aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/storm/patches/002-gmac.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/storm/patches/002-gmac.patch')
-rw-r--r--target/linux/storm/patches/002-gmac.patch18615
1 files changed, 18615 insertions, 0 deletions
diff --git a/target/linux/storm/patches/002-gmac.patch b/target/linux/storm/patches/002-gmac.patch
new file mode 100644
index 0000000000..99e710bb74
--- /dev/null
+++ b/target/linux/storm/patches/002-gmac.patch
@@ -0,0 +1,18615 @@
+--- /dev/null
++++ b/drivers/net/sl2312_emac.c
+@@ -0,0 +1,4604 @@
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/compiler.h>
++#include <linux/pci.h>
++#include <linux/init.h>
++#include <linux/ioport.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/rtnetlink.h>
++#include <linux/delay.h>
++#include <linux/ethtool.h>
++#include <linux/mii.h>
++#include <linux/completion.h>
++#include <asm/hardware.h>
++#include <asm/io.h>
++#include <asm/irq.h>
++#include <asm/semaphore.h>
++#include <asm/arch-sl2312/irqs.h>
++#include <asm/arch/it8712.h>
++#include <asm/arch/sl2312.h>
++#include <linux/mtd/kvctl.h>
++#include <linux/sysctl_storlink.h>
++
++#define BIG_ENDIAN 0
++
++#define GMAC_DEBUG 0
++
++#define GMAC_PHY_IF 2
++
++/* define PHY address */
++#define HPHY_ADDR 0x01
++#define GPHY_ADDR 0x02
++
++#define CONFIG_ADM_6999 1
++/* define chip information */
++#define DRV_NAME "SL2312"
++#define DRV_VERSION "0.1.1"
++#define SL2312_DRIVER_NAME DRV_NAME " Fast Ethernet driver " DRV_VERSION
++
++/* define TX/RX descriptor parameter */
++#define MAX_ETH_FRAME_SIZE 1920
++#define TX_BUF_SIZE MAX_ETH_FRAME_SIZE
++#define TX_DESC_NUM 128
++#define TX_BUF_TOT_LEN (TX_BUF_SIZE * TX_DESC_NUM)
++#define RX_BUF_SIZE MAX_ETH_FRAME_SIZE
++#define RX_DESC_NUM 256
++#define RX_BUF_TOT_LEN (RX_BUF_SIZE * RX_DESC_NUM)
++#define MAX_ISR_WORK 20
++
++unsigned int int_status = 0;
++
++/* define GMAC base address */
++#define GMAC_PHYSICAL_BASE_ADDR (SL2312_GMAC_BASE)
++#define GMAC_BASE_ADDR (IO_ADDRESS(GMAC_PHYSICAL_BASE_ADDR))
++#define GMAC_GLOBAL_BASE_ADDR (IO_ADDRESS(SL2312_GLOBAL_BASE))
++
++#define GMAC0_BASE (IO_ADDRESS(SL2312_GMAC0_BASE))
++#define GMAC1_BASE (IO_ADDRESS(SL2312_GMAC1_BASE))
++
++/* memory management utility */
++#define DMA_MALLOC(size,handle) pci_alloc_consistent(NULL,size,handle)
++#define DMA_MFREE(mem,size,handle) pci_free_consistent(NULL,size,mem,handle)
++
++//#define gmac_read_reg(offset) (readl(GMAC_BASE_ADDR + offset))
++//#define gmac_write_reg(offset,data,mask) writel( (gmac_read_reg(offset)&~mask) |(data&mask),(GMAC_BASE_ADDR+offset))
++
++/* define owner bit */
++#define CPU 0
++#define DMA 1
++
++#define ACTIVE 1
++#define NONACTIVE 0
++
++#define CONFIG_SL_NAPI
++
++#ifndef CONFIG_SL2312_MPAGE
++#define CONFIG_SL2312_MPAGE
++#endif
++
++#ifdef CONFIG_SL2312_MPAGE
++#include <linux/skbuff.h>
++#include <linux/ip.h>
++#include <linux/tcp.h>
++#endif
++
++#ifndef CONFIG_TXINT_DISABLE
++//#define CONFIG_TXINT_DISABLE
++#endif
++
++enum phy_state
++{
++ LINK_DOWN = 0,
++ LINK_UP = 1
++};
++
++
++/* transmit timeout value */
++#define TX_TIMEOUT (6*HZ)
++
++/***************************************/
++/* the offset address of GMAC register */
++/***************************************/
++enum GMAC_REGISTER {
++ GMAC_STA_ADD0 = 0x0000,
++ GMAC_STA_ADD1 = 0x0004,
++ GMAC_STA_ADD2 = 0x0008,
++ GMAC_RX_FLTR = 0x000c,
++ GMAC_MCAST_FIL0 = 0x0010,
++ GMAC_MCAST_FIL1 = 0x0014,
++ GMAC_CONFIG0 = 0x0018,
++ GMAC_CONFIG1 = 0x001c,
++ GMAC_CONFIG2 = 0x0020,
++ GMAC_BNCR = 0x0024,
++ GMAC_RBNR = 0x0028,
++ GMAC_STATUS = 0x002c,
++ GMAC_IN_DISCARDS= 0x0030,
++ GMAC_IN_ERRORS = 0x0034,
++ GMAC_IN_MCAST = 0x0038,
++ GMAC_IN_BCAST = 0x003c,
++ GMAC_IN_MAC1 = 0x0040,
++ GMAC_IN_MAC2 = 0x0044
++};
++
++/*******************************************/
++/* the offset address of GMAC DMA register */
++/*******************************************/
++enum GMAC_DMA_REGISTER {
++ GMAC_DMA_DEVICE_ID = 0xff00,
++ GMAC_DMA_STATUS = 0xff04,
++ GMAC_TXDMA_CTRL = 0xff08,
++ GMAC_TXDMA_FIRST_DESC = 0xff0c,
++ GMAC_TXDMA_CURR_DESC = 0xff10,
++ GMAC_RXDMA_CTRL = 0xff14,
++ GMAC_RXDMA_FIRST_DESC = 0xff18,
++ GMAC_RXDMA_CURR_DESC = 0xff1c,
++};
++
++/*******************************************/
++/* the register structure of GMAC */
++/*******************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_0004
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int sta_add2_l16 : 16; /* station MAC address2 bits 15 to 0 */
++ unsigned int sta_add1_h16 : 16; /* station MAC address1 bits 47 to 32 */
++#else
++ unsigned int sta_add1_h16 : 16; /* station MAC address1 bits 47 to 32 */
++ unsigned int sta_add2_l16 : 16; /* station MAC address2 bits 15 to 0 */
++#endif
++ } bits;
++} GMAC_STA_ADD1_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_000c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 27;
++ unsigned int error : 1; /* enable receive of all error frames */
++ unsigned int promiscuous : 1; /* enable receive of all frames */
++ unsigned int broadcast : 1; /* enable receive of broadcast frames */
++ unsigned int multicast : 1; /* enable receive of multicast frames that pass multicast filter */
++ unsigned int unicast : 1; /* enable receive of unicast frames that are sent to STA address */
++#else
++ unsigned int unicast : 1; /* enable receive of unicast frames that are sent to STA address */
++ unsigned int multicast : 1; /* enable receive of multicast frames that pass multicast filter */
++ unsigned int broadcast : 1; /* enable receive of broadcast frames */
++ unsigned int promiscuous : 1; /* enable receive of all frames */
++ unsigned int error : 1; /* enable receive of all error frames */
++ unsigned int : 27;
++#endif
++ } bits;
++} GMAC_RX_FLTR_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_0018
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 10;
++ unsigned int inv_rx_clk : 1; /* Inverse RX Clock */
++ unsigned int rising_latch : 1;
++ unsigned int rx_tag_remove : 1; /* Remove Rx VLAN tag */
++ unsigned int ipv6_tss_rx_en : 1; /* IPv6 TSS RX enable */
++ unsigned int ipv4_tss_rx_en : 1; /* IPv4 TSS RX enable */
++ unsigned int rgmii_en : 1; /* RGMII in-band status enable */
++ unsigned int tx_fc_en : 1; /* TX flow control enable */
++ unsigned int rx_fc_en : 1; /* RX flow control enable */
++ unsigned int sim_test : 1; /* speed up timers in simulation */
++ unsigned int dis_col : 1; /* disable 16 collisions abort function */
++ unsigned int dis_bkoff : 1; /* disable back-off function */
++ unsigned int max_len : 3; /* maximum receive frame length allowed */
++ unsigned int adj_ifg : 4; /* adjust IFG from 96+/-56 */
++ unsigned int : 1; /* reserved */
++ unsigned int loop_back : 1; /* transmit data loopback enable */
++ unsigned int dis_rx : 1; /* disable receive */
++ unsigned int dis_tx : 1; /* disable transmit */
++#else
++ unsigned int dis_tx : 1; /* disable transmit */
++ unsigned int dis_rx : 1; /* disable receive */
++ unsigned int loop_back : 1; /* transmit data loopback enable */
++ unsigned int : 1; /* reserved */
++ unsigned int adj_ifg : 4; /* adjust IFG from 96+/-56 */
++ unsigned int max_len : 3; /* maximum receive frame length allowed */
++ unsigned int dis_bkoff : 1; /* disable back-off function */
++ unsigned int dis_col : 1; /* disable 16 collisions abort function */
++ unsigned int sim_test : 1; /* speed up timers in simulation */
++ unsigned int rx_fc_en : 1; /* RX flow control enable */
++ unsigned int tx_fc_en : 1; /* TX flow control enable */
++ unsigned int rgmii_en : 1; /* RGMII in-band status enable */
++ unsigned int ipv4_tss_rx_en : 1; /* IPv4 TSS RX enable */
++ unsigned int ipv6_tss_rx_en : 1; /* IPv6 TSS RX enable */
++ unsigned int rx_tag_remove : 1; /* Remove Rx VLAN tag */
++ unsigned int rising_latch : 1;
++ unsigned int inv_rx_clk : 1; /* Inverse RX Clock */
++ unsigned int : 10;
++#endif
++ } bits;
++} GMAC_CONFIG0_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_001c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 28;
++ unsigned int buf_size : 4; /* per packet buffer size */
++#else
++ unsigned int buf_size : 4; /* per packet buffer size */
++ unsigned int : 28;
++#endif
++ } bits;
++} GMAC_CONFIG1_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_0020
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int rel_threshold : 16; /* flow control release threshold */
++ unsigned int set_threshold : 16; /* flow control set threshold */
++#else
++ unsigned int set_threshold : 16; /* flow control set threshold */
++ unsigned int rel_threshold : 16; /* flow control release threshold */
++#endif
++ } bits;
++} GMAC_CONFIG2_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_0024
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 16;
++ unsigned int buf_num : 16; /* return buffer number from software */
++#else
++ unsigned int buf_num : 16; /* return buffer number from software */
++ unsigned int : 16;
++#endif
++ } bits;
++} GMAC_BNCR_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_0028
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 16;
++ unsigned int buf_remain : 16; /* remaining buffer number */
++#else
++ unsigned int buf_remain : 16; /* remaining buffer number */
++ unsigned int : 16;
++#endif
++ } bits;
++} GMAC_RBNR_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_002c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 25;
++ unsigned int mii_rmii : 2; /* PHY interface type */
++ unsigned int phy_mode : 1; /* PHY interface mode in 10M-bps */
++ unsigned int duplex : 1; /* duplex mode */
++ unsigned int speed : 2; /* link speed(00->2.5M 01->25M 10->125M) */
++ unsigned int link : 1; /* link status */
++#else
++ unsigned int link : 1; /* link status */
++ unsigned int speed : 2; /* link speed(00->2.5M 01->25M 10->125M) */
++ unsigned int duplex : 1; /* duplex mode */
++ unsigned int phy_mode : 1; /* PHY interface mode in 10M-bps */
++ unsigned int mii_rmii : 2; /* PHY interface type */
++ unsigned int : 25;
++#endif
++ } bits;
++} GMAC_STATUS_T;
++
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_009
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 10;
++ unsigned int tx_fail : 1; /* Tx fail interrupt */
++ unsigned int cnt_full : 1; /* MIB counters half full interrupt */
++ unsigned int rx_pause_on : 1; /* received pause on frame interrupt */
++ unsigned int tx_pause_on : 1; /* transmit pause on frame interrupt */
++ unsigned int rx_pause_off : 1; /* received pause off frame interrupt */
++ unsigned int tx_pause_off : 1; /* received pause off frame interrupt */
++ unsigned int rx_overrun : 1; /* GMAC Rx FIFO overrun interrupt */
++ unsigned int tx_underrun : 1; /* GMAC Tx FIFO underrun interrupt */
++ unsigned int : 6;
++ unsigned int m_tx_fail : 1; /* Tx fail interrupt mask */
++ unsigned int m_cnt_full : 1; /* MIB counters half full interrupt mask */
++ unsigned int m_rx_pause_on : 1; /* received pause on frame interrupt mask */
++ unsigned int m_tx_pause_on : 1; /* transmit pause on frame interrupt mask */
++ unsigned int m_rx_pause_off : 1; /* received pause off frame interrupt mask */
++ unsigned int m_tx_pause_off : 1; /* received pause off frame interrupt mask */
++ unsigned int m_rx_overrun : 1; /* GMAC Rx FIFO overrun interrupt mask */
++ unsigned int m_tx_underrun : 1; /* GMAC Tx FIFO underrun interrupt mask */
++#else
++ unsigned int m_tx_underrun : 1; /* GMAC Tx FIFO underrun interrupt mask */
++ unsigned int m_rx_overrun : 1; /* GMAC Rx FIFO overrun interrupt mask */
++ unsigned int m_tx_pause_off : 1; /* received pause off frame interrupt mask */
++ unsigned int m_rx_pause_off : 1; /* received pause off frame interrupt mask */
++ unsigned int m_tx_pause_on : 1; /* transmit pause on frame interrupt mask */
++ unsigned int m_rx_pause_on : 1; /* received pause on frame interrupt mask */
++ unsigned int m_cnt_full : 1; /* MIB counters half full interrupt mask */
++ unsigned int m_tx_fail : 1; /* Tx fail interrupt mask */
++ unsigned int : 6;
++ unsigned int tx_underrun : 1; /* GMAC Tx FIFO underrun interrupt */
++ unsigned int rx_overrun : 1; /* GMAC Rx FIFO overrun interrupt */
++ unsigned int tx_pause_off : 1; /* received pause off frame interrupt */
++ unsigned int rx_pause_off : 1; /* received pause off frame interrupt */
++ unsigned int tx_pause_on : 1; /* transmit pause on frame interrupt */
++ unsigned int rx_pause_on : 1; /* received pause on frame interrupt */
++ unsigned int cnt_full : 1; /* MIB counters half full interrupt */
++ unsigned int tx_fail : 1; /* Tx fail interrupt */
++ unsigned int : 10;
++#endif
++ } bits;
++} GMAC_INT_MASK_T;
++
++
++/*******************************************/
++/* the register structure of GMAC DMA */
++/*******************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit2_ff00
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 7; /* reserved */
++ unsigned int s_ahb_err : 1; /* Slave AHB bus error */
++ unsigned int tx_err_code : 4; /* TxDMA error code */
++ unsigned int rx_err_code : 4; /* RxDMA error code */
++ unsigned int device_id : 12;
++ unsigned int revision_id : 4;
++#else
++ unsigned int revision_id : 4;
++ unsigned int device_id : 12;
++ unsigned int rx_err_code : 4; /* RxDMA error code */
++ unsigned int tx_err_code : 4; /* TxDMA error code */
++ unsigned int s_ahb_err : 1; /* Slave AHB bus error */
++ unsigned int : 7; /* reserved */
++#endif
++ } bits;
++} GMAC_DMA_DEVICE_ID_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit2_ff04
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int ts_finish : 1; /* finished tx interrupt */
++ unsigned int ts_derr : 1; /* AHB Bus Error while tx */
++ unsigned int ts_perr : 1; /* Tx Descriptor protocol error */
++ unsigned int ts_eodi : 1; /* TxDMA end of descriptor interrupt */
++ unsigned int ts_eofi : 1; /* TxDMA end of frame interrupt */
++ unsigned int rs_finish : 1; /* finished rx interrupt */
++ unsigned int rs_derr : 1; /* AHB Bus Error while rx */
++ unsigned int rs_perr : 1; /* Rx Descriptor protocol error */
++ unsigned int rs_eodi : 1; /* RxDMA end of descriptor interrupt */
++ unsigned int rs_eofi : 1; /* RxDMA end of frame interrupt */
++ unsigned int : 1; /* Tx fail interrupt */
++ unsigned int cnt_full : 1; /* MIB counters half full interrupt */
++ unsigned int rx_pause_on : 1; /* received pause on frame interrupt */
++ unsigned int tx_pause_on : 1; /* transmit pause on frame interrupt */
++ unsigned int rx_pause_off : 1; /* received pause off frame interrupt */
++ unsigned int tx_pause_off : 1; /* received pause off frame interrupt */
++ unsigned int rx_overrun : 1; /* GMAC Rx FIFO overrun interrupt */
++ unsigned int link_change : 1; /* GMAC link changed Interrupt for RGMII mode */
++ unsigned int : 1;
++ unsigned int : 1;
++ unsigned int : 3;
++ unsigned int loop_back : 1; /* loopback TxDMA to RxDMA */
++ unsigned int : 1; /* Tx fail interrupt mask */
++ unsigned int m_cnt_full : 1; /* MIB counters half full interrupt mask */
++ unsigned int m_rx_pause_on : 1; /* received pause on frame interrupt mask */
++ unsigned int m_tx_pause_on : 1; /* transmit pause on frame interrupt mask */
++ unsigned int m_rx_pause_off : 1; /* received pause off frame interrupt mask */
++ unsigned int m_tx_pause_off : 1; /* received pause off frame interrupt mask */
++ unsigned int m_rx_overrun : 1; /* GMAC Rx FIFO overrun interrupt mask */
++ unsigned int m_link_change : 1; /* GMAC link changed Interrupt mask for RGMII mode */
++#else
++ unsigned int m_link_change : 1; /* GMAC link changed Interrupt mask for RGMII mode */
++ unsigned int m_rx_overrun : 1; /* GMAC Rx FIFO overrun interrupt mask */
++ unsigned int m_tx_pause_off : 1; /* received pause off frame interrupt mask */
++ unsigned int m_rx_pause_off : 1; /* received pause off frame interrupt mask */
++ unsigned int m_tx_pause_on : 1; /* transmit pause on frame interrupt mask */
++ unsigned int m_rx_pause_on : 1; /* received pause on frame interrupt mask */
++ unsigned int m_cnt_full : 1; /* MIB counters half full interrupt mask */
++ unsigned int : 1; /* Tx fail interrupt mask */
++ unsigned int loop_back : 1; /* loopback TxDMA to RxDMA */
++ unsigned int : 3;
++ unsigned int : 1;
++ unsigned int : 1;
++ unsigned int link_change : 1; /* GMAC link changed Interrupt for RGMII mode */
++ unsigned int rx_overrun : 1; /* GMAC Rx FIFO overrun interrupt */
++ unsigned int tx_pause_off : 1; /* received pause off frame interrupt */
++ unsigned int rx_pause_off : 1; /* received pause off frame interrupt */
++ unsigned int tx_pause_on : 1; /* transmit pause on frame interrupt */
++ unsigned int rx_pause_on : 1; /* received pause on frame interrupt */
++ unsigned int cnt_full : 1; /* MIB counters half full interrupt */
++ unsigned int : 1; /* Tx fail interrupt */
++ unsigned int rs_eofi : 1; /* RxDMA end of frame interrupt */
++ unsigned int rs_eodi : 1; /* RxDMA end of descriptor interrupt */
++ unsigned int rs_perr : 1; /* Rx Descriptor protocol error */
++ unsigned int rs_derr : 1; /* AHB Bus Error while rx */
++ unsigned int rs_finish : 1; /* finished rx interrupt */
++ unsigned int ts_eofi : 1; /* TxDMA end of frame interrupt */
++ unsigned int ts_eodi : 1; /* TxDMA end of descriptor interrupt */
++ unsigned int ts_perr : 1; /* Tx Descriptor protocol error */
++ unsigned int ts_derr : 1; /* AHB Bus Error while tx */
++ unsigned int ts_finish : 1; /* finished tx interrupt */
++#endif
++ } bits;
++} GMAC_DMA_STATUS_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit2_ff08
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int td_start : 1; /* Start DMA transfer */
++ unsigned int td_continue : 1; /* Continue DMA operation */
++ unsigned int td_chain_mode : 1; /* Descriptor Chain Mode;1-Descriptor Chain mode, 0-Direct DMA mode*/
++ unsigned int : 1;
++ unsigned int td_prot : 4; /* TxDMA protection control */
++ unsigned int td_burst_size : 2; /* TxDMA max burst size for every AHB request */
++ unsigned int td_bus : 2; /* peripheral bus width;0x->8 bits,10->16 bits,11->32 bits */
++ unsigned int td_endian : 1; /* AHB Endian. 0-little endian; 1-big endian */
++ unsigned int td_finish_en : 1; /* DMA Finish Event Interrupt Enable;1-enable;0-mask */
++ unsigned int td_fail_en : 1; /* DMA Fail Interrupt Enable;1-enable;0-mask */
++ unsigned int td_perr_en : 1; /* Protocol Failure Interrupt Enable;1-enable;0-mask */
++ unsigned int td_eod_en : 1; /* End of Descriptor interrupt Enable;1-enable;0-mask */
++ unsigned int td_eof_en : 1; /* End of frame interrupt Enable;1-enable;0-mask */
++ unsigned int : 14;
++#else
++ unsigned int : 14;
++ unsigned int td_eof_en : 1; /* End of frame interrupt Enable;1-enable;0-mask */
++ unsigned int td_eod_en : 1; /* End of Descriptor interrupt Enable;1-enable;0-mask */
++ unsigned int td_perr_en : 1; /* Protocol Failure Interrupt Enable;1-enable;0-mask */
++ unsigned int td_fail_en : 1; /* DMA Fail Interrupt Enable;1-enable;0-mask */
++ unsigned int td_finish_en : 1; /* DMA Finish Event Interrupt Enable;1-enable;0-mask */
++ unsigned int td_endian : 1; /* AHB Endian. 0-little endian; 1-big endian */
++ unsigned int td_bus : 2; /* peripheral bus width;0x->8 bits,10->16 bits,11->32 bits */
++ unsigned int td_burst_size : 2; /* TxDMA max burst size for every AHB request */
++ unsigned int td_prot : 4; /* TxDMA protection control */
++ unsigned int : 1;
++ unsigned int td_chain_mode : 1; /* Descriptor Chain Mode;1-Descriptor Chain mode, 0-Direct DMA mode*/
++ unsigned int td_continue : 1; /* Continue DMA operation */
++ unsigned int td_start : 1; /* Start DMA transfer */
++#endif
++ } bits;
++} GMAC_TXDMA_CTRL_T;
++
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit2_ff0c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int td_first_des_ptr : 28;/* first descriptor address */
++ unsigned int td_busy : 1;/* 1-TxDMA busy; 0-TxDMA idle */
++ unsigned int : 3;
++#else
++ unsigned int : 3;
++ unsigned int td_busy : 1;/* 1-TxDMA busy; 0-TxDMA idle */
++ unsigned int td_first_des_ptr : 28;/* first descriptor address */
++#endif
++ } bits;
++} GMAC_TXDMA_FIRST_DESC_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit2_ff10
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int ndar : 28; /* next descriptor address */
++ unsigned int eofie : 1; /* end of frame interrupt enable */
++ unsigned int : 1;
++ unsigned int sof_eof : 2;
++#else
++ unsigned int sof_eof : 2;
++ unsigned int : 1;
++ unsigned int eofie : 1; /* end of frame interrupt enable */
++ unsigned int ndar : 28; /* next descriptor address */
++#endif
++ } bits;
++} GMAC_TXDMA_CURR_DESC_T;
++
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit2_ff14
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int rd_start : 1; /* Start DMA transfer */
++ unsigned int rd_continue : 1; /* Continue DMA operation */
++ unsigned int rd_chain_mode : 1; /* Descriptor Chain Mode;1-Descriptor Chain mode, 0-Direct DMA mode*/
++ unsigned int : 1;
++ unsigned int rd_prot : 4; /* DMA protection control */
++ unsigned int rd_burst_size : 2; /* DMA max burst size for every AHB request */
++ unsigned int rd_bus : 2; /* peripheral bus width;0x->8 bits,10->16 bits,11->32 bits */
++ unsigned int rd_endian : 1; /* AHB Endian. 0-little endian; 1-big endian */
++ unsigned int rd_finish_en : 1; /* DMA Finish Event Interrupt Enable;1-enable;0-mask */
++ unsigned int rd_fail_en : 1; /* DMA Fail Interrupt Enable;1-enable;0-mask */
++ unsigned int rd_perr_en : 1; /* Protocol Failure Interrupt Enable;1-enable;0-mask */
++ unsigned int rd_eod_en : 1; /* End of Descriptor interrupt Enable;1-enable;0-mask */
++ unsigned int rd_eof_en : 1; /* End of frame interrupt Enable;1-enable;0-mask */
++ unsigned int : 14;
++#else
++ unsigned int : 14;
++ unsigned int rd_eof_en : 1; /* End of frame interrupt Enable;1-enable;0-mask */
++ unsigned int rd_eod_en : 1; /* End of Descriptor interrupt Enable;1-enable;0-mask */
++ unsigned int rd_perr_en : 1; /* Protocol Failure Interrupt Enable;1-enable;0-mask */
++ unsigned int rd_fail_en : 1; /* DMA Fail Interrupt Enable;1-enable;0-mask */
++ unsigned int rd_finish_en : 1; /* DMA Finish Event Interrupt Enable;1-enable;0-mask */
++ unsigned int rd_endian : 1; /* AHB Endian. 0-little endian; 1-big endian */
++ unsigned int rd_bus : 2; /* peripheral bus width;0x->8 bits,10->16 bits,11->32 bits */
++ unsigned int rd_burst_size : 2; /* DMA max burst size for every AHB request */
++ unsigned int rd_prot : 4; /* DMA protection control */
++ unsigned int : 1;
++ unsigned int rd_chain_mode : 1; /* Descriptor Chain Mode;1-Descriptor Chain mode, 0-Direct DMA mode*/
++ unsigned int rd_continue : 1; /* Continue DMA operation */
++ unsigned int rd_start : 1; /* Start DMA transfer */
++#endif
++ } bits;
++} GMAC_RXDMA_CTRL_T;
++
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit2_ff18
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int rd_first_des_ptr : 28;/* first descriptor address */
++ unsigned int rd_busy : 1;/* 1-RxDMA busy; 0-RxDMA idle */
++ unsigned int : 3;
++#else
++ unsigned int : 3;
++ unsigned int rd_busy : 1;/* 1-RxDMA busy; 0-RxDMA idle */
++ unsigned int rd_first_des_ptr : 28;/* first descriptor address */
++#endif
++ } bits;
++} GMAC_RXDMA_FIRST_DESC_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit2_ff1c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int ndar : 28; /* next descriptor address */
++ unsigned int eofie : 1; /* end of frame interrupt enable */
++ unsigned int : 1;
++ unsigned int sof_eof : 2;
++#else
++ unsigned int sof_eof : 2;
++ unsigned int : 1;
++ unsigned int eofie : 1; /* end of frame interrupt enable */
++ unsigned int ndar : 28; /* next descriptor address */
++#endif
++ } bits;
++} GMAC_RXDMA_CURR_DESC_T;
++
++
++/********************************************/
++/* Descriptor Format */
++/********************************************/
++
++typedef struct descriptor_t
++{
++ union frame_control_t
++ {
++ unsigned int bits32;
++ struct bits_0000
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int own : 1; /* owner bit. 0-CPU, 1-DMA */
++ unsigned int derr : 1; /* data error during processing this descriptor */
++ unsigned int perr : 1; /* protocol error during processing this descriptor */
++ unsigned int csum_state : 3; /* checksum error status */
++ unsigned int vlan_tag : 1; /* 802.1q vlan tag packet */
++ unsigned int frame_state: 3; /* reference Rx Status1 */
++ unsigned int desc_count : 6; /* number of descriptors used for the current frame */
++ unsigned int buffer_size:16; /* transfer buffer size associated with current description*/
++#else
++ unsigned int buffer_size:16; /* transfer buffer size associated with current description*/
++ unsigned int desc_count : 6; /* number of descriptors used for the current frame */
++ unsigned int frame_state: 3; /* reference Rx Status1 */
++ unsigned int vlan_tag : 1; /* 802.1q vlan tag packet */
++ unsigned int csum_state : 3; /* checksum error status */
++ unsigned int perr : 1; /* protocol error during processing this descriptor */
++ unsigned int derr : 1; /* data error during processing this descriptor */
++ unsigned int own : 1; /* owner bit. 0-CPU, 1-DMA */
++#endif
++ } bits_rx;
++
++ struct bits_0001
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int own : 1; /* owner bit. 0-CPU, 1-DMA */
++ unsigned int derr : 1; /* data error during processing this descriptor */
++ unsigned int perr : 1; /* protocol error during processing this descriptor */
++ unsigned int : 6;
++ unsigned int success_tx : 1; /* successful transmitted */
++ unsigned int desc_count : 6; /* number of descriptors used for the current frame */
++ unsigned int buffer_size:16; /* transfer buffer size associated with current description*/
++#else
++ unsigned int buffer_size:16; /* transfer buffer size associated with current description*/
++ unsigned int desc_count : 6; /* number of descriptors used for the current frame */
++ unsigned int success_tx : 1; /* successful transmitted */
++ unsigned int : 6;
++ unsigned int perr : 1; /* protocol error during processing this descriptor */
++ unsigned int derr : 1; /* data error during processing this descriptor */
++ unsigned int own : 1; /* owner bit. 0-CPU, 1-DMA */
++#endif
++ } bits_tx_in;
++
++ struct bits_0002
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int own : 1; /* owner bit. 0-CPU, 1-DMA */
++ unsigned int derr : 1; /* data error during processing this descriptor */
++ unsigned int perr : 1; /* protocol error during processing this descriptor */
++ unsigned int : 2;
++ unsigned int udp_csum_en: 1; /* TSS UDP checksum enable */
++ unsigned int tcp_csum_en: 1; /* TSS TCP checksum enable */
++ unsigned int ipv6_tx_en : 1; /* TSS IPv6 TX enable */
++ unsigned int ip_csum_en : 1; /* TSS IPv4 IP Header checksum enable */
++ unsigned int vlan_enable: 1; /* VLAN TIC insertion enable */
++ unsigned int desc_count : 6; /* number of descriptors used for the current frame */
++ unsigned int buffer_size:16; /* transfer buffer size associated with current description*/
++#else
++ unsigned int buffer_size:16; /* transfer buffer size associated with current description*/
++ unsigned int desc_count : 6; /* number of descriptors used for the current frame */
++ unsigned int vlan_enable: 1; /* VLAN TIC insertion enable */
++ unsigned int ip_csum_en : 1; /* TSS IPv4 IP Header checksum enable */
++ unsigned int ipv6_tx_en : 1; /* TSS IPv6 TX enable */
++ unsigned int tcp_csum_en: 1; /* TSS TCP checksum enable */
++ unsigned int udp_csum_en: 1; /* TSS UDP checksum enable */
++ unsigned int : 2;
++ unsigned int perr : 1; /* protocol error during processing this descriptor */
++ unsigned int derr : 1; /* data error during processing this descriptor */
++ unsigned int own : 1; /* owner bit. 0-CPU, 1-DMA */
++#endif
++ } bits_tx_out;
++
++ } frame_ctrl;
++
++ union flag_status_t
++ {
++ unsigned int bits32;
++ struct bits_0004
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int priority : 3; /* user priority extracted from receiving frame*/
++ unsigned int cfi : 1; /* cfi extracted from receiving frame*/
++ unsigned int vlan_id :12; /* VLAN ID extracted from receiving frame */
++ unsigned int frame_count:16; /* received frame byte count,include CRC,not include VLAN TIC */
++#else
++ unsigned int frame_count:16; /* received frame byte count,include CRC,not include VLAN TIC */
++ unsigned int vlan_id :12; /* VLAN ID extracted from receiving frame */
++ unsigned int cfi : 1; /* cfi extracted from receiving frame*/
++ unsigned int priority : 3; /* user priority extracted from receiving frame*/
++#endif
++ } bits_rx_status;
++
++ struct bits_0005
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int priority : 3; /* user priority to transmit*/
++ unsigned int cfi : 1; /* cfi to transmit*/
++ unsigned int vlan_id :12; /* VLAN ID to transmit */
++ unsigned int frame_count:16; /* total tx frame byte count */
++#else
++ unsigned int frame_count:16; /* total tx frame byte count */
++ unsigned int vlan_id :12; /* VLAN ID to transmit */
++ unsigned int cfi : 1; /* cfi to transmit*/
++ unsigned int priority : 3; /* user priority to transmit*/
++#endif
++ } bits_tx_flag;
++ } flag_status;
++
++ unsigned int buf_adr; /* data buffer address */
++
++ union next_desc_t
++ {
++ unsigned int next_descriptor;
++ struct bits_000c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int ndar :28; /* next descriptor address */
++ unsigned int eofie : 1; /* end of frame interrupt enable */
++ unsigned int : 1;
++ unsigned int sof_eof : 2; /* 00-the linking descriptor 01-the last descriptor of a frame*/
++ /* 10-the first descriptor of a frame 11-only one descriptor for a frame*/
++#else
++ unsigned int sof_eof : 2; /* 00-the linking descriptor 01-the last descriptor of a frame*/
++ /* 10-the first descriptor of a frame 11-only one descriptor for a frame*/
++ unsigned int : 1;
++ unsigned int eofie : 1; /* end of frame interrupt enable */
++ unsigned int ndar :28; /* next descriptor address */
++#endif
++ } bits;
++ } next_desc;
++} GMAC_DESCRIPTOR_T;
++
++typedef struct gmac_conf {
++ struct net_device *dev;
++ int portmap;
++ int vid;
++ int flag; /* 1: active 0: non-active */
++} sys_gmac_conf;
++
++struct gmac_private {
++ unsigned char *tx_bufs; /* Tx bounce buffer region. */
++ unsigned char *rx_bufs;
++ GMAC_DESCRIPTOR_T *tx_desc; /* point to virtual TX descriptor address*/
++ GMAC_DESCRIPTOR_T *rx_desc; /* point to virtual RX descriptor address*/
++ GMAC_DESCRIPTOR_T *tx_cur_desc; /* point to current TX descriptor */
++ GMAC_DESCRIPTOR_T *rx_cur_desc; /* point to current RX descriptor */
++ GMAC_DESCRIPTOR_T *tx_finished_desc;
++ GMAC_DESCRIPTOR_T *rx_finished_desc;
++ unsigned long cur_tx;
++ unsigned int cur_rx; /* Index into the Rx buffer of next Rx pkt. */
++ unsigned int tx_flag;
++ unsigned long dirty_tx;
++ unsigned char *tx_buf[TX_DESC_NUM]; /* Tx bounce buffers */
++ dma_addr_t tx_desc_dma; /* physical TX descriptor address */
++ dma_addr_t rx_desc_dma; /* physical RX descriptor address */
++ dma_addr_t tx_bufs_dma; /* physical TX descriptor address */
++ dma_addr_t rx_bufs_dma; /* physical RX descriptor address */
++ struct net_device_stats stats;
++ pid_t thr_pid;
++ wait_queue_head_t thr_wait;
++ struct completion thr_exited;
++ spinlock_t lock;
++ int time_to_die;
++ unsigned int tx_desc_hdr[GMAC_PHY_IF]; /* the descriptor which sw can fill */
++ unsigned int tx_desc_tail[GMAC_PHY_IF]; /* the descriptor which is not cleaned yet */
++};
++
++
++struct reg_ioctl_data {
++ unsigned int reg_addr; /* the register address */
++ unsigned int val_in; /* data write to the register */
++ unsigned int val_out; /* data read from the register */
++};
++
++#ifdef CONFIG_SL2312_MPAGE
++typedef struct tx_data_t {
++ int freeable; // 1 when it's skb. it can be freed in tx interrupt handler
++ struct sk_buff* skb; // skb
++ int desc_in_use; // 1 when the desc is in use. 0 when desc is available.
++ long end_seq; // to find out packets are in seq.
++ // so this value is the seq of next packet.
