{
-+ // writel( value, reg );
-+ __raw_writel(value, reg);
-+
-+};
-+
-+/**
-+ * This function modifies bit values in a register. Using the
-+ * algorithm: (reg_contents & ~clear_mask) | set_mask.
-+ *
-+ * @param reg address of register to read.
-+ * @param clear_mask bit mask to be cleared.
-+ * @param set_mask bit mask to be set.
-+ *
-+ * Usage:<br>
-+ * <code> // Clear the SOF Interrupt Mask bit and <br>
-+ * // set the OTG Interrupt mask bit, leaving all others as they were.
-+ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
-+ */
-+static __inline__
-+ void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask)
-+{
-+ // writel( (readl(reg) & ~clear_mask) | set_mask, reg );
-+ __raw_writel( (__raw_readl(reg) & ~clear_mask) | set_mask, reg );
-+};
-+
-+
-+/**
-+ * Wrapper for the OS micro-second delay function.
-+ * @param[in] usecs Microseconds of delay
-+ */
-+static __inline__ void UDELAY( const uint32_t usecs )
-+{
-+ udelay( usecs );
-+}
-+
-+/**
-+ * Wrapper for the OS milli-second delay function.
-+ * @param[in] msecs milliseconds of delay
-+ */
-+static __inline__ void MDELAY( const uint32_t msecs )
-+{
-+ mdelay( msecs );
-+}
-+
-+/**
-+ * Wrapper for the Linux spin_lock. On the ARM (Integrator)
-+ * spin_lock() is a nop.
-+ *
-+ * @param lock Pointer to the spinlock.
-+ */
-+static __inline__ void SPIN_LOCK( spinlock_t *lock )
-+{
-+ spin_lock(lock);
-+}
-+
-+/**
-+ * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
-+ * spin_lock() is a nop.
-+ *
-+ * @param lock Pointer to the spinlock.
-+ */
-+static __inline__ void SPIN_UNLOCK( spinlock_t *lock )
-+{
-+ spin_unlock(lock);
-+}
-+
-+/**
-+ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
-+ * (Integrator) spin_lock() is a nop.
-+ *
-+ * @param l Pointer to the spinlock.
-+ * @param f unsigned long for irq flags storage.
-+ */
-+#define SPIN_LOCK_IRQSAVE( l, f ) spin_lock_irqsave(l,f);
-+
-+/**
-+ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
-+ * (Integrator) spin_lock() is a nop.
-+ *
-+ * @param l Pointer to the spinlock.
-+ * @param f unsigned long for irq flags storage.
-+ */
-+#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f);
-+
-+/*
-+ * Debugging support vanishes in non-debug builds.
-+ */
-+
-+
-+/**
-+ * The Debug Level bit-mask variable.
-+ */
-+extern uint32_t g_dbg_lvl;
-+/**
-+ * Set the Debug Level variable.
-+ */
-+static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new )
-+{
-+ uint32_t old = g_dbg_lvl;
-+ g_dbg_lvl = new;
-+ return old;
-+}
-+
-+/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
-+#define DBG_CIL (0x2)
-+/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
-+ * messages */
-+#define DBG_CILV (0x20)
-+/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
-+ * messages */
-+#define DBG_PCD (0x4)
-+/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
-+ * messages */
-+#define DBG_PCDV (0x40)
-+/** When debug level has the DBG_HCD bit set, display Host debug messages */
-+#define DBG_HCD (0x8)
-+/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
-+ * messages */
-+#define DBG_HCDV (0x80)
-+/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
-+ * mode. */
-+#define DBG_HCD_URB (0x800)
-+
-+/** When debug level has any bit set, display debug messages */
-+#define DBG_ANY (0xFF)
-+
-+/** All debug messages off */
-+#define DBG_OFF 0
-+
-+/** Prefix string for DWC_DEBUG print macros. */
-+#define USB_DWC "DWC_otg: "
-+
-+/**
-+ * Print a debug message when the Global debug level variable contains
-+ * the bit defined in <code>lvl</code>.
-+ *
-+ * @param[in] lvl - Debug level, use one of the DBG_ constants above.
-+ * @param[in] x - like printf
-+ *
-+ * Example:<p>
-+ * <code>
-+ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
-+ * </code>
-+ * <br>
-+ * results in:<br>
-+ * <code>
-+ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
-+ * </code>
-+ */
-+#ifdef DEBUG
-+
-+# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
-+# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
-+
-+# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
-+
-+#else
-+
-+# define DWC_DEBUGPL(lvl, x...) do{}while(0)
-+# define DWC_DEBUGP(x...)
-+
-+# define CHK_DEBUG_LEVEL(level) (0)
-+
-+#endif /*DEBUG*/
-+
-+/**
-+ * Print an Error message.
-+ */
-+#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
-+/**
-+ * Print a Warning message.
-+ */
-+#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
-+/**
-+ * Print a notice (normal but significant message).
-+ */
-+#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
-+/**
-+ * Basic message printing.
-+ */
-+#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
-+
-+#endif
-+
---- /dev/null
-+++ b/drivers/usb/dwc/otg_regs.h
-@@ -0,0 +1,2059 @@
-+/* ==========================================================================
-+ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $
-+ * $Revision: #72 $
-+ * $Date: 2008/09/19 $
-+ * $Change: 1099526 $
-+ *
-+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
-+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
-+ * otherwise expressly agreed to in writing between Synopsys and you.
-+ *
-+ * The Software IS NOT an item of Licensed Software or Licensed Product under
-+ * any End User Software License Agreement or Agreement for Licensed Product
-+ * with Synopsys or any supplement thereto. You are permitted to use and
-+ * redistribute this Software in source and binary forms, with or without
-+ * modification, provided that redistributions of source code must retain this
-+ * notice. You may not view, use, disclose, copy or distribute this file or
-+ * any information contained herein except pursuant to this license grant from
-+ * Synopsys. If you do not agree with this notice, including the disclaimer
-+ * below, then you are not authorized to use the Software.
-+ *
-+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
-+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
-+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
-+ * DAMAGE.
-+ * ========================================================================== */
-+
-+#ifndef __DWC_OTG_REGS_H__
-+#define __DWC_OTG_REGS_H__
-+
-+/**
-+ * @file
-+ *
-+ * This file contains the data structures for accessing the DWC_otg core registers.
-+ *
-+ * The application interfaces with the HS OTG core by reading from and
-+ * writing to the Control and Status Register (CSR) space through the
-+ * AHB Slave interface. These registers are 32 bits wide, and the
-+ * addresses are 32-bit-block aligned.
-+ * CSRs are classified as follows:
-+ * - Core Global Registers
-+ * - Device Mode Registers
-+ * - Device Global Registers
-+ * - Device Endpoint Specific Registers
-+ * - Host Mode Registers
-+ * - Host Global Registers
-+ * - Host Port CSRs
-+ * - Host Channel Specific Registers
-+ *
-+ * Only the Core Global registers can be accessed in both Device and
-+ * Host modes. When the HS OTG core is operating in one mode, either
-+ * Device or Host, the application must not access registers from the
-+ * other mode. When the core switches from one mode to another, the
-+ * registers in the new mode of operation must be reprogrammed as they
-+ * would be after a power-on reset.
-+ */
-+
-+/** Maximum number of Periodic FIFOs */
-+#define MAX_PERIO_FIFOS 15
-+/** Maximum number of Transmit FIFOs */
-+#define MAX_TX_FIFOS 15
-+
-+/** Maximum number of Endpoints/HostChannels */
-+#define MAX_EPS_CHANNELS 16
-+
-+/****************************************************************************/
-+/** DWC_otg Core registers .
-+ * The dwc_otg_core_global_regs structure defines the size
-+ * and relative field offsets for the Core Global registers.
-+ */
-+typedef struct dwc_otg_core_global_regs
-+{
-+ /** OTG Control and Status Register. <i>Offset: 000h</i> */
-+ volatile uint32_t gotgctl;
-+ /** OTG Interrupt Register. <i>Offset: 004h</i> */
-+ volatile uint32_t gotgint;
-+ /**Core AHB Configuration Register. <i>Offset: 008h</i> */
-+ volatile uint32_t gahbcfg;
-+
-+#define DWC_GLBINTRMASK 0x0001
-+#define DWC_DMAENABLE 0x0020
-+#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
-+#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
-+#define DWC_PTXEMPTYLVL_EMPTY 0x0100
-+#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
-+
-+ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
-+ volatile uint32_t gusbcfg;
-+ /**Core Reset Register. <i>Offset: 010h</i> */
-+ volatile uint32_t grstctl;
-+ /**Core Interrupt Register. <i>Offset: 014h</i> */
-+ volatile uint32_t gintsts;
-+ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
-+ volatile uint32_t gintmsk;
-+ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
-+ volatile uint32_t grxstsr;
-+ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
-+ volatile uint32_t grxstsp;
-+ /**Receive FIFO Size Register. <i>Offset: 024h</i> */
-+ volatile uint32_t grxfsiz;
-+ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
-+ volatile uint32_t gnptxfsiz;
-+ /**Non Periodic Transmit FIFO/Queue Status Register (Read
-+ * Only). <i>Offset: 02Ch</i> */
-+ volatile uint32_t gnptxsts;
-+ /**I2C Access Register. <i>Offset: 030h</i> */
-+ volatile uint32_t gi2cctl;
-+ /**PHY Vendor Control Register. <i>Offset: 034h</i> */
-+ volatile uint32_t gpvndctl;
-+ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
-+ volatile uint32_t ggpio;
-+ /**User ID Register. <i>Offset: 03Ch</i> */
-+ volatile uint32_t guid;
-+ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
-+ volatile uint32_t gsnpsid;
-+ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
-+ volatile uint32_t ghwcfg1;
-+ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
-+ volatile uint32_t ghwcfg2;
-+#define DWC_SLAVE_ONLY_ARCH 0
-+#define DWC_EXT_DMA_ARCH 1
-+#define DWC_INT_DMA_ARCH 2
-+
-+#define DWC_MODE_HNP_SRP_CAPABLE 0
-+#define DWC_MODE_SRP_ONLY_CAPABLE 1
-+#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
-+#define DWC_MODE_SRP_CAPABLE_DEVICE 3
-+#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
-+#define DWC_MODE_SRP_CAPABLE_HOST 5
-+#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
-+
-+ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
-+ volatile uint32_t ghwcfg3;
-+ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
-+ volatile uint32_t ghwcfg4;
-+ /** Reserved <i>Offset: 054h-0FFh</i> */
-+ volatile uint32_t reserved[43];
-+ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
-+ volatile uint32_t hptxfsiz;
-+ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
-+ otherwise Device Transmit FIFO#n Register.
