/* * Read a squashfs filesystem. This is a highly compressed read only filesystem. * * Copyright (c) 2002, 2003, 2004 Phillip Lougher * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2, * or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * read_fs.c */ extern void read_bytes(int, unsigned int, int, char *); extern int add_file(int, int, unsigned int *, int, unsigned int, int, int); #define TRUE 1 #define FALSE 0 #include #include #include #include #include #include #include #include #include #include "read_fs.h" #include #include #ifdef SQUASHFS_TRACE #define TRACE(s, args...) printf("mksquashfs: "s, ## args) #else #define TRACE(s, args...) #endif #define ERROR(s, args...) fprintf(stderr, s, ## args) int swap; int read_block(int fd, int start, int *next, unsigned char *block, squashfs_super_block *sBlk) { unsigned short c_byte; int offset = 2; if(swap) { read_bytes(fd, start, 2, block); ((unsigned char *) &c_byte)[1] = block[0]; ((unsigned char *) &c_byte)[0] = block[1]; } else read_bytes(fd, start, 2, (char *)&c_byte); if(SQUASHFS_CHECK_DATA(sBlk->flags)) offset = 3; if(SQUASHFS_COMPRESSED(c_byte)) { unsigned char buffer[SQUASHFS_METADATA_SIZE]; int res; long bytes = SQUASHFS_METADATA_SIZE; c_byte = SQUASHFS_COMPRESSED_SIZE(c_byte); read_bytes(fd, start + offset, c_byte, buffer); if((res = uncompress(block, &bytes, (const char *) buffer, c_byte)) != Z_OK) { if(res == Z_MEM_ERROR) ERROR("zlib::uncompress failed, not enough memory\n"); else if(res == Z_BUF_ERROR) ERROR("zlib::uncompress failed, not enough room in output buffer\n"); else ERROR("zlib::uncompress failed, unknown error %d\n", res); return 0; } if(next) *next = start + offset + c_byte; return bytes; } else { c_byte = SQUASHFS_COMPRESSED_SIZE(c_byte); read_bytes(fd, start + offset, c_byte, block); if(next) *next = start + offset + c_byte; return c_byte; } } int scan_inode_table(int fd, int start, int end, int root_inode_start, squashfs_super_block *sBlk, squashfs_dir_inode_header *dir_inode, unsigned char **inode_table, unsigned int *root_inode_block, unsigned int *uncompressed_file, unsigned int *uncompressed_directory, int *file_count, int *sym_count, int *dev_count, int *dir_count, int *fifo_count, int *sock_count) { unsigned char *cur_ptr; int bytes = 0, size = 0, files = 0; squashfs_reg_inode_header inode; unsigned int directory_start_block; TRACE("scan_inode_table: start 0x%x, end 0x%x, root_inode_start 0x%x\n", start, end, root_inode_start); while(start < end) { if(start == root_inode_start) { TRACE("scan_inode_table: read compressed block 0x%x containing root inode\n", start); *root_inode_block = bytes; } if((size - bytes < SQUASHFS_METADATA_SIZE) && ((*inode_table = realloc(*inode_table, size += SQUASHFS_METADATA_SIZE)) == NULL)) return FALSE; TRACE("scan_inode_table: reading block 0x%x\n", start); if((bytes += read_block(fd, start, &start, *inode_table + bytes, sBlk)) == 0) { free(*inode_table); return FALSE; } } /* * Read last inode entry which is the root directory inode, and obtain the last * directory start block index. This is used when calculating the total uncompressed * directory size. The directory bytes in the last block will be counted as normal. * * The root inode is ignored in the inode scan. This ensures there is * always