++} tx_data;
++#endif
++
++/*************************************************************
++ * Global Variable
++ *************************************************************/
++struct semaphore sem_gmac; /* semaphore for share pins issue */
++
++/*************************************************************
++ * Static Global Variable
++ *************************************************************/
++// static unsigned int MAC_BASE_ADDR = GMAC0_BASE;
++static unsigned int gmac_base_addr[GMAC_PHY_IF] = {GMAC0_BASE,GMAC1_BASE};
++static unsigned int gmac_irq[GMAC_PHY_IF] = {IRQ_GMAC0,IRQ_GMAC1};
++static struct net_device *gmac_dev[GMAC_PHY_IF];
++
++static unsigned int FLAG_SWITCH=0; /* if 1-->switch chip presented. if 0-->switch chip unpresented */
++static unsigned int flow_control_enable[GMAC_PHY_IF] = {1,1};
++static unsigned int pre_phy_status[GMAC_PHY_IF] = {LINK_DOWN,LINK_DOWN};
++static unsigned int tx_desc_virtual_base[GMAC_PHY_IF];
++static unsigned int rx_desc_virtual_base[GMAC_PHY_IF];
++static unsigned int full_duplex = 1;
++static unsigned int speed = 1;
++#ifdef CONFIG_SL2312_MPAGE
++static tx_data tx_skb[GMAC_PHY_IF][TX_DESC_NUM];
++#else
++static struct sk_buff *tx_skb[GMAC_PHY_IF][TX_DESC_NUM];
++#endif
++static struct sk_buff *rx_skb[GMAC_PHY_IF][RX_DESC_NUM];
++static unsigned int tx_desc_start_adr[GMAC_PHY_IF];
++static unsigned int rx_desc_start_adr[GMAC_PHY_IF];
++static unsigned char eth0_mac[6]= {0x00,0x50,0xc2,0x2b,0xd3,0x25};
++static unsigned char eth1_mac[6]= {0x00,0x50,0xc2,0x2b,0xdf,0xfe};
++static unsigned int next_tick = 3 * HZ;
++
++static unsigned int phy_addr[GMAC_PHY_IF] = {0x01,0x02}; /* define PHY address */
++
++DECLARE_WAIT_QUEUE_HEAD(gmac_queue);
++//static wait_queue_t wait;
++
++struct gmac_conf VLAN_conf[] = {
++#ifdef CONFIG_ADM_6999
++ { (struct net_device *)0,0x7F,1 },
++ { (struct net_device *)0,0x80,2 }
++#endif
++#ifdef CONFIG_ADM_6996
++ { (struct net_device *)0,0x0F,1 },
++ { (struct net_device *)0,0x10,2 }
++#endif
++};
++
++#define NUM_VLAN_IF (sizeof(VLAN_conf)/sizeof(struct gmac_conf))
++
++
++/************************************************/
++/* GMAC function declare */
++/************************************************/
++
++unsigned int mii_read(unsigned char phyad,unsigned char regad);
++void mii_write(unsigned char phyad,unsigned char regad,unsigned int value);
++static void gmac_set_phy_status(struct net_device *dev);
++static void gmac_get_phy_status(struct net_device *dev);
++static int gmac_phy_thread (void *data);
++static int gmac_set_mac_address(struct net_device *dev, void *addr);
++static void gmac_tx_timeout(struct net_device *dev);
++static void gmac_tx_packet_complete(struct net_device *dev);
++static int gmac_start_xmit(struct sk_buff *skb, struct net_device *dev);
++static void gmac_set_rx_mode(struct net_device *dev);
++static void gmac_rx_packet(struct net_device *dev);
++static int gmac_open (struct net_device *dev);
++static int gmac_netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
++
++static unsigned int gmac_get_dev_index(struct net_device *dev);
++static unsigned int gmac_select_interface(struct net_device *dev);
++
++#ifdef CONFIG_SL2312_MPAGE
++int printk_all(int dev_index, struct gmac_private* tp);
++#endif
++
++/****************************************/
++/* SPI Function Declare */
++/****************************************/
++void SPI_write(unsigned char addr,unsigned int value);
++unsigned int SPI_read(unsigned char table,unsigned char addr);
++void SPI_write_bit(char bit_EEDO);
++unsigned int SPI_read_bit(void);
++void SPI_default(void);
++void SPI_reset(unsigned char rstype,unsigned char port_cnt);
++void SPI_pre_st(void);
++void SPI_CS_enable(unsigned char enable);
++void SPI_Set_VLAN(unsigned char LAN,unsigned int port_mask);
++void SPI_Set_tag(unsigned int port,unsigned tag);
++void SPI_Set_PVID(unsigned int PVID,unsigned int port_mask);
++unsigned int SPI_Get_PVID(unsigned int port);
++void SPI_mac_lock(unsigned int port, unsigned char lock);
++void SPI_get_port_state(unsigned int port);
++void SPI_port_enable(unsigned int port,unsigned char enable);
++unsigned int SPI_get_identifier(void);
++void SPI_get_status(unsigned int port);
++
++/****************************************/
++/* VLAN Function Declare */
++/****************************************/
++int getVLANfromdev (struct net_device *dev );
++struct net_device * getdevfromVLAN( int VID);
++
++
++
++/************************************************/
++/* function body */
++/************************************************/
++#if 0
++void hw_memcpy(void *to,const void *from,unsigned long n)
++{
++ writel(from,SL2312_DRAM_CTRL_BASE+0x20); /* set source address */
++ writel(to,SL2312_DRAM_CTRL_BASE+0x24); /* set destination address */
++ writel(n,SL2312_DRAM_CTRL_BASE+0x28); /* set byte count */
++ writel(0x00000001,SL2312_DRAM_CTRL_BASE+0x2c);
++ while (readl(SL2312_DRAM_CTRL_BASE+0x2c));
++}
++#endif
++
++static unsigned int gmac_read_reg(unsigned int addr)
++{
++ unsigned int reg_val;
++// unsigned int flags;
++// spinlock_t lock;
++
++// spin_lock_irqsave(&lock, flags);
++ reg_val = readl(addr); // Gary Chen
++// spin_unlock_irqrestore(&lock, flags);
++ return (reg_val);
++}
++
++static void gmac_write_reg(unsigned int addr,unsigned int data,unsigned int bit_mask)
++{
++ unsigned int reg_val;
++ //unsigned int *addr;
++// unsigned int flags;
++// spinlock_t lock;
++
++// spin_lock_irqsave(&lock, flags);
++ reg_val = ( gmac_read_reg(addr) & (~bit_mask) ) | (data & bit_mask);
++ writel(reg_val,addr);
++// spin_unlock_irqrestore(&lock, flags);
++ return;
++}
++
++
++static void gmac_sw_reset(struct net_device *dev)
++{
++ unsigned int index;
++ unsigned int reg_val;
++
++ index = gmac_get_dev_index(dev);
++ if (index==0)
++ reg_val = readl(GMAC_GLOBAL_BASE_ADDR+0x0c) | 0x00000020; /* GMAC0 S/W reset */
++ else
++ reg_val = readl(GMAC_GLOBAL_BASE_ADDR+0x0c) | 0x00000040; /* GMAC1 S/W reset */
++
++ writel(reg_val,GMAC_GLOBAL_BASE_ADDR+0x0c);
++ return;
++}
++
++static void gmac_get_mac_address(void)
++{
++#ifdef CONFIG_MTD
++ extern int get_vlaninfo(vlaninfo* vlan);
++ static vlaninfo vlan[2];
++
++ if (get_vlaninfo(&vlan[0]))
++ {
++ memcpy(eth0_mac,vlan[0].mac,6);
++ VLAN_conf[0].vid = vlan[0].vlanid;
++ VLAN_conf[0].portmap = vlan[0].vlanmap;
++ memcpy(eth1_mac,vlan[1].mac,6);
++ VLAN_conf[1].vid = vlan[1].vlanid;
++ VLAN_conf[1].portmap = vlan[1].vlanmap;
++ }
++#else
++ unsigned int reg_val;
++
++ reg_val = readl(IO_ADDRESS(SL2312_SECURITY_BASE)+0xac);
++ eth0_mac[4] = (reg_val & 0xff00) >> 8;
++ eth0_mac[5] = reg_val & 0x00ff;
++ reg_val = readl(IO_ADDRESS(SL2312_SECURITY_BASE)+0xac);
++ eth1_mac[4] = (reg_val & 0xff00) >> 8;
++ eth1_mac[5] = reg_val & 0x00ff;
++#endif
++ return;
++}
++
++static unsigned int gmac_get_dev_index(struct net_device *dev)
++{
++ unsigned int i;
++
++ /* get device index number */
++ for (i=0;i<GMAC_PHY_IF;i++)
++ {
++ if (gmac_dev[i]==dev)
++ {
++ return(i);
++ }
++ }
++ return (0xff);
++}
++
++static unsigned int gmac_select_interface(struct net_device *dev)
++{
++ unsigned int index;
++
++ index = gmac_get_dev_index(dev);
++ // MAC_BASE_ADDR = gmac_base_addr[index]; // Gary Chen
++ return (index);
++}
++
++
++static void gmac_dump_register(struct net_device *dev)
++{
++#if 0
++ unsigned int i,val,index;
++
++ index = gmac_select_interface(dev);
++
++ printk("========== GMAC%d ==========\n",index);
++ for (i=0;i<=0x7c;i=i+4)
++ {
++ val = gmac_read_reg(gmac_base_addr[index] + i);
++ printk("offset = %08x value = %08x\n",i,val);
++ }
++ for (i=0xff00;i<=0xff7c;i=i+4)
++ {
++ val = gmac_read_reg(gmac_base_addr[index] + i);
++ printk("offset = %08x value = %08x\n",i,val);
++ }
++#endif
++}
++
++static int gmac_init_chip(struct net_device *dev)
++{
++ GMAC_RBNR_T rbnr_val,rbnr_mask;
++ GMAC_CONFIG2_T config2_val;
++ GMAC_CONFIG0_T config0,config0_mask;
++ GMAC_CONFIG1_T config1;
++ struct sockaddr sock;
++ unsigned int status;
++ unsigned int phy_mode;
++ unsigned int index;
++
++ index = gmac_get_dev_index(dev);
++
++ /* set GMAC RMII mode */
++ if (index==0)
++ phy_mode = 0; /* 0->MII 1->GMII 2->RGMII(10/100) 3->RGMII(1000) */
++ else
++ phy_mode = 2; /* 0->MII 1->GMII 2->RGMII(10/100) 3->RGMII(1000) */
++
++ /* set PHY operation mode */
++ status = (phy_mode<<5) | 0x11 | (full_duplex<<3) | (speed<<1);
++ gmac_write_reg(gmac_base_addr[index] + GMAC_STATUS,status ,0x0000007f);
++
++ /* set station MAC address1 and address2 */
++ if (index==0)
++ memcpy(&sock.sa_data[0],&eth0_mac[0],6);
++ else
++ memcpy(&sock.sa_data[0],&eth1_mac[0],6);
++ gmac_set_mac_address(dev,(void *)&sock);
++
++ /* set RX_FLTR register to receive all multicast packet */
++ gmac_write_reg(gmac_base_addr[index] + GMAC_RX_FLTR,0x0000001F,0x0000001f);
++ //gmac_write_reg(gmac_base_addr[index] + GMAC_RX_FLTR,0x00000007,0x0000001f);
++
++ /* set per packet buffer size */
++ config1.bits32 = 0;
++ config1.bits.buf_size = 11; /* buffer size = 2048-byte */
++ gmac_write_reg(gmac_base_addr[index] + GMAC_CONFIG1,config1.bits32,0x0000000f);
++
++ /* set flow control threshold */
++ config2_val.bits32 = 0;
++ config2_val.bits.set_threshold = RX_DESC_NUM/4;
++ config2_val.bits.rel_threshold = RX_DESC_NUM*3/4;
++ gmac_write_reg(gmac_base_addr[index] + GMAC_CONFIG2,config2_val.bits32,0xffffffff);
++
++ /* init remaining buffer number register */
++ rbnr_val.bits32 = 0;
++ rbnr_val.bits.buf_remain = RX_DESC_NUM;
++ rbnr_mask.bits32 = 0;
++ rbnr_mask.bits.buf_remain = 0xffff;
++ gmac_write_reg(gmac_base_addr[index] + GMAC_RBNR,rbnr_val.bits32,rbnr_mask.bits32);
++
++ /* disable TX/RX and disable internal loop back */
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.max_len = 2;
++ if (flow_control_enable[index]==1)
++ {
++ config0.bits.tx_fc_en = 1; /* enable tx flow control */
++ config0.bits.rx_fc_en = 1; /* enable rx flow control */
++ printk("Enable MAC Flow Control...\n");
++ }
++ else
++ {
++ config0.bits.tx_fc_en = 0; /* disable tx flow control */
++ config0.bits.rx_fc_en = 0; /* disable rx flow control */
++ printk("Disable MAC Flow Control...\n");
++ }
++ config0.bits.dis_rx = 1; /* disable rx */
++ config0.bits.dis_tx = 1; /* disable tx */
++ config0.bits.loop_back = 0; /* enable/disable GMAC loopback */
++ config0.bits.inv_rx_clk = 0;
++ config0.bits.rising_latch = 1;
++ config0.bits.ipv4_tss_rx_en = 1; /* enable H/W to check ip checksum */
++ config0.bits.ipv6_tss_rx_en = 1; /* enable H/W to check ip checksum */
++
++ config0_mask.bits.max_len = 7;
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ config0_mask.bits.dis_rx = 1;
++ config0_mask.bits.dis_tx = 1;
++ config0_mask.bits.loop_back = 1;
++ config0_mask.bits.inv_rx_clk = 1;
++ config0_mask.bits.rising_latch = 1;
++ config0_mask.bits.ipv4_tss_rx_en = 1;
++ config0_mask.bits.ipv6_tss_rx_en = 1;
++ gmac_write_reg(gmac_base_addr[index] + GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++
++ return (0);
++}
++
++static void gmac_enable_tx_rx(struct net_device *dev)
++{
++ GMAC_CONFIG0_T config0,config0_mask;
++ int dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++ /* enable TX/RX */
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.dis_rx = 0; /* enable rx */
++ config0.bits.dis_tx = 0; /* enable tx */
++ config0_mask.bits.dis_rx = 1;
++ config0_mask.bits.dis_tx = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++}
++
++static void gmac_disable_tx_rx(struct net_device *dev)
++{
++ GMAC_CONFIG0_T config0,config0_mask;
++ int dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++ /* enable TX/RX */
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.dis_rx = 1; /* disable rx */
++ config0.bits.dis_tx = 1; /* disable tx */
++ config0_mask.bits.dis_rx = 1;
++ config0_mask.bits.dis_tx = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++}
++
++#ifdef CONFIG_SL_NAPI
++static int gmac_rx_poll_ga(struct net_device *dev, int *budget)
++{
++ struct gmac_private *tp = dev->priv;
++ struct sk_buff *skb;
++ GMAC_RXDMA_CTRL_T rxdma_ctrl,rxdma_ctrl_mask;
++ GMAC_RXDMA_FIRST_DESC_T rxdma_busy;
++ GMAC_DESCRIPTOR_T *rx_desc;
++ unsigned int pkt_size;
++ unsigned int desc_count;
++ unsigned int vid;
++// unsigned int priority;
++ unsigned int own;
++ unsigned int good_frame = 0;
++ unsigned int index;
++ unsigned int dev_index;
++ int work = 0;
++ int work_done = 0;
++ int quota = min(dev->quota, *budget);
++
++ dev_index = gmac_select_interface(dev);
++
++ for (;;)
++ {
++ own = tp->rx_cur_desc->frame_ctrl.bits32 >> 31;
++ if (own == CPU) /* check owner bit */
++ {
++ rx_desc = tp->rx_cur_desc;
++#if (GMAC_DEBUG==1)
++ /* check error interrupt */
++ if ( (rx_desc->frame_ctrl.bits_rx.derr==1)||(rx_desc->frame_ctrl.bits_rx.perr==1) )
++ {
++ printk("%s::Rx Descriptor Processing Error !!!\n",__func__);
++ }
++#endif
++ /* get frame information from the first descriptor of the frame */
++ pkt_size = rx_desc->flag_status.bits_rx_status.frame_count - 4; /*total byte count in a frame*/
++#if (GMAC_DEBUG==1)
++ priority = rx_desc->flag_status.bits_rx_status.priority; /* 802.1p priority */
++#endif
++ vid = rx_desc->flag_status.bits_rx_status.vlan_id; /* 802.1q vlan id */
++ if (vid == 0)
++ {
++ vid = 1; /* default vlan */
++ }
++ desc_count = rx_desc->frame_ctrl.bits_rx.desc_count; /* get descriptor count per frame */
++
++ if (rx_desc->frame_ctrl.bits_rx.frame_state == 0x000) /* good frame */
++ {
++ tp->stats.rx_bytes += pkt_size;
++ tp->stats.rx_packets++;
++ good_frame = 1;
++ }
++ else
++ {
++ tp->stats.rx_errors++;
++ good_frame = 0;
++ printk("RX status: 0x%x\n",rx_desc->frame_ctrl.bits_rx.frame_state);
++ }
++ }
++ else
++ {
++ work_done = 1;
++ break; /* Rx process is completed */
++ }
++
++ if (good_frame == 1)
++ {
++ /* get rx skb buffer index */
++ index = ((unsigned int)tp->rx_cur_desc - rx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ if (rx_skb[dev_index][index])
++ {
++ skb_reserve (rx_skb[dev_index][index], 2); /* 16 byte align the IP fields. */
++ rx_skb[dev_index][index]->dev = dev;
++ rx_skb[dev_index][index]->ip_summed = CHECKSUM_UNNECESSARY;
++ skb_put(rx_skb[dev_index][index],pkt_size);
++ rx_skb[dev_index][index]->protocol = eth_type_trans(rx_skb[dev_index][index],dev); /* set skb protocol */
++ netif_rx(rx_skb[dev_index][index]); /* socket rx */
++ dev->last_rx = jiffies;
++
++ /* allocate rx skb buffer */
++ if ( (skb = dev_alloc_skb(RX_BUF_SIZE))==NULL) /* allocate socket buffer */
++ {
++ printk("%s::skb buffer allocation fail !\n",__func__);
++ }
++ rx_skb[dev_index][index] = skb;
++ tp->rx_cur_desc->buf_adr = (unsigned int)__pa(skb->data) | 0x02; /* insert two bytes in the beginning of rx data */
++ }
++ else
++ {
++ printk("%s::rx skb index error !\n",__func__);
++ }
++ }
++
++ tp->rx_cur_desc->frame_ctrl.bits_rx.own = DMA; /* release rx descriptor to DMA */
++ /* point to next rx descriptor */
++ tp->rx_cur_desc = (GMAC_DESCRIPTOR_T *)((tp->rx_cur_desc->next_desc.next_descriptor & 0xfffffff0)+rx_desc_virtual_base[dev_index]);
++
++ /* release buffer to Remaining Buffer Number Register */
++ if (flow_control_enable[dev_index] ==1)
++ {
++// gmac_write_reg(gmac_base_addr[dev_index] + GMAC_BNCR,desc_count,0x0000ffff);
++ writel(desc_count,(unsigned int *)(gmac_base_addr[dev_index] + GMAC_BNCR));
++ }
++
++ if (work++ >= quota )
++ {
++ break;
++ }
++ }
++
++ /* if RX DMA process is stoped , restart it */
++ rxdma_busy.bits.rd_first_des_ptr = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_FIRST_DESC);
++ if (rxdma_busy.bits.rd_busy == 0)
++ {
++ rxdma_ctrl.bits32 = 0;
++ rxdma_ctrl.bits.rd_start = 1; /* start RX DMA transfer */
++ rxdma_ctrl.bits.rd_continue = 1; /* continue RX DMA operation */
++ rxdma_ctrl_mask.bits32 = 0;
++ rxdma_ctrl_mask.bits.rd_start = 1;
++ rxdma_ctrl_mask.bits.rd_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,rxdma_ctrl.bits32,rxdma_ctrl_mask.bits32);
++ }
++
++ dev->quota -= work;
++ *budget -= work;
++ if (work_done==1)
++ {
++ /* Receive descriptor is empty now */
++ netif_rx_complete(dev);
++ /* enable receive interrupt */
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,0x0007c000,0x0007c000); /* enable rx interrupt */
++ return 0;
++ }
++ else
++ {
++ return -1;
++ }
++}
++
++static int gmac_rx_poll_gb(struct net_device *dev, int *budget)
++{
++ struct gmac_private *tp = dev->priv;
++ struct sk_buff *skb;
++ GMAC_RXDMA_CTRL_T rxdma_ctrl,rxdma_ctrl_mask;
++ GMAC_RXDMA_FIRST_DESC_T rxdma_busy;
++ GMAC_DESCRIPTOR_T *rx_desc;
++ unsigned int pkt_size;
++ unsigned int desc_count;
++ unsigned int vid;
++// unsigned int priority;
++ unsigned int own;
++ unsigned int good_frame = 0;
++ unsigned int index;
++ unsigned int dev_index;
++ int work = 0;
++ int work_done = 0;
++ int quota = min(dev->quota, *budget);
++
++ dev_index = gmac_select_interface(dev);
++
++ for (;;)
++ {
++ own = tp->rx_cur_desc->frame_ctrl.bits32 >> 31;
++ if (own == CPU) /* check owner bit */
++ {
++ rx_desc = tp->rx_cur_desc;
++#if (GMAC_DEBUG==1)
++ /* check error interrupt */
++ if ( (rx_desc->frame_ctrl.bits_rx.derr==1)||(rx_desc->frame_ctrl.bits_rx.perr==1) )
++ {
++ printk("%s::Rx Descriptor Processing Error !!!\n",__func__);
++ }
++#endif
++ /* get frame information from the first descriptor of the frame */
++ pkt_size = rx_desc->flag_status.bits_rx_status.frame_count - 4; /*total byte count in a frame*/
++#if (GMAC_DEBUG==1)
++ priority = rx_desc->flag_status.bits_rx_status.priority; /* 802.1p priority */
++#endif
++ vid = rx_desc->flag_status.bits_rx_status.vlan_id; /* 802.1q vlan id */
++ if (vid == 0)
++ {
++ vid = 1; /* default vlan */
++ }
++ desc_count = rx_desc->frame_ctrl.bits_rx.desc_count; /* get descriptor count per frame */
++
++ if (rx_desc->frame_ctrl.bits_rx.frame_state == 0x000) /* good frame */
++ {
++ tp->stats.rx_bytes += pkt_size;
++ tp->stats.rx_packets++;
++ good_frame = 1;
++ }
++ else
++ {
++ tp->stats.rx_errors++;
++ good_frame = 0;
++ printk("RX status: 0x%x\n",rx_desc->frame_ctrl.bits_rx.frame_state);
++ }
++ }
++ else
++ {
++ work_done = 1;
++ break; /* Rx process is completed */
++ }
++
++ if (good_frame == 1)
++ {
++ /* get rx skb buffer index */
++ index = ((unsigned int)tp->rx_cur_desc - rx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ if (rx_skb[dev_index][index])
++ {
++ skb_reserve (rx_skb[dev_index][index], 2); /* 16 byte align the IP fields. */
++ rx_skb[dev_index][index]->dev = dev;
++ rx_skb[dev_index][index]->ip_summed = CHECKSUM_UNNECESSARY;
++ skb_put(rx_skb[dev_index][index],pkt_size);
++ rx_skb[dev_index][index]->protocol = eth_type_trans(rx_skb[dev_index][index],dev); /* set skb protocol */
++ netif_rx(rx_skb[dev_index][index]); /* socket rx */
++ dev->last_rx = jiffies;
++
++ /* allocate rx skb buffer */
++ if ( (skb = dev_alloc_skb(RX_BUF_SIZE))==NULL) /* allocate socket buffer */
++ {
++ printk("%s::skb buffer allocation fail !\n",__func__);
++ }
++ rx_skb[dev_index][index] = skb;
++ tp->rx_cur_desc->buf_adr = (unsigned int)__pa(skb->data) | 0x02; /* insert two bytes in the beginning of rx data */
++ }
++ else
++ {
++ printk("%s::rx skb index error !\n",__func__);
++ }
++ }
++
++ tp->rx_cur_desc->frame_ctrl.bits_rx.own = DMA; /* release rx descriptor to DMA */
++ /* point to next rx descriptor */
++ tp->rx_cur_desc = (GMAC_DESCRIPTOR_T *)((tp->rx_cur_desc->next_desc.next_descriptor & 0xfffffff0)+rx_desc_virtual_base[dev_index]);
++
++ /* release buffer to Remaining Buffer Number Register */
++ if (flow_control_enable[dev_index] ==1)
++ {
++// gmac_write_reg(gmac_base_addr[dev_index] + GMAC_BNCR,desc_count,0x0000ffff);
++ writel(desc_count,(unsigned int *)(gmac_base_addr[dev_index] + GMAC_BNCR));
++ }
++
++ if (work++ >= quota )
++ {
++ break;
++ }
++ }
++
++ /* if RX DMA process is stoped , restart it */
++ rxdma_busy.bits.rd_first_des_ptr = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_FIRST_DESC);
++ if (rxdma_busy.bits.rd_busy == 0)
++ {
++ rxdma_ctrl.bits32 = 0;
++ rxdma_ctrl.bits.rd_start = 1; /* start RX DMA transfer */
++ rxdma_ctrl.bits.rd_continue = 1; /* continue RX DMA operation */
++ rxdma_ctrl_mask.bits32 = 0;
++ rxdma_ctrl_mask.bits.rd_start = 1;
++ rxdma_ctrl_mask.bits.rd_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,rxdma_ctrl.bits32,rxdma_ctrl_mask.bits32);
++ }
++
++ dev->quota -= work;
++ *budget -= work;
++ if (work_done==1)
++ {
++ /* Receive descriptor is empty now */
++ netif_rx_complete(dev);
++ /* enable receive interrupt */
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,0x0007c000,0x0007c000); /* enable rx interrupt */
++ return 0;
++ }
++ else
++ {
++ return -1;
++ }
++}
++
++#endif
++
++static void gmac_rx_packet(struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ struct sk_buff *skb;
++ GMAC_RXDMA_CTRL_T rxdma_ctrl,rxdma_ctrl_mask;
++ GMAC_RXDMA_FIRST_DESC_T rxdma_busy;
++ GMAC_DESCRIPTOR_T *rx_desc;
++ unsigned int pkt_size;
++ unsigned int desc_count;
++ unsigned int vid;
++// unsigned int priority;
++ unsigned int own;
++ unsigned int good_frame = 0;
++ unsigned int i,index;
++ unsigned int dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++ for (i=0;i<256;i++)
++ {
++ own = tp->rx_cur_desc->frame_ctrl.bits32 >> 31;
++ if (own == CPU) /* check owner bit */
++ {
++ rx_desc = tp->rx_cur_desc;
++#if (GMAC_DEBUG==1)
++ /* check error interrupt */
++ if ( (rx_desc->frame_ctrl.bits_rx.derr==1)||(rx_desc->frame_ctrl.bits_rx.perr==1) )
++ {
++ printk("%s::Rx Descriptor Processing Error !!!\n",__func__);
++ }
++#endif
++ /* get frame information from the first descriptor of the frame */
++ pkt_size = rx_desc->flag_status.bits_rx_status.frame_count - 4; /*total byte count in a frame*/
++#if (GMAC_DEBUG==1)
++ priority = rx_desc->flag_status.bits_rx_status.priority; /* 802.1p priority */
++#endif
++ vid = rx_desc->flag_status.bits_rx_status.vlan_id; /* 802.1q vlan id */
++ if (vid == 0)
++ {
++ vid = 1; /* default vlan */
++ }
++ desc_count = rx_desc->frame_ctrl.bits_rx.desc_count; /* get descriptor count per frame */
++
++ if (rx_desc->frame_ctrl.bits_rx.frame_state == 0x000) /* good frame */
++ {
++ tp->stats.rx_bytes += pkt_size;
++ tp->stats.rx_packets++;
++ good_frame = 1;
++ }
++ else
++ {
++ tp->stats.rx_errors++;
++ good_frame = 0;
++ printk("RX status: 0x%x\n",rx_desc->frame_ctrl.bits_rx.frame_state);
++ }
++ }
++ else
++ {
++ break; /* Rx process is completed */
++ }
++
++ if (good_frame == 1)
++ {
++ /* get rx skb buffer index */
++ index = ((unsigned int)tp->rx_cur_desc - rx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ if (rx_skb[dev_index][index])
++ {
++ skb_reserve (rx_skb[dev_index][index], 2); /* 16 byte align the IP fields. */
++ rx_skb[dev_index][index]->dev = dev;
++ rx_skb[dev_index][index]->ip_summed = CHECKSUM_UNNECESSARY;
++ skb_put(rx_skb[dev_index][index],pkt_size);
++ rx_skb[dev_index][index]->protocol = eth_type_trans(rx_skb[dev_index][index],dev); /* set skb protocol */
++ netif_rx(rx_skb[dev_index][index]); /* socket rx */
++ dev->last_rx = jiffies;
++
++ /* allocate rx skb buffer */
++ if ( (skb = dev_alloc_skb(RX_BUF_SIZE))==NULL) /* allocate socket buffer */
++ {
++ printk("%s::skb buffer allocation fail !\n",__func__);
++ }
++ rx_skb[dev_index][index] = skb;
++ tp->rx_cur_desc->buf_adr = (unsigned int)__pa(skb->data) | 0x02; /* insert two bytes in the beginning of rx data */
++ }
++ else
++ {
++ printk("%s::rx skb index error !\n",__func__);
++ }
++ }
++
++ tp->rx_cur_desc->frame_ctrl.bits_rx.own = DMA; /* release rx descriptor to DMA */
++ /* point to next rx descriptor */
++ tp->rx_cur_desc = (GMAC_DESCRIPTOR_T *)((tp->rx_cur_desc->next_desc.next_descriptor & 0xfffffff0)+rx_desc_virtual_base[dev_index]);
++
++ /* release buffer to Remaining Buffer Number Register */
++ if (flow_control_enable[dev_index] ==1)
++ {
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_BNCR,desc_count,0x0000ffff);
++ }
++ }
++
++ /* if RX DMA process is stoped , restart it */
++ rxdma_busy.bits.rd_first_des_ptr = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_FIRST_DESC);
++ if (rxdma_busy.bits.rd_busy == 0)
++ {
++ rxdma_ctrl.bits32 = 0;
++ rxdma_ctrl.bits.rd_start = 1; /* start RX DMA transfer */
++ rxdma_ctrl.bits.rd_continue = 1; /* continue RX DMA operation */
++ rxdma_ctrl_mask.bits32 = 0;
++ rxdma_ctrl_mask.bits.rd_start = 1;
++ rxdma_ctrl_mask.bits.rd_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,rxdma_ctrl.bits32,rxdma_ctrl_mask.bits32);
++ }
++}
++
++#ifdef CONFIG_SL2312_MPAGE
++static inline void free_tx_buf(int dev_index, int desc_index)
++{
++ if (tx_skb[dev_index][desc_index].freeable &&
++ tx_skb[dev_index][desc_index].skb) {
++ struct sk_buff* skb = tx_skb[dev_index][desc_index].skb;
++ //printk("free_skb %x, len %d\n", skb, skb->len);
++#ifdef CONFIG_TXINT_DISABLE
++ dev_kfree_skb(skb);
++#else
++ dev_kfree_skb_irq(skb);
++#endif
++ tx_skb[dev_index][desc_index].skb = 0;
++ }
++}
++
++#ifdef CONFIG_TXINT_DISABLE
++static void gmac_tx_packet_complete(struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ GMAC_DESCRIPTOR_T *tx_hw_complete_desc, *next_desc;
++ unsigned int desc_cnt=0;
++ unsigned int i,index,dev_index;
++ unsigned int tx_current_descriptor = 0;
++ // int own_dma = 0;
++
++ dev_index = gmac_select_interface(dev);
++
++ index = ((unsigned int)tp->tx_finished_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ if (tx_skb[dev_index][index].desc_in_use && tp->tx_finished_desc->frame_ctrl.bits_tx_in.own == CPU) {
++ free_tx_buf(dev_index, index);
++ tx_skb[dev_index][index].desc_in_use = 0;
++ }
++ next_desc = (GMAC_DESCRIPTOR_T*)((tp->tx_finished_desc->next_desc.next_descriptor & 0xfffffff0) + tx_desc_virtual_base[dev_index]);
++
++ for (;;) {
++ tx_hw_complete_desc = (GMAC_DESCRIPTOR_T *)((gmac_read_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CURR_DESC) & 0xfffffff0)+ tx_desc_virtual_base[dev_index]);
++ if (next_desc == tx_hw_complete_desc)
++ break;
++ if (next_desc->frame_ctrl.bits_tx_in.own == CPU) {
++ if (next_desc->frame_ctrl.bits_tx_in.success_tx == 1) {
++ tp->stats.tx_bytes += next_desc->flag_status.bits_tx_flag.frame_count;
++ tp->stats.tx_packets ++;
++ } else {
++ tp->stats.tx_errors++;
++ }
++ desc_cnt = next_desc->frame_ctrl.bits_tx_in.desc_count;
++ for (i=1; i<desc_cnt; i++) {
++ /* get tx skb buffer index */
++ index = ((unsigned int)next_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ next_desc->frame_ctrl.bits_tx_in.own = CPU;
++ free_tx_buf(dev_index, index);
++ tx_skb[dev_index][index].desc_in_use = 0;
++ tp->tx_desc_tail[dev_index] = (tp->tx_desc_tail[dev_index] +1) & (TX_DESC_NUM-1);
++ /* release Tx descriptor to CPU */
++ next_desc = (GMAC_DESCRIPTOR_T *)((next_desc->next_desc.next_descriptor & 0xfffffff0)+tx_desc_virtual_base[dev_index]);
++ }
++ /* get tx skb buffer index */
++ index = ((unsigned int)next_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ /* free skb buffer */
++ next_desc->frame_ctrl.bits_tx_in.own = CPU;
++ free_tx_buf(dev_index, index);
++ tx_skb[dev_index][index].desc_in_use = 0;
++ tp->tx_desc_tail[dev_index] = (tp->tx_desc_tail[dev_index] +1) & (TX_DESC_NUM-1);
++ tp->tx_finished_desc = next_desc;
++// printk("finish tx_desc index %d\n", index);
++ next_desc = (GMAC_DESCRIPTOR_T *)((next_desc->next_desc.next_descriptor & 0xfffffff0)+tx_desc_virtual_base[dev_index]);
++ }
++ else
++ break;
++ }
++ if (netif_queue_stopped(dev))
++ {
++ netif_wake_queue(dev);
++ }
++
++}
++#else
++static void gmac_tx_packet_complete(struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ GMAC_DESCRIPTOR_T *tx_hw_complete_desc;
++ unsigned int desc_cnt=0;
++ unsigned int i,index,dev_index;
++ unsigned int tx_current_descriptor = 0;
++ // int own_dma = 0;
++
++ dev_index = gmac_select_interface(dev);
++
++ index = ((unsigned int)tp->tx_finished_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++
++ /* check tx status and accumulate tx statistics */
++ for (;;)
++ {
++
++ for (i=0;i<1000;i++)
++ {
++ tx_current_descriptor = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CURR_DESC);
++ if ( ((tx_current_descriptor & 0x00000003)==0x00000003) || /* only one descriptor */
++ ((tx_current_descriptor & 0x00000003)==0x00000001) ) /* the last descriptor */
++ {
++ break;
++ }
++ udelay(1);
++ }
++ if (i==1000)
++ {
++// gmac_dump_register(dev);
++// printk("%s: tx current descriptor = %x \n",__func__,tx_current_descriptor);
++// printk_all(dev_index, tp);
++ continue;
++ }
++
++ /* get tx H/W completed descriptor virtual address */
++ tx_hw_complete_desc = (GMAC_DESCRIPTOR_T *)((tx_current_descriptor & 0xfffffff0)+ tx_desc_virtual_base[dev_index]);
++// tx_hw_complete_desc = (GMAC_DESCRIPTOR_T *)((gmac_read_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CURR_DESC) & 0xfffffff0)+ tx_desc_virtual_base[dev_index]);
++ if (tp->tx_finished_desc == tx_hw_complete_desc ) // ||
++ //tx_skb[dev_index][index].desc_in_use ) /* complete tx processing */
++ {
++ break;
++ }
++
++ for (;;)
++ {
++ if (tp->tx_finished_desc->frame_ctrl.bits_tx_in.own == CPU)
++ {
++ #if (GMAC_DEBUG==1)
++ if ( (tp->tx_finished_desc->frame_ctrl.bits_tx_in.derr) ||
++ (tp->tx_finished_desc->frame_ctrl.bits_tx_in.perr) )
++ {
++ printk("%s::Descriptor Processing Error !!!\n",__func__);