-+ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
-+ volatile uint32_t dptxfsiz_dieptxf[15];
-+} dwc_otg_core_global_regs_t;
-+
-+/**
-+ * This union represents the bit fields of the Core OTG Control
-+ * and Status Register (GOTGCTL). Set the bits using the bit
-+ * fields then write the <i>d32</i> value to the register.
-+ */
-+typedef union gotgctl_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned sesreqscs : 1;
-+ unsigned sesreq : 1;
-+ unsigned reserved2_7 : 6;
-+ unsigned hstnegscs : 1;
-+ unsigned hnpreq : 1;
-+ unsigned hstsethnpen : 1;
-+ unsigned devhnpen : 1;
-+ unsigned reserved12_15 : 4;
-+ unsigned conidsts : 1;
-+ unsigned reserved17 : 1;
-+ unsigned asesvld : 1;
-+ unsigned bsesvld : 1;
-+ unsigned currmod : 1;
-+ unsigned reserved21_31 : 11;
-+ } b;
-+} gotgctl_data_t;
-+
-+/**
-+ * This union represents the bit fields of the Core OTG Interrupt Register
-+ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
-+ * value to the register.
-+ */
-+typedef union gotgint_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Current Mode */
-+ unsigned reserved0_1 : 2;
-+
-+ /** Session End Detected */
-+ unsigned sesenddet : 1;
-+
-+ unsigned reserved3_7 : 5;
-+
-+ /** Session Request Success Status Change */
-+ unsigned sesreqsucstschng : 1;
-+ /** Host Negotiation Success Status Change */
-+ unsigned hstnegsucstschng : 1;
-+
-+ unsigned reserver10_16 : 7;
-+
-+ /** Host Negotiation Detected */
-+ unsigned hstnegdet : 1;
-+ /** A-Device Timeout Change */
-+ unsigned adevtoutchng : 1;
-+ /** Debounce Done */
-+ unsigned debdone : 1;
-+
-+ unsigned reserved31_20 : 12;
-+
-+ } b;
-+} gotgint_data_t;
-+
-+
-+/**
-+ * This union represents the bit fields of the Core AHB Configuration
-+ * Register (GAHBCFG). Set/clear the bits using the bit fields then
-+ * write the <i>d32</i> value to the register.
-+ */
-+typedef union gahbcfg_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned glblintrmsk : 1;
-+#define DWC_GAHBCFG_GLBINT_ENABLE 1
-+
-+ unsigned hburstlen : 4;
-+#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
-+#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
-+#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
-+#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
-+#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
-+
-+ unsigned dmaenable : 1;
-+#define DWC_GAHBCFG_DMAENABLE 1
-+ unsigned reserved : 1;
-+ unsigned nptxfemplvl_txfemplvl : 1;
-+ unsigned ptxfemplvl : 1;
-+#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
-+#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
-+ unsigned reserved9_31 : 23;
-+ } b;
-+} gahbcfg_data_t;
-+
-+/**
-+ * This union represents the bit fields of the Core USB Configuration
-+ * Register (GUSBCFG). Set the bits using the bit fields then write
-+ * the <i>d32</i> value to the register.
-+ */
-+typedef union gusbcfg_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned toutcal : 3;
-+ unsigned phyif : 1;
-+ unsigned ulpi_utmi_sel : 1;
-+ unsigned fsintf : 1;
-+ unsigned physel : 1;
-+ unsigned ddrsel : 1;
-+ unsigned srpcap : 1;
-+ unsigned hnpcap : 1;
-+ unsigned usbtrdtim : 4;
-+ unsigned nptxfrwnden : 1;
-+ unsigned phylpwrclksel : 1;
-+ unsigned otgutmifssel : 1;
-+ unsigned ulpi_fsls : 1;
-+ unsigned ulpi_auto_res : 1;
-+ unsigned ulpi_clk_sus_m : 1;
-+ unsigned ulpi_ext_vbus_drv : 1;
-+ unsigned ulpi_int_vbus_indicator : 1;
-+ unsigned term_sel_dl_pulse : 1;
-+ unsigned reserved23_27 : 5;
-+ unsigned tx_end_delay : 1;
-+ unsigned reserved29_31 : 3;
-+ } b;
-+} gusbcfg_data_t;
-+
-+/**
-+ * This union represents the bit fields of the Core Reset Register
-+ * (GRSTCTL). Set/clear the bits using the bit fields then write the
-+ * <i>d32</i> value to the register.
-+ */
-+typedef union grstctl_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Core Soft Reset (CSftRst) (Device and Host)
-+ *
-+ * The application can flush the control logic in the
-+ * entire core using this bit. This bit resets the
-+ * pipelines in the AHB Clock domain as well as the
-+ * PHY Clock domain.
-+ *
-+ * The state machines are reset to an IDLE state, the
-+ * control bits in the CSRs are cleared, all the
-+ * transmit FIFOs and the receive FIFO are flushed.
-+ *
-+ * The status mask bits that control the generation of
-+ * the interrupt, are cleared, to clear the
-+ * interrupt. The interrupt status bits are not
-+ * cleared, so the application can get the status of
-+ * any events that occurred in the core after it has
-+ * set this bit.
-+ *
-+ * Any transactions on the AHB are terminated as soon
-+ * as possible following the protocol. Any
-+ * transactions on the USB are terminated immediately.
-+ *
-+ * The configuration settings in the CSRs are
-+ * unchanged, so the software doesn't have to
-+ * reprogram these registers (Device
-+ * Configuration/Host Configuration/Core System
-+ * Configuration/Core PHY Configuration).
-+ *
-+ * The application can write to this bit, any time it
-+ * wants to reset the core. This is a self clearing
-+ * bit and the core clears this bit after all the
-+ * necessary logic is reset in the core, which may
-+ * take several clocks, depending on the current state
-+ * of the core.
-+ */
-+ unsigned csftrst : 1;
-+ /** Hclk Soft Reset
-+ *
-+ * The application uses this bit to reset the control logic in
-+ * the AHB clock domain. Only AHB clock domain pipelines are
-+ * reset.
-+ */
-+ unsigned hsftrst : 1;
-+ /** Host Frame Counter Reset (Host Only)<br>
-+ *
-+ * The application can reset the (micro)frame number
-+ * counter inside the core, using this bit. When the
-+ * (micro)frame counter is reset, the subsequent SOF
-+ * sent out by the core, will have a (micro)frame
-+ * number of 0.
-+ */
-+ unsigned hstfrm : 1;
-+ /** In Token Sequence Learning Queue Flush
-+ * (INTknQFlsh) (Device Only)
-+ */
-+ unsigned intknqflsh : 1;
-+ /** RxFIFO Flush (RxFFlsh) (Device and Host)
-+ *
-+ * The application can flush the entire Receive FIFO
-+ * using this bit. <p>The application must first
-+ * ensure that the core is not in the middle of a
-+ * transaction. <p>The application should write into
-+ * this bit, only after making sure that neither the
-+ * DMA engine is reading from the RxFIFO nor the MAC
-+ * is writing the data in to the FIFO. <p>The
-+ * application should wait until the bit is cleared
-+ * before performing any other operations. This bit
-+ * will takes 8 clocks (slowest of PHY or AHB clock)
-+ * to clear.
-+ */
-+ unsigned rxfflsh : 1;
-+ /** TxFIFO Flush (TxFFlsh) (Device and Host).
-+ *
-+ * This bit is used to selectively flush a single or
-+ * all transmit FIFOs. The application must first
-+ * ensure that the core is not in the middle of a
-+ * transaction. <p>The application should write into
-+ * this bit, only after making sure that neither the
-+ * DMA engine is writing into the TxFIFO nor the MAC
-+ * is reading the data out of the FIFO. <p>The
-+ * application should wait until the core clears this
-+ * bit, before performing any operations. This bit
-+ * will takes 8 clocks (slowest of PHY or AHB clock)
-+ * to clear.
-+ */
-+ unsigned txfflsh : 1;
-+ /** TxFIFO Number (TxFNum) (Device and Host).
-+ *
-+ * This is the FIFO number which needs to be flushed,
-+ * using the TxFIFO Flush bit. This field should not
-+ * be changed until the TxFIFO Flush bit is cleared by
-+ * the core.
-+ * - 0x0 : Non Periodic TxFIFO Flush
-+ * - 0x1 : Periodic TxFIFO #1 Flush in device mode
-+ * or Periodic TxFIFO in host mode
-+ * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
-+ * - ...
