/* ********************************************************************* * Broadcom Common Firmware Environment (CFE) * * X86 simulator sparse memory File: X86MEM.C * * This module implements X86 memory for the X86 emulator * used by the BIOS simulator. To avoid allocating the * entire 1MB of PC's addressable memory, this is a "sparse" * memory model, allocating chunks of storage as needed. * VGA BIOSes seem to do all sorts of bizarre things to memory * so this helps reduce the total amount we need to allocate * significantly. * * In addition, this module lets the simulator "hook" * ranges of memory to be handled by a callback * routine. This is used so that we can redirect * accesses to VGA memory space to the PCI bus handler. * * Author: Mitch Lichtenberg (mpl@broadcom.com) * ********************************************************************* * * Copyright 2000,2001,2002,2003 * Broadcom Corporation. All rights reserved. * * This software is furnished under license and may be used and * copied only in accordance with the following terms and * conditions. Subject to these conditions, you may download, * copy, install, use, modify and distribute modified or unmodified * copies of this software in source and/or binary form. No title * or ownership is transferred hereby. * * 1) Any source code used, modified or distributed must reproduce * and retain this copyright notice and list of conditions * as they appear in the source file. * * 2) No right is granted to use any trade name, trademark, or * logo of Broadcom Corporation. The "Broadcom Corporation" * name may not be used to endorse or promote products derived * from this software without the prior written permission of * Broadcom Corporation. * * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED * WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR * PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT * SHALL BROADCOM BE LIABLE FOR ANY DAMAGES WHATSOEVER, AND IN * PARTICULAR, BROADCOM SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE), EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. ********************************************************************* */ #include "lib_types.h" #include "lib_string.h" #include "lib_malloc.h" #include "lib_printf.h" #include "x86mem.h" /* ********************************************************************* * Macros ********************************************************************* */ #define BSWAP_SHORT(s) ((((s) >> 8) & 0xFF) | (((s)&0xFF) << 8)) #define BSWAP_LONG(s) ((((s) & 0xFF000000) >> 24) | \ (((s) & 0x00FF0000) >> 8) | \ (((s) & 0x0000FF00) << 8) | \ (((s) & 0x000000FF) << 24)) /* ********************************************************************* * X86MEM_INIT() * * Initialize an X86mem object * * Input parameters: * mem - X86mem object * * Return value: * nothing ********************************************************************* */ void x86mem_init(x86mem_t *mem) { memset(mem,0,sizeof(mem)); } /* ********************************************************************* * X86MEM_UNINIT(mem) * * Uninitialize an X86mem object, freeing any storage * associated with it. * * Input parameters: * mem - x86mem object * * Return value: * nothing ********************************************************************* */ void x86mem_uninit(x86mem_t *mem) { int idx; for (idx = 0; idx < X86MEM_CHUNKS; idx++) { if (mem->data[idx]) { KFREE(mem->data[idx]); mem->data[idx] = NULL; } } } /* ********************************************************************* * X86MEM_READB(mem,addr) * * Read a byte of memory from the X86mem object. * * Input parameters: * mem - x86mem object * addr - address of byte to read * * Return value: * byte read ********************************************************************* */ uint8_t x86mem_readb(x86mem_t *mem,uint32_t addr) { uint8_t *p; if (mem->read[X86MEM_REGION(addr)]) { return (uint8_t) (*(mem->read[X86MEM_REGION(addr)]))(mem,addr,1); } p = (mem->data[X86MEM_REGION(addr)]); if (p) { return *(p + X86MEM_OFFSET(addr)); } else { return 0; } } /* ********************************************************************* * X86MEM_READW(mem,addr) * * Read a 16-bit word of memory from the X86mem object. * * Input parameters: * mem - x86mem object * addr - address of word to read * * Return value: * word read ********************************************************************* */ uint16_t x86mem_readw(x86mem_t *mem,uint32_t addr) { uint8_t *p; uint16_t ret; if (mem->read[X86MEM_REGION(addr)]) { return (uint8_t) (*(mem->read[X86MEM_REGION(addr)]))(mem,addr,2); } p = (mem->data[X86MEM_REGION(addr)]); if (!p) return 0; if ((addr & 1) || (X86MEM_OFFSET(addr) == X86MEM_CHUNKSIZE-1)) { ret = ((uint16_t) x86mem_readb(mem,addr+0)) | (((uint16_t) x86mem_readb(mem,addr+1)) << 8); return ret; } else { ret = *((uint16_t *) (p+X86MEM_OFFSET(addr))); #ifdef __MIPSEB ret = BSWAP_SHORT(ret); #endif } return ret; } /* ********************************************************************* * X86MEM_READL(mem,addr) * * Read a 32-bit dword of memory from the X86mem object. * * Input parameters: * mem - x86mem object * addr - address of dword to read * * Return value: * dword read ********************************************************************* */ uint32_t x86mem_readl(x86mem_t *mem,uint32_t addr) { uint8_t *p; uint32_t ret; if (mem->read[X86MEM_REGION(addr)]) { return (uint8_t) (*(mem->read[X86MEM_REGION(addr)]))(mem,addr,4); } p = (mem->data[X86MEM_REGION(addr)]); if (!p) return 0; if ((addr & 3) || (X86MEM_OFFSET(addr) >= X86MEM_CHUNKSIZE-3)) { ret = ((uint32_t) x86mem_readb(mem,addr+0)) | (((uint32_t) x86mem_readb(mem,addr+1)) << 8) | (((uint32_t) x86mem_readb(mem,addr+2)) << 16) | (((uint32_t) x86mem_readb(mem,addr+3)) << 24); } else { ret = *((uint32_t *) (p+X86MEM_OFFSET(addr))); #ifdef __MIPSEB ret = BSWAP_LONG(ret); #endif } return ret; } /* ********************************************************************* * X86MEM_WRITEB(mem,addr,data) * * Write a byte to the X86mem object * * Input parameters: * mem - x86mem object * addr - address of byte to write * data - data to write * * Return value: * nothing ********************************************************************* */ void x86mem_writeb(x86mem_t *mem,uint32_t addr,uint8_t data) { uint8_t *p; if (mem->write[X86MEM_REGION(addr)]) { (*(mem->write[X86MEM_REGION(addr)]))(mem,addr,data,1); return; } p = (mem->data[X86MEM_REGION(addr)]); if (p) { *(p + X86MEM_OFFSET(addr)) = data; } else { p = mem->data[X86MEM_REGION(addr)] = KMALLOC(X86MEM_CHUNKSIZE,sizeof(uint32_t)); if (p) { memset(p,0,X86MEM_CHUNKSIZE); *(p + X86MEM_OFFSET(addr)) = data; } } } /* ********************************************************************* * X86MEM_WRITEW(mem,addr,data) * * Write a 16-bit word to the X86mem object * * Input parameters: * mem - x86mem object * addr - address of word to write * data - data to write * * Return value: * nothing ********************************************************************* */ void x86mem_writew(x86mem_t *mem,uint32_t addr,uint16_t data) { uint8_t *p; if (mem->write[X86MEM_REGION(addr)]) { (*(mem->write[X86MEM_REGION(addr)]))(mem,addr,data,2); return; } p = (mem->data[X86MEM_REGION(addr)]); if (!p || (addr & 1) || (X86MEM_OFFSET(addr) == X86MEM_CHUNKSIZE-1)) { x86mem_writeb(mem,addr+0,(data & 0xFF)); x86mem_writeb(mem,addr+1,((data >> 8) & 0xFF)); } else { #ifdef __MIPSEB data = BSWAP_SHORT(data); #endif *((uint16_t *) (p+X86MEM_OFFSET(addr))) = data; } } /* ********************************************************************* * X86MEM_WRITEL(mem,addr,data) * * Write a 32-bit dword to the X86mem object * * Input parameters: * mem - x86mem object * addr - address of dword to write * data - data to write * * Return value: * nothing ********************************************************************* */ void x86mem_writel(x86mem_t *mem,uint32_t addr,uint32_t data) { uint8_t *p; if (mem->write[X86MEM_REGION(addr)]) { (*(mem->write[X86MEM_REGION(addr)]))(mem,addr,data,4); return; } p = (mem->data[X86MEM_REGION(addr)]); if (!p || (addr & 3) || (X86MEM_OFFSET(addr) >= X86MEM_CHUNKSIZE-3)) { x86mem_writeb(mem,addr+0,(data & 0xFF)); x86mem_writeb(mem,addr+1,((data >> 8) & 0xFF)); x86mem_writeb(mem,addr+2,((data >> 16) & 0xFF)); x86mem_writeb(mem,addr+3,((data >> 24) & 0xFF)); } else { #ifdef __MIPSEB data = BSWAP_LONG(data); #endif *((uint32_t *) (p+X86MEM_OFFSET(addr))) = data; } } /* ********************************************************************* * X86MEM_MEMCPY(mem,dest,src,cnt) * * memcpy data into the X86mem object * * Input parameters: * mem - x86mem object * destaddr - destination x86mem address * src - source local address * cnt - number of bytes to copy * * Return value: * nothing ********************************************************************* */ void x86mem_memcpy(x86mem_t *mem,uint32_t destaddr,uint8_t *src,int count) { while (count) { x86mem_writeb(mem,destaddr,*src); destaddr++; src++; count--; } } /* ********************************************************************* * X86MEM_HOOK(mem,addr,readf,writef) * * Establish a hook for a block of simulated memory * * Input parameters: * mem - x86mem object * addr - address in memory, should be aligned on a "chunk" * boundary. * readf - function to call on READ accesses * writef - function to call on WRITE accesses * * Return value: * nothing ********************************************************************* */ void x86mem_hook(x86mem_t *mem,uint32_t chunkaddr, uint32_t (*readf)(x86mem_t *mem,uint32_t addr,int size), void (*writef)(x86mem_t *mem,uint32_t addr,uint32_t val,int size)) { if (mem->data[X86MEM_REGION(chunkaddr)]) { KFREE(mem->data[X86MEM_REGION(chunkaddr)]); mem->data[X86MEM_REGION(chunkaddr)] = NULL; } mem->read[X86MEM_REGION(chunkaddr)] = readf; mem->write[X86MEM_REGION(chunkaddr)] = writef; } /* ********************************************************************* * X86MEM_HOOK_RANGE(mem,addr,size,readf,writef) * * Establish a hook for a block of simulated memory * * Input parameters: * mem - x86mem object * addr - address in memory, should be aligned on a "chunk" * boundary. * size - size of region to hook. Should be a multiple * of the chunk size * readf - function to call on READ accesses * writef - function to call on WRITE accesses * * Return value: * nothing ********************************************************************* */ void x86mem_hook_range(x86mem_t *mem,uint32_t chunkaddr,int size, uint32_t (*readf)(x86mem_t *mem,uint32_t addr,int size), void (*writef)(x86mem_t *mem,uint32_t addr,uint32_t val,int size)) { while (size > 0) { x86mem_hook(mem,chunkaddr,readf,writef); size -= X86MEM_CHUNKSIZE; chunkaddr += X86MEM_CHUNKSIZE; } }