++ }
++ #endif
++ if (tp->tx_finished_desc->frame_ctrl.bits_tx_in.success_tx == 1)
++ {
++ tp->stats.tx_bytes += tp->tx_finished_desc->flag_status.bits_tx_flag.frame_count;
++ tp->stats.tx_packets ++;
++ }
++ else
++ {
++ tp->stats.tx_errors++;
++ }
++ desc_cnt = tp->tx_finished_desc->frame_ctrl.bits_tx_in.desc_count;
++ for (i=1; i<desc_cnt; i++) /* multi-descriptor in one packet */
++ {
++ /* get tx skb buffer index */
++ index = ((unsigned int)tp->tx_finished_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ tp->tx_finished_desc->frame_ctrl.bits_tx_in.own = CPU;
++ free_tx_buf(dev_index, index);
++ tx_skb[dev_index][index].desc_in_use = 0;
++ /* release Tx descriptor to CPU */
++ tp->tx_finished_desc = (GMAC_DESCRIPTOR_T *)((tp->tx_finished_desc->next_desc.next_descriptor & 0xfffffff0)+tx_desc_virtual_base[dev_index]);
++ }
++ /* get tx skb buffer index */
++ index = ((unsigned int)tp->tx_finished_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ /* free skb buffer */
++ tp->tx_finished_desc->frame_ctrl.bits_tx_in.own = CPU;
++ free_tx_buf(dev_index, index);
++ tx_skb[dev_index][index].desc_in_use = 0;
++ tp->tx_finished_desc = (GMAC_DESCRIPTOR_T *)((tp->tx_finished_desc->next_desc.next_descriptor & 0xfffffff0)+tx_desc_virtual_base[dev_index]);
++
++ if (tp->tx_finished_desc == tx_hw_complete_desc )
++ {
++ break;
++ }
++ }
++ else
++ {
++ break;
++ }
++ }
++ }
++
++ if (netif_queue_stopped(dev))
++ {
++ netif_wake_queue(dev);
++ }
++
++}
++#endif
++#else
++
++static void gmac_tx_packet_complete(struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ GMAC_DESCRIPTOR_T *tx_hw_complete_desc;
++ unsigned int desc_cnt=0;
++ unsigned int i,index,dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++ /* get tx H/W completed descriptor virtual address */
++ tx_hw_complete_desc = (GMAC_DESCRIPTOR_T *)((gmac_read_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CURR_DESC) & 0xfffffff0)+ tx_desc_virtual_base[dev_index]);
++ /* check tx status and accumulate tx statistics */
++ for (;;)
++ {
++ if (tp->tx_finished_desc == tx_hw_complete_desc) /* complete tx processing */
++ {
++ break;
++ }
++ if (tp->tx_finished_desc->frame_ctrl.bits_tx_in.own == CPU)
++ {
++#if (GMAC_DEBUG==1)
++ if ( (tp->tx_finished_desc->frame_ctrl.bits_tx_in.derr) ||
++ (tp->tx_finished_desc->frame_ctrl.bits_tx_in.perr) )
++ {
++ printk("%s::Descriptor Processing Error !!!\n",__func__);
++ }
++#endif
++ if (tp->tx_finished_desc->frame_ctrl.bits_tx_in.success_tx == 1)
++ {
++ tp->stats.tx_bytes += tp->tx_finished_desc->flag_status.bits_tx_flag.frame_count;
++ tp->stats.tx_packets ++;
++ }
++ else
++ {
++ tp->stats.tx_errors++;
++ }
++ desc_cnt = tp->tx_finished_desc->frame_ctrl.bits_tx_in.desc_count;
++ for (i=1; i<desc_cnt; i++) /* multi-descriptor in one packet */
++ {
++ /* get tx skb buffer index */
++ index = ((unsigned int)tp->tx_finished_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ /* free skb buffer */
++ if (tx_skb[dev_index][index])
++ {
++ dev_kfree_skb_irq(tx_skb[dev_index][index]);
++ }
++ /* release Tx descriptor to CPU */
++ tp->tx_finished_desc = (GMAC_DESCRIPTOR_T *)((tp->tx_finished_desc->next_desc.next_descriptor & 0xfffffff0)+tx_desc_virtual_base[dev_index]);
++ tp->tx_finished_desc->frame_ctrl.bits_tx_in.own = CPU;
++ }
++ /* get tx skb buffer index */
++ index = ((unsigned int)tp->tx_finished_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ /* free skb buffer */
++ if (tx_skb[dev_index][index])
++ {
++ dev_kfree_skb_irq(tx_skb[dev_index][index]);
++ }
++ tp->tx_finished_desc = (GMAC_DESCRIPTOR_T *)((tp->tx_finished_desc->next_desc.next_descriptor & 0xfffffff0)+tx_desc_virtual_base[dev_index]);
++ }
++ }
++
++ if (netif_queue_stopped(dev))
++ {
++ netif_wake_queue(dev);
++ }
++
++}
++
++
++#endif
++
++#if 0
++static void gmac_weird_interrupt(struct net_device *dev)
++{
++ gmac_dump_register(dev);
++}
++#endif
++
++/* The interrupt handler does all of the Rx thread work and cleans up
++ after the Tx thread. */
++static irqreturn_t gmac_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
++{
++ struct net_device *dev = (struct net_device *)dev_instance;
++ GMAC_RXDMA_FIRST_DESC_T rxdma_busy;
++// GMAC_TXDMA_FIRST_DESC_T txdma_busy;
++// GMAC_TXDMA_CTRL_T txdma_ctrl,txdma_ctrl_mask;
++ GMAC_RXDMA_CTRL_T rxdma_ctrl,rxdma_ctrl_mask;
++ GMAC_DMA_STATUS_T status;
++ unsigned int i,dev_index;
++ int handled = 0;
++
++ dev_index = gmac_select_interface(dev);
++
++ handled = 1;
++
++#ifdef CONFIG_SL_NAPI
++ disable_irq(gmac_irq[dev_index]); /* disable GMAC interrupt */
++
++ status.bits32 = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_DMA_STATUS); /* read DMA status */
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_DMA_STATUS,status.bits32,status.bits32); /* clear DMA status */
++
++ if (status.bits.rx_overrun == 1)
++ {
++ printk("%s::RX Overrun !!!%d\n",__func__,gmac_read_reg(gmac_base_addr[dev_index] + GMAC_RBNR));
++ gmac_dump_register(dev);
++ /* if RX DMA process is stoped , restart it */
++ rxdma_busy.bits32 = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_FIRST_DESC) ;
++ if (rxdma_busy.bits.rd_busy == 0)
++ {
++ /* restart Rx DMA process */
++ rxdma_ctrl.bits32 = 0;
++ rxdma_ctrl.bits.rd_start = 1; /* start RX DMA transfer */
++ rxdma_ctrl.bits.rd_continue = 1; /* continue RX DMA operation */
++ rxdma_ctrl_mask.bits32 = 0;
++ rxdma_ctrl_mask.bits.rd_start = 1;
++ rxdma_ctrl_mask.bits.rd_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,rxdma_ctrl.bits32,rxdma_ctrl_mask.bits32);
++ }
++ }
++
++ /* process rx packet */
++ if (netif_running(dev) && ((status.bits.rs_eofi==1)||(status.bits.rs_finish==1)))
++ {
++ if (likely(netif_rx_schedule_prep(dev)))
++ {
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,0,0x0007c000); /* disable rx interrupt */
++ __netif_rx_schedule(dev);
++ }
++ }
++#ifndef CONFIG_TXINT_DISABLE
++ /* process tx packet */
++ if (netif_running(dev) && ((status.bits.ts_eofi==1)||(status.bits.ts_finish==1)))
++ {
++ gmac_tx_packet_complete(dev);
++ }
++#endif
++
++ enable_irq(gmac_irq[dev_index]); /* enable GMAC interrupt */
++ return IRQ_RETVAL(handled);
++#endif
++
++ /* disable GMAC interrupt */
++ disable_irq(gmac_irq[dev_index]);
++ for (i=0;i<MAX_ISR_WORK;i++)
++ {
++ /* read DMA status */
++ status.bits32 = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_DMA_STATUS);
++int_status = status.bits32;
++ /* clear DMA status */
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_DMA_STATUS,status.bits32,status.bits32);
++
++ if ((status.bits32 & 0xffffc000)==0)
++ {
++ break;
++ }
++
++ if (status.bits.rx_overrun == 1)
++ {
++ printk("%s::RX Overrun !!!%d\n",__func__,gmac_read_reg(gmac_base_addr[dev_index] + GMAC_RBNR));
++ gmac_dump_register(dev);
++ /* if RX DMA process is stoped , restart it */
++ rxdma_busy.bits32 = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_FIRST_DESC) ;
++ if (rxdma_busy.bits.rd_busy == 0)
++ {
++ /* restart Rx DMA process */
++ rxdma_ctrl.bits32 = 0;
++ rxdma_ctrl.bits.rd_start = 1; /* start RX DMA transfer */
++ rxdma_ctrl.bits.rd_continue = 1; /* continue RX DMA operation */
++ rxdma_ctrl_mask.bits32 = 0;
++ rxdma_ctrl_mask.bits.rd_start = 1;
++ rxdma_ctrl_mask.bits.rd_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,rxdma_ctrl.bits32,rxdma_ctrl_mask.bits32);
++ }
++ }
++
++ /* receive rx interrupt */
++ if (netif_running(dev) && ((status.bits.rs_eofi==1)||(status.bits.rs_finish==1)))
++ {
++ gmac_rx_packet(dev);
++// gmac_tx_packet_complete(dev);
++ }
++
++ /* receive tx interrupt */
++ // if (netif_running(dev) && (status.bits.ts_finish==1))
++#ifndef CONFIG_TXINT_DISABLE
++ if (netif_running(dev) && ((status.bits.ts_eofi==1)||
++ (status.bits.ts_finish==1)))
++ {
++ gmac_tx_packet_complete(dev);
++ }
++#endif
++ /* check uncommon events */
++/* if ((status.bits32 & 0x632fc000)!=0)
++ {
++ printk("%s::DMA Status = %08x \n",__func__,status.bits32);
++ gmac_weird_interrupt(dev);
++ }
++*/
++ }
++
++ /* enable GMAC interrupt */
++ enable_irq(gmac_irq[dev_index]);
++ //printk("gmac_interrupt complete!\n\n");
++ return IRQ_RETVAL(handled);
++}
++
++static void gmac_hw_start(struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ GMAC_TXDMA_CURR_DESC_T tx_desc;
++ GMAC_RXDMA_CURR_DESC_T rx_desc;
++ GMAC_TXDMA_CTRL_T txdma_ctrl,txdma_ctrl_mask;
++ GMAC_RXDMA_CTRL_T rxdma_ctrl,rxdma_ctrl_mask;
++ GMAC_DMA_STATUS_T dma_status,dma_status_mask;
++ int dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++ /* program TxDMA Current Descriptor Address register for first descriptor */
++ tx_desc.bits32 = (unsigned int)(tp->tx_desc_dma);
++ tx_desc.bits.eofie = 1;
++ tx_desc.bits.sof_eof = 0x03;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CURR_DESC,tx_desc.bits32,0xffffffff);
++ gmac_write_reg(gmac_base_addr[dev_index] + 0xff2c,tx_desc.bits32,0xffffffff); /* tx next descriptor address */
++
++ /* program RxDMA Current Descriptor Address register for first descriptor */
++ rx_desc.bits32 = (unsigned int)(tp->rx_desc_dma);
++ rx_desc.bits.eofie = 1;
++ rx_desc.bits.sof_eof = 0x03;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CURR_DESC,rx_desc.bits32,0xffffffff);
++ gmac_write_reg(gmac_base_addr[dev_index] + 0xff3c,rx_desc.bits32,0xffffffff); /* rx next descriptor address */
++
++ /* enable GMAC interrupt & disable loopback */
++ dma_status.bits32 = 0;
++ dma_status.bits.loop_back = 0; /* disable DMA loop-back mode */
++// dma_status.bits.m_tx_fail = 1;
++ dma_status.bits.m_cnt_full = 1;
++ dma_status.bits.m_rx_pause_on = 1;
++ dma_status.bits.m_tx_pause_on = 1;
++ dma_status.bits.m_rx_pause_off = 1;
++ dma_status.bits.m_tx_pause_off = 1;
++ dma_status.bits.m_rx_overrun = 1;
++ dma_status.bits.m_link_change = 1;
++ dma_status_mask.bits32 = 0;
++ dma_status_mask.bits.loop_back = 1;
++// dma_status_mask.bits.m_tx_fail = 1;
++ dma_status_mask.bits.m_cnt_full = 1;
++ dma_status_mask.bits.m_rx_pause_on = 1;
++ dma_status_mask.bits.m_tx_pause_on = 1;
++ dma_status_mask.bits.m_rx_pause_off = 1;
++ dma_status_mask.bits.m_tx_pause_off = 1;
++ dma_status_mask.bits.m_rx_overrun = 1;
++ dma_status_mask.bits.m_link_change = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_DMA_STATUS,dma_status.bits32,dma_status_mask.bits32);
++
++ /* program tx dma control register */
++ txdma_ctrl.bits32 = 0;
++ txdma_ctrl.bits.td_start = 0; /* start TX DMA transfer */
++ txdma_ctrl.bits.td_continue = 0; /* continue Tx DMA operation */
++ txdma_ctrl.bits.td_chain_mode = 1; /* chain mode */
++ txdma_ctrl.bits.td_prot = 0;
++ txdma_ctrl.bits.td_burst_size = 2; /* DMA burst size for every AHB request */
++ txdma_ctrl.bits.td_bus = 2; /* peripheral bus width */
++ txdma_ctrl.bits.td_endian = 0; /* little endian */
++#ifdef CONFIG_TXINT_DISABLE
++ txdma_ctrl.bits.td_finish_en = 0; /* DMA finish event interrupt disable */
++#else
++ txdma_ctrl.bits.td_finish_en = 1; /* DMA finish event interrupt enable */
++#endif
++ txdma_ctrl.bits.td_fail_en = 1; /* DMA fail interrupt enable */
++ txdma_ctrl.bits.td_perr_en = 1; /* protocol failure interrupt enable */
++ txdma_ctrl.bits.td_eod_en = 0; /* disable Tx End of Descriptor Interrupt */
++ //txdma_ctrl.bits.td_eod_en = 0; /* disable Tx End of Descriptor Interrupt */
++#ifdef CONFIG_TXINT_DISABLE
++ txdma_ctrl.bits.td_eof_en = 0; /* end of frame interrupt disable */
++#else
++ txdma_ctrl.bits.td_eof_en = 1; /* end of frame interrupt enable */
++#endif
++ txdma_ctrl_mask.bits32 = 0;
++ txdma_ctrl_mask.bits.td_start = 1;
++ txdma_ctrl_mask.bits.td_continue = 1;
++ txdma_ctrl_mask.bits.td_chain_mode = 1;
++ txdma_ctrl_mask.bits.td_prot = 15;
++ txdma_ctrl_mask.bits.td_burst_size = 3;
++ txdma_ctrl_mask.bits.td_bus = 3;
++ txdma_ctrl_mask.bits.td_endian = 1;
++ txdma_ctrl_mask.bits.td_finish_en = 1;
++ txdma_ctrl_mask.bits.td_fail_en = 1;
++ txdma_ctrl_mask.bits.td_perr_en = 1;
++ txdma_ctrl_mask.bits.td_eod_en = 1;
++ //txdma_ctrl_mask.bits.td_eod_en = 1;
++ txdma_ctrl_mask.bits.td_eof_en = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CTRL,txdma_ctrl.bits32,txdma_ctrl_mask.bits32);
++
++ /* program rx dma control register */
++ rxdma_ctrl.bits32 = 0;
++ rxdma_ctrl.bits.rd_start = 1; /* start RX DMA transfer */
++ rxdma_ctrl.bits.rd_continue = 1; /* continue RX DMA operation */
++ rxdma_ctrl.bits.rd_chain_mode = 1; /* chain mode */
++ rxdma_ctrl.bits.rd_prot = 0;
++ rxdma_ctrl.bits.rd_burst_size = 2; /* DMA burst size for every AHB request */
++ rxdma_ctrl.bits.rd_bus = 2; /* peripheral bus width */
++ rxdma_ctrl.bits.rd_endian = 0; /* little endian */
++ rxdma_ctrl.bits.rd_finish_en = 1; /* DMA finish event interrupt enable */
++ rxdma_ctrl.bits.rd_fail_en = 1; /* DMA fail interrupt enable */
++ rxdma_ctrl.bits.rd_perr_en = 1; /* protocol failure interrupt enable */
++ rxdma_ctrl.bits.rd_eod_en = 0; /* disable Rx End of Descriptor Interrupt */
++ rxdma_ctrl.bits.rd_eof_en = 1; /* end of frame interrupt enable */
++ rxdma_ctrl_mask.bits32 = 0;
++ rxdma_ctrl_mask.bits.rd_start = 1;
++ rxdma_ctrl_mask.bits.rd_continue = 1;
++ rxdma_ctrl_mask.bits.rd_chain_mode = 1;
++ rxdma_ctrl_mask.bits.rd_prot = 15;
++ rxdma_ctrl_mask.bits.rd_burst_size = 3;
++ rxdma_ctrl_mask.bits.rd_bus = 3;
++ rxdma_ctrl_mask.bits.rd_endian = 1;
++ rxdma_ctrl_mask.bits.rd_finish_en = 1;
++ rxdma_ctrl_mask.bits.rd_fail_en = 1;
++ rxdma_ctrl_mask.bits.rd_perr_en = 1;
++ rxdma_ctrl_mask.bits.rd_eod_en = 1;
++ rxdma_ctrl_mask.bits.rd_eof_en = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,rxdma_ctrl.bits32,rxdma_ctrl_mask.bits32);
++ return;
++}
++
++static void gmac_hw_stop(struct net_device *dev)
++{
++ GMAC_TXDMA_CTRL_T txdma_ctrl,txdma_ctrl_mask;
++ GMAC_RXDMA_CTRL_T rxdma_ctrl,rxdma_ctrl_mask;
++ int dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++ /* program tx dma control register */
++ txdma_ctrl.bits32 = 0;
++ txdma_ctrl.bits.td_start = 0;
++ txdma_ctrl.bits.td_continue = 0;
++ txdma_ctrl_mask.bits32 = 0;
++ txdma_ctrl_mask.bits.td_start = 1;
++ txdma_ctrl_mask.bits.td_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CTRL,txdma_ctrl.bits32,txdma_ctrl_mask.bits32);
++ /* program rx dma control register */
++ rxdma_ctrl.bits32 = 0;
++ rxdma_ctrl.bits.rd_start = 0; /* stop RX DMA transfer */
++ rxdma_ctrl.bits.rd_continue = 0; /* stop continue RX DMA operation */
++ rxdma_ctrl_mask.bits32 = 0;
++ rxdma_ctrl_mask.bits.rd_start = 1;
++ rxdma_ctrl_mask.bits.rd_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RXDMA_CTRL,rxdma_ctrl.bits32,rxdma_ctrl_mask.bits32);
++}
++
++static int gmac_init_desc_buf(struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ struct sk_buff *skb;
++ dma_addr_t tx_first_desc_dma=0;
++ dma_addr_t rx_first_desc_dma=0;
++ dma_addr_t rx_first_buf_dma=0;
++ unsigned int i,index;
++
++ printk("Descriptor buffer init......\n");
++
++ /* get device index number */
++ index = gmac_get_dev_index(dev);
++#ifdef CONFIG_SL2312_MPAGE
++ for (i=0; i<TX_DESC_NUM; i++) {
++ tx_skb[index][i].freeable = 0;
++ tx_skb[index][i].skb = 0;
++ tx_skb[index][i].desc_in_use = 0;
++ tx_skb[index][i].end_seq = 0;
++ }
++#else
++ for (i=0;i<TX_DESC_NUM;i++)
++ {
++ tx_skb[index][i] = NULL;
++ }
++#endif
++ for (i=0;i<RX_DESC_NUM;i++)
++ {
++ rx_skb[index][i] = NULL;
++ }
++
++ /* allocates TX/RX descriptors */
++ tp->tx_desc = DMA_MALLOC(TX_DESC_NUM*sizeof(GMAC_DESCRIPTOR_T),(dma_addr_t *)&tp->tx_desc_dma);
++ tx_desc_virtual_base[index] = (unsigned int)tp->tx_desc - (unsigned int)tp->tx_desc_dma;
++ memset(tp->tx_desc,0x00,TX_DESC_NUM*sizeof(GMAC_DESCRIPTOR_T));
++ tp->rx_desc = DMA_MALLOC(RX_DESC_NUM*sizeof(GMAC_DESCRIPTOR_T),(dma_addr_t *)&tp->rx_desc_dma);
++ rx_desc_virtual_base[index] = (unsigned int)tp->rx_desc - (unsigned int)tp->rx_desc_dma;
++ memset(tp->rx_desc,0x00,RX_DESC_NUM*sizeof(GMAC_DESCRIPTOR_T));
++ tx_desc_start_adr[index] = (unsigned int)tp->tx_desc; /* for tx skb index calculation */
++ rx_desc_start_adr[index] = (unsigned int)tp->rx_desc; /* for rx skb index calculation */
++ printk("tx_desc = %08x\n",(unsigned int)tp->tx_desc);
++ printk("rx_desc = %08x\n",(unsigned int)tp->rx_desc);
++ printk("tx_desc_dma = %08x\n",tp->tx_desc_dma);
++ printk("rx_desc_dma = %08x\n",tp->rx_desc_dma);
++
++ if (tp->tx_desc==0x00 || tp->rx_desc==0x00)
++ {
++ free_irq(dev->irq, dev);
++
++ if (tp->tx_desc)
++ DMA_MFREE(tp->tx_desc, TX_DESC_NUM*sizeof(GMAC_DESCRIPTOR_T),tp->tx_desc_dma);
++ if (tp->rx_desc)
++ DMA_MFREE(tp->rx_desc, RX_DESC_NUM*sizeof(GMAC_DESCRIPTOR_T),tp->rx_desc_dma);
++ return -ENOMEM;
++ }
++
++ /* TX descriptors initial */
++ tp->tx_cur_desc = tp->tx_desc; /* virtual address */
++ tp->tx_finished_desc = tp->tx_desc; /* virtual address */
++ tx_first_desc_dma = tp->tx_desc_dma; /* physical address */
++ for (i = 1; i < TX_DESC_NUM; i++)
++ {
++ tp->tx_desc->frame_ctrl.bits_tx_out.own = CPU; /* set owner to CPU */
++ tp->tx_desc->frame_ctrl.bits_tx_out.buffer_size = TX_BUF_SIZE; /* set tx buffer size for descriptor */
++ tp->tx_desc_dma = tp->tx_desc_dma + sizeof(GMAC_DESCRIPTOR_T); /* next tx descriptor DMA address */
++ tp->tx_desc->next_desc.next_descriptor = tp->tx_desc_dma | 0x0000000b;
++ tp->tx_desc = &tp->tx_desc[1] ; /* next tx descriptor virtual address */
++ }
++ /* the last descriptor will point back to first descriptor */
++ tp->tx_desc->frame_ctrl.bits_tx_out.own = CPU;
++ tp->tx_desc->frame_ctrl.bits_tx_out.buffer_size = TX_BUF_SIZE;
++ tp->tx_desc->next_desc.next_descriptor = tx_first_desc_dma | 0x0000000b;
++ tp->tx_desc = tp->tx_cur_desc;
++ tp->tx_desc_dma = tx_first_desc_dma;
++
++ /* RX descriptors initial */
++ tp->rx_cur_desc = tp->rx_desc; /* virtual address */
++ rx_first_desc_dma = tp->rx_desc_dma; /* physical address */
++ for (i = 1; i < RX_DESC_NUM; i++)
++ {
++ if ( (skb = dev_alloc_skb(RX_BUF_SIZE))==NULL) /* allocate socket buffer */
++ {
++ printk("%s::skb buffer allocation fail !\n",__func__);
++ }
++ rx_skb[index][i-1] = skb;
++ tp->rx_desc->buf_adr = (unsigned int)__pa(skb->data) | 0x02; /* insert two bytes in the beginning of rx data */
++ tp->rx_desc->frame_ctrl.bits_rx.own = DMA; /* set owner bit to DMA */
++ tp->rx_desc->frame_ctrl.bits_rx.buffer_size = RX_BUF_SIZE; /* set rx buffer size for descriptor */
++ tp->rx_bufs_dma = tp->rx_bufs_dma + RX_BUF_SIZE; /* point to next buffer address */
++ tp->rx_desc_dma = tp->rx_desc_dma + sizeof(GMAC_DESCRIPTOR_T); /* next rx descriptor DMA address */
++ tp->rx_desc->next_desc.next_descriptor = tp->rx_desc_dma | 0x0000000b;
++ tp->rx_desc = &tp->rx_desc[1]; /* next rx descriptor virtual address */
++ }
++ /* the last descriptor will point back to first descriptor */
++ if ( (skb = dev_alloc_skb(RX_BUF_SIZE))==NULL) /* allocate socket buffer */
++ {
++ printk("%s::skb buffer allocation fail !\n",__func__);
++ }
++ rx_skb[index][i-1] = skb;
++ tp->rx_desc->buf_adr = (unsigned int)__pa(skb->data) | 0x02; /* insert two bytes in the beginning of rx data */
++ tp->rx_desc->frame_ctrl.bits_rx.own = DMA;
++ tp->rx_desc->frame_ctrl.bits_rx.buffer_size = RX_BUF_SIZE;
++ tp->rx_desc->next_desc.next_descriptor = rx_first_desc_dma | 0x0000000b;
++ tp->rx_desc = tp->rx_cur_desc;
++ tp->rx_desc_dma = rx_first_desc_dma;
++ tp->rx_bufs_dma = rx_first_buf_dma;
++
++ for (i=0; i<GMAC_PHY_IF; i++) {
++ tp->tx_desc_hdr[i] = 0;
++ tp->tx_desc_tail[i] = 0;
++ }
++ return (0);
++}
++
++static int gmac_clear_counter (struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ unsigned int dev_index;
++
++ dev_index = gmac_select_interface(dev);
++// tp = gmac_dev[index]->priv;
++ /* clear counter */
++ gmac_read_reg(gmac_base_addr[dev_index] + GMAC_IN_DISCARDS);
++ gmac_read_reg(gmac_base_addr[dev_index] + GMAC_IN_ERRORS);
++ tp->stats.tx_bytes = 0;
++ tp->stats.tx_packets = 0;
++ tp->stats.tx_errors = 0;
++ tp->stats.rx_bytes = 0;
++ tp->stats.rx_packets = 0;
++ tp->stats.rx_errors = 0;
++ tp->stats.rx_dropped = 0;
++ return (0);
++}
++
++static int gmac_open (struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ int retval;
++
++ gmac_select_interface(dev);
++
++ /* chip reset */
++ gmac_sw_reset(dev);
++
++ /* allocates tx/rx descriptor and buffer memory */
++ gmac_init_desc_buf(dev);
++
++ /* get mac address from FLASH */
++ gmac_get_mac_address();
++
++ /* set PHY register to start autonegition process */
++ gmac_set_phy_status(dev);
++
++ /* GMAC initialization */
++ if (gmac_init_chip(dev))
++ {
++ printk (KERN_ERR "GMAC init fail\n");
++ }
++
++ /* start DMA process */
++ gmac_hw_start(dev);
++
++ /* enable tx/rx register */
++ gmac_enable_tx_rx(dev);
++
++ /* clear statistic counter */
++ gmac_clear_counter(dev);
++
++ netif_start_queue (dev);
++
++ /* hook ISR */
++ retval = request_irq (dev->irq, gmac_interrupt, SA_INTERRUPT, dev->name, dev);
++ if (retval)
++ return retval;
++
++ if(!FLAG_SWITCH)
++ {
++ init_waitqueue_head (&tp->thr_wait);
++ init_completion(&tp->thr_exited);
++
++ tp->time_to_die = 0;
++ tp->thr_pid = kernel_thread (gmac_phy_thread, dev, CLONE_FS | CLONE_FILES);
++ if (tp->thr_pid < 0)
++ {
++ printk (KERN_WARNING "%s: unable to start kernel thread\n",dev->name);
++ }
++ }
++ return (0);
++}
++
++static int gmac_close(struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ unsigned int i,dev_index;
++ unsigned int ret;
++
++ dev_index = gmac_get_dev_index(dev);
++
++ /* stop tx/rx packet */
++ gmac_disable_tx_rx(dev);
++
++ /* stop the chip's Tx and Rx DMA processes */
++ gmac_hw_stop(dev);
++
++ netif_stop_queue(dev);
++
++ /* disable interrupts by clearing the interrupt mask */
++ synchronize_irq();
++ free_irq(dev->irq,dev);
++
++ DMA_MFREE(tp->tx_desc, TX_DESC_NUM*sizeof(GMAC_DESCRIPTOR_T),(unsigned int)tp->tx_desc_dma);
++ DMA_MFREE(tp->rx_desc, RX_DESC_NUM*sizeof(GMAC_DESCRIPTOR_T),(unsigned int)tp->rx_desc_dma);
++
++#ifdef CONFIG_SL2312_MPAGE
++// kfree(tx_skb);
++#endif
++
++ for (i=0;i<RX_DESC_NUM;i++)
++ {
++ if (rx_skb[dev_index][i])
++ {
++ dev_kfree_skb(rx_skb[dev_index][i]);
++ }
++ }
++ if(!FLAG_SWITCH)
++ {
++ if (tp->thr_pid >= 0)
++ {
++ tp->time_to_die = 1;
++ wmb();
++ ret = kill_proc (tp->thr_pid, SIGTERM, 1);
++ if (ret)
++ {
++ printk (KERN_ERR "%s: unable to signal thread\n", dev->name);
++ return ret;
++ }
++// wait_for_completion (&tp->thr_exited);
++ }
++ }
++
++ return (0);
++}
++
++#ifdef CONFIG_SL2312_MPAGE
++int printk_all(int dev_index, struct gmac_private* tp)
++{
++ int i=0;
++ unsigned int tx_current_descriptor = 0;
++ int hw_index;
++ int fi;
++ GMAC_DESCRIPTOR_T* tmp_desc;
++
++ GMAC_DESCRIPTOR_T* cur_desc=tp->tx_cur_desc;
++ fi = ((unsigned int)cur_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ printk("tmp_desc %x, id %d\n", (int)cur_desc, fi);
++
++ tmp_desc = (GMAC_DESCRIPTOR_T*)((gmac_read_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CURR_DESC) & 0xfffffff0) + tx_desc_virtual_base[dev_index]);
++ hw_index = ((unsigned int)tmp_desc - tx_desc_start_adr[dev_index])/ sizeof(GMAC_DESCRIPTOR_T);
++ printk("hd_desc %x, ind %d, fin desc %x\n",(int)tmp_desc, hw_index, (int)tp->tx_finished_desc);
++
++ for (i=0; i<TX_DESC_NUM; i++) {
++ printk("**id %4d, hw_index %4d ==> ", fi, hw_index);
++ printk("fc %8x ", tmp_desc->frame_ctrl.bits32);
++ printk("fs %8x ", tmp_desc->flag_status.bits32);
++ printk("fb %8x ", tmp_desc->buf_adr);
++ printk("fd %8x\n", tmp_desc->next_desc.next_descriptor);
++ tmp_desc = (GMAC_DESCRIPTOR_T*)((tmp_desc->next_desc.next_descriptor & 0xfffffff0) + tx_desc_virtual_base[dev_index]);
++ fi = ((unsigned int)tmp_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ }
++ tx_current_descriptor = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CURR_DESC);
++ printk("%s: tx current descriptor = %x \n",__func__,tx_current_descriptor);
++ printk("%s: interrupt status = %x \n",__func__,int_status);
++ return 0;
++}
++
++int cleanup_desc(int dev_index, struct gmac_private* tp)
++{
++ int i=0;
++ int index = ((unsigned int)tp->tx_cur_desc - tx_desc_start_adr[dev_index])/sizeof(GMAC_DESCRIPTOR_T);
++ GMAC_DESCRIPTOR_T* fill_desc = tp->tx_cur_desc;
++
++ for (i=0; i< TX_DESC_NUM; i++)
++ {
++ fill_desc->frame_ctrl.bits_tx_out.own = CPU;
++ fill_desc->frame_ctrl.bits_tx_out.buffer_size = TX_BUF_SIZE;
++ tx_skb[dev_index][index].desc_in_use = 0;
++ free_tx_buf(dev_index, index);
++ printk("cleanup di %d\n", index);
++ fill_desc = (GMAC_DESCRIPTOR_T*)((fill_desc->next_desc.next_descriptor & 0xfffffff0) + tx_desc_virtual_base[dev_index]);
++ index++;
++ if (index > TX_DESC_NUM)
++ index = 0;
++ }
++ return 1;
++}
++
++size_t get_available_tx_desc(struct net_device* dev, int dev_index)
++{
++ struct gmac_private *tp = dev->priv;
++ unsigned int desc_hdr = tp->tx_desc_hdr[dev_index];
++ unsigned int desc_tail = tp->tx_desc_tail[dev_index];
++ int available_desc_num = (TX_DESC_NUM - desc_hdr + desc_tail) & (TX_DESC_NUM-1);
++ if (!available_desc_num) {
++ if (tx_skb[dev_index][desc_hdr].desc_in_use)
++ return 0;
++ else
++ return TX_DESC_NUM;
++ }
++ return available_desc_num;
++}
++
++int check_free_tx_desc(int dev_index, int n, GMAC_DESCRIPTOR_T* desc)
++{
++ int i,index;
++ GMAC_DESCRIPTOR_T* tmp_desc = desc;
++
++ if (n > TX_DESC_NUM)
++ return 0;
++
++ index = ((unsigned int)tmp_desc - tx_desc_start_adr[dev_index])/sizeof(GMAC_DESCRIPTOR_T);
++ for (i=0; i<n; i++)
++ {
++ if (tx_skb[dev_index][index].desc_in_use)
++ {
++ printk("sw desc %d is in use\n", index);
++ /* cleanup all the descriptors to check if DMA still running */
++ return 0;
++ }
++ index++;
++ if (index == TX_DESC_NUM)
++ index = 0;
++ }
++ return 1;
++}
++
++#define TCPHDRLEN(tcp_hdr) ((ntohs(*((__u16 *)tcp_hdr + 6)) >> 12) & 0x000F)
++
++inline int fill_in_desc(int dev_index, GMAC_DESCRIPTOR_T *desc, char* data, int len, int total_len, int sof, int freeable, int ownership, struct sk_buff* skb)
++{
++ int index = ((unsigned int)desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++
++ if (desc->frame_ctrl.bits_tx_in.own == CPU)
++ {
++ tx_skb[dev_index][index].freeable = freeable;
++ if ((sof & 0x01) && skb) {
++ tx_skb[dev_index][index].skb = skb;
++ }
++ else
++ tx_skb[dev_index][index].skb = 0;
++
++ if (sof != 2)
++ tx_skb[dev_index][index].desc_in_use = 1;
++ else
++ tx_skb[dev_index][index].desc_in_use = 0;
++
++ consistent_sync(data, len, PCI_DMA_TODEVICE);
++ desc->buf_adr = (unsigned int)__pa(data);
++ desc->frame_ctrl.bits_tx_out.buffer_size = len;
++ desc->flag_status.bits_tx_flag.frame_count = total_len;
++ desc->next_desc.bits.eofie = 1;
++ desc->next_desc.bits.sof_eof = sof;
++ desc->frame_ctrl.bits_tx_out.vlan_enable = 0;
++ desc->frame_ctrl.bits_tx_out.ip_csum_en = 1; /* TSS IPv4 IP header checksum enable */
++ desc->frame_ctrl.bits_tx_out.ipv6_tx_en = 1; /* TSS IPv6 tx enable */
++ desc->frame_ctrl.bits_tx_out.tcp_csum_en = 1; /* TSS TCP checksum enable */
++ desc->frame_ctrl.bits_tx_out.udp_csum_en = 1; /* TSS UDP checksum enable */
++ wmb();
++ desc->frame_ctrl.bits_tx_out.own = ownership;
++// consistent_sync(desc, sizeof(GMAC_DESCRIPTOR_T), PCI_DMA_TODEVICE);
++ }
++ return 0;
++}
++#endif
++
++static int gmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ GMAC_TXDMA_CTRL_T tx_ctrl,tx_ctrl_mask;
++ GMAC_TXDMA_FIRST_DESC_T txdma_busy;
++ unsigned int len = skb->len;
++ unsigned int dev_index;
++ static unsigned int pcount = 0;
++#ifdef CONFIG_SL2312_MPAGE
++ GMAC_DESCRIPTOR_T *fill_desc;
++ int snd_pages = skb_shinfo(skb)->nr_frags; /* get number of descriptor */
++ int desc_needed = 1; // for jumbo packet, one descriptor is enough.
++ int header_len = skb->len;
++ struct iphdr *ip_hdr;
++ struct tcphdr *tcp_hdr;
++ int tcp_hdr_len;
++ int data_len;
++ int prv_index;
++ long seq_num;
++ int first_desc_index;
++ int ownership, freeable;
++ int eof;
++ int i=0;
++#endif
++#ifdef CONFIG_TXINT_DISABLE
++ int available_desc_cnt = 0;
++#endif
++
++ dev_index = gmac_select_interface(dev);
++
++#ifdef CONFIG_TXINT_DISABLE
++ available_desc_cnt = get_available_tx_desc(dev, dev_index);
++
++ if (available_desc_cnt < (TX_DESC_NUM >> 2)) {
++ gmac_tx_packet_complete(dev);
++ }
++#endif
++
++#ifdef CONFIG_SL2312_MPAGE
++
++ fill_desc = tp->tx_cur_desc;
++ if(!fill_desc) {
++ printk("cur_desc is NULL!\n");
++ return -1;
++ }
++
++ if (storlink_ctl.recvfile==2)
++ {
++ printk("snd_pages=%d skb->len=%d\n",snd_pages,skb->len);
++ }
++
++ if (snd_pages)
++ desc_needed += snd_pages; /* decriptors needed for this large packet */
++
++ if (!check_free_tx_desc(dev_index, desc_needed, fill_desc)) {
++ printk("no available desc!\n");
++ gmac_dump_register(dev);
++ printk_all(dev_index, tp);
++ tp->stats.tx_dropped++;
++ if (pcount++ > 10)
++ {
++ for (;;);
++ }
++ return -1;
++ }
++
++ first_desc_index = ((unsigned int)fill_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++
++ /* check if the tcp packet is in order*/
++ ip_hdr = (struct iphdr*) &(skb->data[14]);
++ tcp_hdr = (struct tcphdr*) &(skb->data[14+ip_hdr->ihl * 4]);
++ tcp_hdr_len = TCPHDRLEN(tcp_hdr) * 4;
++ data_len = skb->len - 14 - ip_hdr->ihl *4 - tcp_hdr_len;
++
++ prv_index = first_desc_index-1;
++ if (prv_index <0)
++ prv_index += TX_DESC_NUM;
++ seq_num = ntohl(tcp_hdr->seq);
++
++ if (snd_pages)
++ {
++ // calculate header length
++ // check fragment total length and header len = skb len - frag len
++ // or parse the header.