-+ * - 0xF : Periodic TxFIFO #15 Flush in device mode
-+ * - 0x10: Flush all the Transmit NonPeriodic and
-+ * Transmit Periodic FIFOs in the core
-+ */
-+ unsigned txfnum : 5;
-+ /** Reserved */
-+ unsigned reserved11_29 : 19;
-+ /** DMA Request Signal. Indicated DMA request is in
-+ * probress. Used for debug purpose. */
-+ unsigned dmareq : 1;
-+ /** AHB Master Idle. Indicates the AHB Master State
-+ * Machine is in IDLE condition. */
-+ unsigned ahbidle : 1;
-+ } b;
-+} grstctl_t;
-+
-+
-+/**
-+ * This union represents the bit fields of the Core Interrupt Mask
-+ * Register (GINTMSK). Set/clear the bits using the bit fields then
-+ * write the <i>d32</i> value to the register.
-+ */
-+typedef union gintmsk_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned reserved0 : 1;
-+ unsigned modemismatch : 1;
-+ unsigned otgintr : 1;
-+ unsigned sofintr : 1;
-+ unsigned rxstsqlvl : 1;
-+ unsigned nptxfempty : 1;
-+ unsigned ginnakeff : 1;
-+ unsigned goutnakeff : 1;
-+ unsigned reserved8 : 1;
-+ unsigned i2cintr : 1;
-+ unsigned erlysuspend : 1;
-+ unsigned usbsuspend : 1;
-+ unsigned usbreset : 1;
-+ unsigned enumdone : 1;
-+ unsigned isooutdrop : 1;
-+ unsigned eopframe : 1;
-+ unsigned reserved16 : 1;
-+ unsigned epmismatch : 1;
-+ unsigned inepintr : 1;
-+ unsigned outepintr : 1;
-+ unsigned incomplisoin : 1;
-+ unsigned incomplisoout : 1;
-+ unsigned reserved22_23 : 2;
-+ unsigned portintr : 1;
-+ unsigned hcintr : 1;
-+ unsigned ptxfempty : 1;
-+ unsigned reserved27 : 1;
-+ unsigned conidstschng : 1;
-+ unsigned disconnect : 1;
-+ unsigned sessreqintr : 1;
-+ unsigned wkupintr : 1;
-+ } b;
-+} gintmsk_data_t;
-+/**
-+ * This union represents the bit fields of the Core Interrupt Register
-+ * (GINTSTS). Set/clear the bits using the bit fields then write the
-+ * <i>d32</i> value to the register.
-+ */
-+typedef union gintsts_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+#define DWC_SOF_INTR_MASK 0x0008
-+ /** register bits */
-+ struct
-+ {
-+#define DWC_HOST_MODE 1
-+ unsigned curmode : 1;
-+ unsigned modemismatch : 1;
-+ unsigned otgintr : 1;
-+ unsigned sofintr : 1;
-+ unsigned rxstsqlvl : 1;
-+ unsigned nptxfempty : 1;
-+ unsigned ginnakeff : 1;
-+ unsigned goutnakeff : 1;
-+ unsigned reserved8 : 1;
-+ unsigned i2cintr : 1;
-+ unsigned erlysuspend : 1;
-+ unsigned usbsuspend : 1;
-+ unsigned usbreset : 1;
-+ unsigned enumdone : 1;
-+ unsigned isooutdrop : 1;
-+ unsigned eopframe : 1;
-+ unsigned intokenrx : 1;
-+ unsigned epmismatch : 1;
-+ unsigned inepint: 1;
-+ unsigned outepintr : 1;
-+ unsigned incomplisoin : 1;
-+ unsigned incomplisoout : 1;
-+ unsigned reserved22_23 : 2;
-+ unsigned portintr : 1;
-+ unsigned hcintr : 1;
-+ unsigned ptxfempty : 1;
-+ unsigned reserved27 : 1;
-+ unsigned conidstschng : 1;
-+ unsigned disconnect : 1;
-+ unsigned sessreqintr : 1;
-+ unsigned wkupintr : 1;
-+ } b;
-+} gintsts_data_t;
-+
-+
-+/**
-+ * This union represents the bit fields in the Device Receive Status Read and
-+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
-+ * element then read out the bits using the <i>b</i>it elements.
-+ */
-+typedef union device_grxsts_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned epnum : 4;
-+ unsigned bcnt : 11;
-+ unsigned dpid : 2;
-+#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
-+#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
-+
-+#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
-+#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
-+#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
-+ unsigned pktsts : 4;
-+ unsigned fn : 4;
-+ unsigned reserved : 7;
-+ } b;
-+} device_grxsts_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Host Receive Status Read and
-+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
-+ * element then read out the bits using the <i>b</i>it elements.
-+ */
-+typedef union host_grxsts_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned chnum : 4;
-+ unsigned bcnt : 11;
-+ unsigned dpid : 2;
-+ unsigned pktsts : 4;
-+#define DWC_GRXSTS_PKTSTS_IN 0x2
-+#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
-+#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
-+#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
-+ unsigned reserved : 11;
-+ } b;
-+} host_grxsts_data_t;
-+
-+/**
-+ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
-+ * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then
-+ * read out the bits using the <i>b</i>it elements.
-+ */
-+typedef union fifosize_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned startaddr : 16;
-+ unsigned depth : 16;
-+ } b;
-+} fifosize_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Non-Periodic Transmit
-+ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
-+ * <i>d32</i> element then read out the bits using the <i>b</i>it
-+ * elements.
-+ */
-+typedef union gnptxsts_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned nptxfspcavail : 16;
-+ unsigned nptxqspcavail : 8;
-+ /** Top of the Non-Periodic Transmit Request Queue
-+ * - bit 24 - Terminate (Last entry for the selected
-+ * channel/EP)
-+ * - bits 26:25 - Token Type
-+ * - 2'b00 - IN/OUT
-+ * - 2'b01 - Zero Length OUT
-+ * - 2'b10 - PING/Complete Split
-+ * - 2'b11 - Channel Halt
-+ * - bits 30:27 - Channel/EP Number
-+ */
-+ unsigned nptxqtop_terminate : 1;
-+ unsigned nptxqtop_token : 2;
-+ unsigned nptxqtop_chnep : 4;
-+ unsigned reserved : 1;
-+ } b;
-+} gnptxsts_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Transmit
-+ * FIFO Status Register (DTXFSTS). Read the register into the
-+ * <i>d32</i> element then read out the bits using the <i>b</i>it
-+ * elements.
-+ */
-+typedef union dtxfsts_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned txfspcavail : 16;
-+ unsigned reserved : 16;
-+ } b;
-+} dtxfsts_data_t;
-+
-+/**
-+ * This union represents the bit fields in the I2C Control Register
-+ * (I2CCTL). Read the register into the <i>d32</i> element then read out the
-+ * bits using the <i>b</i>it elements.
-+ */
-+typedef union gi2cctl_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned rwdata : 8;
-+ unsigned regaddr : 8;
-+ unsigned addr : 7;
-+ unsigned i2cen : 1;
-+ unsigned ack : 1;
-+ unsigned i2csuspctl : 1;
-+ unsigned i2cdevaddr : 2;
-+ unsigned reserved : 2;
-+ unsigned rw : 1;
-+ unsigned bsydne : 1;
-+ } b;
-+} gi2cctl_data_t;
-+
-+/**
-+ * This union represents the bit fields in the User HW Config1
-+ * Register. Read the register into the <i>d32</i> element then read
-+ * out the bits using the <i>b</i>it elements.
-+ */
-+typedef union hwcfg1_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned ep_dir0 : 2;
-+ unsigned ep_dir1 : 2;
-+ unsigned ep_dir2 : 2;
-+ unsigned ep_dir3 : 2;
-+ unsigned ep_dir4 : 2;
-+ unsigned ep_dir5 : 2;
-+ unsigned ep_dir6 : 2;
-+ unsigned ep_dir7 : 2;
-+ unsigned ep_dir8 : 2;
-+ unsigned ep_dir9 : 2;
-+ unsigned ep_dir10 : 2;
-+ unsigned ep_dir11 : 2;
-+ unsigned ep_dir12 : 2;
-+ unsigned ep_dir13 : 2;
-+ unsigned ep_dir14 : 2;
-+ unsigned ep_dir15 : 2;
-+ } b;
-+} hwcfg1_data_t;
-+
-+/**
-+ * This union represents the bit fields in the User HW Config2
-+ * Register. Read the register into the <i>d32</i> element then read
-+ * out the bits using the <i>b</i>it elements.
-+ */
-+typedef union hwcfg2_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /* GHWCFG2 */
-+ unsigned op_mode : 3;
-+#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
-+#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
-+#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
-+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
-+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
-+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
-+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
-+
-+ unsigned architecture : 2;
-+ unsigned point2point : 1;
-+ unsigned hs_phy_type : 2;
-+#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
-+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
-+#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
-+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
-+
-+ unsigned fs_phy_type : 2;
-+ unsigned num_dev_ep : 4;
-+ unsigned num_host_chan : 4;
-+ unsigned perio_ep_supported : 1;
-+ unsigned dynamic_fifo : 1;
-+ unsigned multi_proc_int : 1;
-+ unsigned reserved21 : 1;
-+ unsigned nonperio_tx_q_depth : 2;
-+ unsigned host_perio_tx_q_depth : 2;
-+ unsigned dev_token_q_depth : 5;
-+ unsigned reserved31 : 1;
-+ } b;
-+} hwcfg2_data_t;
-+
-+/**
-+ * This union represents the bit fields in the User HW Config3
-+ * Register. Read the register into the <i>d32</i> element then read
-+ * out the bits using the <i>b</i>it elements.