enough bytes left to read a regular file inode entry */ bytes -= sizeof(squashfs_dir_inode_header); if(swap) { squashfs_dir_inode_header sinode; memcpy((void *)&sinode, (void *)(*inode_table + bytes), sizeof(*dir_inode)); SQUASHFS_SWAP_DIR_INODE_HEADER(dir_inode, &sinode); } else memcpy((void *)dir_inode, (void *)(*inode_table + bytes), sizeof(*dir_inode)); directory_start_block = dir_inode->start_block; for(cur_ptr = *inode_table; cur_ptr < *inode_table + bytes; files ++) { if(swap) { squashfs_reg_inode_header sinode; memcpy((void *)&sinode, (void *)cur_ptr, sizeof(inode)); SQUASHFS_SWAP_REG_INODE_HEADER(&inode, &sinode); } else memcpy((void *)&inode, (void *)cur_ptr, sizeof(inode)); TRACE("scan_inode_table: processing inode @ byte position 0x%x, type 0x%x\n", cur_ptr - *inode_table, inode.inode_type); switch(inode.inode_type) { case SQUASHFS_FILE_TYPE: { int frag_bytes = inode.fragment == SQUASHFS_INVALID_BLK ? 0 : inode.file_size % sBlk->block_size; int blocks = inode.fragment == SQUASHFS_INVALID_BLK ? (inode.file_size + sBlk->block_size - 1) >> sBlk->block_log : inode.file_size >> sBlk->block_log; int file_bytes = 0, i, start = inode.start_block; unsigned int block_list[blocks]; TRACE("scan_inode_table: regular file, file_size %d, blocks %d\n", inode.file_size, blocks); cur_ptr += sizeof(inode); if(swap) { unsigned int sblock_list[blocks]; memcpy((void *)sblock_list, (void *)cur_ptr, blocks * sizeof(unsigned int)); SQUASHFS_SWAP_INTS(block_list, sblock_list, blocks); } else memcpy((void *)block_list, (void *)cur_ptr, blocks * sizeof(unsigned int)); *uncompressed_file += inode.file_size; (*file_count) ++; for(i = 0; i < blocks; i++) file_bytes += SQUASHFS_COMPRESSED_SIZE_BLOCK(block_list[i]); add_file(start, file_bytes, block_list, blocks, inode.fragment, inode.offset, frag_bytes); cur_ptr += blocks * sizeof(unsigned int); break; } case SQUASHFS_SYMLINK_TYPE: { squashfs_symlink_inode_header inodep; if(swap) { squashfs_symlink_inode_header sinodep; memcpy((void *)&sinodep, (void *)cur_ptr, sizeof(sinodep)); SQUASHFS_SWAP_SYMLINK_INODE_HEADER(&inodep, &sinodep); } else memcpy((void *)&inodep, (void *)cur_ptr, sizeof(inodep)); (*sym_count) ++; cur_ptr += sizeof(inodep) + inodep.symlink_size; break; } case SQUASHFS_DIR_TYPE: { squashfs_dir_inode_header dir_inode; if(swap) { squashfs_dir_inode_header sinode; memcpy((void *)&sinode, (void *)cur_ptr, sizeof(dir_inode)); SQUASHFS_SWAP_DIR_INODE_HEADER(&dir_inode, &sinode); } else memcpy((void *)&dir_inode, (void *)cur_ptr, sizeof(dir_inode)); if(dir_inode.start_block < directory_start_block) *uncompressed_directory += dir_inode.file_size; (*dir_count) ++; cur_ptr += sizeof(squashfs_dir_inode_header); break; } case SQUASHFS_BLKDEV_TYPE: case SQUASHFS_CHRDEV_TYPE: (*dev_count) ++; cur_ptr += sizeof(squashfs_dev_inode_header); break; case SQUASHFS_FIFO_TYPE: (*fifo_count) ++; cur_ptr += sizeof(squashfs_ipc_inode_header); break; case SQUASHFS_SOCKET_TYPE: (*sock_count) ++; cur_ptr += sizeof(squashfs_ipc_inode_header); break; default: ERROR("Unknown inode type %d in scan_inode_table!