++ for (i=0; i<snd_pages; i++) {
++ skb_frag_t* frag = &skb_shinfo(skb)->frags[i];
++ header_len -= frag->size;
++ }
++ ownership = CPU;
++ freeable = 0;
++ /* fill header into first descriptor */
++ fill_in_desc(dev_index, fill_desc, skb->data, header_len, len, 2, freeable, ownership, 0);
++ fill_desc = (GMAC_DESCRIPTOR_T*)((fill_desc->next_desc.next_descriptor & 0xfffffff0) + tx_desc_virtual_base[dev_index]);
++ tx_skb[dev_index][first_desc_index].end_seq = seq_num + data_len;
++
++ eof = 0;
++ ownership = DMA;
++ for (i=0; i<snd_pages; i++)
++ {
++ skb_frag_t* frag = &skb_shinfo(skb)->frags[i];
++ int start_pos = frag->page_offset;
++ char* data_buf = page_address(frag->page);
++ int data_size = frag->size;
++ int cur_index;
++
++ if (i == snd_pages-1)
++ {
++ eof=1;
++ freeable = 1;
++ }
++ fill_in_desc(dev_index, fill_desc, data_buf+(start_pos), data_size,
++ len, eof, freeable, ownership, skb);
++ cur_index = ((unsigned int)fill_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++
++ fill_desc = (GMAC_DESCRIPTOR_T*)((fill_desc->next_desc.next_descriptor & 0xfffffff0) + tx_desc_virtual_base[dev_index]);
++ }
++ /* pass the ownership of the first descriptor to hardware */
++// disable_irq(gmac_irq[dev_index]);
++ tx_skb[dev_index][first_desc_index].desc_in_use = 1;
++ wmb();
++ tp->tx_cur_desc->frame_ctrl.bits_tx_out.own = DMA;
++// consistent_sync(tp->tx_cur_desc, sizeof(GMAC_DESCRIPTOR_T), PCI_DMA_TODEVICE);
++ tp->tx_cur_desc = fill_desc;
++ dev->trans_start = jiffies;
++// enable_irq(gmac_irq[dev_index]);
++ }
++ else if ( tp->tx_cur_desc->frame_ctrl.bits_tx_out.own == CPU )
++ {
++// tx_skb[dev_index][first_desc_index].end_seq = seq_num + data_len;
++// disable_irq(gmac_irq[dev_index]);
++ fill_in_desc(dev_index, tp->tx_cur_desc, skb->data, skb->len, skb->len, 3, 1, DMA, skb);
++// enable_irq(gmac_irq[dev_index]);
++ //consistent_sync(tp->tx_cur_desc, sizeof(GMAC_DESCRIPTOR_T), PCI_DMA_TODEVICE);
++ tp->tx_cur_desc = (GMAC_DESCRIPTOR_T*)((tp->tx_cur_desc->next_desc.next_descriptor & 0xfffffff0) + tx_desc_virtual_base[dev_index]);
++ dev->trans_start = jiffies;
++ }
++ else
++ {
++ printk("gmac tx drop!\n");
++ tp->stats.tx_dropped++;
++ return -1;
++ }
++
++#ifdef CONFIG_TXINT_DISABLE
++ tp->tx_desc_hdr[dev_index] = (tp->tx_desc_hdr[dev_index] + desc_needed) & (TX_DESC_NUM-1);
++#endif
++
++#else
++ if ((tp->tx_cur_desc->frame_ctrl.bits_tx_out.own == CPU) && (len < TX_BUF_SIZE))
++ {
++ index = ((unsigned int)tp->tx_cur_desc - tx_desc_start_adr[dev_index]) / sizeof(GMAC_DESCRIPTOR_T);
++ tx_skb[dev_index][index] = skb;
++ consistent_sync(skb->data,skb->len,PCI_DMA_TODEVICE);
++ tp->tx_cur_desc->buf_adr = (unsigned int)__pa(skb->data);
++ tp->tx_cur_desc->flag_status.bits_tx_flag.frame_count = len; /* total frame byte count */
++ tp->tx_cur_desc->next_desc.bits.sof_eof = 0x03; /*only one descriptor*/
++ tp->tx_cur_desc->frame_ctrl.bits_tx_out.buffer_size = len; /* descriptor byte count */
++ tp->tx_cur_desc->frame_ctrl.bits_tx_out.vlan_enable = 0;
++ tp->tx_cur_desc->frame_ctrl.bits_tx_out.ip_csum_en = 0; /* TSS IPv4 IP header checksum enable */
++ tp->tx_cur_desc->frame_ctrl.bits_tx_out.ipv6_tx_en = 0 ; /* TSS IPv6 tx enable */
++ tp->tx_cur_desc->frame_ctrl.bits_tx_out.tcp_csum_en = 0; /* TSS TCP checksum enable */
++ tp->tx_cur_desc->frame_ctrl.bits_tx_out.udp_csum_en = 0; /* TSS UDP checksum enable */
++ wmb();
++ tp->tx_cur_desc->frame_ctrl.bits_tx_out.own = DMA; /* set owner bit */
++ tp->tx_cur_desc = (GMAC_DESCRIPTOR_T *)((tp->tx_cur_desc->next_desc.next_descriptor & 0xfffffff0)+tx_desc_virtual_base[dev_index]);
++ dev->trans_start = jiffies;
++ }
++ else
++ {
++ /* no free tx descriptor */
++ dev_kfree_skb(skb);
++ netif_stop_queue(dev);
++ tp->stats.tx_dropped++;
++ return (-1);
++ }
++#endif
++ /* if TX DMA process is stoped , restart it */
++ txdma_busy.bits32 = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_FIRST_DESC);
++ if (txdma_busy.bits.td_busy == 0)
++ {
++ /* restart DMA process */
++ tx_ctrl.bits32 = 0;
++ tx_ctrl.bits.td_start = 1;
++ tx_ctrl.bits.td_continue = 1;
++ tx_ctrl_mask.bits32 = 0;
++ tx_ctrl_mask.bits.td_start = 1;
++ tx_ctrl_mask.bits.td_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CTRL,tx_ctrl.bits32,tx_ctrl_mask.bits32);
++ }
++ return (0);
++}
++
++
++struct net_device_stats * gmac_get_stats(struct net_device *dev)
++{
++ struct gmac_private *tp = dev->priv;
++ unsigned long flags;
++ unsigned int pkt_drop;
++ unsigned int pkt_error;
++ unsigned int dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++// if (storlink_ctl.recvfile==3)
++// {
++// printk("GMAC_GLOBAL_BASE_ADDR=%x\n", readl(GMAC_GLOBAL_BASE_ADDR+0x30));
++// gmac_dump_register(dev);
++// printk_all(0, dev);
++// }
++
++ if (netif_running(dev))
++ {
++ /* read H/W counter */
++ spin_lock_irqsave(&tp->lock,flags);
++ pkt_drop = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_IN_DISCARDS);
++ pkt_error = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_IN_ERRORS);
++ tp->stats.rx_dropped = tp->stats.rx_dropped + pkt_drop;
++ tp->stats.rx_errors = tp->stats.rx_errors + pkt_error;
++ spin_unlock_irqrestore(&tp->lock,flags);
++ }
++ return &tp->stats;
++}
++
++static unsigned const ethernet_polynomial = 0x04c11db7U;
++static inline u32 ether_crc (int length, unsigned char *data)
++{
++ int crc = -1;
++ unsigned int i;
++ unsigned int crc_val=0;
++
++ while (--length >= 0) {
++ unsigned char current_octet = *data++;
++ int bit;
++ for (bit = 0; bit < 8; bit++, current_octet >>= 1)
++ crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ?
++ ethernet_polynomial : 0);
++ }
++ crc = ~crc;
++ for (i=0;i<32;i++)
++ {
++ crc_val = crc_val + (((crc << i) & 0x80000000) >> (31-i));
++ }
++ return crc_val;
++}
++
++static void gmac_set_rx_mode(struct net_device *dev)
++{
++ GMAC_RX_FLTR_T filter;
++ unsigned int mc_filter[2]; /* Multicast hash filter */
++ int bit_nr;
++ unsigned int i, dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++// printk("%s : dev->flags = %x \n",__func__,dev->flags);
++// dev->flags |= IFF_ALLMULTI; /* temp */
++ filter.bits32 = 0;
++ filter.bits.error = 0;
++ if (dev->flags & IFF_PROMISC)
++ {
++ filter.bits.error = 1;
++ filter.bits.promiscuous = 1;
++ filter.bits.broadcast = 1;
++ filter.bits.multicast = 1;
++ filter.bits.unicast = 1;
++ mc_filter[1] = mc_filter[0] = 0xffffffff;
++ }
++ else if (dev->flags & IFF_ALLMULTI)
++ {
++ filter.bits.promiscuous = 1;
++ filter.bits.broadcast = 1;
++ filter.bits.multicast = 1;
++ filter.bits.unicast = 1;
++ mc_filter[1] = mc_filter[0] = 0xffffffff;
++ }
++ else
++ {
++ struct dev_mc_list *mclist;
++
++ filter.bits.promiscuous = 1;
++ filter.bits.broadcast = 1;
++ filter.bits.multicast = 1;
++ filter.bits.unicast = 1;
++ mc_filter[1] = mc_filter[0] = 0;
++ for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;i++, mclist = mclist->next)
++ {
++ bit_nr = ether_crc(ETH_ALEN,mclist->dmi_addr) & 0x0000003f;
++ if (bit_nr < 32)
++ {
++ mc_filter[0] = mc_filter[0] | (1<<bit_nr);
++ }
++ else
++ {
++ mc_filter[1] = mc_filter[1] | (1<<(bit_nr-32));
++ }
++ }
++ }
++ filter.bits32 = 0x1f;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_RX_FLTR,filter.bits32,0xffffffff);
++
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_MCAST_FIL0,mc_filter[0],0xffffffff);
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_MCAST_FIL1,mc_filter[1],0xffffffff);
++ return;
++}
++
++static int gmac_set_mac_address(struct net_device *dev, void *addr)
++{
++ struct sockaddr *sock;
++ unsigned int reg_val;
++ unsigned int dev_index;
++ unsigned int i;
++
++ dev_index = gmac_select_interface(dev);
++
++ sock = (struct sockaddr *) addr;
++ for (i = 0; i < 6; i++)
++ {
++ dev->dev_addr[i] = sock->sa_data[i];
++ }
++
++ reg_val = dev->dev_addr[0] + (dev->dev_addr[1]<<8) + (dev->dev_addr[2]<<16) + (dev->dev_addr[3]<<24);
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_STA_ADD0,reg_val,0xffffffff);
++ reg_val = dev->dev_addr[4] + (dev->dev_addr[5]<<8) ;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_STA_ADD1,reg_val,0x0000ffff);
++ memcpy(&eth0_mac[0],&dev->dev_addr[0],6);
++ printk("Storlink %s address = ",dev->name);
++ printk("%02x",dev->dev_addr[0]);
++ printk("%02x",dev->dev_addr[1]);
++ printk("%02x",dev->dev_addr[2]);
++ printk("%02x",dev->dev_addr[3]);
++ printk("%02x",dev->dev_addr[4]);
++ printk("%02x\n",dev->dev_addr[5]);
++
++ return (0);
++}
++
++static void gmac_tx_timeout(struct net_device *dev)
++{
++ GMAC_TXDMA_CTRL_T tx_ctrl,tx_ctrl_mask;
++ GMAC_TXDMA_FIRST_DESC_T txdma_busy;
++ int dev_index;
++
++ dev_index = gmac_select_interface(dev);
++
++ /* if TX DMA process is stoped , restart it */
++ txdma_busy.bits32 = gmac_read_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_FIRST_DESC);
++ if (txdma_busy.bits.td_busy == 0)
++ {
++ /* restart DMA process */
++ tx_ctrl.bits32 = 0;
++ tx_ctrl.bits.td_start = 1;
++ tx_ctrl.bits.td_continue = 1;
++ tx_ctrl_mask.bits32 = 0;
++ tx_ctrl_mask.bits.td_start = 1;
++ tx_ctrl_mask.bits.td_continue = 1;
++ gmac_write_reg(gmac_base_addr[dev_index] + GMAC_TXDMA_CTRL,tx_ctrl.bits32,tx_ctrl_mask.bits32);
++ }
++ netif_wake_queue(dev);
++ return;
++}
++
++static int gmac_netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
++{
++ int rc = 0;
++ unsigned char *hwa = rq->ifr_ifru.ifru_hwaddr.sa_data;
++
++ if (!netif_running(dev))
++ {
++ printk("Before changing the H/W address,please down the device.\n");
++ return -EINVAL;
++ }
++
++ switch (cmd) {
++ case SIOCETHTOOL:
++ break;
++
++ case SIOCSIFHWADDR:
++ gmac_set_mac_address(dev,hwa);
++ break;
++
++ case SIOCGMIIPHY: /* Get the address of the PHY in use. */
++ case SIOCDEVPRIVATE: /* binary compat, remove in 2.5 */
++ break;
++
++ case SIOCGMIIREG: /* Read the specified MII register. */
++ case SIOCDEVPRIVATE+1:
++ break;
++
++ case SIOCSMIIREG: /* Write the specified MII register */
++ case SIOCDEVPRIVATE+2:
++ break;
++
++ default:
++ rc = -EOPNOTSUPP;
++ break;
++ }
++
++ return rc;
++}
++
++static void gmac_cleanup_module(void)
++{
++ int i;
++
++ for (i=0;i<GMAC_PHY_IF;i++)
++ {
++ unregister_netdev(gmac_dev[i]);
++ }
++ return ;
++}
++
++static int __init gmac_init_module(void)
++{
++ struct gmac_private *tp;
++ struct net_device *dev[GMAC_PHY_IF];
++ unsigned int i;
++
++#ifdef MODULE
++ printk (KERN_INFO RTL8139_DRIVER_NAME "\n");
++#endif
++// init_waitqueue_entry(&wait, current);
++
++ printk("GMAC Init......\n");
++ for(i = 0; i<GMAC_PHY_IF; i++)
++ {
++ dev[i] = alloc_etherdev(sizeof(struct gmac_private));
++ if (dev[i] == NULL)
++ {
++ printk (KERN_ERR "Can't allocate ethernet device #%d .\n",i);
++ return -ENOMEM;
++ }
++ gmac_dev[i] = dev[i];
++
++ SET_MODULE_OWNER(dev[i]);
++
++ tp = dev[i]->priv;
++
++ dev[i]->base_addr = gmac_base_addr[i];
++ dev[i]->irq = gmac_irq[i];
++ dev[i]->open = gmac_open;
++ dev[i]->stop = gmac_close;
++ dev[i]->hard_start_xmit = gmac_start_xmit;
++ dev[i]->get_stats = gmac_get_stats;
++ dev[i]->set_multicast_list = gmac_set_rx_mode;
++ dev[i]->set_mac_address = gmac_set_mac_address;
++ dev[i]->do_ioctl = gmac_netdev_ioctl;
++ dev[i]->tx_timeout = gmac_tx_timeout;
++ dev[i]->watchdog_timeo = TX_TIMEOUT;
++ dev[i]->features |= NETIF_F_SG|NETIF_F_HW_CSUM|NETIF_F_TSO;
++#ifdef CONFIG_SL_NAPI
++ printk("NAPI driver is enabled.\n");
++ if (i==0)
++ {
++ dev[i]->poll = gmac_rx_poll_ga;
++ dev[i]->weight = 64;
++ }
++ else
++ {
++ dev[i]->poll = gmac_rx_poll_gb;
++ dev[i]->weight = 64;
++ }
++#endif
++
++ if (register_netdev(dev[i]))
++ {
++ gmac_cleanup_module();
++ return(-1);
++ }
++ }
++
++#ifdef CONFIG_SL3516_ASIC
++{
++ unsigned int val;
++
++ /* set GMAC global register */
++ val = readl(GMAC_GLOBAL_BASE_ADDR+0x10);
++ val = val | 0x005a0000;
++ writel(val,GMAC_GLOBAL_BASE_ADDR+0x10);
++ writel(0x07f007f0,GMAC_GLOBAL_BASE_ADDR+0x1c);
++ writel(0x77770000,GMAC_GLOBAL_BASE_ADDR+0x20);
++ writel(0x77770000,GMAC_GLOBAL_BASE_ADDR+0x24);
++ val = readl(GMAC_GLOBAL_BASE_ADDR+0x04);
++ if((val&(1<<20))==0){ // GMAC1 enable
++ val = readl(GMAC_GLOBAL_BASE_ADDR+0x30);
++ val = (val & 0xe7ffffff) | 0x08000000;
++ writel(val,GMAC_GLOBAL_BASE_ADDR+0x30);
++ }
++
++}
++#endif
++
++// printk("%s: dev0=%x dev1=%x \n",__func__,dev[0],dev[1]);
++// FLAG_SWITCH = 0 ;
++// FLAG_SWITCH = SPI_get_identifier();
++// if(FLAG_SWITCH)
++// {
++// printk("Configure ADM699X...\n");
++// SPI_default(); //Add by jason for ADM699X configuration
++// }
++ return (0);
++}
++
++
++module_init(gmac_init_module);
++module_exit(gmac_cleanup_module);
++
++static int gmac_phy_thread (void *data)
++{
++ struct net_device *dev = data;
++ struct gmac_private *tp = dev->priv;
++ unsigned long timeout;
++
++ daemonize("%s", dev->name);
++ allow_signal(SIGTERM);
++// reparent_to_init();
++// spin_lock_irq(&current->sigmask_lock);
++// sigemptyset(&current->blocked);
++// recalc_sigpending(current);
++// spin_unlock_irq(&current->sigmask_lock);
++// strncpy (current->comm, dev->name, sizeof(current->comm) - 1);
++// current->comm[sizeof(current->comm) - 1] = '\0';
++
++ while (1)
++ {
++ timeout = next_tick;
++ do
++ {
++ timeout = interruptible_sleep_on_timeout (&tp->thr_wait, timeout);
++ } while (!signal_pending (current) && (timeout > 0));
++
++ if (signal_pending (current))
++ {
++// spin_lock_irq(&current->sigmask_lock);
++ flush_signals(current);
++// spin_unlock_irq(&current->sigmask_lock);
++ }
++
++ if (tp->time_to_die)
++ break;
++
++// printk("%s : Polling PHY Status...%x\n",__func__,dev);
++ rtnl_lock ();
++ gmac_get_phy_status(dev);
++ rtnl_unlock ();
++ }
++ complete_and_exit (&tp->thr_exited, 0);
++}
++
++static void gmac_set_phy_status(struct net_device *dev)
++{
++ GMAC_STATUS_T status;
++ unsigned int reg_val;
++ unsigned int i = 0;
++ unsigned int index;
++
++ if (FLAG_SWITCH==1)
++ {
++ return; /* GMAC connects to a switch chip, not PHY */
++ }
++
++ index = gmac_get_dev_index(dev);
++
++ if (index == 0)
++ {
++// mii_write(phy_addr[index],0x04,0x0461); /* advertisement 10M full duplex, pause capable on */
++// mii_write(phy_addr[index],0x04,0x0421); /* advertisement 10M half duplex, pause capable on */
++ mii_write(phy_addr[index],0x04,0x05e1); /* advertisement 100M full duplex, pause capable on */
++// mii_write(phy_addr[index],0x04,0x04a1); /* advertisement 100M half duplex, pause capable on */
++#ifdef CONFIG_SL3516_ASIC
++ mii_write(phy_addr[index],0x09,0x0300); /* advertisement 1000M full duplex, pause capable on */
++// mii_write(phy_addr[index],0x09,0x0000); /* advertisement 1000M full duplex, pause capable on */
++#endif
++ }
++ else
++ {
++// mii_write(phy_addr[index],0x04,0x0461); /* advertisement 10M full duplex, pause capable on */
++// mii_write(phy_addr[index],0x04,0x0421); /* advertisement 10M half duplex, pause capable on */
++ mii_write(phy_addr[index],0x04,0x05e1); /* advertisement 100M full duplex, pause capable on */
++// mii_write(phy_addr[index],0x04,0x04a1); /* advertisement 100M half duplex, pause capable on */
++#ifdef CONFIG_SL3516_ASIC
++// mii_write(phy_addr[index],0x09,0x0000); /* advertisement no 1000M */
++ mii_write(phy_addr[index],0x09,0x0300); /* advertisement 1000M full duplex, pause capable on */
++#endif
++ }
++
++ mii_write(phy_addr[index],0x00,0x1200); /* Enable and Restart Auto-Negotiation */
++ mii_write(phy_addr[index],0x18,0x0041); /* Enable Active led */
++ while (((reg_val=mii_read(phy_addr[index],0x01)) & 0x00000004)!=0x04)
++ {
++ i++;
++ if (i > 30)
++ {
++ break;
++ }
++ msleep(100);
++ }
++ if (i>30)
++ {
++ pre_phy_status[index] = LINK_DOWN;
++ clear_bit(__LINK_STATE_START, &dev->state);
++ netif_stop_queue(dev);
++ storlink_ctl.link = 0;
++ printk("Link Down (%04x) ",reg_val);
++ }
++ else
++ {
++ pre_phy_status[index] = LINK_UP;
++ set_bit(__LINK_STATE_START, &dev->state);
++ netif_wake_queue(dev);
++ storlink_ctl.link = 1;
++ printk("Link Up (%04x) ",reg_val);
++ }
++
++ status.bits32 = 0;
++ reg_val = mii_read(phy_addr[index],10);
++ printk("reg_val0 = %x \n",reg_val);
++ if ((reg_val & 0x0800) == 0x0800)
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 2;
++ printk(" 1000M/Full \n");
++ }
++ else if ((reg_val & 0x0400) == 0x0400)
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 2;
++ printk(" 1000M/Half \n");
++ }
++ else
++ {
++ reg_val = (mii_read(phy_addr[index],0x05) & 0x05E0) >> 5;
++ printk("reg_val1 = %x \n",reg_val);
++ if ((reg_val & 0x08)==0x08) /* 100M full duplex */
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 1;
++ printk(" 100M/Full \n");
++ }
++ else if ((reg_val & 0x04)==0x04) /* 100M half duplex */
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 1;
++ printk(" 100M/Half \n");
++ }
++ else if ((reg_val & 0x02)==0x02) /* 10M full duplex */
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 0;
++ printk(" 10M/Full \n");
++ }
++ else if ((reg_val & 0x01)==0x01) /* 10M half duplex */
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 0;
++ printk(" 100M/Half \n");
++ }
++ }
++
++ reg_val = (mii_read(phy_addr[index],0x05) & 0x05E0) >> 5;
++ if ((reg_val & 0x20)==0x20)
++ {
++ flow_control_enable[index] = 1;
++ printk("Flow Control Enable. \n");
++ }
++ else
++ {
++ flow_control_enable[index] = 0;
++ printk("Flow Control Disable. \n");
++ }
++ full_duplex = status.bits.duplex;
++ speed = status.bits.speed;
++}
++
++static void gmac_get_phy_status(struct net_device *dev)
++{
++ GMAC_CONFIG0_T config0,config0_mask;
++ GMAC_STATUS_T status;
++ unsigned int reg_val;
++ unsigned int index;
++
++ index = gmac_select_interface(dev);
++
++ status.bits32 = 0;
++ status.bits.phy_mode = 1;
++
++#ifdef CONFIG_SL3516_ASIC
++ status.bits.mii_rmii = 2; /* default value for ASIC version */
++// status.bits.speed = 1;
++#else
++ if (index==0)
++ status.bits.mii_rmii = 0;
++ else
++ status.bits.mii_rmii = 2;
++#endif
++
++ /* read PHY status register */
++ reg_val = mii_read(phy_addr[index],0x01);
++ if ((reg_val & 0x0024) == 0x0024) /* link is established and auto_negotiate process completed */
++ {
++ /* read PHY Auto-Negotiation Link Partner Ability Register */
++ reg_val = mii_read(phy_addr[index],10);
++ if ((reg_val & 0x0800) == 0x0800)
++ {
++ status.bits.mii_rmii = 3; /* RGMII 1000Mbps mode */
++ status.bits.duplex = 1;
++ status.bits.speed = 2;
++ }
++ else if ((reg_val & 0x0400) == 0x0400)
++ {
++ status.bits.mii_rmii = 3; /* RGMII 1000Mbps mode */
++ status.bits.duplex = 0;
++ status.bits.speed = 2;
++ }
++ else
++ {
++ reg_val = (mii_read(phy_addr[index],0x05) & 0x05E0) >> 5;
++ if ((reg_val & 0x08)==0x08) /* 100M full duplex */
++ {
++ status.bits.mii_rmii = 2; /* RGMII 10/100Mbps mode */
++ status.bits.duplex = 1;
++ status.bits.speed = 1;
++ }
++ else if ((reg_val & 0x04)==0x04) /* 100M half duplex */
++ {
++ status.bits.mii_rmii = 2; /* RGMII 10/100Mbps mode */
++ status.bits.duplex = 0;
++ status.bits.speed = 1;
++ }
++ else if ((reg_val & 0x02)==0x02) /* 10M full duplex */
++ {
++ status.bits.mii_rmii = 2; /* RGMII 10/100Mbps mode */
++ status.bits.duplex = 1;
++ status.bits.speed = 0;
++ }
++ else if ((reg_val & 0x01)==0x01) /* 10M half duplex */
++ {
++ status.bits.mii_rmii = 2; /* RGMII 10/100Mbps mode */
++ status.bits.duplex = 0;
++ status.bits.speed = 0;
++ }
++ }
++ status.bits.link = LINK_UP; /* link up */
++ netif_wake_queue(dev);
++
++ reg_val = (mii_read(phy_addr[index],0x05) & 0x05E0) >> 5;
++ if ((reg_val & 0x20)==0x20)
++ {
++ if (flow_control_enable[index] == 0)
++ {
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.tx_fc_en = 1; /* enable tx flow control */
++ config0.bits.rx_fc_en = 1; /* enable rx flow control */
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ gmac_write_reg(gmac_base_addr[index] + GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++// printk("eth%d Flow Control Enable. \n",index);
++ }
++ flow_control_enable[index] = 1;
++ }
++ else
++ {
++ if (flow_control_enable[index] == 1)
++ {
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.tx_fc_en = 0; /* disable tx flow control */
++ config0.bits.rx_fc_en = 0; /* disable rx flow control */
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ gmac_write_reg(gmac_base_addr[index] + GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++// printk("eth%d Flow Control Disable. \n",index);
++ }
++ flow_control_enable[index] = 0;
++ }
++
++ if (pre_phy_status[index] == LINK_DOWN)
++ {
++ gmac_enable_tx_rx(dev);
++ pre_phy_status[index] = LINK_UP;
++ set_bit(__LINK_STATE_START, &dev->state);
++ storlink_ctl.link = 1;
++// printk("eth%d Link Up ...\n",index);
++ }
++ }
++ else
++ {
++ status.bits.link = LINK_DOWN; /* link down */
++ netif_stop_queue(dev);
++ flow_control_enable[index] = 0;
++ storlink_ctl.link = 0;
++ if (pre_phy_status[index] == LINK_UP)
++ {
++ gmac_disable_tx_rx(dev);
++ pre_phy_status[index] = LINK_DOWN;
++ clear_bit(__LINK_STATE_START, &dev->state);
++// printk("eth%d Link Down ...\n",index);
++ }
++
++ }
++
++ reg_val = gmac_read_reg(gmac_base_addr[index] + GMAC_STATUS);
++ if (reg_val != status.bits32)
++ {
++ gmac_write_reg(gmac_base_addr[index] + GMAC_STATUS,status.bits32,0x0000007f);
++ }
++}
++
++/***************************************/
++/* define GPIO module base address */
++/***************************************/
++#define GPIO_BASE_ADDR (IO_ADDRESS(SL2312_GPIO_BASE))
++
++/* define GPIO pin for MDC/MDIO */
++
++// for gemini ASIC
++#ifdef CONFIG_SL3516_ASIC
++#define H_MDC_PIN 22
++#define H_MDIO_PIN 21
++#define G_MDC_PIN 22
++#define G_MDIO_PIN 21
++#else
++#define H_MDC_PIN 3
++#define H_MDIO_PIN 2
++#define G_MDC_PIN 0
++#define G_MDIO_PIN 1
++#endif
++
++//#define GPIO_MDC 0x80000000
++//#define GPIO_MDIO 0x00400000
++
++static unsigned int GPIO_MDC = 0;
++static unsigned int GPIO_MDIO = 0;
++static unsigned int GPIO_MDC_PIN = 0;
++static unsigned int GPIO_MDIO_PIN = 0;
++
++// For PHY test definition!!
++#define LPC_EECK 0x02
++#define LPC_EDIO 0x04
++#define LPC_GPIO_SET 3
++#define LPC_BASE_ADDR IO_ADDRESS(IT8712_IO_BASE)
++#define inb_gpio(x) inb(LPC_BASE_ADDR + IT8712_GPIO_BASE + x)
++#define outb_gpio(x, y) outb(y, LPC_BASE_ADDR + IT8712_GPIO_BASE + x)
++
++enum GPIO_REG
++{
++ GPIO_DATA_OUT = 0x00,
++ GPIO_DATA_IN = 0x04,
++ GPIO_PIN_DIR = 0x08,
++ GPIO_BY_PASS = 0x0c,
++ GPIO_DATA_SET = 0x10,
++ GPIO_DATA_CLEAR = 0x14,
++};
++/***********************/
++/* MDC : GPIO[31] */
++/* MDIO: GPIO[22] */
++/***********************/
++
++/***************************************************
++* All the commands should have the frame structure:
++*<PRE><ST><OP><PHYAD><REGAD><TA><DATA><IDLE>
++****************************************************/
++
++/*****************************************************************
++* Inject a bit to NWay register through CSR9_MDC,MDIO
++*******************************************************************/
++void mii_serial_write(char bit_MDO) // write data into mii PHY
++{
++#if 0 //def CONFIG_SL2312_LPC_IT8712
++ unsigned char iomode,status;
++
++ iomode = LPCGetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET);
++ iomode |= (LPC_EECK|LPC_EDIO) ; // Set EECK,EDIO,EECS output
++ LPCSetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET, iomode);
++
++ if(bit_MDO)
++ {
++ status = inb_gpio( LPC_GPIO_SET);
++ status |= LPC_EDIO ; //EDIO high
++ outb_gpio(LPC_GPIO_SET, status);
++ }
++ else
++ {
++ status = inb_gpio( LPC_GPIO_SET);
++ status &= ~(LPC_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++ }
++
++ status |= LPC_EECK ; //EECK high
++ outb_gpio(LPC_GPIO_SET, status);
++
++ status &= ~(LPC_EECK) ; //EECK low
++ outb_gpio(LPC_GPIO_SET, status);
++
++#else
++ unsigned int addr;
++ unsigned int value;
++
++ addr = GPIO_BASE_ADDR + GPIO_PIN_DIR;
++ value = readl(addr) | GPIO_MDC | GPIO_MDIO; /* set MDC/MDIO Pin to output */
++ writel(value,addr);
++ if(bit_MDO)
++ {
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MDIO,addr); /* set MDIO to 1 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MDC,addr); /* set MDC to 1 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MDC,addr); /* set MDC to 0 */
++ }
++ else
++ {
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MDIO,addr); /* set MDIO to 0 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MDC,addr); /* set MDC to 1 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MDC,addr); /* set MDC to 0 */
++ }
++
++#endif
++}
++
++/**********************************************************************
++* read a bit from NWay register through CSR9_MDC,MDIO
++***********************************************************************/
++unsigned int mii_serial_read(void) // read data from mii PHY
++{
++#if 0 //def CONFIG_SL2312_LPC_IT8712
++ unsigned char iomode,status;
++ unsigned int value ;
++
++ iomode = LPCGetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET);
++ iomode &= ~(LPC_EDIO) ; // Set EDIO input
++ iomode |= (LPC_EECK) ; // Set EECK,EECS output
++ LPCSetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET, iomode);
++
++ status = inb_gpio( LPC_GPIO_SET);
++ status |= LPC_EECK ; //EECK high
++ outb_gpio(LPC_GPIO_SET, status);
++
++ status &= ~(LPC_EECK) ; //EECK low
++ outb_gpio(LPC_GPIO_SET, status);
++
++ value = inb_gpio( LPC_GPIO_SET);
++
++ value = value>>2 ;
++ value &= 0x01;
++
++ return value ;
++
++#else
++ unsigned int *addr;
++ unsigned int value;
++
++ addr = (unsigned int *)(GPIO_BASE_ADDR + GPIO_PIN_DIR);
++ value = readl(addr) & ~GPIO_MDIO; //0xffbfffff; /* set MDC to output and MDIO to input */
++ writel(value,addr);
++
++ addr = (unsigned int *)(GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MDC,addr); /* set MDC to 1 */
++ addr = (unsigned int *)(GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MDC,addr); /* set MDC to 0 */
++
++ addr = (unsigned int *)(GPIO_BASE_ADDR + GPIO_DATA_IN);
++ value = readl(addr);
++ value = (value & (1<<GPIO_MDIO_PIN)) >> GPIO_MDIO_PIN;
++ return(value);
++
++#endif
++}
++
++/***************************************
++* preamble + ST
++***************************************/
++void mii_pre_st(void)
++{
++ unsigned char i;
++
++ for(i=0;i<32;i++) // PREAMBLE
++ mii_serial_write(1);
++ mii_serial_write(0); // ST
++ mii_serial_write(1);
++}
++
++
++/******************************************
++* Read MII register
++* phyad -> physical address
++* regad -> register address
++***************************************** */
++unsigned int mii_read(unsigned char phyad,unsigned char regad)
++{
++ unsigned int i,value;
++ unsigned int bit;
++
++ if (phyad == GPHY_ADDR)
++ {
++ GPIO_MDC_PIN = G_MDC_PIN; /* assigned MDC pin for giga PHY */
++ GPIO_MDIO_PIN = G_MDIO_PIN; /* assigned MDIO pin for giga PHY */
++ }
++ else
++ {
++ GPIO_MDC_PIN = H_MDC_PIN; /* assigned MDC pin for 10/100 PHY */
++ GPIO_MDIO_PIN = H_MDIO_PIN; /* assigned MDIO pin for 10/100 PHY */
++ }
++ GPIO_MDC = (1<<GPIO_MDC_PIN);
++ GPIO_MDIO = (1<<GPIO_MDIO_PIN);
++
++ mii_pre_st(); // PRE+ST
++ mii_serial_write(1); // OP
++ mii_serial_write(0);
++
++ for (i=0;i<5;i++) { // PHYAD
++ bit= ((phyad>>(4-i)) & 0x01) ? 1 :0 ;
++ mii_serial_write(bit);
++ }
++
++ for (i=0;i<5;i++) { // REGAD
++ bit= ((regad>>(4-i)) & 0x01) ? 1 :0 ;
++ mii_serial_write(bit);
++ }
++
++ mii_serial_read(); // TA_Z
++// if((bit=mii_serial_read()) !=0 ) // TA_0
++// {
++// return(0);
++// }
++ value=0;
++ for (i=0;i<16;i++) { // READ DATA
++ bit=mii_serial_read();
++ value += (bit<<(15-i)) ;
++ }
++
++ mii_serial_write(0); // dumy clock
++ mii_serial_write(0); // dumy clock
++//printk("%s: phy_addr=%x reg_addr=%x value=%x \n",__func__,phyad,regad,value);
++ return(value);
++}
++
++/******************************************
++* Write MII register
++* phyad -> physical address
++* regad -> register address
++* value -> value to be write
++***************************************** */
++void mii_write(unsigned char phyad,unsigned char regad,unsigned int value)
++{
++ unsigned int i;
++ char bit;
++
++printk("%s: phy_addr=%x reg_addr=%x value=%x \n",__func__,phyad,regad,value);
++ if (phyad == GPHY_ADDR)
++ {
++ GPIO_MDC_PIN = G_MDC_PIN; /* assigned MDC pin for giga PHY */
++ GPIO_MDIO_PIN = G_MDIO_PIN; /* assigned MDIO pin for giga PHY */
++ }
++ else
++ {
++ GPIO_MDC_PIN = H_MDC_PIN; /* assigned MDC pin for 10/100 PHY */
++ GPIO_MDIO_PIN = H_MDIO_PIN; /* assigned MDIO pin for 10/100 PHY */
++ }
++ GPIO_MDC = (1<<GPIO_MDC_PIN);
++ GPIO_MDIO = (1<<GPIO_MDIO_PIN);
++
++ mii_pre_st(); // PRE+ST
++ mii_serial_write(0); // OP
++ mii_serial_write(1);
++ for (i=0;i<5;i++) { // PHYAD
++ bit= ((phyad>>(4-i)) & 0x01) ? 1 :0 ;
++ mii_serial_write(bit);
++ }
++
++ for (i=0;i<5;i++) { // REGAD
++ bit= ((regad>>(4-i)) & 0x01) ? 1 :0 ;
++ mii_serial_write(bit);
++ }
++ mii_serial_write(1); // TA_1
++ mii_serial_write(0); // TA_0
++
++ for (i=0;i<16;i++) { // OUT DATA
++ bit= ((value>>(15-i)) & 0x01) ? 1 : 0 ;
++ mii_serial_write(bit);
++ }
++ mii_serial_write(0); // dumy clock
++ mii_serial_write(0); // dumy clock
++}
++
++
++
++
++
++
++
++
++
++/* NOTES
++ * The instruction set of the 93C66/56/46/26/06 chips are as follows:
++ *
++ * Start OP *
++ * Function Bit Code Address** Data Description
++ * -------------------------------------------------------------------
++ * READ 1 10 A7 - A0 Reads data stored in memory,
++ * starting at specified address
++ * EWEN 1 00 11XXXXXX Write enable must precede
++ * all programming modes
++ * ERASE 1 11 A7 - A0 Erase register A7A6A5A4A3A2A1A0
++ * WRITE 1 01 A7 - A0 D15 - D0 Writes register
++ * ERAL 1 00 10XXXXXX Erase all registers
++ * WRAL 1 00 01XXXXXX D15 - D0 Writes to all registers
++ * EWDS 1 00 00XXXXXX Disables all programming
++ * instructions
++ * *Note: A value of X for address is a don't care condition.
++ * **Note: There are 8 address bits for the 93C56/66 chips unlike
++ * the 93C46/26/06 chips which have 6 address bits.
++ *
++ * The 93Cx6 has a four wire interface: clock, chip select, data in, and
++ * data out.While the ADM6996 uning three interface: clock, chip select,and data line.
++ * The input and output are the same pin. ADM6996 can only recognize the write cmd.
++ * In order to perform above functions, you need
++ * 1. to enable the chip select .
++ * 2. send one clock of dummy clock
++ * 3. send start bit and opcode
++ * 4. send 8 bits address and 16 bits data
++ * 5. to disable the chip select.