-+ */
-+typedef union hwcfg3_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /* GHWCFG3 */
-+ unsigned xfer_size_cntr_width : 4;
-+ unsigned packet_size_cntr_width : 3;
-+ unsigned otg_func : 1;
-+ unsigned i2c : 1;
-+ unsigned vendor_ctrl_if : 1;
-+ unsigned optional_features : 1;
-+ unsigned synch_reset_type : 1;
-+ unsigned ahb_phy_clock_synch : 1;
-+ unsigned reserved15_13 : 3;
-+ unsigned dfifo_depth : 16;
-+ } b;
-+} hwcfg3_data_t;
-+
-+/**
-+ * This union represents the bit fields in the User HW Config4
-+ * Register. Read the register into the <i>d32</i> element then read
-+ * out the bits using the <i>b</i>it elements.
-+ */
-+typedef union hwcfg4_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned num_dev_perio_in_ep : 4;
-+ unsigned power_optimiz : 1;
-+ unsigned min_ahb_freq : 9;
-+ unsigned utmi_phy_data_width : 2;
-+ unsigned num_dev_mode_ctrl_ep : 4;
-+ unsigned iddig_filt_en : 1;
-+ unsigned vbus_valid_filt_en : 1;
-+ unsigned a_valid_filt_en : 1;
-+ unsigned b_valid_filt_en : 1;
-+ unsigned session_end_filt_en : 1;
-+ unsigned ded_fifo_en : 1;
-+ unsigned num_in_eps : 4;
-+ unsigned desc_dma : 1;
-+ unsigned desc_dma_dyn : 1;
-+ } b;
-+} hwcfg4_data_t;
-+
-+////////////////////////////////////////////
-+// Device Registers
-+/**
-+ * Device Global Registers. <i>Offsets 800h-BFFh</i>
-+ *
-+ * The following structures define the size and relative field offsets
-+ * for the Device Mode Registers.
-+ *
-+ * <i>These registers are visible only in Device mode and must not be
-+ * accessed in Host mode, as the results are unknown.</i>
-+ */
-+typedef struct dwc_otg_dev_global_regs
-+{
-+ /** Device Configuration Register. <i>Offset 800h</i> */
-+ volatile uint32_t dcfg;
-+ /** Device Control Register. <i>Offset: 804h</i> */
-+ volatile uint32_t dctl;
-+ /** Device Status Register (Read Only). <i>Offset: 808h</i> */
-+ volatile uint32_t dsts;
-+ /** Reserved. <i>Offset: 80Ch</i> */
-+ uint32_t unused;
-+ /** Device IN Endpoint Common Interrupt Mask
-+ * Register. <i>Offset: 810h</i> */
-+ volatile uint32_t diepmsk;
-+ /** Device OUT Endpoint Common Interrupt Mask
-+ * Register. <i>Offset: 814h</i> */
-+ volatile uint32_t doepmsk;
-+ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
-+ volatile uint32_t daint;
-+ /** Device All Endpoints Interrupt Mask Register. <i>Offset:
-+ * 81Ch</i> */
-+ volatile uint32_t daintmsk;
-+ /** Device IN Token Queue Read Register-1 (Read Only).
-+ * <i>Offset: 820h</i> */
-+ volatile uint32_t dtknqr1;
-+ /** Device IN Token Queue Read Register-2 (Read Only).
-+ * <i>Offset: 824h</i> */
-+ volatile uint32_t dtknqr2;
-+ /** Device VBUS discharge Register. <i>Offset: 828h</i> */
-+ volatile uint32_t dvbusdis;
-+ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
-+ volatile uint32_t dvbuspulse;
-+ /** Device IN Token Queue Read Register-3 (Read Only). /
-+ * Device Thresholding control register (Read/Write)
-+ * <i>Offset: 830h</i> */
-+ volatile uint32_t dtknqr3_dthrctl;
-+ /** Device IN Token Queue Read Register-4 (Read Only). /
-+ * Device IN EPs empty Inr. Mask Register (Read/Write)
-+ * <i>Offset: 834h</i> */
-+ volatile uint32_t dtknqr4_fifoemptymsk;
-+ /** Device Each Endpoint Interrupt Register (Read Only). /
-+ * <i>Offset: 838h</i> */
-+ volatile uint32_t deachint;
-+ /** Device Each Endpoint Interrupt mask Register (Read/Write). /
-+ * <i>Offset: 83Ch</i> */
-+ volatile uint32_t deachintmsk;
-+ /** Device Each In Endpoint Interrupt mask Register (Read/Write). /
-+ * <i>Offset: 840h</i> */
-+ volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS];
-+ /** Device Each Out Endpoint Interrupt mask Register (Read/Write). /
-+ * <i>Offset: 880h</i> */
-+ volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS];
-+} dwc_otg_device_global_regs_t;
-+
-+/**
-+ * This union represents the bit fields in the Device Configuration
-+ * Register. Read the register into the <i>d32</i> member then
-+ * set/clear the bits using the <i>b</i>it elements. Write the
-+ * <i>d32</i> member to the dcfg register.
-+ */
-+typedef union dcfg_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Device Speed */
-+ unsigned devspd : 2;
-+ /** Non Zero Length Status OUT Handshake */
-+ unsigned nzstsouthshk : 1;
-+#define DWC_DCFG_SEND_STALL 1
-+
-+ unsigned reserved3 : 1;
-+ /** Device Addresses */
-+ unsigned devaddr : 7;
-+ /** Periodic Frame Interval */
-+ unsigned perfrint : 2;
-+#define DWC_DCFG_FRAME_INTERVAL_80 0
-+#define DWC_DCFG_FRAME_INTERVAL_85 1
-+#define DWC_DCFG_FRAME_INTERVAL_90 2
-+#define DWC_DCFG_FRAME_INTERVAL_95 3
-+
-+ unsigned reserved13_17 : 5;
-+ /** In Endpoint Mis-match count */
-+ unsigned epmscnt : 5;
-+ /** Enable Descriptor DMA in Device mode */
-+ unsigned descdma : 1;
-+ } b;
-+} dcfg_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device Control
-+ * Register. Read the register into the <i>d32</i> member then
-+ * set/clear the bits using the <i>b</i>it elements.
-+ */
-+typedef union dctl_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Remote Wakeup */
-+ unsigned rmtwkupsig : 1;
-+ /** Soft Disconnect */
-+ unsigned sftdiscon : 1;
-+ /** Global Non-Periodic IN NAK Status */
-+ unsigned gnpinnaksts : 1;
-+ /** Global OUT NAK Status */
-+ unsigned goutnaksts : 1;
-+ /** Test Control */
-+ unsigned tstctl : 3;
-+ /** Set Global Non-Periodic IN NAK */
-+ unsigned sgnpinnak : 1;
-+ /** Clear Global Non-Periodic IN NAK */
-+ unsigned cgnpinnak : 1;
-+ /** Set Global OUT NAK */
-+ unsigned sgoutnak : 1;
-+ /** Clear Global OUT NAK */
-+ unsigned cgoutnak : 1;
-+
-+ /** Power-On Programming Done */
-+ unsigned pwronprgdone : 1;
-+ /** Global Continue on BNA */
-+ unsigned gcontbna : 1;
-+ /** Global Multi Count */
-+ unsigned gmc : 2;
-+ /** Ignore Frame Number for ISOC EPs */
-+ unsigned ifrmnum : 1;
-+ /** NAK on Babble */
-+ unsigned nakonbble : 1;
-+
-+ unsigned reserved16_31 : 16;
-+ } b;
-+} dctl_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device Status
-+ * Register. Read the register into the <i>d32</i> member then
-+ * set/clear the bits using the <i>b</i>it elements.
-+ */
-+typedef union dsts_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Suspend Status */
-+ unsigned suspsts : 1;
-+ /** Enumerated Speed */
-+ unsigned enumspd : 2;
-+#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
-+#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
-+#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
-+#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
-+ /** Erratic Error */
-+ unsigned errticerr : 1;
-+ unsigned reserved4_7: 4;
-+ /** Frame or Microframe Number of the received SOF */
-+ unsigned soffn : 14;
-+ unsigned reserved22_31 : 10;
-+ } b;
-+} dsts_data_t;
-+
-+
-+/**
-+ * This union represents the bit fields in the Device IN EP Interrupt
-+ * Register and the Device IN EP Common Mask Register.
-+ *
-+ * - Read the register into the <i>d32</i> member then set/clear the
-+ * bits using the <i>b</i>it elements.
-+ */
-+typedef union diepint_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Transfer complete mask */
-+ unsigned xfercompl : 1;
-+ /** Endpoint disable mask */
-+ unsigned epdisabled : 1;
-+ /** AHB Error mask */
-+ unsigned ahberr : 1;
-+ /** TimeOUT Handshake mask (non-ISOC EPs) */
-+ unsigned timeout : 1;
-+ /** IN Token received with TxF Empty mask */
-+ unsigned intktxfemp : 1;
-+ /** IN Token Received with EP mismatch mask */
-+ unsigned intknepmis : 1;
-+ /** IN Endpoint HAK Effective mask */
-+ unsigned inepnakeff : 1;
-+ /** IN Endpoint HAK Effective mask */
-+ unsigned emptyintr : 1;
-+ unsigned txfifoundrn : 1;
-+
-+ /** BNA Interrupt mask */
-+ unsigned bna : 1;
-+ unsigned reserved10_12 : 3;
-+ /** BNA Interrupt mask */
-+ unsigned nak : 1;
-+ unsigned reserved14_31 : 18;
-+ } b;
-+} diepint_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device IN EP
-+ * Common/Dedicated Interrupt Mask Register.