\n", inode.inode_type); free(*inode_table); return FALSE; } } return files; } int read_super(int fd, squashfs_super_block *sBlk, int *be, char *source) { read_bytes(fd, SQUASHFS_START, sizeof(squashfs_super_block), (char *) sBlk); /* Check it is a SQUASHFS superblock */ swap = 0; if(sBlk->s_magic != SQUASHFS_MAGIC) { if(sBlk->s_magic == SQUASHFS_MAGIC_SWAP) { squashfs_super_block sblk; ERROR("Reading a different endian SQUASHFS filesystem on %s - ignoring -le/-be options\n", source); SQUASHFS_SWAP_SUPER_BLOCK(&sblk, sBlk); memcpy(sBlk, &sblk, sizeof(squashfs_super_block)); swap = 1; } else { ERROR("Can't find a SQUASHFS superblock on %s\n", source); goto failed_mount; } } /* Check the MAJOR & MINOR versions */ if(sBlk->s_major != SQUASHFS_MAJOR || sBlk->s_minor > SQUASHFS_MINOR) { if(sBlk->s_major == 1) ERROR("Filesystem on %s is a SQUASHFS 1.x filesystem. Appending\nto SQUASHFS 1.x filesystems is not supported. Please convert it to a SQUASHFS 2.0 filesystem...n", source); else ERROR("Major/Minor mismatch, filesystem on %s is (%d:%d), I support (%d: <= %d)\n", source, sBlk->s_major, sBlk->s_minor, SQUASHFS_MAJOR, SQUASHFS_MINOR); goto failed_mount; } #if __BYTE_ORDER == __BIG_ENDIAN *be = !swap; #else *be = swap; #endif printf("Found a valid SQUASHFS superblock on %s.\n", source); printf("\tInodes are %scompressed\n", SQUASHFS_UNCOMPRESSED_INODES(sBlk->flags) ? "un" : ""); printf("\tData is %scompressed\n", SQUASHFS_UNCOMPRESSED_DATA(sBlk->flags) ? "un" : ""); printf("\tFragments are %scompressed\n", SQUASHFS_UNCOMPRESSED_FRAGMENTS(sBlk->flags) ? "un" : ""); printf("\tCheck data is %s present in the filesystem\n", SQUASHFS_CHECK_DATA(sBlk->flags) ? "" : "not"); printf("\tFragments are %s present in the filesystem\n", SQUASHFS_NO_FRAGMENTS(sBlk->flags) ? "not" : ""); printf("\tAlways_use_fragments option is %s specified\n", SQUASHFS_ALWAYS_FRAGMENTS(sBlk->flags) ? "" : "not"); printf("\tDuplicates are %s removed\n", SQUASHFS_DUPLICATES(sBlk->flags) ? "" : "not"); printf("\tFilesystem size %d bytes\n", sBlk->bytes_used); printf("\tBlock size %d\n", sBlk->block_size); printf("\tNumber of fragments %d\n", sBlk->fragments); printf("\tNumber of inodes %d\n", sBlk->inodes); printf("\tNumber of uids %d\n", sBlk->no_uids); printf("\tNumber of gids %d\n", sBlk->no_guids); TRACE("sBlk->inode_table_start %x\n", sBlk->inode_table_start); TRACE("sBlk->directory_table_start %x\n", sBlk->directory_table_start); TRACE("sBlk->uid_start %x\n", sBlk->uid_start); TRACE("sBlk->fragment_table_start %x\n", sBlk->fragment_table_start); printf("\n"); return TRUE; failed_mount: return FALSE; } unsigned char *squashfs_readdir(int fd, int root_entries, int start, int offset, int size, squashfs_super_block *sBlk, void (push_directory_entry)(char *, squashfs_inode, int)) { squashfs_dir_header dirh; char buffer[sizeof(squashfs_dir_entry) + SQUASHFS_NAME_LEN + 1]; squashfs_dir_entry *dire = (squashfs_dir_entry *) buffer; unsigned char *directory_table = NULL; int bytes = 0, dir_count; size += offset; if((directory_table = malloc((size + SQUASHFS_METADATA_SIZE * 2 - 1) & ~(SQUASHFS_METADATA_SIZE - 1))) == NULL) return NULL; while(bytes < size) { TRACE("squashfs_readdir: reading block 0x%x, bytes read so far %d\n", start, bytes); if((bytes += read_block(fd, start, &start, directory_table + bytes, sBlk)) == 0) { free(directory_table); return NULL; } } if(!root_entries) goto all_done; bytes = offset; while(bytes < size) { if(swap) { squashfs_dir_header