++ * Jason Lee 2003/07/30
++ */
++
++/***************************************/
++/* define GPIO module base address */
++/***************************************/
++#define GPIO_EECS 0x00400000 /* EECS: GPIO[22] */
++//#define GPIO_MOSI 0x20000000 /* EEDO: GPIO[29] send to 6996*/
++#define GPIO_MISO 0x40000000 /* EEDI: GPIO[30] receive from 6996*/
++#define GPIO_EECK 0x80000000 /* EECK: GPIO[31] */
++
++#define ADM_EECS 0x01
++#define ADM_EECK 0x02
++#define ADM_EDIO 0x04
++/*************************************************************
++* SPI protocol for ADM6996 control
++**************************************************************/
++#define SPI_OP_LEN 0x03 // the length of start bit and opcode
++#define SPI_OPWRITE 0X05 // write
++#define SPI_OPREAD 0X06 // read
++#define SPI_OPERASE 0X07 // erase
++#define SPI_OPWTEN 0X04 // write enable
++#define SPI_OPWTDIS 0X04 // write disable
++#define SPI_OPERSALL 0X04 // erase all
++#define SPI_OPWTALL 0X04 // write all
++
++#define SPI_ADD_LEN 8 // bits of Address
++#define SPI_DAT_LEN 16 // bits of Data
++#define ADM6996_PORT_NO 6 // the port number of ADM6996
++#define ADM6999_PORT_NO 9 // the port number of ADM6999
++#ifdef CONFIG_ADM_6996
++ #define ADM699X_PORT_NO ADM6996_PORT_NO
++#endif
++#ifdef CONFIG_ADM_6999
++ #define ADM699X_PORT_NO ADM6999_PORT_NO
++#endif
++#define LPC_GPIO_SET 3
++#define LPC_BASE_ADDR IO_ADDRESS(IT8712_IO_BASE)
++
++extern int it8712_exist;
++
++#define inb_gpio(x) inb(LPC_BASE_ADDR + IT8712_GPIO_BASE + x)
++#define outb_gpio(x, y) outb(y, LPC_BASE_ADDR + IT8712_GPIO_BASE + x)
++
++/****************************************/
++/* Function Declare */
++/****************************************/
++/*
++void SPI_write(unsigned char addr,unsigned int value);
++unsigned int SPI_read(unsigned char table,unsigned char addr);
++void SPI_write_bit(char bit_EEDO);
++unsigned int SPI_read_bit(void);
++void SPI_default(void);
++void SPI_reset(unsigned char rstype,unsigned char port_cnt);
++void SPI_pre_st(void);
++void SPI_CS_enable(unsigned char enable);
++void SPI_Set_VLAN(unsigned char LAN,unsigned int port_mask);
++void SPI_Set_tag(unsigned int port,unsigned tag);
++void SPI_Set_PVID(unsigned int PVID,unsigned int port_mask);
++void SPI_mac_lock(unsigned int port, unsigned char lock);
++void SPI_get_port_state(unsigned int port);
++void SPI_port_enable(unsigned int port,unsigned char enable);
++
++void SPI_get_status(unsigned int port);
++*/
++
++struct PORT_CONFIG
++{
++ unsigned char auto_negotiation; // 0:Disable 1:Enable
++ unsigned char speed; // 0:10M 1:100M
++ unsigned char duplex; // 0:Half 1:Full duplex
++ unsigned char Tag; // 0:Untag 1:Tag
++ unsigned char port_disable; // 0:port enable 1:disable
++ unsigned char pvid; // port VLAN ID 0001
++ unsigned char mdix; // Crossover judgement. 0:Disable 1:Enable
++ unsigned char mac_lock; // MAC address Lock 0:Disable 1:Enable
++};
++
++struct PORT_STATUS
++{
++ unsigned char link; // 0:not link 1:link established
++ unsigned char speed; // 0:10M 1:100M
++ unsigned char duplex; // 0:Half 1:Full duplex
++ unsigned char flow_ctl; // 0:flow control disable 1:enable
++ unsigned char mac_lock; // MAC address Lock 0:Disable 1:Enable
++ unsigned char port_disable; // 0:port enable 1:disable
++
++ // Serial Management
++ unsigned long rx_pac_count; //receive packet count
++ unsigned long rx_pac_byte; //receive packet byte count
++ unsigned long tx_pac_count; //transmit packet count
++ unsigned long tx_pac_byte; //transmit packet byte count
++ unsigned long collision_count; //error count
++ unsigned long error_count ;
++
++ unsigned long rx_pac_count_overflow; //overflow flag
++ unsigned long rx_pac_byte_overflow;
++ unsigned long tx_pac_count_overflow;
++ unsigned long tx_pac_byte_overflow;
++ unsigned long collision_count_overflow;
++ unsigned long error_count_overflow;
++};
++
++struct PORT_CONFIG port_config[ADM699X_PORT_NO]; // 0~3:LAN , 4:WAN , 5:MII
++static struct PORT_STATUS port_state[ADM699X_PORT_NO];
++
++/******************************************
++* SPI_write
++* addr -> Write Address
++* value -> value to be write
++***************************************** */
++void SPI_write(unsigned char addr,unsigned int value)
++{
++ int i;
++ char bit;
++#ifdef CONFIG_IT8712_GPIO
++ char status;
++#else
++ int ad1;
++#endif
++
++#ifdef CONFIG_IT8712_GPIO
++ status = inb_gpio(LPC_GPIO_SET);
++ status &= ~(ADM_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++#else
++ ad1 = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MISO,ad1); /* set MISO to 0 */
++#endif
++ SPI_CS_enable(1);
++
++ SPI_write_bit(0); //dummy clock
++
++ //send write command (0x05)
++ for(i=SPI_OP_LEN-1;i>=0;i--)
++ {
++ bit = (SPI_OPWRITE>>i)& 0x01;
++ SPI_write_bit(bit);
++ }
++ // send 8 bits address (MSB first, LSB last)
++ for(i=SPI_ADD_LEN-1;i>=0;i--)
++ {
++ bit = (addr>>i)& 0x01;
++ SPI_write_bit(bit);
++ }
++ // send 16 bits data (MSB first, LSB last)
++ for(i=SPI_DAT_LEN-1;i>=0;i--)
++ {
++ bit = (value>>i)& 0x01;
++ SPI_write_bit(bit);
++ }
++
++ SPI_CS_enable(0); // CS low
++
++ for(i=0;i<0xFFF;i++) ;
++#ifdef CONFIG_IT8712_GPIO
++ status = inb_gpio(LPC_GPIO_SET);
++ status &= ~(ADM_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++#else
++ ad1 = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MISO,ad1); /* set MISO to 0 */
++#endif
++}
++
++
++/************************************
++* SPI_write_bit
++* bit_EEDO -> 1 or 0 to be written
++************************************/
++void SPI_write_bit(char bit_EEDO)
++{
++#ifdef CONFIG_IT8712_GPIO
++ unsigned char iomode,status;
++
++ iomode = LPCGetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET);
++ iomode |= (ADM_EECK|ADM_EDIO|ADM_EECS) ; // Set EECK,EDIO,EECS output
++ LPCSetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET, iomode);
++
++ if(bit_EEDO)
++ {
++ status = inb_gpio( LPC_GPIO_SET);
++ status |= ADM_EDIO ; //EDIO high
++ outb_gpio(LPC_GPIO_SET, status);
++ }
++ else
++ {
++ status = inb_gpio( LPC_GPIO_SET);
++ status &= ~(ADM_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++ }
++
++ status |= ADM_EECK ; //EECK high
++ outb_gpio(LPC_GPIO_SET, status);
++
++ status &= ~(ADM_EECK) ; //EECK low
++ outb_gpio(LPC_GPIO_SET, status);
++
++#else
++ unsigned int addr;
++ unsigned int value;
++
++ addr = (GPIO_BASE_ADDR + GPIO_PIN_DIR);
++ value = readl(addr) |GPIO_EECK |GPIO_MISO ; /* set EECK/MISO Pin to output */
++ writel(value,addr);
++ if(bit_EEDO)
++ {
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MISO,addr); /* set MISO to 1 */
++ writel(GPIO_EECK,addr); /* set EECK to 1 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_EECK,addr); /* set EECK to 0 */
++ }
++ else
++ {
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MISO,addr); /* set MISO to 0 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_EECK,addr); /* set EECK to 1 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_EECK,addr); /* set EECK to 0 */
++ }
++
++ return ;
++#endif
++}
++
++/**********************************************************************
++* read a bit from ADM6996 register
++***********************************************************************/
++unsigned int SPI_read_bit(void) // read data from
++{
++#ifdef CONFIG_IT8712_GPIO
++ unsigned char iomode,status;
++ unsigned int value ;
++
++ iomode = LPCGetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET);
++ iomode &= ~(ADM_EDIO) ; // Set EDIO input
++ iomode |= (ADM_EECS|ADM_EECK) ; // Set EECK,EECS output
++ LPCSetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET, iomode);
++
++ status = inb_gpio( LPC_GPIO_SET);
++ status |= ADM_EECK ; //EECK high
++ outb_gpio(LPC_GPIO_SET, status);
++
++ status &= ~(ADM_EECK) ; //EECK low
++ outb_gpio(LPC_GPIO_SET, status);
++
++ value = inb_gpio( LPC_GPIO_SET);
++
++ value = value>>2 ;
++ value &= 0x01;
++
++ return value ;
++#else
++ unsigned int addr;
++ unsigned int value;
++
++ addr = (GPIO_BASE_ADDR + GPIO_PIN_DIR);
++ value = readl(addr) & (~GPIO_MISO); // set EECK to output and MISO to input
++ writel(value,addr);
++
++ addr =(GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_EECK,addr); // set EECK to 1
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_EECK,addr); // set EECK to 0
++
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_IN);
++ value = readl(addr) ;
++ value = value >> 30;
++ return value ;
++#endif
++}
++
++/******************************************
++* SPI_default
++* EEPROM content default value
++*******************************************/
++void SPI_default(void)
++{
++ int i;
++#ifdef CONFIG_ADM_6999
++ SPI_write(0x11,0xFF30);
++ for(i=1;i<8;i++)
++ SPI_write(i,0x840F);
++
++ SPI_write(0x08,0x880F); //port 8 Untag, PVID=2
++ SPI_write(0x09,0x881D); //port 9 Tag, PVID=2 ,10M
++ SPI_write(0x14,0x017F); //Group 0~6,8 as VLAN 1
++ SPI_write(0x15,0x0180); //Group 7,8 as VLAN 2
++#endif
++
++#ifdef CONFIG_ADM_6996
++ SPI_write(0x11,0xFF30);
++ SPI_write(0x01,0x840F); //port 0~3 Untag ,PVID=1 ,100M ,duplex
++ SPI_write(0x03,0x840F);
++ SPI_write(0x05,0x840F);
++ SPI_write(0x07,0x840F);
++ SPI_write(0x08,0x880F); //port 4 Untag, PVID=2
++ SPI_write(0x09,0x881D); //port 5 Tag, PVID=2 ,10M
++ SPI_write(0x14,0x0155); //Group 0~3,5 as VLAN 1
++ SPI_write(0x15,0x0180); //Group 4,5 as VLAN 2
++
++#endif
++
++ for(i=0x16;i<=0x22;i++)
++ SPI_write((unsigned char)i,0x0000); // clean VLAN¡@map 3~15
++
++ for (i=0;i<NUM_VLAN_IF;i++) // Set VLAN ID map 1,2
++ SPI_Set_PVID( VLAN_conf[i].vid, VLAN_conf[i].portmap);
++
++ for(i=0;i<ADM699X_PORT_NO;i++) // reset count
++ SPI_reset(0,i);
++}
++
++/*************************************************
++* SPI_reset
++* rstype -> reset type
++* 0:reset all count for 'port_cnt' port
++* 1:reset specified count 'port_cnt'
++* port_cnt -> port number or counter index
++***************************************************/
++void SPI_reset(unsigned char rstype,unsigned char port_cnt)
++{
++
++ int i;
++#ifdef CONFIG_IT8712_GPIO
++ char status;
++#else
++ int ad1;
++#endif
++ char bit;
++
++#ifdef CONFIG_IT8712_GPIO
++ status = inb_gpio(LPC_GPIO_SET);
++ status &= ~(ADM_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++#else
++ ad1 = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MISO,ad1); /* set MISO to 0 */
++#endif
++
++ SPI_CS_enable(0); // CS low
++
++ SPI_pre_st(); // PRE+ST
++ SPI_write_bit(0); // OP
++ SPI_write_bit(1);
++
++ SPI_write_bit(1); // Table select, must be 1 -> reset Counter
++
++ SPI_write_bit(0); // Device Address
++ SPI_write_bit(0);
++
++ rstype &= 0x01;
++ SPI_write_bit(rstype); // Reset type 0:clear dedicate port's all counters 1:clear dedicate counter
++
++ for (i=5;i>=0;i--) // port or cnt index
++ {
++ bit = port_cnt >> i ;
++ bit &= 0x01 ;
++ SPI_write_bit(bit);
++ }
++
++ SPI_write_bit(0); // dumy clock
++ SPI_write_bit(0); // dumy clock
++
++#ifdef CONFIG_IT8712_GPIO
++ status = inb_gpio(LPC_GPIO_SET);
++ status &= ~(ADM_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++#else
++ ad1 = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MISO,ad1); /* set MISO to 0 */
++#endif
++}
++
++/*****************************************************
++* SPI_pre_st
++* preambler: 32 bits '1' start bit: '01'
++*****************************************************/
++void SPI_pre_st(void)
++{
++ int i;
++
++ for(i=0;i<32;i++) // PREAMBLE
++ SPI_write_bit(1);
++ SPI_write_bit(0); // ST
++ SPI_write_bit(1);
++}
++
++
++/***********************************************************
++* SPI_CS_enable
++* before access ,you have to enable Chip Select. (pull high)
++* When fisish, you should pull low !!
++*************************************************************/
++void SPI_CS_enable(unsigned char enable)
++{
++#ifdef CONFIG_IT8712_GPIO
++
++ unsigned char iomode,status;
++
++ iomode = LPCGetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET);
++ iomode |= (ADM_EECK|ADM_EDIO|ADM_EECS) ; // Set EECK,EDIO,EECS output
++ LPCSetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET, iomode);
++
++
++ status = inb_gpio( LPC_GPIO_SET);
++ if(enable)
++ status |= ADM_EECS ; //EECS high
++ else
++ status &= ~(ADM_EECS) ; //EECS low
++
++ outb_gpio(LPC_GPIO_SET, status);
++
++
++ status |= ADM_EECK ; //EECK high
++ outb_gpio(LPC_GPIO_SET, status);
++
++ status &= ~(ADM_EECK) ; //EECK low
++ outb_gpio(LPC_GPIO_SET, status);
++
++#else
++ unsigned int addr,value;
++
++ addr = (GPIO_BASE_ADDR + GPIO_PIN_DIR);
++ value = readl(addr) |GPIO_EECS |GPIO_EECK; /* set EECS/EECK Pin to output */
++ writel(value,addr);
++
++ if(enable)
++ {
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_EECS,addr); /* set EECS to 1 */
++
++ }
++ else
++ {
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_EECS,addr); /* set EECS to 0 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_EECK,addr); /* set EECK to 1 */ // at least one clock after CS low
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_EECK,addr); /* set EECK to 0 */
++ }
++#endif
++}
++
++/*********************************************************
++* SPI_Set_VLAN: group ports as VLAN
++* LAN -> VLAN number : 0~16
++* port_mask -> ports which would group as LAN
++* ex. 0x03 = 0000 0011
++* port 0 and port 1
++*********************************************************/
++void SPI_Set_VLAN(unsigned char LAN,unsigned int port_mask)
++{
++ unsigned int i,value=0;
++ unsigned reg_add = 0x13 + LAN ;
++
++ for(i=0;i<ADM6996_PORT_NO;i++)
++ { if(port_mask&0x01)
++ {
++ switch(i)
++ {
++ case 0: value|=0x0001; break; //port0:bit[0]
++ case 1: value|=0x0004; break; //port1:bit[2]
++ case 2: value|=0x0010; break; //port2:bit[4]
++ case 3: value|=0x0040; break; //port3:bit[6]
++ case 4: value|=0x0080; break; //port4:bit[7]
++ case 5: value|=0x0100; break; //port5:bit[8]
++ }
++ }
++ port_mask >>= 1;
++ }
++
++ SPI_write(reg_add,value);
++}
++
++
++/*******************************************
++* SPI_Set_tag
++* port -> port number to set tag or untag
++* tag -> 0/set untag, 1/set tag
++* In general, tag is for MII port. LAN and
++* WAN port is configed as untag!!
++********************************************/
++void SPI_Set_tag(unsigned int port,unsigned tag)
++{
++ unsigned int regadd,value;
++
++ // mapping port's register !! (0,1,2,3,4,5) ==> (1,3,5,7,8,9)
++ if(port<=3)
++ regadd=2*port+1;
++ else if(port==4) regadd = 8 ;
++ else regadd = 9 ;
++
++
++ value = SPI_read(0,regadd); //read original setting
++
++ if(tag)
++ value |= 0x0010 ; // set tag
++ else
++ value &= 0xFFEF ; // set untag
++
++ SPI_write(regadd,value); // write back!!
++}
++
++/************************************************
++* SPI_Set_PVID
++* PVID -> PVID number :
++* port_mask -> ports which would group as LAN
++* ex. 0x0F = 0000 1111 ==> port 0~3
++************************************************/
++void SPI_Set_PVID(unsigned int PVID,unsigned int port_mask)
++{
++ unsigned int i,value=0;
++
++ PVID &= 0x000F ;
++
++ for(i=0;i<ADM699X_PORT_NO;i++)
++ { if(port_mask&0x01)
++ {
++#ifdef CONFIG_ADM_6996
++ switch(i)
++ {
++ case 0:
++ value = SPI_read(0,0x01); // read original value
++ value &= 0xC3FF ; //set PVIC column as 0 first
++ value |= PVID << 10 ; //Set PVID column as PVID
++ SPI_write(0x01,value); //write back
++ break;
++ case 1:
++ value = SPI_read(0,0x03);
++ value &= 0xC3FF ;
++ value |= PVID << 10 ;
++ SPI_write(0x03,value);
++ break;
++ case 2:
++ value = SPI_read(0,0x05);
++ value &= 0xC3FF ;
++ value |= PVID << 10 ;
++ SPI_write(0x05,value);
++ break;
++ case 3:
++ value = SPI_read(0,0x07);
++ value &= 0xC3FF ;
++ value |= PVID << 10 ;
++ SPI_write(0x07,value);
++ break;
++ case 4:
++ value = SPI_read(0,0x08);
++ value &= 0xC3FF ;
++ value |= PVID << 10 ;
++ SPI_write(0x08,value);
++ break;
++ case 5:
++ value = SPI_read(0,0x09);
++ value &= 0xC3FF ;
++ value |= PVID << 10 ;
++ SPI_write(0x09,value);
++ break;
++ }
++#endif
++#ifdef CONFIG_ADM_6999
++ value = SPI_read(0,(unsigned char)i+1);
++ value &= 0xC3FF ;
++ value |= PVID << 10 ;
++ SPI_write((unsigned char)i+1,value);
++#endif
++ }
++ port_mask >>= 1;
++ }
++}
++
++
++/************************************************
++* SPI_get_PVID
++* port -> which ports to VID
++************************************************/
++unsigned int SPI_Get_PVID(unsigned int port)
++{
++ unsigned int value=0;
++
++ if (port>=ADM6996_PORT_NO)
++ return 0;
++
++ switch(port)
++ {
++ case 0:
++ value = SPI_read(0,0x01); // read original value
++ value &= 0x3C00 ; // get VID
++ value = value >> 10 ; // Shift
++ break;
++ case 1:
++ value = SPI_read(0,0x03);
++ value &= 0x3C00 ;
++ value = value >> 10 ;
++ break;
++ case 2:
++ value = SPI_read(0,0x05);
++ value &= 0x3C00 ;
++ value = value >> 10 ;
++ break;
++ case 3:
++ value = SPI_read(0,0x07);
++ value &= 0x3C00 ;
++ value = value >> 10 ;
++ break;
++ case 4:
++ value = SPI_read(0,0x08);
++ value &= 0x3C00 ;
++ value = value >> 10 ;
++ break;
++ case 5:
++ value = SPI_read(0,0x09);
++ value &= 0x3C00 ;
++ value = value >> 10 ;
++ break;
++ }
++ return value ;
++}
++
++
++/**********************************************
++* SPI_mac_clone
++* port -> the port which will lock or unlock
++* lock -> 0/the port will be unlock
++* 1/the port will be locked
++**********************************************/
++void SPI_mac_lock(unsigned int port, unsigned char lock)
++{
++ unsigned int i,value=0;
++
++ value = SPI_read(0,0x12); // read original
++
++ for(i=0;i<ADM6996_PORT_NO;i++)
++ { if(lock) // lock port
++ {
++ switch(port)
++ {
++ case 0: value|=0x0001; break; //port0:bit[0]
++ case 1: value|=0x0004; break; //port1:bit[2]
++ case 2: value|=0x0010; break; //port2:bit[4]
++ case 3: value|=0x0040; break; //port3:bit[6]
++ case 4: value|=0x0080; break; //port4:bit[7]
++ case 5: value|=0x0100; break; //port5:bit[8]
++ }
++ }
++ else
++ {
++ switch(i) // unlock port
++ {
++ case 0: value&=0xFFFE; break;
++ case 1: value&=0xFFFB; break;
++ case 2: value&=0xFFEF; break;
++ case 3: value&=0xFFBF; break;
++ case 4: value&=0xFF7F; break;
++ case 5: value&=0xFEFF; break;
++ }
++ }
++ }
++
++ SPI_write(0x12,value);
++}
++
++
++/***************************************************
++* SPI_learn_pause
++* pause = 01-80-c2-00-00-01
++* DA=distination address
++* forward -> 0: if DA == pause then drop and stop mac learning
++* 1: if DA == pause ,then forward it
++***************************************************/
++void SPI_pause_cmd_forward(unsigned char forward)
++{
++ unsigned int value=0;
++
++ value = SPI_read(0,0x2C); // read original setting
++ if(forward)
++ value |= 0x2000; // set bit[13] '1'
++ else
++ value &= 0xDFFF; // set bit[13] '0'
++
++ SPI_write(0x2C,value);
++
++}
++
++
++/************************************************
++* SPI_read
++* table -> which table to be read: 1/count 0/EEPROM
++* addr -> Address to be read
++* return : Value of the register
++*************************************************/
++unsigned int SPI_read(unsigned char table,unsigned char addr)
++{
++ int i ;
++ unsigned int value=0;
++ unsigned int bit;
++#ifdef CONFIG_IT8712_GPIO
++ unsigned char status;
++#else
++ unsigned int ad1;
++#endif
++
++#ifdef CONFIG_IT8712_GPIO
++ status = inb_gpio(LPC_GPIO_SET);
++ status &= ~(ADM_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++#else
++ ad1 = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MISO,ad1); /* set MISO to 0 */
++#endif
++
++ SPI_CS_enable(0);
++
++ SPI_pre_st(); // PRE+ST
++ SPI_write_bit(1); // OPCODE '10' for read
++ SPI_write_bit(0);
++
++ (table==1) ? SPI_write_bit(1) : SPI_write_bit(0) ; // table select
++
++ SPI_write_bit(0); // Device Address
++ SPI_write_bit(0);
++
++
++ // send 7 bits address to be read
++ for (i=6;i>=0;i--) {
++ bit= ((addr>>i) & 0x01) ? 1 :0 ;
++ SPI_write_bit(bit);
++ }
++
++
++ // turn around
++ SPI_read_bit(); // TA_Z
++
++ value=0;
++ for (i=31;i>=0;i--) { // READ DATA
++ bit=SPI_read_bit();
++ value |= bit << i ;
++ }
++
++ SPI_read_bit(); // dumy clock
++ SPI_read_bit(); // dumy clock
++
++ if(!table) // EEPROM, only fetch 16 bits data
++ {
++ if(addr&0x01) // odd number content (register,register-1)
++ value >>= 16 ; // so we remove the rear 16bits
++ else // even number content (register+1,register),
++ value &= 0x0000FFFF ; // so we keep the rear 16 bits
++ }
++
++
++ SPI_CS_enable(0);
++
++#ifdef CONFIG_IT8712_GPIO
++ status = inb_gpio(LPC_GPIO_SET);
++ status &= ~(ADM_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++#else
++ ad1 = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MISO,ad1); /* set MISO to 0 */
++#endif
++
++ return(value);
++
++}
++
++
++
++/**************************************************
++* SPI_port_en
++* port -> Number of port to config
++* enable -> 1/ enable this port
++* 0/ disable this port
++**************************************************/
++void SPI_port_enable(unsigned int port,unsigned char enable)
++{
++ unsigned int reg_val ;
++ unsigned char reg_add ;
++
++ if(port<=3)
++ reg_add=2*port+1;
++ else if(port==4) reg_add = 8 ;
++ else reg_add = 9 ;
++
++ reg_val = SPI_read(0,reg_add);
++ if(enable)
++ {
++ reg_val &= 0xFFDF ;
++ SPI_write(reg_add,reg_val);
++ }
++ else
++ {
++ reg_val |= 0x0020 ;
++ SPI_write(reg_add,reg_val);
++ }
++}
++
++/********************************************************
++* get port status
++* port -> specify the port number to get configuration
++*********************************************************/
++void SPI_get_status(unsigned int port)
++{
++/* unsigned int reg_val,add_offset[6];
++ struct PORT_STATUS *status;
++ status = &port_state[port];
++
++ if(port>(ADM6996_PORT_NO-1))
++ return ;
++
++ // Link estabilish , speed, deplex, flow control ?
++ if(port < 5 )
++ {
++ reg_val = SPI_read(1, 1) ;
++ if(port < 4)
++ reg_val >>= port*8 ;
++ else
++ reg_val >>=28 ;
++ status->link = reg_val & 0x00000001 ;
++ status->speed = reg_val & 0x00000002 ;
++ status->duplex = reg_val & 0x00000004 ;
++ status->flow_ctl = reg_val & 0x00000008 ;
++ }
++ else if(port ==5 )
++ {
++ reg_val = SPI_read(1, 2) ;
++ status->link = reg_val & 0x00000001 ;
++ status->speed = reg_val & 0x00000002 ;
++ status->duplex = reg_val & 0x00000008 ;
++ status->flow_ctl = reg_val & 0x00000010 ;
++ }
++
++ // Mac Lock ?
++ reg_val = SPI_read(0,0x12);
++ switch(port)
++ {
++ case 0: status->mac_lock = reg_val & 0x00000001;
++ case 1: status->mac_lock = reg_val & 0x00000004;
++ case 2: status->mac_lock = reg_val & 0x00000010;
++ case 3: status->mac_lock = reg_val & 0x00000040;
++ case 4: status->mac_lock = reg_val & 0x00000080;
++ case 5: status->mac_lock = reg_val & 0x00000100;
++ }
++
++ // port enable ?
++ add_offset[0] = 0x01 ; add_offset[1] = 0x03 ;
++ add_offset[2] = 0x05 ; add_offset[3] = 0x07 ;
++ add_offset[4] = 0x08 ; add_offset[5] = 0x09 ;
++ reg_val = SPI_read(0,add_offset[port]);
++ status->port_disable = reg_val & 0x0020;
++
++
++ // Packet Count ...
++ add_offset[0] = 0x04 ; add_offset[1] = 0x06 ;
++ add_offset[2] = 0x08 ; add_offset[3] = 0x0a ;
++ add_offset[4] = 0x0b ; add_offset[5] = 0x0c ;
++
++ reg_val = SPI_read(1,add_offset[port]);
++ status->rx_pac_count = reg_val ;
++ reg_val = SPI_read(1,add_offset[port]+9);
++ status->rx_pac_byte = reg_val ;
++ reg_val = SPI_read(1,add_offset[port]+18);
++ status->tx_pac_count = reg_val ;
++ reg_val = SPI_read(1,add_offset[port]+27);
++ status->tx_pac_byte = reg_val ;
++ reg_val = SPI_read(1,add_offset[port]+36);
++ status->collision_count = reg_val ;
++ reg_val = SPI_read(1,add_offset[port]+45);
++ status->error_count = reg_val ;
++ reg_val = SPI_read(1, 0x3A);
++ switch(port)
++ {
++ case 0: status->rx_pac_count_overflow = reg_val & 0x00000001;
++ status->rx_pac_byte_overflow = reg_val & 0x00000200 ;
++ case 1: status->rx_pac_count_overflow = reg_val & 0x00000004;
++ status->rx_pac_byte_overflow = reg_val & 0x00000800 ;
++ case 2: status->rx_pac_count_overflow = reg_val & 0x00000010;
++ status->rx_pac_byte_overflow = reg_val & 0x00002000 ;
++ case 3: status->rx_pac_count_overflow = reg_val & 0x00000040;;
++ status->rx_pac_byte_overflow = reg_val & 0x00008000 ;
++ case 4: status->rx_pac_count_overflow = reg_val & 0x00000080;
++ status->rx_pac_byte_overflow = reg_val & 0x00010000 ;
++ case 5: status->rx_pac_count_overflow = reg_val & 0x00000100;
++ status->rx_pac_byte_overflow = reg_val & 0x00020000 ;
++ }
++
++ reg_val = SPI_read(1, 0x3B);
++ switch(port)
++ {
++ case 0: status->tx_pac_count_overflow = reg_val & 0x00000001;
++ status->tx_pac_byte_overflow = reg_val & 0x00000200 ;
++ case 1: status->tx_pac_count_overflow = reg_val & 0x00000004;
++ status->tx_pac_byte_overflow = reg_val & 0x00000800 ;
++ case 2: status->tx_pac_count_overflow = reg_val & 0x00000010;
++ status->tx_pac_byte_overflow = reg_val & 0x00002000 ;
++ case 3: status->tx_pac_count_overflow = reg_val & 0x00000040;;
++ status->tx_pac_byte_overflow = reg_val & 0x00008000 ;
++ case 4: status->tx_pac_count_overflow = reg_val & 0x00000080;
++ status->tx_pac_byte_overflow = reg_val & 0x00010000 ;
++ case 5: status->tx_pac_count_overflow = reg_val & 0x00000100;
++ status->tx_pac_byte_overflow = reg_val & 0x00020000 ;
++ }
++*/
++
++ unsigned int reg_val;
++ struct PORT_STATUS *status;
++ status = &port_state[port];
++
++ if(port>=ADM6999_PORT_NO)
++ return ;
++
++ // Link estabilish , speed, deplex, flow control ?
++ if(port < ADM6999_PORT_NO-1 )
++ {
++ reg_val = SPI_read(1, 0x01) ;
++ reg_val = reg_val >> port*4 ;
++ status->link = reg_val & 0x00000001 ;
++ status->speed = reg_val & 0x00000002 ;
++ status->duplex = reg_val & 0x00000004 ;
++ status->flow_ctl = reg_val & 0x00000008 ;
++ }
++ else if(port == (ADM6999_PORT_NO-1) )
++ {
++ reg_val = SPI_read(1, 0x02) ;
++ status->link = reg_val & 0x00000001 ;
++ status->speed = reg_val & 0x00000002 ;
++ status->duplex = reg_val & 0x00000008 ;
++ status->flow_ctl = reg_val & 0x00000010 ;
++ }
++
++ // Mac Lock ?
++ reg_val = SPI_read(0,0x12);
++ reg_val = reg_val >> port ;
++ reg_val = reg_val & 0x01 ;
++ status->mac_lock = reg_val ? 0x01:0x00 ;
++
++ // port enable ?
++ reg_val = SPI_read(0,(unsigned char)port+1);
++ status->port_disable = reg_val & 0x0020;
++
++ // Packet Count ...
++ reg_val = SPI_read(1,(unsigned char)port+0x04);
++ status->rx_pac_count = reg_val ;
++ reg_val = SPI_read(1,(unsigned char)port+0x0D);
++ status->rx_pac_byte = reg_val ;
++ reg_val = SPI_read(1,(unsigned char)port+0x16);
++ status->tx_pac_count = reg_val ;
++ reg_val = SPI_read(1,(unsigned char)port+0x1F);
++ status->tx_pac_byte = reg_val ;
++ reg_val = SPI_read(1,(unsigned char)port+0x28);
++ status->collision_count = reg_val ;
++ reg_val = SPI_read(1,(unsigned char)port+0x31);
++ status->error_count = reg_val ;
++ reg_val = SPI_read(1, 0x3A);
++ reg_val = reg_val >> port ;
++ status->rx_pac_count_overflow = reg_val & 0x00000001;
++ reg_val = reg_val >> 0x09 ;
++ status->rx_pac_byte_overflow = reg_val & 0x00000001 ;
++
++ reg_val = SPI_read(1, 0x3B);
++ reg_val = reg_val >> port ;
++ status->tx_pac_count_overflow = reg_val & 0x00000001;
++ reg_val = reg_val >> 0x09 ;
++ status->tx_pac_byte_overflow = reg_val & 0x00000001 ;
++
++ reg_val = SPI_read(1, 0x3C);
++ reg_val = reg_val >> port ;
++ status->collision_count_overflow = reg_val & 0x00000001;
++ reg_val = reg_val >> 0x09 ;
++ status->error_count_overflow = reg_val & 0x00000001 ;
++
++}
++
++unsigned int SPI_get_identifier(void)
++{
++ unsigned int flag=0;
++
++#ifdef CONFIG_IT8712_GPIO
++
++ if (!it8712_exist) {
++ return -ENODEV;
++ }
++ printk("it8712_gpio init\n");
++
++ /* initialize registers */
++ // switch all multi-function pins to GPIO
++ LPCSetConfig(LDN_GPIO, 0x28, 0xff);
++
++ // set simple I/O base address
++ LPCSetConfig(LDN_GPIO, 0x62, IT8712_GPIO_BASE >> 8);
++ LPCSetConfig(LDN_GPIO, 0x63, (unsigned char) IT8712_GPIO_BASE >> 8);
++
++ // select GPIO to simple I/O
++ LPCSetConfig(LDN_GPIO, 0xc3, 0xff);
++
++ // enable internal pull-up
++ LPCSetConfig(LDN_GPIO, 0xbb, 0xff);
++
++#endif
++
++ flag = SPI_read(1,0x00);
++ printk("Get ADM identifier %6x\n",flag);
++ if ((flag & 0xFFFF0) == 0x21120) {
++ printk("ADM699X Found\n");
++ return 1;
++ }
++ else {
++ printk("ADM699X not Found\n");
++ return 0;
++ }
++}
++
+--- /dev/null
++++ b/drivers/net/sl351x_crc16.c
+@@ -0,0 +1,93 @@
++/****************************************************************************
++* Name : sl351x_crc16.c
++* Description :
++* Implement CRC16
++* refer to RFC1662
++* History
++*
++* Date Writer Description
++* ----------- ----------- -------------------------------------------------
++* 09/14/2005 Gary Chen Create
++*
++****************************************************************************/
++
++#define INITFCS16 0xffff /* Initial FCS value */
++#define GOODFCS16 0xf0b8 /* Good final FCS value */
++#define SWAP_WORD(x) (unsigned short)((((unsigned short)x & 0x00FF) << 8) | \
++ (((unsigned short)x & 0xFF00) >> 8))
++
++/*----------------------------------------------------------------------
++* x**0 + x**5 + x**12 + x**16
++*----------------------------------------------------------------------*/
++static const unsigned short crc16_tbl[256] = {
++ 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
++ 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
++ 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
++ 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
++ 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
++ 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
++ 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
++ 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
++ 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
++ 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
++ 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
++ 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
++ 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
++ 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
++ 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
++ 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
++ 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
++ 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
++ 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
++ 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
++ 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
++ 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
++ 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
++ 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
++ 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
++ 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
++ 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
++ 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
++ 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
++ 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
++ 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
++ 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
++};
++
++/*----------------------------------------------------------------------
++* hash_crc16
++*----------------------------------------------------------------------*/
++unsigned short hash_crc16(unsigned short crc, unsigned char *datap, unsigned long len)
++{
++ while (len--)
++ {
++ crc = (crc >> 8) ^ crc16_tbl[(crc ^ (*datap++)) & 0xff];
++ }
++
++ return (crc);
++
++}
++
++/*----------------------------------------------------------------------
++* hash_check_crc16
++*----------------------------------------------------------------------*/
++unsigned long hash_check_crc16(unsigned char *datap, unsigned long len)
++{
++ unsigned short crc;
++
++ crc = hash_crc16(INITFCS16, datap, len );
++ return (crc == GOODFCS16) ? 0 : 1;
++}
++
++/*----------------------------------------------------------------------
++* hash_gen_crc16
++*----------------------------------------------------------------------*/
++unsigned short hash_gen_crc16(unsigned char *datap, unsigned long len)
++{
++ unsigned short crc;
++
++ crc = hash_crc16(INITFCS16, datap, len);
++ crc ^= 0xffff;
++
++ return(SWAP_WORD(crc));
++}
+--- /dev/null
++++ b/drivers/net/sl351x_gmac.c
+@@ -0,0 +1,5622 @@
++/**************************************************************************
++* Copyright 2006 StorLink Semiconductors, Inc. All rights reserved.