-+ */
-+typedef union diepint_data diepmsk_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device OUT EP Interrupt
-+ * Registerand Device OUT EP Common Interrupt Mask Register.
-+ *
-+ * - Read the register into the <i>d32</i> member then set/clear the
-+ * bits using the <i>b</i>it elements.
-+ */
-+typedef union doepint_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Transfer complete */
-+ unsigned xfercompl : 1;
-+ /** Endpoint disable */
-+ unsigned epdisabled : 1;
-+ /** AHB Error */
-+ unsigned ahberr : 1;
-+ /** Setup Phase Done (contorl EPs) */
-+ unsigned setup : 1;
-+ /** OUT Token Received when Endpoint Disabled */
-+ unsigned outtknepdis : 1;
-+ unsigned stsphsercvd : 1;
-+ /** Back-to-Back SETUP Packets Received */
-+ unsigned back2backsetup : 1;
-+ unsigned reserved7 : 1;
-+ /** OUT packet Error */
-+ unsigned outpkterr : 1;
-+ /** BNA Interrupt */
-+ unsigned bna : 1;
-+ unsigned reserved10 : 1;
-+ /** Packet Drop Status */
-+ unsigned pktdrpsts : 1;
-+ /** Babble Interrupt */
-+ unsigned babble : 1;
-+ /** NAK Interrupt */
-+ unsigned nak : 1;
-+ /** NYET Interrupt */
-+ unsigned nyet : 1;
-+
-+ unsigned reserved15_31 : 17;
-+ } b;
-+} doepint_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device OUT EP
-+ * Common/Dedicated Interrupt Mask Register.
-+ */
-+typedef union doepint_data doepmsk_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device All EP Interrupt
-+ * and Mask Registers.
-+ * - Read the register into the <i>d32</i> member then set/clear the
-+ * bits using the <i>b</i>it elements.
-+ */
-+typedef union daint_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** IN Endpoint bits */
-+ unsigned in : 16;
-+ /** OUT Endpoint bits */
-+ unsigned out : 16;
-+ } ep;
-+ struct
-+ {
-+ /** IN Endpoint bits */
-+ unsigned inep0 : 1;
-+ unsigned inep1 : 1;
-+ unsigned inep2 : 1;
-+ unsigned inep3 : 1;
-+ unsigned inep4 : 1;
-+ unsigned inep5 : 1;
-+ unsigned inep6 : 1;
-+ unsigned inep7 : 1;
-+ unsigned inep8 : 1;
-+ unsigned inep9 : 1;
-+ unsigned inep10 : 1;
-+ unsigned inep11 : 1;
-+ unsigned inep12 : 1;
-+ unsigned inep13 : 1;
-+ unsigned inep14 : 1;
-+ unsigned inep15 : 1;
-+ /** OUT Endpoint bits */
-+ unsigned outep0 : 1;
-+ unsigned outep1 : 1;
-+ unsigned outep2 : 1;
-+ unsigned outep3 : 1;
-+ unsigned outep4 : 1;
-+ unsigned outep5 : 1;
-+ unsigned outep6 : 1;
-+ unsigned outep7 : 1;
-+ unsigned outep8 : 1;
-+ unsigned outep9 : 1;
-+ unsigned outep10 : 1;
-+ unsigned outep11 : 1;
-+ unsigned outep12 : 1;
-+ unsigned outep13 : 1;
-+ unsigned outep14 : 1;
-+ unsigned outep15 : 1;
-+ } b;
-+} daint_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device IN Token Queue
-+ * Read Registers.
-+ * - Read the register into the <i>d32</i> member.
-+ * - READ-ONLY Register
-+ */
-+typedef union dtknq1_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** In Token Queue Write Pointer */
-+ unsigned intknwptr : 5;
-+ /** Reserved */
-+ unsigned reserved05_06 : 2;
-+ /** write pointer has wrapped. */
-+ unsigned wrap_bit : 1;
-+ /** EP Numbers of IN Tokens 0 ... 4 */
-+ unsigned epnums0_5 : 24;
-+ }b;
-+} dtknq1_data_t;
-+
-+/**
-+ * This union represents Threshold control Register
-+ * - Read and write the register into the <i>d32</i> member.
-+ * - READ-WRITABLE Register
-+ */
-+typedef union dthrctl_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** non ISO Tx Thr. Enable */
-+ unsigned non_iso_thr_en : 1;
-+ /** ISO Tx Thr. Enable */
-+ unsigned iso_thr_en : 1;
-+ /** Tx Thr. Length */
-+ unsigned tx_thr_len : 9;
-+ /** Reserved */
-+ unsigned reserved11_15 : 5;
-+ /** Rx Thr. Enable */
-+ unsigned rx_thr_en : 1;
-+ /** Rx Thr. Length */
-+ unsigned rx_thr_len : 9;
-+ /** Reserved */
-+ unsigned reserved26_31 : 6;
-+ }b;
-+} dthrctl_data_t;
-+
-+
-+/**
-+ * Device Logical IN Endpoint-Specific Registers. <i>Offsets
-+ * 900h-AFCh</i>
-+ *
-+ * There will be one set of endpoint registers per logical endpoint
-+ * implemented.
-+ *
-+ * <i>These registers are visible only in Device mode and must not be
-+ * accessed in Host mode, as the results are unknown.</i>
-+ */
-+typedef struct dwc_otg_dev_in_ep_regs
-+{
-+ /** Device IN Endpoint Control Register. <i>Offset:900h +
-+ * (ep_num * 20h) + 00h</i> */
-+ volatile uint32_t diepctl;
-+ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
-+ uint32_t reserved04;
-+ /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
-+ * (ep_num * 20h) + 08h</i> */
-+ volatile uint32_t diepint;
-+ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
-+ uint32_t reserved0C;
-+ /** Device IN Endpoint Transfer Size
-+ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
-+ volatile uint32_t dieptsiz;
-+ /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
-+ * (ep_num * 20h) + 14h</i> */
-+ volatile uint32_t diepdma;
-+ /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h +
-+ * (ep_num * 20h) + 18h</i> */
-+ volatile uint32_t dtxfsts;
-+ /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h +
-+ * (ep_num * 20h) + 1Ch</i> */
-+ volatile uint32_t diepdmab;
-+} dwc_otg_dev_in_ep_regs_t;
-+
-+/**
-+ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
-+ * B00h-CFCh</i>
-+ *
-+ * There will be one set of endpoint registers per logical endpoint
-+ * implemented.
-+ *
-+ * <i>These registers are visible only in Device mode and must not be
-+ * accessed in Host mode, as the results are unknown.</i>
-+ */
-+typedef struct dwc_otg_dev_out_ep_regs
-+{
-+ /** Device OUT Endpoint Control Register. <i>Offset:B00h +
-+ * (ep_num * 20h) + 00h</i> */
-+ volatile uint32_t doepctl;
-+ /** Device OUT Endpoint Frame number Register. <i>Offset:
-+ * B00h + (ep_num * 20h) + 04h</i> */
-+ volatile uint32_t doepfn;
-+ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
-+ * (ep_num * 20h) + 08h</i> */
-+ volatile uint32_t doepint;
-+ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
-+ uint32_t reserved0C;
-+ /** Device OUT Endpoint Transfer Size Register. <i>Offset:
-+ * B00h + (ep_num * 20h) + 10h</i> */
-+ volatile uint32_t doeptsiz;
-+ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
-+ * + (ep_num * 20h) + 14h</i> */
-+ volatile uint32_t doepdma;
-+ /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 1Ch</i> */
-+ uint32_t unused;
-+ /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h
-+ * + (ep_num * 20h) + 1Ch</i> */
-+ uint32_t doepdmab;
-+} dwc_otg_dev_out_ep_regs_t;
-+
-+/**
-+ * This union represents the bit fields in the Device EP Control
-+ * Register. Read the register into the <i>d32</i> member then
-+ * set/clear the bits using the <i>b</i>it elements.
-+ */
-+typedef union depctl_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Maximum Packet Size
-+ * IN/OUT EPn
-+ * IN/OUT EP0 - 2 bits
-+ * 2'b00: 64 Bytes
-+ * 2'b01: 32
-+ * 2'b10: 16
-+ * 2'b11: 8 */
-+ unsigned mps : 11;
-+#define DWC_DEP0CTL_MPS_64 0
-+#define DWC_DEP0CTL_MPS_32 1
-+#define DWC_DEP0CTL_MPS_16 2
-+#define DWC_DEP0CTL_MPS_8 3
-+
-+ /** Next Endpoint
-+ * IN EPn/IN EP0
-+ * OUT EPn/OUT EP0 - reserved */
-+ unsigned nextep : 4;
-+
-+ /** USB Active Endpoint */
-+ unsigned usbactep : 1;
-+
-+ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
-+ * This field contains the PID of the packet going to
-+ * be received or transmitted on this endpoint. The
-+ * application should program the PID of the first
-+ * packet going to be received or transmitted on this
-+ * endpoint , after the endpoint is
-+ * activated. Application use the SetD1PID and
-+ * SetD0PID fields of this register to program either
-+ * D0 or D1 PID.