sdirh; memcpy((void *)&sdirh, directory_table + bytes, sizeof(sdirh)); SQUASHFS_SWAP_DIR_HEADER(&dirh, &sdirh); } else memcpy((void *)&dirh, directory_table + bytes, sizeof(dirh)); dir_count = dirh.count + 1; TRACE("squashfs_readdir: Read directory header @ byte position 0x%x, 0x%x directory entries\n", bytes, dir_count); bytes += sizeof(dirh); while(dir_count--) { if(swap) { squashfs_dir_entry sdire; memcpy((void *)&sdire, directory_table + bytes, sizeof(sdire)); SQUASHFS_SWAP_DIR_ENTRY(dire, &sdire); } else memcpy((void *)dire, directory_table + bytes, sizeof(dire)); bytes += sizeof(*dire); memcpy((void *)dire->name, directory_table + bytes, dire->size + 1); dire->name[dire->size + 1] = '\0'; TRACE("squashfs_readdir: pushing directory entry %s, inode %x:%x, type 0x%x\n", dire->name, dirh.start_block, dire->offset, dire->type); push_directory_entry(dire->name, SQUASHFS_MKINODE(dirh.start_block, dire->offset), dire->type); bytes += dire->size + 1; } } all_done: return directory_table; } int read_fragment_table(int fd, squashfs_super_block *sBlk, squashfs_fragment_entry **fragment_table) { int i, indexes = SQUASHFS_FRAGMENT_INDEXES(sBlk->fragments); squashfs_fragment_index fragment_table_index[indexes]; TRACE("read_fragment_table: %d fragments, reading %d fragment indexes from 0x%x\n", sBlk->fragments, indexes, sBlk->fragment_table_start); if(sBlk->fragments == 0) return 1; if((*fragment_table = (squashfs_fragment_entry *) malloc(sBlk->fragments * sizeof(squashfs_fragment_entry))) == NULL) { ERROR("Failed to allocate fragment table\n"); return 0; } if(swap) { squashfs_fragment_index sfragment_table_index[indexes]; read_bytes(fd, sBlk->fragment_table_start, SQUASHFS_FRAGMENT_INDEX_BYTES(sBlk->fragments), (char *) sfragment_table_index); SQUASHFS_SWAP_FRAGMENT_INDEXES(fragment_table_index, sfragment_table_index, indexes); } else read_bytes(fd, sBlk->fragment_table_start, SQUASHFS_FRAGMENT_INDEX_BYTES(sBlk->fragments), (char *) fragment_table_index); for(i = 0; i < indexes; i++) { int length = read_block(fd, fragment_table_index[i], NULL, ((char *) *fragment_table) + (i * SQUASHFS_METADATA_SIZE), sBlk); TRACE("Read fragment table block %d, from 0x%x, length %d\n", i, fragment_table_index[i], length); } if(swap) { squashfs_fragment_entry sfragment; for(i = 0; i < sBlk->fragments; i++) { SQUASHFS_SWAP_FRAGMENT_ENTRY((&sfragment), (&(*fragment_table)[i])); memcpy((char *) &(*fragment_table)[i], (char *) &sfragment, sizeof(squashfs_fragment_entry)); } } return 1; } int read_filesystem(char *root_name, int fd, squashfs_super_block *sBlk, char **cinode_table, int *inode_bytes, char **data_cache, int *cache_bytes, int *cache_size, char **cdirectory_table, int *directory_bytes, char **directory_data_cache, int *directory_cache_bytes, int *directory_cache_size, int *file_count, int *sym_count, int *dev_count, int *dir_count, int *fifo_count, int *sock_count, squashfs_uid *uids, unsigned short *uid_count, squashfs_uid *guids, unsigned short *guid_count, unsigned int *uncompressed_file, unsigned int *uncompressed_inode, unsigned int *uncompressed_directory, void (push_directory_entry)(char *, squashfs_inode, int), squashfs_fragment_entry **fragment_table) { unsigned char *inode_table = NULL, *directory_table; unsigned int start = sBlk->inode_table_start, end = sBlk->directory_table_start, root_inode_start = start + SQUASHFS_INODE_BLK(sBlk->root_inode), root_inode_offset = SQUASHFS_INODE_OFFSET(sBlk->root_inode), root_directory_offset; squashfs_dir_inode_header inode; unsigned int files, root_inode_block; printf("Scanning existing filesystem...