++*--------------------------------------------------------------------------
++* Name : sl351x_gmac.c
++* Description :
++* Ethernet device driver for Storlink SL351x FPGA
++*
++* History
++*
++* Date Writer Description
++* ----------- ----------- -------------------------------------------------
++* 08/22/2005 Gary Chen Create and implement
++* 27/10/2005 CH Hsu Porting to Linux
++*
++****************************************************************************/
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/slab.h>
++#include <linux/mm.h>
++#include <linux/compiler.h>
++#include <linux/pci.h>
++#include <linux/init.h>
++#include <linux/ioport.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/rtnetlink.h>
++#include <linux/delay.h>
++#include <linux/ethtool.h>
++#include <linux/mii.h>
++#include <linux/completion.h>
++#include <asm/hardware.h>
++#include <asm/io.h>
++#include <asm/irq.h>
++#include <asm/semaphore.h>
++#include <asm/arch/irqs.h>
++#include <asm/arch/it8712.h>
++#include <linux/mtd/kvctl.h>
++#include <linux/skbuff.h>
++#include <linux/in.h>
++#include <linux/ip.h>
++#include <linux/tcp.h>
++#include <linux/udp.h>
++
++#include <linux/mtd/kvctl.h>
++
++#define MIDWAY
++#define SL_LEPUS
++#define VITESSE_G5SWITCH 1
++
++#ifndef CONFIG_SL351x_RXTOE
++//#define CONFIG_SL351x_RXTOE 1
++#endif
++#undef CONFIG_SL351x_RXTOE
++
++#include <asm/arch/sl2312.h>
++#include <asm/arch/sl351x_gmac.h>
++#include <asm/arch/sl351x_hash_cfg.h>
++#include <asm/arch/sl351x_nat_cfg.h>
++
++#ifdef CONFIG_SL351x_SYSCTL
++#include <linux/sysctl_storlink.h>
++#endif
++
++#ifdef CONFIG_SL351x_RXTOE
++#include <asm/arch/sl351x_toe.h>
++#include <net/tcp.h>
++#include <linux/tcp.h>
++#include <linux/ip.h>
++#endif
++
++// #define SL351x_TEST_WORKAROUND
++#ifdef CONFIG_SL351x_NAT
++#define CONFIG_SL_NAPI 1
++#endif
++#define GMAX_TX_INTR_DISABLED 1
++#define DO_HW_CHKSUM 1
++#define ENABLE_TSO 1
++#define GMAC_USE_TXQ0 1
++// #define NAT_WORKAROUND_BY_RESET_GMAC 1
++// #define HW_RXBUF_BY_KMALLOC 1
++//#define _DUMP_TX_TCP_CONTENT 1
++#define br_if_ioctl 1
++#define GMAC_LEN_1_2_ISSUE 1
++
++#define GMAC_EXISTED_FLAG 0x5566abcd
++#define CONFIG_MAC_NUM GMAC_NUM
++#define GMAC0_BASE TOE_GMAC0_BASE
++#define GMAC1_BASE TOE_GMAC1_BASE
++#define PAUSE_SET_HW_FREEQ (TOE_HW_FREEQ_DESC_NUM / 2)
++#define PAUSE_REL_HW_FREEQ ((TOE_HW_FREEQ_DESC_NUM / 2) + 10)
++#define DEFAULT_RXQ_MAX_CNT 256
++#ifdef L2_jumbo_frame
++#define TCPHDRLEN(tcp_hdr) ((ntohs(*((__u16 *)tcp_hdr + 6)) >> 12) & 0x000F)
++#endif
++
++/* define chip information */
++#define DRV_NAME "SL351x"
++#define DRV_VERSION "0.1.4"
++#define SL351x_DRIVER_NAME DRV_NAME " Giga Ethernet driver " DRV_VERSION
++
++#define toe_gmac_enable_interrupt(irq) enable_irq(irq)
++#define toe_gmac_disable_interrupt(irq) disable_irq(irq)
++
++#ifdef SL351x_GMAC_WORKAROUND
++#define GMAC_SHORT_FRAME_THRESHOLD 10
++static struct timer_list gmac_workround_timer_obj;
++void sl351x_poll_gmac_hanged_status(u32 data);
++#ifdef CONFIG_SL351x_NAT
++//#define IxscriptMate_1518 1
++ void sl351x_nat_workaround_init(void);
++ #ifndef NAT_WORKAROUND_BY_RESET_GMAC
++ static void sl351x_nat_workaround_handler(void);
++ #endif
++#endif
++#endif
++
++#ifdef GMAC_LEN_1_2_ISSUE
++ #define _DEBUG_PREFETCH_NUM 256
++static int _debug_prefetch_cnt;
++static char _debug_prefetch_buf[_DEBUG_PREFETCH_NUM][4] __attribute__((aligned(4)));
++#endif
++/*************************************************************
++ * Global Variable
++ *************************************************************/
++static int gmac_initialized = 0;
++TOE_INFO_T toe_private_data;
++//static int do_again = 0;
++spinlock_t gmac_fq_lock;
++unsigned int FLAG_SWITCH;
++
++static unsigned int next_tick = 3 * HZ;
++static unsigned char eth_mac[CONFIG_MAC_NUM][6]= {{0x00,0x11,0x11,0x87,0x87,0x87}, {0x00,0x22,0x22,0xab,0xab,0xab}};
++
++#undef CONFIG_SL351x_RXTOE
++extern NAT_CFG_T nat_cfg;
++
++/************************************************/
++/* function declare */
++/************************************************/
++static int gmac_set_mac_address(struct net_device *dev, void *addr);
++static unsigned int gmac_get_phy_vendor(int phy_addr);
++static void gmac_set_phy_status(struct net_device *dev);
++void gmac_get_phy_status(struct net_device *dev);
++static int gmac_netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
++static void gmac_tx_timeout(struct net_device *dev);
++static int gmac_phy_thread (void *data);
++struct net_device_stats * gmac_get_stats(struct net_device *dev);
++static int gmac_start_xmit(struct sk_buff *skb, struct net_device *dev);
++static void gmac_set_rx_mode(struct net_device *dev);
++static irqreturn_t toe_gmac_interrupt (int irq, void *dev_instance);
++static void toe_gmac_handle_default_rxq(struct net_device *dev, GMAC_INFO_T *tp);
++unsigned int mii_read(unsigned char phyad,unsigned char regad);
++void mii_write(unsigned char phyad,unsigned char regad,unsigned int value);
++void mac_init_drv(void);
++
++static void toe_init_free_queue(void);
++static void toe_init_swtx_queue(void);
++static void toe_init_default_queue(void);
++#ifdef CONFIG_SL351x_RXTOE
++static void toe_init_interrupt_queue(void);
++#endif
++static void toe_init_interrupt_config(void);
++static void toe_gmac_sw_reset(void);
++static int toe_gmac_init_chip(struct net_device *dev);
++static void toe_gmac_enable_tx_rx(struct net_device* dev);
++static void toe_gmac_disable_tx_rx(struct net_device *dev);
++static void toe_gmac_hw_start(struct net_device *dev);
++static void toe_gmac_hw_stop(struct net_device *dev);
++static int toe_gmac_clear_counter(struct net_device *dev);
++static void toe_init_gmac(struct net_device *dev);
++static void toe_gmac_tx_complete(GMAC_INFO_T *tp, unsigned int tx_qid, struct net_device *dev, int interrupt);
++#ifdef CONFIG_SL_NAPI
++static int gmac_rx_poll(struct net_device *dev, int *budget);
++// static void toe_gmac_disable_rx(struct net_device *dev);
++// static void toe_gmac_enable_rx(struct net_device *dev);
++#endif
++
++u32 mac_read_dma_reg(int mac, unsigned int offset);
++void mac_write_dma_reg(int mac, unsigned int offset, u32 data);
++void mac_stop_txdma(struct net_device *dev);
++void mac_get_sw_tx_weight(struct net_device *dev, char *weight);
++void mac_set_sw_tx_weight(struct net_device *dev, char *weight);
++void mac_get_hw_tx_weight(struct net_device *dev, char *weight);
++void mac_set_hw_tx_weight(struct net_device *dev, char *weight);
++static inline void toe_gmac_fill_free_q(void);
++
++#ifdef VITESSE_G5SWITCH
++extern int Get_Set_port_status(void);
++extern int SPI_default(void);
++extern unsigned int SPI_get_identifier(void);
++void gmac_get_switch_status(struct net_device *dev);
++unsigned int Giga_switch=0;
++unsigned int switch_port_no=0;
++unsigned int ever_dwon=0;
++#endif
++
++/************************************************/
++/* GMAC function declare */
++/************************************************/
++static int gmac_open (struct net_device *dev);
++static int gmac_close (struct net_device *dev);
++static void gmac_cleanup_module(void);
++static void gmac_get_mac_address(void);
++
++#ifdef CONFIG_SL351x_NAT
++static void toe_init_hwtx_queue(void);
++extern void sl351x_nat_init(void);
++extern void sl351x_nat_input(struct sk_buff *skb, int port, void *l3off, void *l4off);
++extern int sl351x_nat_output(struct sk_buff *skb, int port);
++extern int sl351x_nat_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
++#endif
++
++#ifdef CONFIG_SL351x_RXTOE
++extern void set_toeq_hdr(struct toe_conn* connection, TOE_INFO_T* toe, struct net_device *dev);
++extern void sl351x_toe_init(void);
++extern void toe_gmac_handle_toeq(struct net_device *dev, GMAC_INFO_T* tp, __u32 status);
++extern struct toe_conn* init_toeq(int ipver, void* iph, struct tcphdr* tcp_hdr, TOE_INFO_T* toe, unsigned char* l2hdr);
++#endif
++
++int mac_set_rule_reg(int mac, int rule, int enabled, u32 reg0, u32 reg1, u32 reg2);
++void mac_set_rule_enable_bit(int mac, int rule, int data);
++int mac_set_rule_action(int mac, int rule, int data);
++int mac_get_MRxCRx(int mac, int rule, int ctrlreg);
++void mac_set_MRxCRx(int mac, int rule, int ctrlreg, u32 data);
++
++/*----------------------------------------------------------------------
++* Ethernet Driver init
++*----------------------------------------------------------------------*/
++
++static int __init gmac_init_module(void)
++{
++ GMAC_INFO_T *tp;
++ struct net_device *dev;
++ int i,j;
++ unsigned int chip_id;
++// unsigned int chip_version;
++
++#ifdef CONFIG_SL3516_ASIC
++{
++ unsigned int val;
++ /* set GMAC global register */
++ val = readl(GMAC_GLOBAL_BASE_ADDR+0x10);
++ val = val | 0x005f0000;
++ writel(val,GMAC_GLOBAL_BASE_ADDR+0x10);
++// writel(0xb737b737,GMAC_GLOBAL_BASE_ADDR+0x1c); //For Socket Board
++ writel(0x77777777,GMAC_GLOBAL_BASE_ADDR+0x20);
++// writel(0xa737b747,GMAC_GLOBAL_BASE_ADDR+0x1c);//For Mounting Board
++
++ //debug_Aaron
++ //writel(0xa7f0a7f0,GMAC_GLOBAL_BASE_ADDR+0x1c);//For Mounting Board
++ writel(0xa7f0b7f0,GMAC_GLOBAL_BASE_ADDR+0x1c);//For Mounting Board
++
++ writel(0x77777777,GMAC_GLOBAL_BASE_ADDR+0x24);
++ writel(0x09200030,GMAC_GLOBAL_BASE_ADDR+0x2C);
++ val = readl(GMAC_GLOBAL_BASE_ADDR+0x04);
++ if((val&(1<<20))==0){ // GMAC1 enable
++ val = readl(GMAC_GLOBAL_BASE_ADDR+0x30);
++ val = (val & 0xe7ffffff) | 0x08000000;
++ writel(val,GMAC_GLOBAL_BASE_ADDR+0x30);
++ }
++}
++#endif
++
++#ifdef VITESSE_G5SWITCH
++ Giga_switch = SPI_get_identifier();
++ if(Giga_switch)
++ switch_port_no = SPI_default();
++#endif
++
++ chip_id = readl(GMAC_GLOBAL_BASE_ADDR+0x0);
++ if (chip_id == 0x3512C1)
++ {
++ writel(0x5787a5f0,GMAC_GLOBAL_BASE_ADDR+0x1c);//For 3512 Switch Board
++ writel(0x55557777,GMAC_GLOBAL_BASE_ADDR+0x20);//For 3512 Switch Board
++ }
++//#endif
++
++ mac_init_drv();
++
++ printk (KERN_INFO SL351x_DRIVER_NAME " built at %s %s\n", __DATE__, __TIME__);
++
++// init_waitqueue_entry(&wait, current);
++
++ // printk("GMAC Init......\n");
++
++ i = 0;
++ for(j = 0; i<CONFIG_MAC_NUM; j++)
++ {
++ i=j;
++ if(Giga_switch){ // if gswitch present, swap eth0/1
++ if(j==0)
++ i=1;
++ else if(j==1)
++ i=0;
++ }
++
++ tp = (GMAC_INFO_T *)&toe_private_data.gmac[i];
++ tp->dev = NULL;
++ if (tp->existed != GMAC_EXISTED_FLAG) continue;
++
++ dev = alloc_etherdev(0);
++ if (dev == NULL)
++ {
++ printk (KERN_ERR "Can't allocate ethernet device #%d .\n",i);
++ return -ENOMEM;
++ }
++
++ dev->priv=tp;
++ tp->dev = dev;
++
++ SET_MODULE_OWNER(dev);
++
++ // spin_lock_init(&tp->lock);
++ spin_lock_init(&gmac_fq_lock);
++ dev->base_addr = tp->base_addr;
++ dev->irq = tp->irq;
++ dev->open = gmac_open;
++ dev->stop = gmac_close;
++ dev->hard_start_xmit = gmac_start_xmit;
++ dev->get_stats = gmac_get_stats;
++ dev->set_multicast_list = gmac_set_rx_mode;
++ dev->set_mac_address = gmac_set_mac_address;
++ dev->do_ioctl = gmac_netdev_ioctl;
++ dev->tx_timeout = gmac_tx_timeout;
++ dev->watchdog_timeo = GMAC_DEV_TX_TIMEOUT;
++#ifdef L2_jumbo_frame
++ dev->mtu = 2018; //2002 ,2018
++#endif
++ if (tp->port_id == 0)
++ dev->tx_queue_len = TOE_GMAC0_SWTXQ_DESC_NUM;
++ else
++ dev->tx_queue_len = TOE_GMAC1_SWTXQ_DESC_NUM;
++
++#ifdef DO_HW_CHKSUM
++ dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
++#ifdef ENABLE_TSO
++ dev->features |= NETIF_F_TSO;
++#endif
++#endif
++#ifdef CONFIG_SL_NAPI
++ dev->poll = gmac_rx_poll;
++ dev->weight = 64;
++#endif
++
++ if (register_netdev(dev))
++ {
++ gmac_cleanup_module();
++ return(-1);
++ }
++ }
++
++
++// FLAG_SWITCH = 0 ;
++// FLAG_SWITCH = SPI_get_identifier();
++// if(FLAG_SWITCH)
++// {
++// printk("Configure ADM699X...\n");
++// SPI_default(); //Add by jason for ADM699X configuration
++// }
++ return (0);
++}
++
++/*----------------------------------------------------------------------
++* gmac_cleanup_module
++*----------------------------------------------------------------------*/
++
++static void gmac_cleanup_module(void)
++{
++ int i;
++
++#ifdef SL351x_GMAC_WORKAROUND
++ del_timer(&gmac_workround_timer_obj);
++#endif
++
++ for (i=0;i<CONFIG_MAC_NUM;i++)
++ {
++ if (toe_private_data.gmac[i].dev)
++ {
++ unregister_netdev(toe_private_data.gmac[i].dev);
++ toe_private_data.gmac[i].dev = NULL;
++ }
++ }
++ return ;
++}
++
++module_init(gmac_init_module);
++module_exit(gmac_cleanup_module);
++
++
++/*----------------------------------------------------------------------
++* gmac_read_reg
++*----------------------------------------------------------------------*/
++static inline unsigned int gmac_read_reg(unsigned int base, unsigned int offset)
++//static unsigned int gmac_read_reg(unsigned int base, unsigned int offset)
++{
++ volatile unsigned int reg_val;
++
++ reg_val = readl(base + offset);
++ return (reg_val);
++}
++
++/*----------------------------------------------------------------------
++* gmac_write_reg
++*----------------------------------------------------------------------*/
++static inline void gmac_write_reg(unsigned int base, unsigned int offset,unsigned int data,unsigned int bit_mask)
++//static void gmac_write_reg(unsigned int base, unsigned int offset,unsigned int data,unsigned int bit_mask)
++{
++ volatile unsigned int reg_val;
++ unsigned int *addr;
++
++ reg_val = ( gmac_read_reg(base, offset) & (~bit_mask) ) | (data & bit_mask);
++ addr = (unsigned int *)(base + offset);
++ writel(reg_val,addr);
++ return;
++}
++
++/*----------------------------------------------------------------------
++* mac_init_drv
++*----------------------------------------------------------------------*/
++void mac_init_drv(void)
++{
++ TOE_INFO_T *toe;
++ int i;
++ QUEUE_THRESHOLD_T threshold;
++ u32 *destp;
++ unsigned int chip_id,chip_version;
++
++ chip_id = readl(GMAC_GLOBAL_BASE_ADDR+0x0);
++ chip_version = chip_id & 0x1 ;
++
++ if (!gmac_initialized)
++ {
++ gmac_initialized = 1;
++
++ // clear non TOE Queue Header Area
++ destp = (u32 *)TOE_NONTOE_QUE_HDR_BASE;
++ for (; destp < (u32 *)NONTOE_Q_HDR_AREA_END; destp++)
++ *destp = 0x00;
++
++ // clear TOE Queue Header Area
++ destp = (u32 *)TOE_TOE_QUE_HDR_BASE;
++ for (; destp < (u32 *)TOE_Q_HDR_AREA_END; destp++)
++ *destp = 0x00;
++
++ // init private data
++ toe = (TOE_INFO_T *)&toe_private_data;
++ memset((void *)toe, 0, sizeof(TOE_INFO_T));
++ toe->gmac[0].base_addr = GMAC0_BASE;
++ toe->gmac[1].base_addr = GMAC1_BASE;
++ toe->gmac[0].dma_base_addr = TOE_GMAC0_DMA_BASE;
++ toe->gmac[1].dma_base_addr = TOE_GMAC1_DMA_BASE;
++ toe->gmac[0].auto_nego_cfg = 1;
++ toe->gmac[1].auto_nego_cfg = 1;
++#ifdef CONFIG_SL3516_ASIC
++ toe->gmac[0].speed_cfg = GMAC_SPEED_1000;
++ toe->gmac[1].speed_cfg = GMAC_SPEED_1000;
++#else
++ toe->gmac[0].speed_cfg = GMAC_SPEED_100;
++ toe->gmac[1].speed_cfg = GMAC_SPEED_100;
++#endif
++ toe->gmac[0].full_duplex_cfg = 1;
++ toe->gmac[1].full_duplex_cfg = 1;
++#ifdef CONFIG_SL3516_ASIC
++ toe->gmac[0].phy_mode = GMAC_PHY_RGMII_1000;
++ toe->gmac[1].phy_mode = GMAC_PHY_RGMII_1000;
++#else
++ toe->gmac[0].phy_mode = GMAC_PHY_RGMII_100;
++ toe->gmac[1].phy_mode = GMAC_PHY_RGMII_100;
++#endif
++ toe->gmac[0].port_id = GMAC_PORT0;
++ toe->gmac[1].port_id = GMAC_PORT1;
++ toe->gmac[0].phy_addr = 0x1;
++ toe->gmac[1].phy_addr = 2;
++// toe->gmac[0].irq = SL2312_INTERRUPT_GMAC0;
++ toe->gmac[0].irq =1;
++// toe->gmac[1].irq = SL2312_INTERRUPT_GMAC1;
++ toe->gmac[1].irq =2;
++ toe->gmac[0].mac_addr1 = &eth_mac[0][0];
++ toe->gmac[1].mac_addr1 = &eth_mac[1][0];
++
++ for (i=0; i<CONFIG_MAC_NUM; i++)
++ {
++ unsigned int data, phy_vendor;
++ gmac_write_reg(toe->gmac[i].base_addr, GMAC_STA_ADD2, 0x55aa55aa, 0xffffffff);
++ data = gmac_read_reg(toe->gmac[i].base_addr, GMAC_STA_ADD2);
++ if (data == 0x55aa55aa)
++ {
++#ifdef VITESSE_G5SWITCH
++ if(Giga_switch && (i==1)){
++ toe->gmac[i].existed = GMAC_EXISTED_FLAG;
++ break;
++ }
++#endif
++ phy_vendor = gmac_get_phy_vendor(toe->gmac[i].phy_addr);
++ if (phy_vendor != 0 && phy_vendor != 0xffffffff)
++ toe->gmac[i].existed = GMAC_EXISTED_FLAG;
++ }
++ }
++
++ // Write GLOBAL_QUEUE_THRESHOLD_REG
++ threshold.bits32 = 0;
++ threshold.bits.swfq_empty = (TOE_SW_FREEQ_DESC_NUM > 256) ? 255 :
++ TOE_SW_FREEQ_DESC_NUM/2;
++ threshold.bits.hwfq_empty = (TOE_HW_FREEQ_DESC_NUM > 256) ? 256/4 :
++ TOE_HW_FREEQ_DESC_NUM/4;
++ threshold.bits.toe_class = (TOE_TOE_DESC_NUM > 256) ? 256/4 :
++ TOE_TOE_DESC_NUM/4;
++ threshold.bits.intrq = (TOE_INTR_DESC_NUM > 256) ? 256/4 :
++ TOE_INTR_DESC_NUM/4;
++ writel(threshold.bits32, TOE_GLOBAL_BASE + GLOBAL_QUEUE_THRESHOLD_REG);
++
++ FLAG_SWITCH = 0;
++ toe_gmac_sw_reset();
++ toe_init_free_queue();
++ toe_init_swtx_queue();
++#ifdef CONFIG_SL351x_NAT
++ toe_init_hwtx_queue();
++#endif
++ toe_init_default_queue();
++#ifdef CONFIG_SL351x_RXTOE
++ toe_init_interrupt_queue();
++#endif
++ toe_init_interrupt_config();
++
++#if defined(CONFIG_SL351x_NAT) || defined(CONFIG_SL351x_RXTOE)
++ sl351x_hash_init();
++#else
++ {
++ volatile u32 *dp1, *dp2, dword;
++
++ dp1 = (volatile u32 *) TOE_V_BIT_BASE;
++ dp2 = (volatile u32 *) TOE_A_BIT_BASE;
++
++ for (i=0; i<HASH_TOTAL_ENTRIES/32; i++)
++ {
++ *dp1++ = 0;
++ dword = *dp2++; // read-clear
++ }
++ }
++#endif
++ }
++
++#ifdef SL351x_GMAC_WORKAROUND
++#ifdef CONFIG_SL351x_NAT
++ sl351x_nat_workaround_init();
++#endif
++ init_timer(&gmac_workround_timer_obj);
++ if (chip_version == 1)
++ {
++ gmac_workround_timer_obj.expires = jiffies * 50;
++ }
++ else
++ {
++ gmac_workround_timer_obj.expires = jiffies + 2;
++ }
++ gmac_workround_timer_obj.data = (unsigned long)&gmac_workround_timer_obj;
++ gmac_workround_timer_obj.function = (void *)&sl351x_poll_gmac_hanged_status;
++ add_timer(&gmac_workround_timer_obj);
++#endif
++}
++
++/*----------------------------------------------------------------------
++* toe_init_free_queue
++* (1) Initialize the Free Queue Descriptor Base Address & size
++* Register: TOE_GLOBAL_BASE + 0x0004
++* (2) Initialize DMA Read/Write pointer for
++* SW Free Queue and HW Free Queue
++* (3) Initialize DMA Descriptors for
++* SW Free Queue and HW Free Queue,
++*----------------------------------------------------------------------*/
++static void toe_init_free_queue(void)
++{
++ int i;
++ TOE_INFO_T *toe;
++ DMA_RWPTR_T rwptr_reg;
++// unsigned int rwptr_addr;
++ unsigned int desc_buf;
++ GMAC_RXDESC_T *sw_desc_ptr;
++ struct sk_buff *skb;
++#ifdef CONFIG_SL351x_NAT
++ GMAC_RXDESC_T *desc_ptr;
++ unsigned int buf_ptr;
++#endif
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ desc_buf = (unsigned int)DMA_MALLOC((TOE_SW_FREEQ_DESC_NUM * sizeof(GMAC_RXDESC_T)),
++ (dma_addr_t *)&toe->sw_freeq_desc_base_dma) ;
++ sw_desc_ptr = (GMAC_RXDESC_T *)desc_buf;
++ if (!desc_buf)
++ {
++ printk("%s::DMA_MALLOC fail !\n",__func__);
++ return;
++ }
++ memset((void *)desc_buf, 0, TOE_SW_FREEQ_DESC_NUM * sizeof(GMAC_RXDESC_T));
++
++ // DMA Queue Base & Size
++ writel((toe->sw_freeq_desc_base_dma & DMA_Q_BASE_MASK) | TOE_SW_FREEQ_DESC_POWER,
++ TOE_GLOBAL_BASE + GLOBAL_SW_FREEQ_BASE_SIZE_REG);
++
++ // init descriptor base
++ toe->swfq_desc_base = desc_buf;
++
++ // SW Free Queue Read/Write Pointer
++ rwptr_reg.bits.wptr = TOE_SW_FREEQ_DESC_NUM - 1;
++ rwptr_reg.bits.rptr = 0;
++ toe->fq_rx_rwptr.bits32 = rwptr_reg.bits32;
++ writel(rwptr_reg.bits32, TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++
++ // SW Free Queue Descriptors
++ for (i=0; i<TOE_SW_FREEQ_DESC_NUM; i++)
++ {
++ sw_desc_ptr->word0.bits.buffer_size = SW_RX_BUF_SIZE;
++ sw_desc_ptr->word1.bits.sw_id = i; // used to locate skb
++ if ( (skb = dev_alloc_skb(SW_RX_BUF_SIZE))==NULL) /* allocate socket buffer */
++ {
++ printk("%s::skb buffer allocation fail !\n",__func__); while(1);
++ }
++ REG32(skb->data) = (unsigned int)skb;
++ skb_reserve(skb, SKB_RESERVE_BYTES);
++ // toe->rx_skb[i] = skb;
++ sw_desc_ptr->word2.buf_adr = (unsigned int)__pa(skb->data);
++// consistent_sync((unsigned int)desc_ptr, sizeof(GMAC_RXDESC_T), PCI_DMA_TODEVICE);
++ sw_desc_ptr++;
++ }
++
++#ifdef CONFIG_SL351x_NAT
++ if (sizeof(skb->cb) < 64)
++ {
++ printk("==> %s:: sk structure is incorrect -->Change to cb[64] !\n",__func__); while(1);
++ }
++ // init hardware free queues
++ desc_buf = (unsigned int)DMA_MALLOC((TOE_HW_FREEQ_DESC_NUM * sizeof(GMAC_RXDESC_T)),
++ (dma_addr_t *)&toe->hw_freeq_desc_base_dma) ;
++ desc_ptr = (GMAC_RXDESC_T *)desc_buf;
++ if (!desc_buf)
++ {
++ printk("%s::DMA_MALLOC fail !\n",__func__);
++ return;
++ }
++ memset((void *)desc_buf, 0, TOE_HW_FREEQ_DESC_NUM * sizeof(GMAC_RXDESC_T));
++
++ // DMA Queue Base & Size
++ writel((toe->hw_freeq_desc_base_dma & DMA_Q_BASE_MASK) | TOE_HW_FREEQ_DESC_POWER,
++ TOE_GLOBAL_BASE + GLOBAL_HW_FREEQ_BASE_SIZE_REG);
++
++ // init descriptor base
++ toe->hwfq_desc_base = desc_buf;
++
++ // HW Free Queue Read/Write Pointer
++ rwptr_reg.bits.wptr = TOE_HW_FREEQ_DESC_NUM - 1;
++ rwptr_reg.bits.rptr = 0;
++ writel(rwptr_reg.bits32, TOE_GLOBAL_BASE + GLOBAL_HWFQ_RWPTR_REG);
++#ifndef HW_RXBUF_BY_KMALLOC
++ buf_ptr = (unsigned int)DMA_MALLOC(TOE_HW_FREEQ_DESC_NUM * HW_RX_BUF_SIZE,
++ (dma_addr_t *)&toe->hwfq_buf_base_dma);
++#else
++ buf_ptr = (unsigned int)kmalloc(TOE_HW_FREEQ_DESC_NUM * HW_RX_BUF_SIZE, GFP_KERNEL);
++ toe->hwfq_buf_base_dma = __pa(buf_ptr);
++#endif
++ if (!buf_ptr)
++ {
++ printk("===> %s::Failed to allocate HW TxQ Buffers!\n",__func__);
++ while(1); // could not be happened, if happened, adjust the buffer descriptor number
++ return;
++ }
++
++ toe->hwfq_buf_base = buf_ptr;
++ toe->hwfq_buf_end_dma = toe->hwfq_buf_base_dma + (TOE_HW_FREEQ_DESC_NUM * HW_RX_BUF_SIZE);
++ buf_ptr = (unsigned int)toe->hwfq_buf_base_dma;
++ for (i=0; i<TOE_HW_FREEQ_DESC_NUM; i++)
++ {
++ desc_ptr->word0.bits.buffer_size = HW_RX_BUF_SIZE;
++ desc_ptr->word1.bits.sw_id = i;
++ desc_ptr->word2.buf_adr = (unsigned int)buf_ptr;
++// consistent_sync((unsigned int)desc_ptr, sizeof(GMAC_RXDESC_T), PCI_DMA_TODEVICE);
++ // consistent_sync((unsigned int)buf_ptr, HW_RX_BUF_SIZE, PCI_DMA_TODEVICE);
++ desc_ptr++;
++ buf_ptr += HW_RX_BUF_SIZE;
++ }
++#else
++ // DMA Queue Base & Size
++ writel((0) | TOE_SW_FREEQ_DESC_POWER,
++ TOE_GLOBAL_BASE + GLOBAL_HW_FREEQ_BASE_SIZE_REG);
++ rwptr_reg.bits.wptr = TOE_HW_FREEQ_DESC_NUM - 1;
++ rwptr_reg.bits.rptr = 0;
++ writel(rwptr_reg.bits32, TOE_GLOBAL_BASE + GLOBAL_HWFQ_RWPTR_REG);
++
++#endif
++}
++/*----------------------------------------------------------------------
++* toe_init_swtx_queue
++* (2) Initialize the GMAC 0/1 SW TXQ Queue Descriptor Base Address & sizeup
++* GMAC_SW_TX_QUEUE_BASE_REG(0x0050)
++* (2) Initialize DMA Read/Write pointer for
++* GMAC 0/1 SW TX Q0-5
++*----------------------------------------------------------------------*/
++static void toe_init_swtx_queue(void)
++{
++ int i;
++ TOE_INFO_T *toe;
++ DMA_RWPTR_T rwptr_reg;
++ unsigned int rwptr_addr;
++ unsigned int desc_buf;
++
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++
++ // GMAC-0, SW-TXQ
++ // The GMAC-0 and GMAC-0 maybe have different descriptor number
++ // so, not use for instruction
++ desc_buf = (unsigned int)DMA_MALLOC((TOE_GMAC0_SWTXQ_DESC_NUM * TOE_SW_TXQ_NUM * sizeof(GMAC_TXDESC_T)),
++ (dma_addr_t *)&toe->gmac[0].swtxq_desc_base_dma) ;
++ toe->gmac[0].swtxq_desc_base = desc_buf;
++ if (!desc_buf)
++ {
++ printk("%s::DMA_MALLOC fail !\n",__func__);
++ return ;
++ }
++ memset((void *)desc_buf, 0, TOE_GMAC0_SWTXQ_DESC_NUM * TOE_SW_TXQ_NUM * sizeof(GMAC_TXDESC_T));
++ writel((toe->gmac[0].swtxq_desc_base_dma & DMA_Q_BASE_MASK) | TOE_GMAC0_SWTXQ_DESC_POWER,
++ TOE_GMAC0_DMA_BASE+ GMAC_SW_TX_QUEUE_BASE_REG);
++
++ // GMAC0 SW TX Q0-Q5
++ rwptr_reg.bits.wptr = 0;
++ rwptr_reg.bits.rptr = 0;
++ rwptr_addr = TOE_GMAC0_DMA_BASE + GMAC_SW_TX_QUEUE0_PTR_REG;
++ for (i=0; i<TOE_SW_TXQ_NUM; i++)
++ {
++ toe->gmac[0].swtxq[i].rwptr_reg = rwptr_addr;
++ toe->gmac[0].swtxq[i].desc_base = desc_buf;
++ toe->gmac[0].swtxq[i].total_desc_num = TOE_GMAC0_SWTXQ_DESC_NUM;
++ desc_buf += TOE_GMAC0_SWTXQ_DESC_NUM * sizeof(GMAC_TXDESC_T);
++ writel(rwptr_reg.bits32, rwptr_addr);
++ rwptr_addr+=4;
++ }
++
++ // GMAC-1, SW-TXQ
++ desc_buf = (unsigned int)DMA_MALLOC((TOE_GMAC1_SWTXQ_DESC_NUM * TOE_SW_TXQ_NUM * sizeof(GMAC_TXDESC_T)),
++ (dma_addr_t *)&toe->gmac[1].swtxq_desc_base_dma) ;
++ toe->gmac[1].swtxq_desc_base = desc_buf;
++ if (!desc_buf)
++ {
++ printk("%s::DMA_MALLOC fail !\n",__func__);
++ return ;
++ }
++ memset((void *)desc_buf, 0, TOE_GMAC1_SWTXQ_DESC_NUM * TOE_SW_TXQ_NUM * sizeof(GMAC_TXDESC_T));
++ writel((toe->gmac[1].swtxq_desc_base_dma & DMA_Q_BASE_MASK) | TOE_GMAC1_SWTXQ_DESC_POWER,
++ TOE_GMAC1_DMA_BASE+ GMAC_SW_TX_QUEUE_BASE_REG);
++
++
++ // GMAC1 SW TX Q0-Q5
++ rwptr_reg.bits.wptr = 0;
++ rwptr_reg.bits.rptr = 0;
++ rwptr_addr = TOE_GMAC1_DMA_BASE + GMAC_SW_TX_QUEUE0_PTR_REG;
++ for (i=0; i<TOE_SW_TXQ_NUM; i++)
++ {
++ toe->gmac[1].swtxq[i].rwptr_reg = rwptr_addr;
++ toe->gmac[1].swtxq[i].desc_base = desc_buf;
++ toe->gmac[1].swtxq[i].total_desc_num = TOE_GMAC1_SWTXQ_DESC_NUM;
++ desc_buf += TOE_GMAC1_SWTXQ_DESC_NUM * sizeof(GMAC_TXDESC_T);
++ writel(rwptr_reg.bits32, rwptr_addr);
++ rwptr_addr+=4;
++ }
++}
++
++/*----------------------------------------------------------------------
++* toe_init_hwtx_queue
++* (2) Initialize the GMAC 0/1 HW TXQ Queue Descriptor Base Address & size
++* GMAC_HW_TX_QUEUE_BASE_REG(0x0054)
++* (2) Initialize DMA Read/Write pointer for
++* GMAC 0/1 HW TX Q0-5
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static void toe_init_hwtx_queue(void)
++{
++ int i;
++ TOE_INFO_T *toe;
++ DMA_RWPTR_T rwptr_reg;
++ unsigned int rwptr_addr;
++ unsigned int desc_buf;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ // GMAC-0, HW-TXQ
++ // The GMAC-0 and GMAC-0 maybe have different descriptor number
++ // so, not use for instruction
++ desc_buf = (unsigned int)DMA_MALLOC((TOE_GMAC0_HWTXQ_DESC_NUM * TOE_HW_TXQ_NUM * sizeof(GMAC_TXDESC_T)),
++ (dma_addr_t *)&toe->gmac[0].hwtxq_desc_base_dma) ;
++ toe->gmac[0].hwtxq_desc_base = desc_buf;
++ if (!desc_buf)
++ {
++ printk("%s::DMA_MALLOC fail !\n",__func__);
++ return ;
++ }
++ memset((void *)desc_buf, 0, TOE_GMAC0_HWTXQ_DESC_NUM * TOE_HW_TXQ_NUM * sizeof(GMAC_TXDESC_T));
++ writel((toe->gmac[0].hwtxq_desc_base_dma & DMA_Q_BASE_MASK) | TOE_GMAC0_HWTXQ_DESC_POWER,
++ TOE_GMAC0_DMA_BASE+ GMAC_HW_TX_QUEUE_BASE_REG);
++
++ // GMAC0 HW TX Q0-Q5
++ rwptr_reg.bits.wptr = 0;
++ rwptr_reg.bits.rptr = 0;
++ rwptr_addr = TOE_GMAC0_DMA_BASE + GMAC_HW_TX_QUEUE0_PTR_REG;
++ for (i=0; i<TOE_HW_TXQ_NUM; i++)
++ {
++ toe->gmac[0].hwtxq[i].desc_base = desc_buf;
++ desc_buf += TOE_GMAC0_HWTXQ_DESC_NUM * sizeof(GMAC_TXDESC_T);
++ writel(rwptr_reg.bits32, rwptr_addr);
++ rwptr_addr+=4;
++ }
++
++ // GMAC-1, HW-TXQ
++ desc_buf = (unsigned int)DMA_MALLOC((TOE_GMAC1_HWTXQ_DESC_NUM * TOE_HW_TXQ_NUM * sizeof(GMAC_TXDESC_T)),
++ (dma_addr_t *)&toe->gmac[1].hwtxq_desc_base_dma) ;
++ toe->gmac[1].hwtxq_desc_base = desc_buf;
++ if (!desc_buf)
++ {
++ printk("%s::DMA_MALLOC fail !\n",__func__);
++ return ;
++ }
++ memset((void *)desc_buf, 0, TOE_GMAC1_HWTXQ_DESC_NUM * TOE_HW_TXQ_NUM * sizeof(GMAC_TXDESC_T));
++ writel((toe->gmac[1].hwtxq_desc_base_dma & DMA_Q_BASE_MASK) | TOE_GMAC1_HWTXQ_DESC_POWER,
++ TOE_GMAC1_DMA_BASE+ GMAC_HW_TX_QUEUE_BASE_REG);
++
++ // GMAC1 HW TX Q0-Q5
++ rwptr_reg.bits.wptr = 0;
++ rwptr_reg.bits.rptr = 0;
++ rwptr_addr = TOE_GMAC1_DMA_BASE + GMAC_HW_TX_QUEUE0_PTR_REG;
++ for (i=0; i<TOE_HW_TXQ_NUM; i++)
++ {
++ toe->gmac[1].hwtxq[i].desc_base = desc_buf;
++ desc_buf += TOE_GMAC1_HWTXQ_DESC_NUM * sizeof(GMAC_TXDESC_T);
++ writel(rwptr_reg.bits32, rwptr_addr);
++ rwptr_addr+=4;
++ }
++}
++#endif
++
++/*----------------------------------------------------------------------
++* toe_init_default_queue
++* (1) Initialize the default 0/1 Queue Header
++* Register: TOE_DEFAULT_Q0_HDR_BASE (0x60002000)
++* TOE_DEFAULT_Q1_HDR_BASE (0x60002008)
++* (2) Initialize Descriptors of Default Queue 0/1
++*----------------------------------------------------------------------*/
++static void toe_init_default_queue(void)
++{
++ TOE_INFO_T *toe;
++ volatile NONTOE_QHDR_T *qhdr;
++ GMAC_RXDESC_T *desc_ptr;
++ DMA_SKB_SIZE_T skb_size;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ desc_ptr = (GMAC_RXDESC_T *)DMA_MALLOC((TOE_DEFAULT_Q0_DESC_NUM * sizeof(GMAC_RXDESC_T)),
++ (dma_addr_t *)&toe->gmac[0].default_desc_base_dma);
++ if (!desc_ptr)
++ {
++ printk("%s::DMA_MALLOC fail !\n",__func__);
++ return ;
++ }
++ memset((void *)desc_ptr, 0, TOE_DEFAULT_Q0_DESC_NUM * sizeof(GMAC_RXDESC_T));
++ toe->gmac[0].default_desc_base = (unsigned int)desc_ptr;
++ toe->gmac[0].default_desc_num = TOE_DEFAULT_Q0_DESC_NUM;
++ qhdr = (volatile NONTOE_QHDR_T *)TOE_DEFAULT_Q0_HDR_BASE;
++ qhdr->word0.base_size = ((unsigned int)toe->gmac[0].default_desc_base_dma & NONTOE_QHDR0_BASE_MASK) | TOE_DEFAULT_Q0_DESC_POWER;
++ qhdr->word1.bits32 = 0;
++ toe->gmac[0].rx_rwptr.bits32 = 0;
++ toe->gmac[0].default_qhdr = (NONTOE_QHDR_T *)qhdr;
++ desc_ptr = (GMAC_RXDESC_T *)DMA_MALLOC((TOE_DEFAULT_Q1_DESC_NUM * sizeof(GMAC_RXDESC_T)),
++ (dma_addr_t *)&toe->gmac[1].default_desc_base_dma);
++ if (!desc_ptr)
++ {
++ printk("%s::DMA_MALLOC fail !\n",__func__);
++ return ;
++ }
++ memset((void *)desc_ptr, 0, TOE_DEFAULT_Q1_DESC_NUM * sizeof(GMAC_RXDESC_T));
++ toe->gmac[1].default_desc_base = (unsigned int)desc_ptr;
++ toe->gmac[1].default_desc_num = TOE_DEFAULT_Q1_DESC_NUM;
++ qhdr = (volatile NONTOE_QHDR_T *)TOE_DEFAULT_Q1_HDR_BASE;
++ qhdr->word0.base_size = ((unsigned int)toe->gmac[1].default_desc_base_dma & NONTOE_QHDR0_BASE_MASK) | TOE_DEFAULT_Q1_DESC_POWER;
++ qhdr->word1.bits32 = 0;
++ toe->gmac[1].rx_rwptr.bits32 = 0;
++ toe->gmac[1].default_qhdr = (NONTOE_QHDR_T *)qhdr;
++
++ skb_size.bits.hw_skb_size = HW_RX_BUF_SIZE;
++ skb_size.bits.sw_skb_size = SW_RX_BUF_SIZE;
++ writel(skb_size.bits32, TOE_GLOBAL_BASE + GLOBAL_DMA_SKB_SIZE_REG);
++}
++
++/*----------------------------------------------------------------------
++* toe_init_interrupt_queue
++* (1) Initialize the Interrupt Queue Header
++* Register: TOE_INTR_Q_HDR_BASE (0x60002080)
++* (2) Initialize Descriptors of Interrupt Queues
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_RXTOE
++static void toe_init_interrupt_queue(void)
++{
++ TOE_INFO_T *toe;
++ volatile NONTOE_QHDR_T *qhdr;
++ INTR_QHDR_T *desc_ptr;
++ // unsigned int desc_buf_addr;
++ int i;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ desc_ptr = (INTR_QHDR_T *)DMA_MALLOC((TOE_INTR_QUEUE_NUM * TOE_INTR_DESC_NUM * sizeof(INTR_QHDR_T)),
++ (dma_addr_t *)&toe->intr_desc_base_dma);
++ if (!desc_ptr)
++ {
++ printk("%s::DMA_MALLOC interrupt queue fail !\n",__func__);
++ return ;
++ }
++ /*
++ desc_buf_addr = (unsigned int)DMA_MALLOC((TOE_INTR_DESC_NUM * sizeof(TOE_QHDR_T)),
++ (dma_addr_t *)&toe->intr_buf_base_dma);
++ if (!desc_buf_addr)
++ {
++ printk("%s::DMA_MALLOC interrupt desc fail !\n",__func__);
++ return ;
++ }*/
++ printk("#### %s::Intr Q desc %x\n", __func__, (u32)desc_ptr);
++
++ memset((void *)desc_ptr, 0, TOE_INTR_QUEUE_NUM * TOE_INTR_DESC_NUM * sizeof(INTR_QHDR_T));
++// memset((void *)desc_buf_addr, 0, TOE_INTR_DESC_NUM * sizeof(TOE_QHDR_T));
++ toe->intr_desc_base = (unsigned int)desc_ptr;
++ toe->intr_desc_num = TOE_INTR_DESC_NUM;
++
++ qhdr = (volatile NONTOE_QHDR_T *)TOE_INTR_Q_HDR_BASE;
++// intrq = (INTRQ_INFO_T*) &toe->intrq[0];
++ for (i=0; i<TOE_INTR_QUEUE_NUM; i++, qhdr++)
++ {
++ qhdr->word0.base_size = ((unsigned int)toe->intr_desc_base_dma & NONTOE_QHDR0_BASE_MASK) | TOE_INTR_DESC_POWER;
++ qhdr->word1.bits32 = 0;
++ desc_ptr += TOE_INTR_DESC_NUM;
++ }
++}
++
++#endif
++
++/*----------------------------------------------------------------------
++* toe_init_interrupt_config
++* Interrupt Select Registers are used to map interrupt to int0 or int1
++* Int0 and int1 are wired to CPU 0/1 GMAC 0/1
++* Interrupt Device Inteface data are used to pass device info to
++* upper device deiver or store status/statistics
++* ISR handler
++* (1) If status bit ON but masked, the prinf error message (bug issue)
++* (2) If select bits are for me, handle it, else skip to let
++* the other ISR handles it.