-+ *
-+ * The encoding for this field is
-+ * - 0: D0
-+ * - 1: D1
-+ */
-+ unsigned dpid : 1;
-+
-+ /** NAK Status */
-+ unsigned naksts : 1;
-+
-+ /** Endpoint Type
-+ * 2'b00: Control
-+ * 2'b01: Isochronous
-+ * 2'b10: Bulk
-+ * 2'b11: Interrupt */
-+ unsigned eptype : 2;
-+
-+ /** Snoop Mode
-+ * OUT EPn/OUT EP0
-+ * IN EPn/IN EP0 - reserved */
-+ unsigned snp : 1;
-+
-+ /** Stall Handshake */
-+ unsigned stall : 1;
-+
-+ /** Tx Fifo Number
-+ * IN EPn/IN EP0
-+ * OUT EPn/OUT EP0 - reserved */
-+ unsigned txfnum : 4;
-+
-+ /** Clear NAK */
-+ unsigned cnak : 1;
-+ /** Set NAK */
-+ unsigned snak : 1;
-+ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
-+ * Writing to this field sets the Endpoint DPID (DPID)
-+ * field in this register to DATA0. Set Even
-+ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
-+ * Writing to this field sets the Even/Odd
-+ * (micro)frame (EO_FrNum) field to even (micro)
-+ * frame.
-+ */
-+ unsigned setd0pid : 1;
-+ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
-+ * Writing to this field sets the Endpoint DPID (DPID)
-+ * field in this register to DATA1 Set Odd
-+ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
-+ * Writing to this field sets the Even/Odd
-+ * (micro)frame (EO_FrNum) field to odd (micro) frame.
-+ */
-+ unsigned setd1pid : 1;
-+ /** Endpoint Disable */
-+ unsigned epdis : 1;
-+ /** Endpoint Enable */
-+ unsigned epena : 1;
-+ } b;
-+} depctl_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device EP Transfer
-+ * Size Register. Read the register into the <i>d32</i> member then
-+ * set/clear the bits using the <i>b</i>it elements.
-+ */
-+typedef union deptsiz_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct {
-+ /** Transfer size */
-+ unsigned xfersize : 19;
-+ /** Packet Count */
-+ unsigned pktcnt : 10;
-+ /** Multi Count - Periodic IN endpoints */
-+ unsigned mc : 2;
-+ unsigned reserved : 1;
-+ } b;
-+} deptsiz_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Device EP 0 Transfer
-+ * Size Register. Read the register into the <i>d32</i> member then
-+ * set/clear the bits using the <i>b</i>it elements.
-+ */
-+typedef union deptsiz0_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct {
-+ /** Transfer size */
-+ unsigned xfersize : 7;
-+ /** Reserved */
-+ unsigned reserved7_18 : 12;
-+ /** Packet Count */
-+ unsigned pktcnt : 1;
-+ /** Reserved */
-+ unsigned reserved20_28 : 9;
-+ /**Setup Packet Count (DOEPTSIZ0 Only) */
-+ unsigned supcnt : 2;
-+ unsigned reserved31;
-+ } b;
-+} deptsiz0_data_t;
-+
-+
-+/////////////////////////////////////////////////
-+// DMA Descriptor Specific Structures
-+//
-+
-+/** Buffer status definitions */
-+
-+#define BS_HOST_READY 0x0
-+#define BS_DMA_BUSY 0x1
-+#define BS_DMA_DONE 0x2
-+#define BS_HOST_BUSY 0x3
-+
-+/** Receive/Transmit status definitions */
-+
-+#define RTS_SUCCESS 0x0
-+#define RTS_BUFFLUSH 0x1
-+#define RTS_RESERVED 0x2
-+#define RTS_BUFERR 0x3
-+
-+
-+/**
-+ * This union represents the bit fields in the DMA Descriptor
-+ * status quadlet. Read the quadlet into the <i>d32</i> member then
-+ * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and
-+ * <i>b_iso_in</i> elements.
-+ */
-+typedef union desc_sts_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** quadlet bits */
-+ struct {
-+ /** Received number of bytes */
-+ unsigned bytes : 16;
-+
-+ unsigned reserved16_22 : 7;
-+ /** Multiple Transfer - only for OUT EPs */
-+ unsigned mtrf : 1;
-+ /** Setup Packet received - only for OUT EPs */
-+ unsigned sr : 1;
-+ /** Interrupt On Complete */
-+ unsigned ioc : 1;
-+ /** Short Packet */
-+ unsigned sp : 1;
-+ /** Last */
-+ unsigned l : 1;
-+ /** Receive Status */
-+ unsigned sts : 2;
-+ /** Buffer Status */
-+ unsigned bs : 2;
-+ } b;
-+
-+#ifdef DWC_EN_ISOC
-+ /** iso out quadlet bits */
-+ struct {
-+ /** Received number of bytes */
-+ unsigned rxbytes : 11;
-+
-+ unsigned reserved11 : 1;
-+ /** Frame Number */
-+ unsigned framenum : 11;
-+ /** Received ISO Data PID */
-+ unsigned pid : 2;
-+ /** Interrupt On Complete */
-+ unsigned ioc : 1;
-+ /** Short Packet */
-+ unsigned sp : 1;
-+ /** Last */
-+ unsigned l : 1;
-+ /** Receive Status */
-+ unsigned rxsts : 2;
-+ /** Buffer Status */
-+ unsigned bs : 2;
-+ } b_iso_out;
-+
-+ /** iso in quadlet bits */
-+ struct {
-+ /** Transmited number of bytes */
-+ unsigned txbytes : 12;
-+ /** Frame Number */
-+ unsigned framenum : 11;
-+ /** Transmited ISO Data PID */
-+ unsigned pid : 2;
-+ /** Interrupt On Complete */
-+ unsigned ioc : 1;
-+ /** Short Packet */
-+ unsigned sp : 1;
-+ /** Last */
-+ unsigned l : 1;
-+ /** Transmit Status */
-+ unsigned txsts : 2;
-+ /** Buffer Status */
-+ unsigned bs : 2;
-+ } b_iso_in;
-+#endif //DWC_EN_ISOC
-+} desc_sts_data_t;
-+
-+/**
-+ * DMA Descriptor structure
-+ *
-+ * DMA Descriptor structure contains two quadlets:
-+ * Status quadlet and Data buffer pointer.
-+ */
-+typedef struct dwc_otg_dma_desc
-+{
-+ /** DMA Descriptor status quadlet */
-+ desc_sts_data_t status;
-+ /** DMA Descriptor data buffer pointer */
-+ dma_addr_t buf;
-+} dwc_otg_dma_desc_t;
-+
-+/**
-+ * The dwc_otg_dev_if structure contains information needed to manage
-+ * the DWC_otg controller acting in device mode. It represents the
-+ * programming view of the device-specific aspects of the controller.
-+ */
-+typedef struct dwc_otg_dev_if
-+{
-+ /** Pointer to device Global registers.
-+ * Device Global Registers starting at offset 800h
-+ */
-+ dwc_otg_device_global_regs_t *dev_global_regs;
-+#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
-+
-+ /**
-+ * Device Logical IN Endpoint-Specific Registers 900h-AFCh
-+ */
-+ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
-+#define DWC_DEV_IN_EP_REG_OFFSET 0x900
-+#define DWC_EP_REG_OFFSET 0x20
-+
-+ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
-+ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
-+#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
-+
-+ /* Device configuration information*/
-+ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
-+ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
-+ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
-+
-+ /** Size of periodic FIFOs (Bytes) */
-+ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
-+
-+ /** Size of Tx FIFOs (Bytes) */
-+ uint16_t tx_fifo_size[MAX_TX_FIFOS];
-+
-+ /** Thresholding enable flags and length varaiables **/
-+ uint16_t rx_thr_en;
-+ uint16_t iso_tx_thr_en;
-+ uint16_t non_iso_tx_thr_en;
-+
-+ uint16_t rx_thr_length;
-+ uint16_t tx_thr_length;
-+
-+ /**
-+ * Pointers to the DMA Descriptors for EP0 Control
-+ * transfers (virtual and physical)
-+ */
-+ /** 2 descriptors for SETUP packets */
-+ uint32_t dma_setup_desc_addr[2];
-+ dwc_otg_dma_desc_t* setup_desc_addr[2];
-+
-+ /** Pointer to Descriptor with latest SETUP packet */
-+ dwc_otg_dma_desc_t* psetup;
-+
-+ /** Index of current SETUP handler descriptor */
-+ uint32_t setup_desc_index;
-+
-+ /** Descriptor for Data In or Status In phases */
-+ uint32_t dma_in_desc_addr;
-+ dwc_otg_dma_desc_t* in_desc_addr;;
-+
-+ /** Descriptor for Data Out or Status Out phases */
-+ uint32_t dma_out_desc_addr;
-+ dwc_otg_dma_desc_t* out_desc_addr;
-+} dwc_otg_dev_if_t;
-+
-+
-+
-+
-+/////////////////////////////////////////////////
-+// Host Mode Register Structures
-+//
-+/**
-+ * The Host Global Registers structure defines the size and relative
-+ * field offsets for the Host Mode Global Registers. Host Global
-+ * Registers offsets 400h-7FFh.
-+*/
-+typedef struct dwc_otg_host_global_regs
-+{
-+ /** Host Configuration Register. <i>Offset: 400h</i> */
-+ volatile uint32_t hcfg;
-+ /** Host Frame Interval Register. <i>Offset: 404h</i> */
-+ volatile uint32_t hfir;
-+ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
-+ volatile uint32_t hfnum;
-+ /** Reserved. <i>Offset: 40Ch</i> */
-+ uint32_t reserved40C;
-+ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
-+ volatile uint32_t hptxsts;
-+ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
-+ volatile uint32_t haint;
-+ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
-+ volatile uint32_t haintmsk;
-+} dwc_otg_host_global_regs_t;
-+
-+/**
-+ * This union represents the bit fields in the Host Configuration Register.