\n"); if(read_fragment_table(fd, sBlk, fragment_table) == 0) goto error; if((files = scan_inode_table(fd, start, end, root_inode_start, sBlk, &inode, &inode_table, &root_inode_block, uncompressed_file, uncompressed_directory, file_count, sym_count, dev_count, dir_count, fifo_count, sock_count)) == 0) { ERROR("read_filesystem: inode table read failed\n"); goto error; } *uncompressed_inode = root_inode_block; printf("Read existing filesystem, %d inodes scanned\n", files); if(inode.inode_type == SQUASHFS_DIR_TYPE) { if((directory_table = squashfs_readdir(fd, !root_name, sBlk->directory_table_start + inode.start_block, inode.offset, inode.file_size, sBlk, push_directory_entry)) == NULL) { ERROR("read_filesystem: Could not read root directory\n"); goto error; } if((*cinode_table = (char *) malloc(root_inode_start - start)) == NULL) { ERROR("read_filesystem: failed to alloc space for existing filesystem inode table\n"); goto error; } read_bytes(fd, start, root_inode_start - start, *cinode_table); if((*cdirectory_table = (char *) malloc(inode.start_block)) == NULL) { ERROR("read_filesystem: failed to alloc space for existing filesystem inode table\n"); goto error; } read_bytes(fd, sBlk->directory_table_start, inode.start_block, *cdirectory_table); *inode_bytes = root_inode_start - start; *directory_bytes = inode.start_block; root_inode_offset += sizeof(inode); root_directory_offset = inode.offset + inode.file_size; (*dir_count) ++; if(((*data_cache = (char *) malloc(root_inode_offset)) == NULL) || ((*directory_data_cache = (char *) malloc(root_directory_offset)) == NULL)) { ERROR("read_filesystem: failed to alloc inode/directory caches\n"); goto error; } memcpy(*data_cache, inode_table + root_inode_block, root_inode_offset); memcpy(*directory_data_cache, directory_table, root_directory_offset); *cache_size = root_inode_offset; *directory_cache_size = root_directory_offset; if(root_name) { push_directory_entry(root_name, sBlk->root_inode, SQUASHFS_DIR_TYPE); *cache_bytes = root_inode_offset; *directory_cache_bytes = root_directory_offset; } else { *cache_bytes = root_inode_offset - sizeof(inode); *directory_cache_bytes = inode.offset; } if(!swap) read_bytes(fd, sBlk->uid_start, sBlk->no_uids * sizeof(squashfs_uid), (char *) uids); else { squashfs_uid uids_copy[sBlk->no_uids]; read_bytes(fd, sBlk->uid_start, sBlk->no_uids * sizeof(squashfs_uid), (char *) uids_copy); SQUASHFS_SWAP_DATA(uids, uids_copy, sBlk->no_uids, sizeof(squashfs_uid) * 8); } if(!swap) read_bytes(fd, sBlk->guid_start, sBlk->no_guids * sizeof(squashfs_uid), (char *) guids); else { squashfs_uid guids_copy[sBlk->no_guids]; read_bytes(fd, sBlk->guid_start, sBlk->no_guids * sizeof(squashfs_uid), (char *) guids_copy); SQUASHFS_SWAP_DATA(guids, guids_copy, sBlk->no_guids, sizeof(squashfs_uid) * 8); } *uid_count = sBlk->no_uids; *guid_count = sBlk->no_guids; free(inode_table); free(directory_table); return sBlk->inode_table_start; } error: return 0; }