++* Notes:
++* GMACx init routine (for eCOS) or open routine (for Linux)
++* enable the interrupt bits only which are selected for him.
++*
++* Default Setting:
++* GMAC0 intr bits ------> int0 ----> eth0
++* GMAC1 intr bits ------> int1 ----> eth1
++* TOE intr -------------> int0 ----> eth0
++* Classification Intr --> int0 ----> eth0
++* Default Q0 -----------> int0 ----> eth0
++* Default Q1 -----------> int1 ----> eth1
++*----------------------------------------------------------------------*/
++static void toe_init_interrupt_config(void)
++{
++ // clear all status bits
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_0_REG);
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_1_REG);
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_2_REG);
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_3_REG);
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_4_REG);
++
++ // Init select registers
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_0_REG);
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_1_REG);
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_2_REG);
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_3_REG);
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_4_REG);
++
++ // disable all interrupt
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_0_REG);
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_1_REG);
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_2_REG);
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_3_REG);
++ writel(0, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_4_REG);
++}
++
++/*----------------------------------------------------------------------
++* toe_init_gmac
++*----------------------------------------------------------------------*/
++static void toe_init_gmac(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ TOE_INFO_T *toe;
++ u32 data;
++
++ if (!gmac_initialized)
++ return ;
++
++ if (!tp->existed)
++ return;
++
++ tp->dev = dev;
++ tp->flow_control_enable = 1;
++ tp->pre_phy_status = LINK_DOWN;
++ tp->full_duplex_status = tp->full_duplex_cfg;
++ tp->speed_status = tp->speed_status;
++
++#if 0
++ /* get mac address from FLASH */
++ gmac_get_mac_address();
++#endif
++
++ /* set PHY register to start autonegition process */
++ gmac_set_phy_status(dev);
++
++ /* GMAC initialization */
++ if ( toe_gmac_init_chip(dev) )
++ {
++ printk ("GMAC %d init fail\n", tp->port_id);
++ }
++
++ /* clear statistic counter */
++ toe_gmac_clear_counter(dev);
++
++ memset((void *)&tp->ifStatics, 0, sizeof(struct net_device_stats));
++
++ /* -----------------------------------------------------------
++ Enable GMAC interrupt & disable loopback
++ Notes:
++ GMACx init routine (for eCOS) or open routine (for Linux)
++ enable the interrupt bits only which are selected for him.
++ --------------------------------------------------------------*/
++ toe = (TOE_INFO_T *)&toe_private_data;
++
++ // Enable Interrupt Bits
++ if (tp->port_id == 0)
++ {
++ tp->intr0_selected = GMAC0_TXDERR_INT_BIT | GMAC0_TXPERR_INT_BIT |
++ GMAC0_RXDERR_INT_BIT | GMAC0_RXPERR_INT_BIT |
++ GMAC0_SWTQ05_FIN_INT_BIT | GMAC0_SWTQ05_EOF_INT_BIT |
++ GMAC0_SWTQ04_FIN_INT_BIT | GMAC0_SWTQ04_EOF_INT_BIT |
++ GMAC0_SWTQ03_FIN_INT_BIT | GMAC0_SWTQ03_EOF_INT_BIT |
++ GMAC0_SWTQ02_FIN_INT_BIT | GMAC0_SWTQ02_EOF_INT_BIT |
++ GMAC0_SWTQ01_FIN_INT_BIT | GMAC0_SWTQ01_EOF_INT_BIT |
++ GMAC0_SWTQ00_FIN_INT_BIT | GMAC0_SWTQ00_EOF_INT_BIT;
++
++#ifdef GMAX_TX_INTR_DISABLED
++ tp->intr0_enabled = 0;
++#else
++ tp->intr0_enabled = GMAC0_SWTQ00_FIN_INT_BIT | GMAC0_SWTQ00_EOF_INT_BIT;
++#endif
++
++ tp->intr1_selected = TOE_IQ_ALL_BITS | TOE_CLASS_RX_INT_BITS |
++ GMAC0_HWTQ03_EOF_INT_BIT | GMAC0_HWTQ02_EOF_INT_BIT |
++ GMAC0_HWTQ01_EOF_INT_BIT | GMAC0_HWTQ00_EOF_INT_BIT |
++ DEFAULT_Q0_INT_BIT;
++ tp->intr1_enabled = DEFAULT_Q0_INT_BIT | TOE_IQ_ALL_BITS;
++ tp->intr2_selected = 0xffffffff; // TOE Queue 32-63 FUUL Intr
++ tp->intr2_enabled = 0xffffffff;
++ tp->intr3_selected = 0xffffffff; // TOE Queue 0-31 FUUL Intr
++ tp->intr3_enabled = 0xffffffff;
++ tp->intr4_selected = GMAC0_INT_BITS | CLASS_RX_FULL_INT_BITS |
++ HWFQ_EMPTY_INT_BIT | SWFQ_EMPTY_INT_BIT;
++ tp->intr4_enabled = GMAC0_INT_BITS | SWFQ_EMPTY_INT_BIT;
++
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_0_REG) & ~tp->intr0_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_0_REG);
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_1_REG) & ~tp->intr1_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_1_REG);
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_2_REG) & ~tp->intr2_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_2_REG);
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_3_REG) & ~tp->intr3_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_3_REG);
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_4_REG) & ~tp->intr4_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_4_REG);
++ }
++ else
++ {
++ tp->intr0_selected = GMAC1_TXDERR_INT_BIT | GMAC1_TXPERR_INT_BIT |
++ GMAC1_RXDERR_INT_BIT | GMAC1_RXPERR_INT_BIT |
++ GMAC1_SWTQ15_FIN_INT_BIT | GMAC1_SWTQ15_EOF_INT_BIT |
++ GMAC1_SWTQ14_FIN_INT_BIT | GMAC1_SWTQ14_EOF_INT_BIT |
++ GMAC1_SWTQ13_FIN_INT_BIT | GMAC1_SWTQ13_EOF_INT_BIT |
++ GMAC1_SWTQ12_FIN_INT_BIT | GMAC1_SWTQ12_EOF_INT_BIT |
++ GMAC1_SWTQ11_FIN_INT_BIT | GMAC1_SWTQ11_EOF_INT_BIT |
++ GMAC1_SWTQ10_FIN_INT_BIT | GMAC1_SWTQ10_EOF_INT_BIT;
++#ifdef GMAX_TX_INTR_DISABLED
++ tp->intr0_enabled = 0;
++#else
++ tp->intr0_enabled = GMAC1_SWTQ10_FIN_INT_BIT | GMAC1_SWTQ10_EOF_INT_BIT;
++#endif
++
++ tp->intr1_selected = DEFAULT_Q1_INT_BIT;
++ tp->intr1_enabled = DEFAULT_Q1_INT_BIT | TOE_IQ_ALL_BITS;
++ tp->intr2_selected = 0; // TOE Queue 32-63 FUUL Intr
++ tp->intr2_enabled = 0;
++ tp->intr3_selected = 0; // TOE Queue 0-31 FUUL Intr
++ tp->intr3_enabled = 0;
++ tp->intr4_selected = GMAC1_INT_BITS;
++ tp->intr4_enabled = GMAC1_INT_BITS;
++
++ if (toe->gmac[0].existed != GMAC_EXISTED_FLAG)
++ {
++ tp->intr1_selected |= TOE_IQ_ALL_BITS | TOE_CLASS_RX_INT_BITS |
++ GMAC0_HWTQ03_EOF_INT_BIT | GMAC0_HWTQ02_EOF_INT_BIT |
++ GMAC0_HWTQ01_EOF_INT_BIT | GMAC0_HWTQ00_EOF_INT_BIT;
++ tp->intr1_enabled |= TOE_IQ_ALL_BITS;
++ tp->intr2_selected |= 0xffffffff; // TOE Queue 32-63 FUUL Intr
++ tp->intr2_enabled |= 0xffffffff;
++ tp->intr3_selected |= 0xffffffff; // TOE Queue 0-31 FUUL Intr
++ tp->intr3_enabled |= 0xffffffff;
++ tp->intr4_selected |= CLASS_RX_FULL_INT_BITS |
++ HWFQ_EMPTY_INT_BIT | SWFQ_EMPTY_INT_BIT;
++ tp->intr4_enabled |= SWFQ_EMPTY_INT_BIT;
++ }
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_0_REG) | tp->intr0_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_0_REG);
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_1_REG) | tp->intr1_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_1_REG);
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_2_REG) | tp->intr2_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_2_REG);
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_3_REG) | tp->intr3_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_3_REG);
++ data = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_4_REG) | tp->intr4_selected;
++ writel(data, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_SELECT_4_REG);
++ }
++
++ // enable only selected bits
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_ENABLE_0_REG,
++ tp->intr0_enabled, tp->intr0_selected);
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_ENABLE_1_REG,
++ tp->intr1_enabled, tp->intr1_selected);
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_ENABLE_2_REG,
++ tp->intr2_enabled, tp->intr2_selected);
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_ENABLE_3_REG,
++ tp->intr3_enabled, tp->intr3_selected);
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_ENABLE_4_REG,
++ tp->intr4_enabled, tp->intr4_selected);
++
++ /* start DMA process */
++ toe_gmac_hw_start(dev);
++
++ /* enable tx/rx register */
++ toe_gmac_enable_tx_rx(dev);
++
++// toe_gmac_enable_interrupt(tp->irq);
++
++ return ;
++}
++
++
++/*----------------------------------------------------------------------
++* toe_gmac_sw_reset
++*----------------------------------------------------------------------*/
++static void toe_gmac_sw_reset(void)
++{
++ unsigned int reg_val;
++ reg_val = readl(GMAC_GLOBAL_BASE_ADDR+GLOBAL_RESET_REG) | 0x00000060; /* GMAC0 S/W reset */
++ writel(reg_val,GMAC_GLOBAL_BASE_ADDR+GLOBAL_RESET_REG);
++ udelay(100);
++ return;
++}
++
++/*----------------------------------------------------------------------
++* toe_gmac_init_chip
++*----------------------------------------------------------------------*/
++static int toe_gmac_init_chip(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ GMAC_CONFIG2_T config2_val;
++ GMAC_CONFIG0_T config0,config0_mask;
++ GMAC_CONFIG1_T config1;
++ #ifdef CONFIG_SL351x_NAT
++ GMAC_CONFIG3_T config3_val;
++ #endif
++ GMAC_TX_WCR0_T hw_weigh;
++ GMAC_TX_WCR1_T sw_weigh;
++// GMAC_HASH_ENABLE_REG0_T hash_ctrl;
++//
++#if 0 /* mac address will be set in late_initcall */
++ struct sockaddr sock;
++ // GMAC_AHB_WEIGHT_T ahb_weight, ahb_weight_mask;
++
++
++ /* set station MAC address1 and address2 */
++ memcpy(&sock.sa_data[0],&eth_mac[tp->port_id][0],6);
++ gmac_set_mac_address(dev,(void *)&sock);
++#endif
++
++ /* set RX_FLTR register to receive all multicast packet */
++ gmac_write_reg(tp->base_addr, GMAC_RX_FLTR, 0x00000007,0x0000001f);
++ // gmac_write_reg(tp->base_addr, GMAC_RX_FLTR, 0x00000007,0x0000001f);
++ //gmac_write_reg(tp->base_addr, GMAC_RX_FLTR,0x00000007,0x0000001f);
++
++ /* set per packet buffer size */
++ // config1.bits32 = 0x002004; //next version
++ /* set flow control threshold */
++ config1.bits32 = 0;
++ config1.bits.set_threshold = 32 / 2;
++ config1.bits.rel_threshold = 32 / 4 * 3;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG1, config1.bits32, 0xffffffff);
++
++ /* set flow control threshold */
++ config2_val.bits32 = 0;
++ config2_val.bits.set_threshold = TOE_SW_FREEQ_DESC_NUM/2;
++ config2_val.bits.rel_threshold = TOE_SW_FREEQ_DESC_NUM*3/4;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG2, config2_val.bits32,0xffffffff);
++
++ #ifdef CONFIG_SL351x_NAT
++ /* set HW free queue flow control threshold */
++ config3_val.bits32 = 0;
++ config3_val.bits.set_threshold = PAUSE_SET_HW_FREEQ;
++ config3_val.bits.rel_threshold = PAUSE_REL_HW_FREEQ;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG3, config3_val.bits32,0xffffffff);
++ #endif
++ /* set_mcast_filter mask*/
++ // gmac_write_reg(tp->base_addr,GMAC_MCAST_FIL0,0x0,0xffffffff);
++ // gmac_write_reg(tp->base_addr,GMAC_MCAST_FIL1,0x0,0xffffffff);
++
++ /* disable TX/RX and disable internal loop back */
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++
++ //debug_Aaron
++#ifdef L2_jumbo_frame
++ config0.bits.max_len = 5;
++#else
++ config0.bits.max_len = 2;
++#endif
++
++ if (tp->flow_control_enable==1)
++ {
++ config0.bits.tx_fc_en = 1; /* enable tx flow control */
++ config0.bits.rx_fc_en = 1; /* enable rx flow control */
++ printk("Enable MAC Flow Control...\n");
++ }
++ else
++ {
++ config0.bits.tx_fc_en = 0; /* disable tx flow control */
++ config0.bits.rx_fc_en = 0; /* disable rx flow control */
++ printk("Disable MAC Flow Control...\n");
++ }
++ config0.bits.dis_rx = 1; /* disable rx */
++ config0.bits.dis_tx = 1; /* disable tx */
++ config0.bits.loop_back = 0; /* enable/disable GMAC loopback */
++ config0.bits.rx_err_detect = 1;
++ config0.bits.rgmii_en = 0;
++ config0.bits.rgmm_edge = 1;
++ config0.bits.rxc_inv = 0;
++ config0.bits.ipv4_rx_chksum = 1; /* enable H/W to check ip checksum */
++ config0.bits.ipv6_rx_chksum = 1; /* enable H/W to check ip checksum */
++ config0.bits.port0_chk_hwq = 1; // GaryChen 3/24/2006 2:26PM
++ config0.bits.port1_chk_hwq = 1; // GaryChen 3/24/2006 2:26PM
++ config0.bits.port0_chk_toeq = 1;
++ config0.bits.port1_chk_toeq = 1;
++ config0.bits.port0_chk_classq = 1;
++ config0.bits.port1_chk_classq = 1;
++
++ config0_mask.bits.max_len = 7;
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ config0_mask.bits.dis_rx = 1;
++ config0_mask.bits.dis_tx = 1;
++ config0_mask.bits.loop_back = 1;
++ config0_mask.bits.rgmii_en = 1;
++ config0_mask.bits.rgmm_edge = 1;
++ config0_mask.bits.rxc_inv = 1;
++ config0_mask.bits.ipv4_rx_chksum = 1;
++ config0_mask.bits.ipv6_rx_chksum = 1;
++ config0_mask.bits.port0_chk_hwq = 1;
++ config0_mask.bits.port1_chk_hwq = 1;
++ config0_mask.bits.port0_chk_toeq = 1;
++ config0_mask.bits.port1_chk_toeq = 1;
++ config0_mask.bits.port0_chk_classq = 1;
++ config0_mask.bits.port1_chk_classq = 1;
++ config0_mask.bits.rx_err_detect = 1;
++
++ #if 0
++ config0.bits.dis_rx = 1; /* disable rx */
++ config0.bits.dis_tx = 1; /* disable tx */
++ config0.bits.loop_back = 0; /* enable/disable GMAC loopback */
++ config0.bits.txc_inv = 0;
++ config0.bits.rgmii_en = 0;
++ config0.bits.rgmm_edge = 1;
++ config0.bits.rxc_inv = 1;
++ config0.bits.ipv4_tss_rx_en = 1; /* enable H/W to check ip checksum */
++ config0.bits.ipv6_tss_rx_en = 1; /* enable H/W to check ip checksum */
++
++ config0_mask.bits.max_len = 3;
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ config0_mask.bits.dis_rx = 1;
++ config0_mask.bits.dis_tx = 1;
++ config0_mask.bits.loop_back = 1;
++ config0_mask.bits.rgmii_en = 1;
++ config0_mask.bits.rgmm_edge = 1;
++ config0_mask.bits.txc_inv = 1;
++ config0_mask.bits.rxc_inv = 1;
++ config0_mask.bits.ipv4_tss_rx_en = 1;
++ config0_mask.bits.ipv6_tss_rx_en = 1;
++ #endif
++
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0, config0.bits32,config0_mask.bits32);
++
++ #if 1
++ hw_weigh.bits32 = 0;
++ hw_weigh.bits.hw_tq3 = 1;
++ hw_weigh.bits.hw_tq2 = 1;
++ hw_weigh.bits.hw_tq1 = 1;
++ hw_weigh.bits.hw_tq0 = 1;
++ gmac_write_reg(tp->dma_base_addr, GMAC_TX_WEIGHTING_CTRL_0_REG, hw_weigh.bits32, 0xffffffff);
++
++ sw_weigh.bits32 = 0;
++ sw_weigh.bits.sw_tq5 = 1;
++ sw_weigh.bits.sw_tq4 = 1;
++ sw_weigh.bits.sw_tq3 = 1;
++ sw_weigh.bits.sw_tq2 = 1;
++ sw_weigh.bits.sw_tq1 = 1;
++ sw_weigh.bits.sw_tq0 = 1;
++ gmac_write_reg(tp->dma_base_addr, GMAC_TX_WEIGHTING_CTRL_1_REG, sw_weigh.bits32, 0xffffffff);
++ #endif
++
++ #if 0
++ ahb_weight.bits32 = 0;
++ ahb_weight_mask.bits32 = 0;
++ ahb_weight.bits.rx_weight = 1;
++ ahb_weight.bits.tx_weight = 1;
++ ahb_weight.bits.hash_weight = 1;
++ ahb_weight.bits.pre_req = 0x1f;
++ ahb_weight.bits.tqDV_threshold = 0;
++ ahb_weight_mask.bits.rx_weight = 0x1f;
++ ahb_weight_mask.bits.tx_weight = 0x1f;
++ ahb_weight_mask.bits.hash_weight = 0x1f;
++ ahb_weight_mask.bits.pre_req = 0x1f;
++ ahb_weight_mask.bits.tqDV_threshold = 0x1f;
++ gmac_write_reg(tp->dma_base_addr, GMAC_AHB_WEIGHT_REG, ahb_weight.bits32, ahb_weight_mask.bits32);
++ #endif
++
++ #if defined(CONFIG_SL351x_NAT) || defined(CONFIG_SL351x_RXTOE)
++ gmac_write_reg(tp->dma_base_addr, GMAC_SPR0, IPPROTO_TCP, 0xffffffff);
++ #endif
++ #ifdef CONFIG_SL351x_NAT
++ gmac_write_reg(tp->dma_base_addr, GMAC_SPR1, IPPROTO_UDP, 0xffffffff);
++ gmac_write_reg(tp->dma_base_addr, GMAC_SPR2, IPPROTO_GRE, 0xffffffff);
++ gmac_write_reg(tp->dma_base_addr, GMAC_SPR3, 0xff, 0xffffffff);
++ gmac_write_reg(tp->dma_base_addr, GMAC_SPR4, 0xff, 0xffffffff);
++ gmac_write_reg(tp->dma_base_addr, GMAC_SPR5, 0xff, 0xffffffff);
++ gmac_write_reg(tp->dma_base_addr, GMAC_SPR6, 0xff, 0xffffffff);
++ gmac_write_reg(tp->dma_base_addr, GMAC_SPR7, 0xff, 0xffffffff);
++
++ sl351x_nat_init();
++ #endif
++
++ #ifdef CONFIG_SL351x_RXTOE
++ /* setup matching rule to TOE */
++ sl351x_toe_init();
++ #endif
++
++ // for A1 ASIC version
++// hash_ctrl.bits32 = 0;
++// hash_ctrl.bits.timing = 6;
++// gmac_write_reg(tp->dma_base_addr, GMAC_HASH_ENGINE_REG0, hash_ctrl.bits32, 0xffffffff);
++
++ return (0);
++}
++
++/*----------------------------------------------------------------------
++* toe_gmac_enable_tx_rx
++*----------------------------------------------------------------------*/
++static void toe_gmac_enable_tx_rx(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ GMAC_CONFIG0_T config0,config0_mask;
++
++ /* enable TX/RX */
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.dis_rx = 0; /* enable rx */
++ config0.bits.dis_tx = 0; /* enable tx */
++ config0_mask.bits.dis_rx = 1;
++ config0_mask.bits.dis_tx = 1;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0, config0.bits32,config0_mask.bits32);
++}
++/*----------------------------------------------------------------------
++* toe_gmac_disable_rx
++*----------------------------------------------------------------------*/
++#if 0
++static void toe_gmac_disable_rx(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ GMAC_CONFIG0_T config0,config0_mask;
++
++ /* enable TX/RX */
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.dis_rx = 1; /* disable rx */
++// config0.bits.dis_tx = 1; /* disable tx */
++ config0_mask.bits.dis_rx = 1;
++// config0_mask.bits.dis_tx = 1;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0, config0.bits32,config0_mask.bits32);
++}
++#endif
++/*----------------------------------------------------------------------
++* toe_gmac_enable_rx
++*----------------------------------------------------------------------*/
++#if 0
++static void toe_gmac_enable_rx(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ GMAC_CONFIG0_T config0,config0_mask;
++
++ /* enable TX/RX */
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.dis_rx = 0; /* enable rx */
++// config0.bits.dis_tx = 0; /* enable tx */
++ config0_mask.bits.dis_rx = 1;
++// config0_mask.bits.dis_tx = 1;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0, config0.bits32,config0_mask.bits32);
++}
++#endif
++/*----------------------------------------------------------------------
++* toe_gmac_disable_tx_rx
++*----------------------------------------------------------------------*/
++static void toe_gmac_disable_tx_rx(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ GMAC_CONFIG0_T config0,config0_mask;
++
++ /* enable TX/RX */
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.dis_rx = 1; /* disable rx */
++ config0.bits.dis_tx = 1; /* disable tx */
++ config0_mask.bits.dis_rx = 1;
++ config0_mask.bits.dis_tx = 1;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0, config0.bits32,config0_mask.bits32);
++}
++
++/*----------------------------------------------------------------------
++* toe_gmac_hw_start
++*----------------------------------------------------------------------*/
++static void toe_gmac_hw_start(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ GMAC_DMA_CTRL_T dma_ctrl, dma_ctrl_mask;
++
++
++ /* program dma control register */
++ dma_ctrl.bits32 = 0;
++ dma_ctrl.bits.rd_enable = 1;
++ dma_ctrl.bits.td_enable = 1;
++ dma_ctrl.bits.loopback = 0;
++ dma_ctrl.bits.drop_small_ack = 0;
++ dma_ctrl.bits.rd_prot = 0;
++ dma_ctrl.bits.rd_burst_size = 3;
++ dma_ctrl.bits.rd_insert_bytes = RX_INSERT_BYTES;
++ dma_ctrl.bits.rd_bus = 3;
++ dma_ctrl.bits.td_prot = 0;
++ dma_ctrl.bits.td_burst_size = 3;
++ dma_ctrl.bits.td_bus = 3;
++
++ dma_ctrl_mask.bits32 = 0;
++ dma_ctrl_mask.bits.rd_enable = 1;
++ dma_ctrl_mask.bits.td_enable = 1;
++ dma_ctrl_mask.bits.loopback = 1;
++ dma_ctrl_mask.bits.drop_small_ack = 1;
++ dma_ctrl_mask.bits.rd_prot = 3;
++ dma_ctrl_mask.bits.rd_burst_size = 3;
++ dma_ctrl_mask.bits.rd_insert_bytes = 3;
++ dma_ctrl_mask.bits.rd_bus = 3;
++ dma_ctrl_mask.bits.td_prot = 0x0f;
++ dma_ctrl_mask.bits.td_burst_size = 3;
++ dma_ctrl_mask.bits.td_bus = 3;
++
++ gmac_write_reg(tp->dma_base_addr, GMAC_DMA_CTRL_REG, dma_ctrl.bits32, dma_ctrl_mask.bits32);
++
++ return;
++}
++
++/*----------------------------------------------------------------------
++* toe_gmac_hw_stop
++*----------------------------------------------------------------------*/
++static void toe_gmac_hw_stop(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ GMAC_DMA_CTRL_T dma_ctrl, dma_ctrl_mask;
++
++ /* program dma control register */
++ dma_ctrl.bits32 = 0;
++ dma_ctrl.bits.rd_enable = 0;
++ dma_ctrl.bits.td_enable = 0;
++
++ dma_ctrl_mask.bits32 = 0;
++ dma_ctrl_mask.bits.rd_enable = 1;
++ dma_ctrl_mask.bits.td_enable = 1;
++
++ gmac_write_reg(tp->dma_base_addr, GMAC_DMA_CTRL_REG, dma_ctrl.bits32, dma_ctrl_mask.bits32);
++}
++
++/*----------------------------------------------------------------------
++* toe_gmac_clear_counter
++*----------------------------------------------------------------------*/
++static int toe_gmac_clear_counter (struct net_device *dev)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++
++ /* clear counter */
++ gmac_read_reg(tp->base_addr, GMAC_IN_DISCARDS);
++ gmac_read_reg(tp->base_addr, GMAC_IN_ERRORS);
++ gmac_read_reg(tp->base_addr, GMAC_IN_MCAST);
++ gmac_read_reg(tp->base_addr, GMAC_IN_BCAST);
++ gmac_read_reg(tp->base_addr, GMAC_IN_MAC1);
++ gmac_read_reg(tp->base_addr, GMAC_IN_MAC2);
++ tp->ifStatics.tx_bytes = 0;
++ tp->ifStatics.tx_packets = 0;
++ tp->ifStatics.tx_errors = 0;
++ tp->ifStatics.rx_bytes = 0;
++ tp->ifStatics.rx_packets = 0;
++ tp->ifStatics.rx_errors = 0;
++ tp->ifStatics.rx_dropped = 0;
++ return (0);
++}
++
++
++/*----------------------------------------------------------------------
++* toe_gmac_tx_complete
++*----------------------------------------------------------------------*/
++static void toe_gmac_tx_complete(GMAC_INFO_T *tp, unsigned int tx_qid,
++ struct net_device *dev, int interrupt)
++{
++ volatile GMAC_TXDESC_T *curr_desc;
++ GMAC_TXDESC_0_T word0;
++ GMAC_TXDESC_1_T word1;
++ unsigned int desc_count;
++// struct net_device_stats *isPtr = (struct net_device_stats *)&tp->ifStatics;
++ GMAC_SWTXQ_T *swtxq;
++ DMA_RWPTR_T rwptr;
++
++ /* get tx H/W completed descriptor virtual address */
++ /* check tx status and accumulate tx statistics */
++ swtxq = &tp->swtxq[tx_qid];
++ swtxq->intr_cnt++;
++ for (;;)
++ {
++ rwptr.bits32 = readl(swtxq->rwptr_reg);
++ if (rwptr.bits.rptr == swtxq->finished_idx)
++ break;
++ curr_desc = (volatile GMAC_TXDESC_T *)swtxq->desc_base + swtxq->finished_idx;
++// consistent_sync((void *)curr_desc, sizeof(GMAC_TXDESC_T), PCI_DMA_FROMDEVICE);
++ word0.bits32 = curr_desc->word0.bits32;
++ word1.bits32 = curr_desc->word1.bits32;
++
++ if (word0.bits.status_tx_ok)
++ {
++ tp->ifStatics.tx_bytes += word1.bits.byte_count;
++ desc_count = word0.bits.desc_count;
++ if (desc_count==0)
++ {
++ printk("%s::Desc 0x%x = 0x%x, desc_count=%d\n",__func__, (u32)curr_desc, word0.bits32, desc_count);
++ while(1);
++ }
++ while (--desc_count)
++ {
++ word0.bits.status_tx_ok = 0;
++ curr_desc->word0.bits32 = word0.bits32;
++ swtxq->finished_idx = RWPTR_ADVANCE_ONE(swtxq->finished_idx, swtxq->total_desc_num);
++ curr_desc = (GMAC_TXDESC_T *)swtxq->desc_base + swtxq->finished_idx;
++ word0.bits32 = curr_desc->word0.bits32;
++#ifdef _DUMP_TX_TCP_CONTENT
++ if (curr_desc->word0.bits.buffer_size < 16)
++ {
++ int a;
++ char *datap;
++ printk("\t Tx Finished Desc 0x%x Len %d Addr 0x%08x: ", (u32)curr_desc, curr_desc->word0.bits.buffer_size, curr_desc->word2.buf_adr);
++ datap = (char *)__va(curr_desc->word2.buf_adr);
++ for (a=0; a<8 && a<curr_desc->word0.bits.buffer_size; a++, datap++)
++ {
++ printk("0x%02x ", *datap);
++ }
++ printk("\n");
++ }
++#endif
++ }
++
++ word0.bits.status_tx_ok = 0;
++ if (swtxq->tx_skb[swtxq->finished_idx])
++ {
++ if (interrupt)
++ dev_kfree_skb_irq(swtxq->tx_skb[swtxq->finished_idx]);
++ else
++ dev_kfree_skb(swtxq->tx_skb[swtxq->finished_idx]);
++ swtxq->tx_skb[swtxq->finished_idx] = NULL;
++ }
++ curr_desc->word0.bits32 = word0.bits32;
++ swtxq->curr_finished_desc = (GMAC_TXDESC_T *)curr_desc;
++ swtxq->total_finished++;
++ tp->ifStatics.tx_packets++;
++ swtxq->finished_idx = RWPTR_ADVANCE_ONE(swtxq->finished_idx, swtxq->total_desc_num);
++ }
++ else
++ {
++ // tp->ifStatics.tx_errors++;
++ // printk("%s::Tx Descriptor is !!!\n",__func__);
++ // wait ready by breaking
++ break;
++ }
++ }
++
++ if (netif_queue_stopped(dev))
++ {
++ netif_wake_queue(dev);
++ }
++}
++
++/*----------------------------------------------------------------------
++* gmac_start_xmit
++*----------------------------------------------------------------------*/
++static int gmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
++{
++ GMAC_INFO_T *tp= dev->priv;
++// static unsigned int pcount = 0;
++// unsigned int tx_qid;
++ DMA_RWPTR_T rwptr;
++ volatile GMAC_TXDESC_T *curr_desc;
++ int snd_pages = skb_shinfo(skb)->nr_frags + 1; /* get number of descriptor */
++ int frag_id = 0;
++ int len, total_len = skb->len;
++ struct net_device_stats *isPtr;
++ unsigned int free_desc;
++ GMAC_SWTXQ_T *swtxq;
++ register unsigned long word0, word1, word2, word3;
++ unsigned short wptr, rptr;
++#ifdef L2_jumbo_frame
++ int header_len = skb->len;
++ struct iphdr *ip_hdr;
++ struct tcphdr *tcp_hdr;
++ int tcp_hdr_len;
++ unsigned char *ptr;
++ int data_len,a;
++ unsigned int val;
++#endif
++
++#ifdef GMAC_LEN_1_2_ISSUE
++ int total_pages;
++ total_pages = snd_pages;
++#endif
++
++ isPtr = (struct net_device_stats *)&tp->ifStatics;
++#if 1
++ if (skb->len >= 0x10000)
++ {
++// spin_unlock(&tp->tx_mutex);
++ isPtr->tx_dropped++;
++ printk("%s::[GMAC %d] skb->len %d >= 64K\n", __func__, tp->port_id, skb->len);
++ netif_stop_queue(dev);
++ return 1;
++ }
++#endif
++
++#if 0
++ if (storlink_ctl.recvfile==2)
++ {
++ printk("snd_pages=%d skb->len=%d\n",snd_pages,skb->len);
++ }
++#endif
++
++#ifdef GMAC_USE_TXQ0
++ #define tx_qid 0
++#endif
++
++ swtxq = &tp->swtxq[tx_qid];
++
++// spin_lock(&tp->tx_mutex);
++ rwptr.bits32 = readl(swtxq->rwptr_reg);
++ wptr = rwptr.bits.wptr;
++ rptr = rwptr.bits.rptr;
++
++ // check finished desc or empty BD
++ // cannot check by read ptr of RW PTR register,
++ // because the HW complete to send but the SW may NOT handle it
++#ifndef GMAX_TX_INTR_DISABLED
++ if (wptr >= swtxq->finished_idx)
++ free_desc = swtxq->total_desc_num - wptr - 1 + swtxq->finished_idx;
++ else
++ free_desc = swtxq->finished_idx - wptr - 1;
++
++ if (free_desc < snd_pages)
++ {
++// spin_unlock(&tp->tx_mutex);
++ isPtr->tx_dropped++;
++// printk("GMAC %d No available descriptor!\n", tp->port_id);
++ netif_stop_queue(dev);
++ return 1;
++ }
++#else
++ toe_gmac_tx_complete(tp, tx_qid, dev, 0);
++
++ if (wptr >= swtxq->finished_idx)
++ free_desc = swtxq->total_desc_num - wptr - 1 + swtxq->finished_idx;
++ else
++ free_desc = swtxq->finished_idx - wptr - 1;
++ if (free_desc < snd_pages)
++ {
++// spin_unlock(&tp->tx_mutex);
++ isPtr->tx_dropped++;
++// printk("GMAC %d No available descriptor!\n", tp->port_id);
++ netif_stop_queue(dev);
++ return 1;
++ }
++
++#if 0
++ printk("1: free_desc=%d, wptr=%d, finished_idx=%d\n", free_desc, wptr, swtxq->finished_idx);
++ if ((free_desc < (snd_pages << 2)) ||
++ (free_desc < (swtxq->total_desc_num >> 2)))
++ {
++ printk("2: free_desc = %d\n", free_desc);
++ toe_gmac_tx_complete(tp, tx_qid, dev, 0);
++ rwptr.bits32 = readl(swtxq->rwptr_reg);
++ wptr = rwptr.bits.wptr;
++ if (wptr>= swtxq->finished_idx)
++ free_desc = swtxq->total_desc_num - wptr -1 + swtxq->finished_idx;
++ else
++ free_desc = swtxq->finished_idx - wptr - 1;
++ }
++#endif
++#endif
++
++#ifdef L2_jumbo_frame
++// data_len = skb->len - 14 - ip_hdr->ihl *4 - tcp_hdr_len;
++// if ((skb->nh.iph->protocol == __constant_htons(ETH_P_IP)) && ((skb->nh.iph->protocol & 0x00ff) == IPPROTO_TCP))
++// if (skb->nh.iph->protocol == 0x006 && (skb->nh.iph->protocol == __constant_htons(ETH_P_IP)))
++ if (((skb->nh.iph->protocol & 0x00ff) == IPPROTO_TCP))
++ {
++ ip_hdr = (struct iphdr*)(skb->nh.iph);
++ tcp_hdr = (struct tcphdr*)(skb->h.th);
++ tcp_hdr_len = TCPHDRLEN(tcp_hdr) * 4;
++ tcp_hdr_len = TCPHDRLEN(tcp_hdr) * 4;
++
++ if ((skb->h.th->syn) && (tcp_hdr_len > 20))
++ {
++ ptr = (unsigned char *)(tcp_hdr+1);
++ if ((ptr[0] == 0x02) && (ptr[1] == 0x04) && (ptr[2] == 0x07) && (ptr[3] == 0xba)) // 0x07 aa=2016-54=1962 ,0x07ba=2032-54=1978
++ {
++ ptr[2]=0x20; //23
++ ptr[3]=0x00; //00
++ printk("-----> Change MSS to 8K \n" );
++ }
++ }
++ }
++// if ((ip_hdr->protocol & 0x00ff) != IPPROTO_TCP)
++// if ((tcp_hdr_len > 20) && (skb->h.th->syn))
++#endif
++
++
++#if 0
++ if (snd_pages > 1)
++ printk("-----> snd_pages=%d\n", snd_pages);
++ if (total_len > 1514)
++ {
++ printk("-----> total_len=%d\n", total_len);
++ }
++#endif
++
++ while (snd_pages)
++ {
++ char *pkt_datap;
++
++ curr_desc = (GMAC_TXDESC_T *)swtxq->desc_base + wptr;
++// consistent_sync((void *)curr_desc, sizeof(GMAC_TXDESC_T), PCI_DMA_FROMDEVICE);
++#if 0
++//#if (GMAC_DEBUG==1)
++ // if curr_desc->word2.buf_adr !=0 means that the ISR does NOT handle it
++ // if (curr_desc->word2.buf_adr)
++ if (swtxq->tx_skb[wptr])
++ {
++ printk("Error! Stop due to TX descriptor's buffer is not freed!\n");
++ while(1);
++ dev_kfree_skb(swtxq->tx_skb[wptr]);
++ swtxq->tx_skb[wptr] = NULL;
++ }
++#endif
++
++ if (frag_id == 0)
++ {
++#if 0
++ int i;
++ pkt_datap = skb->data;
++ len = total_len;
++ for (i=0; i<skb_shinfo(skb)->nr_frags; i++)
++ {
++ skb_frag_t* frag = &skb_shinfo(skb)->frags[i];
++ len -= frag->size;
++ }
++#else
++ pkt_datap = skb->data;
++ len = total_len - skb->data_len;
++#endif
++ }
++ else
++ {
++ skb_frag_t* frag = &skb_shinfo(skb)->frags[frag_id-1];
++ pkt_datap = page_address(frag->page) + frag->page_offset;
++ len = frag->size;
++ if (len > total_len)
++ {
++ printk("===> Fatal Error! Send Frag size %d > Total Size %d!!!!!\n",
++ len, total_len);
++ }
++ }
++
++ /* set TX descriptor */
++ /* copy packet to descriptor buffer address */
++ // curr_desc->word0.bits32 = len; /* total frame byte count */
++ word0 = len;
++#ifdef L2_jumbo_frame
++ word3 = (dev->mtu+14) | EOFIE_BIT; //2016 ,2032
++#else
++ word3 = 1514 | EOFIE_BIT;
++#endif
++
++#ifdef DO_HW_CHKSUM
++#ifdef L2_jumbo_frame
++ if (total_len >= (dev->mtu+14) && (skb->nh.iph->protocol == 0x011) && skb->nh.iph && (skb->nh.iph->frag_off & __constant_htons(0x3fff)))
++#else
++ if (total_len <= 1514 && ip_hdr(skb) && (ip_hdr(skb)->frag_off & __constant_htons(0x3fff)))
++#endif
++ word1 = total_len |
++ TSS_IP_CHKSUM_BIT |
++ TSS_IPV6_ENABLE_BIT |
++ TSS_MTU_ENABLE_BIT;
++ else
++ word1 = total_len |
++ TSS_UDP_CHKSUM_BIT |
++ TSS_TCP_CHKSUM_BIT |
++ TSS_IP_CHKSUM_BIT |
++ TSS_IPV6_ENABLE_BIT |
++ TSS_MTU_ENABLE_BIT;
++#else
++ word1 = total_len | TSS_MTU_ENABLE_BIT;
++#endif
++ word2 = (unsigned long)__pa(pkt_datap);
++
++ if (frag_id == 0)
++ {
++ word3 |= SOF_BIT; // SOF
++ }
++
++ if (snd_pages == 1)
++ {
++ word3 |= EOF_BIT; // EOF
++ swtxq->tx_skb[wptr] = skb;
++#ifdef CONFIG_SL351x_NAT
++ if (nat_cfg.enabled && sl351x_nat_output(skb, tp->port_id))
++ word1 |= TSS_IP_FIXED_LEN_BIT;
++#endif
++ }
++ else
++ swtxq->tx_skb[wptr] = NULL;
++ // word1 |= TSS_IP_FIXED_LEN_BIT;
++#if 1
++#ifdef CONFIG_SL351x_RXTOE
++ // check if this frame has the mission to enable toe hash entry..