-+ * Read the register into the <i>d32</i> member then set/clear the bits using
-+ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
-+ */
-+typedef union hcfg_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ /** FS/LS Phy Clock Select */
-+ unsigned fslspclksel : 2;
-+#define DWC_HCFG_30_60_MHZ 0
-+#define DWC_HCFG_48_MHZ 1
-+#define DWC_HCFG_6_MHZ 2
-+
-+ /** FS/LS Only Support */
-+ unsigned fslssupp : 1;
-+ } b;
-+} hcfg_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Host Frame Remaing/Number
-+ * Register.
-+ */
-+typedef union hfir_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ unsigned frint : 16;
-+ unsigned reserved : 16;
-+ } b;
-+} hfir_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Host Frame Remaing/Number
-+ * Register.
-+ */
-+typedef union hfnum_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ unsigned frnum : 16;
-+#define DWC_HFNUM_MAX_FRNUM 0x3FFF
-+ unsigned frrem : 16;
-+ } b;
-+} hfnum_data_t;
-+
-+typedef union hptxsts_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ unsigned ptxfspcavail : 16;
-+ unsigned ptxqspcavail : 8;
-+ /** Top of the Periodic Transmit Request Queue
-+ * - bit 24 - Terminate (last entry for the selected channel)
-+ * - bits 26:25 - Token Type
-+ * - 2'b00 - Zero length
-+ * - 2'b01 - Ping
-+ * - 2'b10 - Disable
-+ * - bits 30:27 - Channel Number
-+ * - bit 31 - Odd/even microframe
-+ */
-+ unsigned ptxqtop_terminate : 1;
-+ unsigned ptxqtop_token : 2;
-+ unsigned ptxqtop_chnum : 4;
-+ unsigned ptxqtop_odd : 1;
-+ } b;
-+} hptxsts_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Host Port Control and Status
-+ * Register. Read the register into the <i>d32</i> member then set/clear the
-+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
-+ * hprt0 register.
-+ */
-+typedef union hprt0_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned prtconnsts : 1;
-+ unsigned prtconndet : 1;
-+ unsigned prtena : 1;
-+ unsigned prtenchng : 1;
-+ unsigned prtovrcurract : 1;
-+ unsigned prtovrcurrchng : 1;
-+ unsigned prtres : 1;
-+ unsigned prtsusp : 1;
-+ unsigned prtrst : 1;
-+ unsigned reserved9 : 1;
-+ unsigned prtlnsts : 2;
-+ unsigned prtpwr : 1;
-+ unsigned prttstctl : 4;
-+ unsigned prtspd : 2;
-+#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
-+#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
-+#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
-+ unsigned reserved19_31 : 13;
-+ } b;
-+} hprt0_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Host All Interrupt
-+ * Register.
-+ */
-+typedef union haint_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned ch0 : 1;
-+ unsigned ch1 : 1;
-+ unsigned ch2 : 1;
-+ unsigned ch3 : 1;
-+ unsigned ch4 : 1;
-+ unsigned ch5 : 1;
-+ unsigned ch6 : 1;
-+ unsigned ch7 : 1;
-+ unsigned ch8 : 1;
-+ unsigned ch9 : 1;
-+ unsigned ch10 : 1;
-+ unsigned ch11 : 1;
-+ unsigned ch12 : 1;
-+ unsigned ch13 : 1;
-+ unsigned ch14 : 1;
-+ unsigned ch15 : 1;
-+ unsigned reserved : 16;
-+ } b;
-+
-+ struct
-+ {
-+ unsigned chint : 16;
-+ unsigned reserved : 16;
-+ } b2;
-+} haint_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Host All Interrupt
-+ * Register.
-+ */
-+typedef union haintmsk_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ unsigned ch0 : 1;
-+ unsigned ch1 : 1;
-+ unsigned ch2 : 1;
-+ unsigned ch3 : 1;
-+ unsigned ch4 : 1;
-+ unsigned ch5 : 1;
-+ unsigned ch6 : 1;
-+ unsigned ch7 : 1;
-+ unsigned ch8 : 1;
-+ unsigned ch9 : 1;
-+ unsigned ch10 : 1;
-+ unsigned ch11 : 1;
-+ unsigned ch12 : 1;
-+ unsigned ch13 : 1;
-+ unsigned ch14 : 1;
-+ unsigned ch15 : 1;
-+ unsigned reserved : 16;
-+ } b;
-+
-+ struct
-+ {
-+ unsigned chint : 16;
-+ unsigned reserved : 16;
-+ } b2;
-+} haintmsk_data_t;
-+
-+/**
-+ * Host Channel Specific Registers. <i>500h-5FCh</i>
-+ */
-+typedef struct dwc_otg_hc_regs
-+{
-+ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
-+ volatile uint32_t hcchar;
-+ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
-+ volatile uint32_t hcsplt;
-+ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
-+ volatile uint32_t hcint;
-+ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
-+ volatile uint32_t hcintmsk;
-+ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
-+ volatile uint32_t hctsiz;
-+ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
-+ volatile uint32_t hcdma;
-+ /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
-+ uint32_t reserved[2];
-+} dwc_otg_hc_regs_t;
-+
-+/**
-+ * This union represents the bit fields in the Host Channel Characteristics
-+ * Register. Read the register into the <i>d32</i> member then set/clear the
-+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
-+ * hcchar register.
-+ */
-+typedef union hcchar_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ /** Maximum packet size in bytes */
-+ unsigned mps : 11;
-+
-+ /** Endpoint number */
-+ unsigned epnum : 4;
-+
-+ /** 0: OUT, 1: IN */
-+ unsigned epdir : 1;
-+
-+ unsigned reserved : 1;
-+
-+ /** 0: Full/high speed device, 1: Low speed device */
-+ unsigned lspddev : 1;
-+
-+ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
-+ unsigned eptype : 2;
-+
-+ /** Packets per frame for periodic transfers. 0 is reserved. */
-+ unsigned multicnt : 2;
-+
-+ /** Device address */
-+ unsigned devaddr : 7;
-+
-+ /**
-+ * Frame to transmit periodic transaction.
-+ * 0: even, 1: odd
-+ */
-+ unsigned oddfrm : 1;
-+
-+ /** Channel disable */
-+ unsigned chdis : 1;
-+
-+ /** Channel enable */
-+ unsigned chen : 1;
-+ } b;
-+} hcchar_data_t;
-+
-+typedef union hcsplt_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ /** Port Address */
-+ unsigned prtaddr : 7;
-+
-+ /** Hub Address */
-+ unsigned hubaddr : 7;
-+
-+ /** Transaction Position */
-+ unsigned xactpos : 2;
-+#define DWC_HCSPLIT_XACTPOS_MID 0
-+#define DWC_HCSPLIT_XACTPOS_END 1
-+#define DWC_HCSPLIT_XACTPOS_BEGIN 2
-+#define DWC_HCSPLIT_XACTPOS_ALL 3
-+
-+ /** Do Complete Split */
-+ unsigned compsplt : 1;
-+
-+ /** Reserved */
-+ unsigned reserved : 14;
-+
-+ /** Split Enble */
-+ unsigned spltena : 1;
-+ } b;
-+} hcsplt_data_t;
-+
-+
-+/**
-+ * This union represents the bit fields in the Host All Interrupt
-+ * Register.
-+ */
-+typedef union hcint_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+ /** register bits */
-+ struct
-+ {
-+ /** Transfer Complete */
-+ unsigned xfercomp : 1;
-+ /** Channel Halted */
-+ unsigned chhltd : 1;
-+ /** AHB Error */
-+ unsigned ahberr : 1;
-+ /** STALL Response Received */
-+ unsigned stall : 1;
-+ /** NAK Response Received */
-+ unsigned nak : 1;
-+ /** ACK Response Received */
-+ unsigned ack : 1;
-+ /** NYET Response Received */
-+ unsigned nyet : 1;
-+ /** Transaction Err */
-+ unsigned xacterr : 1;
-+ /** Babble Error */
-+ unsigned bblerr : 1;
-+ /** Frame Overrun */
-+ unsigned frmovrun : 1;
-+ /** Data Toggle Error */
-+ unsigned datatglerr : 1;
-+ /** Reserved */
-+ unsigned reserved : 21;
-+ } b;
-+} hcint_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Host Channel Transfer Size
-+ * Register. Read the register into the <i>d32</i> member then set/clear the
-+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
-+ * hcchar register.
-+ */
-+typedef union hctsiz_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ /** Total transfer size in bytes */
-+ unsigned xfersize : 19;
-+
-+ /** Data packets to transfer */
-+ unsigned pktcnt : 10;
-+
-+ /**
-+ * Packet ID for next data packet
-+ * 0: DATA0
-+ * 1: DATA2
-+ * 2: DATA1
-+ * 3: MDATA (non-Control), SETUP (Control)
-+ */
-+ unsigned pid : 2;
-+#define DWC_HCTSIZ_DATA0 0
-+#define DWC_HCTSIZ_DATA1 2
-+#define DWC_HCTSIZ_DATA2 1
-+#define DWC_HCTSIZ_MDATA 3
-+#define DWC_HCTSIZ_SETUP 3
-+
-+ /** Do PING protocol when 1 */
-+ unsigned dopng : 1;
-+ } b;
-+} hctsiz_data_t;
-+
-+/**
-+ * This union represents the bit fields in the Host Channel Interrupt Mask
-+ * Register. Read the register into the <i>d32</i> member then set/clear the
-+ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
-+ * hcintmsk register.
-+ */
-+typedef union hcintmsk_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ unsigned xfercompl : 1;
-+ unsigned chhltd : 1;
-+ unsigned ahberr : 1;
-+ unsigned stall : 1;
-+ unsigned nak : 1;
-+ unsigned ack : 1;
-+ unsigned nyet : 1;
-+ unsigned xacterr : 1;
-+ unsigned bblerr : 1;
-+ unsigned frmovrun : 1;
-+ unsigned datatglerr : 1;
-+ unsigned reserved : 21;
-+ } b;
-+} hcintmsk_data_t;
-+
-+/** OTG Host Interface Structure.
-+ *
-+ * The OTG Host Interface Structure structure contains information
-+ * needed to manage the DWC_otg controller acting in host mode. It
-+ * represents the programming view of the host-specific aspects of the
-+ * controller.
-+ */
-+typedef struct dwc_otg_host_if
-+{
-+ /** Host Global Registers starting at offset 400h.*/
-+ dwc_otg_host_global_regs_t *host_global_regs;
-+#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
-+
-+ /** Host Port 0 Control and Status Register */
-+ volatile uint32_t *hprt0;
-+#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
-+
-+ /** Host Channel Specific Registers at offsets 500h-5FCh. */
-+ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
-+#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
-+#define DWC_OTG_CHAN_REGS_OFFSET 0x20
-+
-+
-+ /* Host configuration information */
-+ /** Number of Host Channels (range: 1-16) */
-+ uint8_t num_host_channels;
-+ /** Periodic EPs supported (0: no, 1: yes) */
-+ uint8_t perio_eps_supported;
-+ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
-+ uint16_t perio_tx_fifo_size;
-+} dwc_otg_host_if_t;
-+
-+
-+/**
-+ * This union represents the bit fields in the Power and Clock Gating Control
-+ * Register. Read the register into the <i>d32</i> member then set/clear the
-+ * bits using the <i>b</i>it elements.
-+ */
-+typedef union pcgcctl_data
-+{
-+ /** raw register data */
-+ uint32_t d32;
-+
-+ /** register bits */
-+ struct
-+ {
-+ /** Stop Pclk */
-+ unsigned stoppclk : 1;
-+ /** Gate Hclk */
-+ unsigned gatehclk : 1;
-+ /** Power Clamp */
-+ unsigned pwrclmp : 1;
-+ /** Reset Power Down Modules */
-+ unsigned rstpdwnmodule : 1;
-+ /** PHY Suspended */
-+ unsigned physuspended : 1;
-+ unsigned reserved : 27;
-+ } b;
-+} pcgcctl_data_t;
-+
-+
-+#endif
---- a/drivers/usb/core/urb.c
-+++ b/drivers/usb/core/urb.c
-@@ -17,7 +17,11 @@ static void urb_destroy(struct kref *kre
-
- if (urb->transfer_flags & URB_FREE_BUFFER)
- kfree(urb->transfer_buffer);
--
-+ if (urb->aligned_transfer_buffer) {
-+ kfree(urb->aligned_transfer_buffer);
-+ urb->aligned_transfer_buffer = 0;
-+ urb->aligned_transfer_dma = 0;
-+ }
- kfree(urb);
- }
-
---- a/include/linux/usb.h
-+++ b/include/linux/usb.h
-@@ -1234,6 +1234,9 @@ struct urb {
- unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
- void *transfer_buffer; /* (in) associated data buffer */
- dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
-+ void *aligned_transfer_buffer; /* (in) associeated data buffer */
-+ dma_addr_t aligned_transfer_dma;/* (in) dma addr for transfer_buffer */
-+ u32 aligned_transfer_buffer_length; /* (in) data buffer length */
- struct scatterlist *sg; /* (in) scatter gather buffer list */
- int num_mapped_sgs; /* (internal) mapped sg entries */
- int num_sgs; /* (in) number of entries in the sg list */
---- a/drivers/usb/gadget/Kconfig
-+++ b/drivers/usb/gadget/Kconfig
-@@ -125,6 +125,7 @@ config USB_GADGET_STORAGE_NUM_BUFFERS
- #
- choice
- prompt "USB Peripheral Controller"
-+ depends on !USB_DWC_OTG
- help
- A USB device uses a controller to talk to its host.
- Systems should have only one such upstream link.
-@@ -616,7 +617,7 @@ config USB_ETH
- help
- This driver implements Ethernet style communication, in one of
- several ways:
--
-+
- - The "Communication Device Class" (CDC) Ethernet Control Model.
- That protocol is often avoided with pure Ethernet adapters, in
- favor of simpler vendor-specific hardware, but is widely
-@@ -656,7 +657,7 @@ config USB_ETH_RNDIS
- If you say "y" here, the Ethernet gadget driver will try to provide
- a second device configuration, supporting RNDIS to talk to such
- Microsoft USB hosts.
--
-+
- To make MS-Windows work with this, use Documentation/usb/linux.inf
- as the "driver info file". For versions of MS-Windows older than
- XP, you'll need to download drivers from Microsoft's website; a URL
---- a/drivers/usb/gadget/Makefile
-+++ b/drivers/usb/gadget/Makefile
-@@ -3,7 +3,7 @@
- #
- ccflags-$(CONFIG_USB_GADGET_DEBUG) := -DDEBUG
-
--obj-$(CONFIG_USB_GADGET) += udc-core.o
-+#obj-$(CONFIG_USB_GADGET) += udc-core.o
- obj-$(CONFIG_USB_DUMMY_HCD) += dummy_hcd.o
- obj-$(CONFIG_USB_NET2272) += net2272.o
- obj-$(CONFIG_USB_NET2280) += net2280.o
diff --git a/target/linux/cns3xxx/patches-3.3/800-cns3xxx-dwc_otg.patch b/target/linux/cns3xxx/patches-3.3/800-cns3xxx-dwc_otg.patch
new file mode 100644
index 0000000000..ce15f7ccd8
--- /dev/null
+++ b/target/linux/cns3xxx/patches-3.3/800-cns3xxx-dwc_otg.patch
@@ -0,0 +1,69 @@
+--- a/drivers/Makefile
++++ b/drivers/Makefile
+@@ -71,6 +71,7 @@ obj-$(CONFIG_PARIDE) += block/paride/
+ obj-$(CONFIG_TC) += tc/
+ obj-$(CONFIG_UWB) += uwb/
+ obj-$(CONFIG_USB_OTG_UTILS) += usb/
++obj-$(CONFIG_USB_DWC_OTG) += usb/dwc/
+ obj-$(CONFIG_USB) += usb/
+ obj-$(CONFIG_PCI) += usb/
+ obj-$(CONFIG_USB_GADGET) += usb/
+--- a/drivers/usb/Kconfig
++++ b/drivers/usb/Kconfig
+@@ -134,6 +134,8 @@ source "drivers/usb/musb/Kconfig"
+
+ source "drivers/usb/renesas_usbhs/Kconfig"
+
++source "drivers/usb/dwc/Kconfig"
++
+ source "drivers/usb/class/Kconfig"
+
+ source "drivers/usb/storage/Kconfig"
+--- a/drivers/usb/core/urb.c
++++ b/drivers/usb/core/urb.c
+@@ -17,7 +17,11 @@ static void urb_destroy(struct kref *kre
+
+ if (urb->transfer_flags & URB_FREE_BUFFER)
+ kfree(urb->transfer_buffer);
+-
++ if (urb->aligned_transfer_buffer) {
++ kfree(urb->aligned_transfer_buffer);
++ urb->aligned_transfer_buffer = 0;
++ urb->aligned_transfer_dma = 0;
++ }
+ kfree(urb);
+ }
+
+--- a/include/linux/usb.h
++++ b/include/linux/usb.h
+@@ -1234,6 +1234,9 @@ struct urb {
+ unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
+ void *transfer_buffer; /* (in) associated data buffer */
+ dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
++ void *aligned_transfer_buffer; /* (in) associeated data buffer */
++ dma_addr_t aligned_transfer_dma;/* (in) dma addr for transfer_buffer */
++ u32 aligned_transfer_buffer_length; /* (in) data buffer length */
+ struct scatterlist *sg; /* (in) scatter gather buffer list */
+ int num_mapped_sgs; /* (internal) mapped sg entries */
+ int num_sgs; /* (in) number of entries in the sg list */
+--- a/drivers/usb/gadget/Kconfig
++++ b/drivers/usb/gadget/Kconfig
+@@ -125,6 +125,7 @@ config USB_GADGET_STORAGE_NUM_BUFFERS
+ #
+ choice
+ prompt "USB Peripheral Controller"
++ depends on !USB_DWC_OTG
+ help
+ A USB device uses a controller to talk to its host.
+ Systems should have only one such upstream link.
+--- a/drivers/usb/gadget/Makefile
++++ b/drivers/usb/gadget/Makefile
+@@ -3,7 +3,7 @@
+ #
+ ccflags-$(CONFIG_USB_GADGET_DEBUG) := -DDEBUG
+
+-obj-$(CONFIG_USB_GADGET) += udc-core.o
++#obj-$(CONFIG_USB_GADGET) += udc-core.o
+ obj-$(CONFIG_USB_DUMMY_HCD) += dummy_hcd.o
+ obj-$(CONFIG_USB_NET2272) += net2272.o
+ obj-$(CONFIG_USB_NET2280) += net2280.o