++ // if rx_max_pktsize ==0, do not enable RXTOE
++ if (TCP_SKB_CB(skb)->connection && storlink_ctl.rx_max_pktsize) {
++ set_toeq_hdr(TCP_SKB_CB(skb)->connection, &toe_private_data, dev);
++ }
++#endif
++#endif
++#ifdef _DUMP_TX_TCP_CONTENT
++ if (len < 16 && frag_id && skb->h.th && (skb->h.th->source == __constant_htons(445) || skb->h.th->source == __constant_htons(139)))
++ {
++ int a;
++ char *datap;
++ printk("Tx Desc 0x%x Frag %d Len %d [IP-ID 0x%x] 0x%08x: ", (u32)curr_desc, frag_id, len, htons(skb->nh.iph->id), (u32)pkt_datap);
++ datap = (char *)pkt_datap;
++ for (a=0; a<8 && a<len; a++, datap++)
++ {
++ printk("0x%02x ", *datap);
++ }
++ printk("\n");
++ }
++#endif
++
++#ifdef GMAC_LEN_1_2_ISSUE
++ if ((total_pages!=snd_pages) && (len == 1 || len == 2 ) && ((u32)pkt_datap & 0x03))
++ {
++ memcpy((void *)&_debug_prefetch_buf[_debug_prefetch_cnt][0], pkt_datap, len);
++ pkt_datap = (char *)&_debug_prefetch_buf[_debug_prefetch_cnt][0];
++ word2 = (unsigned long)__pa(pkt_datap);
++ _debug_prefetch_cnt++;
++ if (_debug_prefetch_cnt >= _DEBUG_PREFETCH_NUM)
++ _debug_prefetch_cnt = 0;
++ }
++#endif
++
++ consistent_sync((void *)pkt_datap, len, PCI_DMA_TODEVICE);
++ wmb();
++ curr_desc->word0.bits32 = word0;
++ curr_desc->word1.bits32 = word1;
++ curr_desc->word2.bits32 = word2;
++ curr_desc->word3.bits32 = word3;
++ swtxq->curr_tx_desc = (GMAC_TXDESC_T *)curr_desc;
++// consistent_sync((void *)curr_desc, sizeof(GMAC_TXDESC_T), PCI_DMA_TODEVICE);
++#ifdef _DUMP_TX_TCP_CONTENT
++ if (len < 16 && frag_id && skb->h.th && (skb->h.th->source == __constant_htons(445) || skb->h.th->source == __constant_htons(139)))
++ {
++ int a;
++ char *datap;
++ printk("\t 0x%08x: ", (u32)pkt_datap);
++ datap = (char *)pkt_datap;
++ for (a=0; a<8 && a<len; a++, datap++)
++ {
++ printk("0x%02x ", *datap);
++ }
++ printk("\n");
++ }
++#endif
++ free_desc--;
++ wmb();
++ wptr = RWPTR_ADVANCE_ONE(wptr, swtxq->total_desc_num);
++ frag_id++;
++ snd_pages--;
++ }
++
++ swtxq->total_sent++;
++ SET_WPTR(swtxq->rwptr_reg, wptr);
++ dev->trans_start = jiffies;
++
++
++ // printk("MAC %d Qid %d rwptr = 0x%x, curr_desc=0x%x\n", skb->tx_port_id, tx_qid, rwptr.bits32, curr_desc);
++//#ifdef GMAX_TX_INTR_DISABLED
++// toe_gmac_tx_complete(tp, tx_qid, dev, 0);
++//#endif
++ return (0);
++}
++
++/*----------------------------------------------------------------------
++* gmac_set_mac_address
++*----------------------------------------------------------------------*/
++
++static int gmac_set_mac_address(struct net_device *dev, void *addr)
++{
++ GMAC_INFO_T *tp= dev->priv;
++ struct sockaddr *sock;
++ unsigned int reg_val;
++ unsigned int i;
++
++ sock = (struct sockaddr *) addr;
++ for (i = 0; i < 6; i++)
++ {
++ dev->dev_addr[i] = sock->sa_data[i];
++ }
++
++ reg_val = dev->dev_addr[0] + (dev->dev_addr[1]<<8) + (dev->dev_addr[2]<<16) + (dev->dev_addr[3]<<24);
++ gmac_write_reg(tp->base_addr,GMAC_STA_ADD0,reg_val,0xffffffff);
++ reg_val = dev->dev_addr[4] + (dev->dev_addr[5]<<8);
++ gmac_write_reg(tp->base_addr,GMAC_STA_ADD1,reg_val,0x0000ffff);
++ memcpy(&eth_mac[tp->port_id][0],&dev->dev_addr[0],6);
++
++ printk("Storlink %s address = ",dev->name);
++ printk("%02x",dev->dev_addr[0]);
++ printk("%02x",dev->dev_addr[1]);
++ printk("%02x",dev->dev_addr[2]);
++ printk("%02x",dev->dev_addr[3]);
++ printk("%02x",dev->dev_addr[4]);
++ printk("%02x\n",dev->dev_addr[5]);
++
++ return (0);
++}
++
++/*----------------------------------------------------------------------
++* gmac_get_mac_address
++* get mac address from FLASH
++*----------------------------------------------------------------------*/
++static void gmac_get_mac_address(void)
++{
++#ifdef CONFIG_MTD
++ extern int get_vlaninfo(vlaninfo* vlan);
++ static vlaninfo vlan[2];
++
++ if (get_vlaninfo(&vlan[0]))
++ {
++ memcpy((void *)&eth_mac[0][0],vlan[0].mac,6);
++ // VLAN_conf[0].vid = vlan[0].vlanid;
++ // VLAN_conf[0].portmap = vlan[0].vlanmap;
++ memcpy((void *)&eth_mac[1][0],vlan[1].mac,6);
++ // VLAN_conf[1].vid = vlan[1].vlanid;
++ // VLAN_conf[1].portmap = vlan[1].vlanmap;
++ }
++#else
++ unsigned int reg_val;
++
++ reg_val = readl(IO_ADDRESS(TOE_GMAC0_BASE)+0xac);
++ eth_mac[0][4] = (reg_val & 0xff00) >> 8;
++ eth_mac[0][5] = reg_val & 0x00ff;
++ reg_val = readl(IO_ADDRESS(SL2312_SECURITY_BASE)+0xac);
++ eth_mac[1][4] = (reg_val & 0xff00) >> 8;
++ eth_mac[1][5] = reg_val & 0x00ff;
++#endif
++ return;
++}
++
++
++/*----------------------------------------------------------------------
++* mac_stop_txdma
++*----------------------------------------------------------------------*/
++void mac_stop_txdma(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ GMAC_DMA_CTRL_T dma_ctrl, dma_ctrl_mask;
++ GMAC_TXDMA_FIRST_DESC_T txdma_busy;
++
++ // wait idle
++ do
++ {
++ txdma_busy.bits32 = gmac_read_reg(tp->dma_base_addr, GMAC_DMA_TX_FIRST_DESC_REG);
++ } while (txdma_busy.bits.td_busy);
++
++ /* program dma control register */
++ dma_ctrl.bits32 = 0;
++ dma_ctrl.bits.rd_enable = 0;
++ dma_ctrl.bits.td_enable = 0;
++
++ dma_ctrl_mask.bits32 = 0;
++ dma_ctrl_mask.bits.rd_enable = 1;
++ dma_ctrl_mask.bits.td_enable = 1;
++
++ gmac_write_reg(tp->dma_base_addr, GMAC_DMA_CTRL_REG, dma_ctrl.bits32, dma_ctrl_mask.bits32);
++}
++
++/*----------------------------------------------------------------------
++* mac_start_txdma
++*----------------------------------------------------------------------*/
++void mac_start_txdma(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ GMAC_DMA_CTRL_T dma_ctrl, dma_ctrl_mask;
++
++ /* program dma control register */
++ dma_ctrl.bits32 = 0;
++ dma_ctrl.bits.rd_enable = 1;
++ dma_ctrl.bits.td_enable = 1;
++
++ dma_ctrl_mask.bits32 = 0;
++ dma_ctrl_mask.bits.rd_enable = 1;
++ dma_ctrl_mask.bits.td_enable = 1;
++
++ gmac_write_reg(tp->dma_base_addr, GMAC_DMA_CTRL_REG, dma_ctrl.bits32, dma_ctrl_mask.bits32);
++}
++
++
++/*----------------------------------------------------------------------
++* gmac_get_stats
++*----------------------------------------------------------------------*/
++
++struct net_device_stats * gmac_get_stats(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ // unsigned int flags;
++ unsigned int pkt_drop;
++ unsigned int pkt_error;
++
++ if (netif_running(dev))
++ {
++ /* read H/W counter */
++ // spin_lock_irqsave(&tp->lock,flags);
++ pkt_drop = gmac_read_reg(tp->base_addr,GMAC_IN_DISCARDS);
++ pkt_error = gmac_read_reg(tp->base_addr,GMAC_IN_ERRORS);
++ tp->ifStatics.rx_dropped = tp->ifStatics.rx_dropped + pkt_drop;
++ tp->ifStatics.rx_errors = tp->ifStatics.rx_errors + pkt_error;
++ // spin_unlock_irqrestore(&tp->lock,flags);
++ }
++ return &tp->ifStatics;
++}
++
++
++
++/*----------------------------------------------------------------------
++* mac_get_sw_tx_weight
++*----------------------------------------------------------------------*/
++void mac_get_sw_tx_weight(struct net_device *dev, char *weight)
++{
++ GMAC_TX_WCR1_T sw_weigh;
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++
++ sw_weigh.bits32 = gmac_read_reg(tp->dma_base_addr, GMAC_TX_WEIGHTING_CTRL_1_REG);
++
++ weight[0] = sw_weigh.bits.sw_tq0;
++ weight[1] = sw_weigh.bits.sw_tq1;
++ weight[2] = sw_weigh.bits.sw_tq2;
++ weight[3] = sw_weigh.bits.sw_tq3;
++ weight[4] = sw_weigh.bits.sw_tq4;
++ weight[5] = sw_weigh.bits.sw_tq5;
++}
++
++/*----------------------------------------------------------------------
++* mac_set_sw_tx_weight
++*----------------------------------------------------------------------*/
++void mac_set_sw_tx_weight(struct net_device *dev, char *weight)
++{
++ GMAC_TX_WCR1_T sw_weigh;
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++
++ sw_weigh.bits32 = 0;
++ sw_weigh.bits.sw_tq0 = weight[0];
++ sw_weigh.bits.sw_tq1 = weight[1];
++ sw_weigh.bits.sw_tq2 = weight[2];
++ sw_weigh.bits.sw_tq3 = weight[3];
++ sw_weigh.bits.sw_tq4 = weight[4];
++ sw_weigh.bits.sw_tq5 = weight[5];
++
++ gmac_write_reg(tp->dma_base_addr, GMAC_TX_WEIGHTING_CTRL_1_REG, sw_weigh.bits32, 0xffffffff);
++}
++
++/*----------------------------------------------------------------------
++* mac_get_hw_tx_weight
++*----------------------------------------------------------------------*/
++void mac_get_hw_tx_weight(struct net_device *dev, char *weight)
++{
++ GMAC_TX_WCR0_T hw_weigh;
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++
++ hw_weigh.bits32 = gmac_read_reg(tp->dma_base_addr, GMAC_TX_WEIGHTING_CTRL_0_REG);
++
++ weight[0] = hw_weigh.bits.hw_tq0;
++ weight[1] = hw_weigh.bits.hw_tq1;
++ weight[2] = hw_weigh.bits.hw_tq2;
++ weight[3] = hw_weigh.bits.hw_tq3;
++}
++
++/*----------------------------------------------------------------------
++* mac_set_hw_tx_weight
++*----------------------------------------------------------------------*/
++void mac_set_hw_tx_weight(struct net_device *dev, char *weight)
++{
++ GMAC_TX_WCR0_T hw_weigh;
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++
++ hw_weigh.bits32 = 0;
++ hw_weigh.bits.hw_tq0 = weight[0];
++ hw_weigh.bits.hw_tq1 = weight[1];
++ hw_weigh.bits.hw_tq2 = weight[2];
++ hw_weigh.bits.hw_tq3 = weight[3];
++
++ gmac_write_reg(tp->dma_base_addr, GMAC_TX_WEIGHTING_CTRL_0_REG, hw_weigh.bits32, 0xffffffff);
++}
++
++/*----------------------------------------------------------------------
++* mac_start_tx_dma
++*----------------------------------------------------------------------*/
++int mac_start_tx_dma(int mac)
++{
++ GMAC_DMA_CTRL_T dma_ctrl, dma_ctrl_mask;
++
++ dma_ctrl.bits32 = 0;
++ dma_ctrl.bits.td_enable = 1;
++
++ dma_ctrl_mask.bits32 = 0;
++ dma_ctrl_mask.bits.td_enable = 1;
++
++ if (mac == 0)
++ gmac_write_reg(TOE_GMAC0_DMA_BASE, GMAC_DMA_CTRL_REG, dma_ctrl.bits32, dma_ctrl_mask.bits32);
++ else
++ gmac_write_reg(TOE_GMAC1_DMA_BASE, GMAC_DMA_CTRL_REG, dma_ctrl.bits32, dma_ctrl_mask.bits32);
++ return 1;
++}
++
++/*----------------------------------------------------------------------
++* mac_stop_tx_dma
++*----------------------------------------------------------------------*/
++int mac_stop_tx_dma(int mac)
++{
++ GMAC_DMA_CTRL_T dma_ctrl, dma_ctrl_mask;
++
++ dma_ctrl.bits32 = 0;
++ dma_ctrl.bits.td_enable = 0;
++
++ dma_ctrl_mask.bits32 = 0;
++ dma_ctrl_mask.bits.td_enable = 1;
++
++ if (mac == 0)
++ gmac_write_reg(TOE_GMAC0_DMA_BASE, GMAC_DMA_CTRL_REG, dma_ctrl.bits32, dma_ctrl_mask.bits32);
++ else
++ gmac_write_reg(TOE_GMAC1_DMA_BASE, GMAC_DMA_CTRL_REG, dma_ctrl.bits32, dma_ctrl_mask.bits32);
++ return 1;
++}
++
++/*----------------------------------------------------------------------
++* mac_read_reg(int mac, unsigned int offset)
++*----------------------------------------------------------------------*/
++unsigned int mac_read_reg(int mac, unsigned int offset)
++{
++ switch (mac)
++ {
++ case 0:
++ return gmac_read_reg(TOE_GMAC0_BASE, offset);
++ case 1:
++ return gmac_read_reg(TOE_GMAC1_BASE, offset);
++ default:
++ return 0;
++ }
++}
++
++/*----------------------------------------------------------------------
++* mac_write_reg
++*----------------------------------------------------------------------*/
++void mac_write_reg(int mac, unsigned int offset, unsigned data)
++{
++ switch (mac)
++ {
++ case 0:
++ gmac_write_reg(GMAC0_BASE, offset, data, 0xffffffff);
++ break;
++ case 1:
++ gmac_write_reg(GMAC1_BASE, offset, data, 0xffffffff);
++ break;
++ }
++}
++
++/*----------------------------------------------------------------------
++* mac_read_dma_reg(int mac, unsigned int offset)
++*----------------------------------------------------------------------*/
++u32 mac_read_dma_reg(int mac, unsigned int offset)
++{
++ switch (mac)
++ {
++ case 0:
++ return gmac_read_reg(TOE_GMAC0_DMA_BASE, offset);
++ case 1:
++ return gmac_read_reg(TOE_GMAC1_DMA_BASE, offset);
++ default:
++ return 0;
++ }
++}
++
++/*----------------------------------------------------------------------
++* mac_write_dma_reg
++*----------------------------------------------------------------------*/
++void mac_write_dma_reg(int mac, unsigned int offset, u32 data)
++{
++ switch (mac)
++ {
++ case 0:
++ gmac_write_reg(TOE_GMAC0_DMA_BASE, offset, data, 0xffffffff);
++ break;
++ case 1:
++ gmac_write_reg(TOE_GMAC1_DMA_BASE, offset, data, 0xffffffff);
++ break;
++ }
++}
++
++/*----------------------------------------------------------------------
++* ether_crc
++*----------------------------------------------------------------------*/
++static unsigned const ethernet_polynomial = 0x04c11db7U;
++static unsigned int ether_crc (int length, unsigned char *data)
++{
++ int crc = -1;
++ unsigned int i;
++ unsigned int crc_val=0;
++
++ while (--length >= 0) {
++ unsigned char current_octet = *data++;
++ int bit;
++ for (bit = 0; bit < 8; bit++, current_octet >>= 1)
++ crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ?
++ ethernet_polynomial : 0);
++ }
++ crc = ~crc;
++ for (i=0;i<32;i++)
++ {
++ crc_val = crc_val + (((crc << i) & 0x80000000) >> (31-i));
++ }
++ return crc_val;
++}
++
++
++
++/*----------------------------------------------------------------------
++* mac_set_rx_mode
++*----------------------------------------------------------------------*/
++void mac_set_rx_mode(int pid, unsigned int data)
++{
++ unsigned int base;
++
++ base = (pid == 0) ? GMAC0_BASE : GMAC1_BASE;
++
++ gmac_write_reg(base, GMAC_RX_FLTR, data, 0x0000001f);
++ return;
++}
++
++
++/*----------------------------------------------------------------------
++* gmac_open
++*----------------------------------------------------------------------*/
++
++static int gmac_open (struct net_device *dev)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ int retval;
++ TOE_INFO_T *toe;
++ toe = (TOE_INFO_T *)&toe_private_data;
++
++ /* hook ISR */
++ retval = request_irq (dev->irq, toe_gmac_interrupt, IRQF_DISABLED, dev->name, dev);
++ if (retval)
++ return retval;
++
++ toe_init_gmac(dev);
++
++ if(!FLAG_SWITCH)
++ {
++ init_waitqueue_head (&tp->thr_wait);
++ init_completion(&tp->thr_exited);
++
++ tp->time_to_die = 0;
++ tp->thr_pid = kernel_thread (gmac_phy_thread, dev, CLONE_FS | CLONE_FILES);
++ if (tp->thr_pid < 0)
++ {
++ printk (KERN_WARNING "%s: unable to start kernel thread\n",dev->name);
++ }
++ }
++
++ tp->operation = 1;
++
++ netif_start_queue (dev);
++
++ return (0);
++}
++
++/*----------------------------------------------------------------------
++* gmac_close
++*----------------------------------------------------------------------*/
++static int gmac_close(struct net_device *dev)
++{
++ TOE_INFO_T *toe;
++// GMAC_RXDESC_T *sw_desc_ptr,*desc_ptr;
++// unsigned int buf_ptr;
++ GMAC_INFO_T *tp = dev->priv;
++ unsigned int ret;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++
++ tp->operation = 0;
++
++ netif_stop_queue(dev);
++ mdelay(20);
++
++ /* stop tx/rx packet */
++ toe_gmac_disable_tx_rx(dev);
++ mdelay(20);
++
++ /* stop the chip's Tx and Rx DMA processes */
++ toe_gmac_hw_stop(dev);
++
++ toe_gmac_disable_interrupt(tp->irq);
++
++ /* disable interrupts by clearing the interrupt mask */
++ synchronize_irq();
++ free_irq(dev->irq,dev);
++
++// DMA_MFREE(sw_desc_ptr, (TOE_SW_FREEQ_DESC_NUM * sizeof(GMAC_RXDESC_T),(dma_addr_t *)&toe->sw_freeq_desc_base_dma);
++// DMA_MFREE(desc_ptr, TOE_HW_FREEQ_DESC_NUM * sizeof(GMAC_RXDESC_T),(dma_addr_t *)&toe->hw_freeq_desc_base_dma);
++// DMA_MFREE(buf_ptr, TOE_HW_FREEQ_DESC_NUM) * HW_RX_BUF_SIZE),(dma_addr_t *)&toe->hwfq_buf_base_dma);
++// DMA_MFREE(toe->gmac[0].swtxq_desc_base , TOE_GMAC0_SWTXQ_DESC_NUM * TOE_SW_TXQ_NUM * sizeof(GMAC_TXDESC_T),(dma_addr_t *)&toe->gmac[0].swtxq_desc_base_dma);
++// DMA_MFREE(toe->gmac[1].swtxq_desc_base , TOE_GMAC0_SWTXQ_DESC_NUM * TOE_SW_TXQ_NUM * sizeof(GMAC_TXDESC_T),(dma_addr_t *)&toe->gmac[1].swtxq_desc_base_dma);
++// DMA_MFREE(toe->gmac[0].hwtxq_desc_base_dma , TOE_GMAC0_HWTXQ_DESC_NUM * TOE_HW_TXQ_NUM * sizeof(GMAC_TXDESC_T),(dma_addr_t *)&toe->gmac[0].hwtxq_desc_base_dma);
++// DMA_MFREE(toe->gmac[1].hwtxq_desc_base_dma , TOE_GMAC0_SWTXQ_DESC_NUM * TOE_HW_TXQ_NUM * sizeof(GMAC_TXDESC_T),(dma_addr_t *)&toe->gmac[1].hwtxq_desc_base_dma);
++// DMA_MFREE(toe->gmac[0].default_desc_base_dma ,TOE_DEFAULT_Q0_DESC_NUM * sizeof(GMAC_TXDESC_T),(dma_addr_t *)&toe->gmac[0].default_desc_base_dma);
++// DMA_MFREE(toe->gmac[1].default_desc_base_dma , TOE_DEFAULT_Q0_DESC_NUM * sizeof(GMAC_TXDESC_T),(dma_addr_t *)&toe->gmac[1].default_desc_base_dma);
++// DMA_MFREE(toe->intr_desc_base_dma , TOE_INTR_QUEUE_NUM * TOE_INTR_DESC_NUM * sizeof(GMAC_RXDESC_T),(dma_addr_t *)&toe->intr_desc_base_dma);
++// DMA_MFREE(toe->intr_buf_base_dma , TOE_INTR_DESC_NUM * sizeof(TOE_QHDR_T),(dma_addr_t *)&toe->intr_buf_base_dma);
++
++ if(!FLAG_SWITCH)
++ {
++ if (tp->thr_pid >= 0)
++ {
++ tp->time_to_die = 1;
++ wmb();
++ ret = kill_proc (tp->thr_pid, SIGTERM, 1);
++ if (ret)
++ {
++ printk (KERN_ERR "%s: unable to signal thread\n", dev->name);
++ return ret;
++ }
++// wait_for_completion (&tp->thr_exited);
++ }
++ }
++
++ return (0);
++}
++
++/*----------------------------------------------------------------------
++* toe_gmac_fill_free_q
++* allocate buffers for free queue.
++*----------------------------------------------------------------------*/
++static inline void toe_gmac_fill_free_q(void)
++{
++ struct sk_buff *skb;
++ volatile DMA_RWPTR_T fq_rwptr;
++ volatile GMAC_RXDESC_T *fq_desc;
++ unsigned long flags;
++ // unsigned short max_cnt=TOE_SW_FREEQ_DESC_NUM>>1;
++
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ spin_lock_irqsave(&gmac_fq_lock, flags);
++ //while ((max_cnt--) && (unsigned short)RWPTR_ADVANCE_ONE(fq_rwptr.bits.wptr,
++ // TOE_SW_FREEQ_DESC_NUM) != fq_rwptr.bits.rptr) {
++ while ((unsigned short)RWPTR_ADVANCE_ONE(fq_rwptr.bits.wptr,
++ TOE_SW_FREEQ_DESC_NUM) != fq_rwptr.bits.rptr) {
++ if ((skb = dev_alloc_skb(SW_RX_BUF_SIZE)) == NULL) {
++ printk("%s::skb allocation fail!\n", __func__);
++ //while(1);
++ break;
++ }
++ REG32(skb->data) = (unsigned int)skb;
++ skb_reserve(skb, SKB_RESERVE_BYTES);
++ // fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ fq_rwptr.bits.wptr = RWPTR_ADVANCE_ONE(fq_rwptr.bits.wptr,
++ TOE_SW_FREEQ_DESC_NUM);
++ fq_desc = (GMAC_RXDESC_T*)toe_private_data.swfq_desc_base+fq_rwptr.bits.wptr;
++ fq_desc->word2.buf_adr = (unsigned int)__pa(skb->data);
++ SET_WPTR(TOE_GLOBAL_BASE+GLOBAL_SWFQ_RWPTR_REG, fq_rwptr.bits.wptr);
++ toe_private_data.fq_rx_rwptr.bits32 = fq_rwptr.bits32;
++ }
++ spin_unlock_irqrestore(&gmac_fq_lock, flags);
++}
++// EXPORT_SYMBOL(toe_gmac_fill_free_q);
++
++/*----------------------------------------------------------------------
++* toe_gmac_interrupt
++*----------------------------------------------------------------------*/
++static irqreturn_t toe_gmac_interrupt (int irq, void *dev_instance)
++{
++ struct net_device *dev = (struct net_device *)dev_instance;
++ TOE_INFO_T *toe;
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ unsigned int status0;
++ unsigned int status1;
++ unsigned int status2;
++ unsigned int status3;
++ unsigned int status4;
++
++// struct net_device_stats *isPtr = (struct net_device_stats *)&tp->ifStatics;
++ toe = (TOE_INFO_T *)&toe_private_data;
++// handle NAPI
++#ifdef CONFIG_SL_NAPI
++if (storlink_ctl.pauseoff == 1)
++{
++/* disable GMAC interrupt */
++ //toe_gmac_disable_interrupt(tp->irq);
++
++// isPtr->interrupts++;
++ /* read Interrupt status */
++ status0 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_0_REG);
++ status1 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_1_REG);
++ status2 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_2_REG);
++ status3 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_3_REG);
++ status4 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_4_REG);
++ // prompt warning if status bit ON but not enabled
++#if 0
++ if (status0 & ~tp->intr0_enabled)
++ printk("Intr 0 Status error. status = 0x%X, enable = 0x%X\n",
++ status0, tp->intr0_enabled);
++ if (status1 & ~tp->intr1_enabled)
++ printk("Intr 1 Status error. status = 0x%X, enable = 0x%X\n",
++ status1, tp->intr1_enabled);
++ if (status2 & ~tp->intr2_enabled)
++ printk("Intr 2 Status error. status = 0x%X, enable = 0x%X\n",
++ status2, tp->intr2_enabled);
++ if (status3 & ~tp->intr3_enabled)
++ printk("Intr 3 Status error. status = 0x%X, enable = 0x%X\n",
++ status3, tp->intr3_enabled);
++ if (status4 & ~tp->intr4_enabled)
++ printk("Intr 4 Status error. status = 0x%X, enable = 0x%X\n",
++ status4, tp->intr4_enabled);
++#endif
++
++ if (status0)
++ writel(status0 & tp->intr0_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_0_REG);
++ if (status1)
++ writel(status1 & tp->intr1_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_1_REG);
++ if (status2)
++ writel(status2 & tp->intr2_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_2_REG);
++ if (status3)
++ writel(status3 & tp->intr3_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_3_REG);
++ if (status4)
++ writel(status4 & tp->intr4_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_4_REG);
++#if 0
++ /* handle freeq interrupt first */
++ if (status4 & tp->intr4_enabled) {
++ if ((status4 & SWFQ_EMPTY_INT_BIT) && (tp->intr4_enabled & SWFQ_EMPTY_INT_BIT))
++ {
++ // unsigned long data = REG32(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ //gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_ENABLE_4_REG,
++ // tp->intr4_enabled & ~SWFQ_EMPTY_INT_BIT, SWFQ_EMPTY_INT_BIT);
++
++ if (toe->gmac[0].dev && netif_running(toe->gmac[0].dev))
++ toe_gmac_handle_default_rxq(toe->gmac[0].dev,&toe->gmac[0]);
++ if (toe->gmac[1].dev && netif_running(toe->gmac[1].dev))
++ toe_gmac_handle_default_rxq(toe->gmac[1].dev,&toe->gmac[1]);
++ printk("\nfreeq int\n");
++ toe_gmac_fill_free_q();
++ tp->sw_fq_empty_cnt++;
++
++ }
++ }
++#endif
++ // Interrupt Status 1
++ if (status1 & tp->intr1_enabled)
++ {
++ #define G1_INTR0_BITS (GMAC1_HWTQ13_EOF_INT_BIT | GMAC1_HWTQ12_EOF_INT_BIT | GMAC1_HWTQ11_EOF_INT_BIT | GMAC1_HWTQ10_EOF_INT_BIT)
++ #define G0_INTR0_BITS (GMAC0_HWTQ03_EOF_INT_BIT | GMAC0_HWTQ02_EOF_INT_BIT | GMAC0_HWTQ01_EOF_INT_BIT | GMAC0_HWTQ00_EOF_INT_BIT)
++ // Handle GMAC 0/1 HW Tx queue 0-3 EOF events
++ // Only count
++ // TOE, Classification, and default queues interrupts are handled by ISR
++ // because they should pass packets to upper layer
++ if (tp->port_id == 0)
++ {
++ if (netif_running(dev) && (status1 & G0_INTR0_BITS) && (tp->intr1_enabled & G0_INTR0_BITS))
++ {
++ if (status1 & GMAC0_HWTQ03_EOF_INT_BIT)
++ tp->hwtxq[3].eof_cnt++;
++ if (status1 & GMAC0_HWTQ02_EOF_INT_BIT)
++ tp->hwtxq[2].eof_cnt++;
++ if (status1 & GMAC0_HWTQ01_EOF_INT_BIT)
++ tp->hwtxq[1].eof_cnt++;
++ if (status1 & GMAC0_HWTQ00_EOF_INT_BIT)
++ tp->hwtxq[0].eof_cnt++;
++ }
++ if (netif_running(dev) && (status1 & DEFAULT_Q0_INT_BIT) && (tp->intr1_enabled & DEFAULT_Q0_INT_BIT))
++ {
++ if (likely(netif_rx_schedule_prep(dev)))
++ {
++ unsigned int data32;
++ // disable GMAC-0 rx interrupt
++ // class-Q & TOE-Q are implemented in future
++ //data32 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_1_REG);
++ //data32 &= ~DEFAULT_Q0_INT_BIT;
++ //writel(data32, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_1_REG);
++ //printk("\%s: DEFAULT_Q0_INT_BIT===================>>>>>>>>>>>>\n",__func__);
++ writel(0x0, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_ENABLE_1_REG);
++ //tp->total_q_cnt_napi=0;
++ //rx_time = jiffies;
++ //rx_old_bytes = isPtr->rx_bytes;
++ __netif_rx_schedule(dev);
++ }
++ }
++ }
++ else if (tp->port_id == 1)
++ {
++ if (netif_running(dev) && (status1 & G1_INTR0_BITS) && (tp->intr1_enabled & G1_INTR0_BITS))
++ {
++ if (status1 & GMAC1_HWTQ13_EOF_INT_BIT)
++ tp->hwtxq[3].eof_cnt++;
++ if (status1 & GMAC1_HWTQ12_EOF_INT_BIT)
++ tp->hwtxq[2].eof_cnt++;
++ if (status1 & GMAC1_HWTQ11_EOF_INT_BIT)
++ tp->hwtxq[1].eof_cnt++;
++ if (status1 & GMAC1_HWTQ10_EOF_INT_BIT)
++ tp->hwtxq[0].eof_cnt++;
++ }
++
++ if (netif_running(dev) && (status1 & DEFAULT_Q1_INT_BIT) && (tp->intr1_enabled & DEFAULT_Q1_INT_BIT))
++ {
++ if (likely(netif_rx_schedule_prep(dev)))
++ {
++ unsigned int data32;
++ // disable GMAC-0 rx interrupt
++ // class-Q & TOE-Q are implemented in future
++ //data32 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_1_REG);
++ //data32 &= ~DEFAULT_Q1_INT_BIT;
++ //writel(data32, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_1_REG);
++ //printk("\%s: 1111111111--->DEFAULT_Q1_INT_BIT===================>>>>>>>>>>>>\n",__func__);
++ writel(0x0, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_ENABLE_1_REG);
++ //tp->total_q_cnt_napi=0;
++ //rx_time = jiffies;
++ //rx_old_bytes = isPtr->rx_bytes;
++ __netif_rx_schedule(dev);
++ }
++ }
++ }
++ }
++
++ // Interrupt Status 0
++ if (status0 & tp->intr0_enabled)
++ {
++ #define ERR_INTR_BITS (GMAC0_TXDERR_INT_BIT | GMAC0_TXPERR_INT_BIT | \
++ GMAC1_TXDERR_INT_BIT | GMAC1_TXPERR_INT_BIT | \
++ GMAC0_RXDERR_INT_BIT | GMAC0_RXPERR_INT_BIT | \
++ GMAC1_RXDERR_INT_BIT | GMAC1_RXPERR_INT_BIT)
++
++ if (status0 & ERR_INTR_BITS)
++ {
++ if ((status0 & GMAC0_TXDERR_INT_BIT) && (tp->intr0_enabled & GMAC0_TXDERR_INT_BIT))
++ {
++ tp->txDerr_cnt[0]++;
++ printk("GMAC0 TX AHB Bus Error!\n");
++ }
++ if ((status0 & GMAC0_TXPERR_INT_BIT) && (tp->intr0_enabled & GMAC0_TXPERR_INT_BIT))
++ {
++ tp->txPerr_cnt[0]++;
++ printk("GMAC0 Tx Descriptor Protocol Error!\n");
++ }
++ if ((status0 & GMAC1_TXDERR_INT_BIT) && (tp->intr0_enabled & GMAC1_TXDERR_INT_BIT))
++ {
++ tp->txDerr_cnt[1]++;
++ printk("GMAC1 Tx AHB Bus Error!\n");
++ }
++ if ((status0 & GMAC1_TXPERR_INT_BIT) && (tp->intr0_enabled & GMAC1_TXPERR_INT_BIT))
++ {
++ tp->txPerr_cnt[1]++;
++ printk("GMAC1 Tx Descriptor Protocol Error!\n");
++ }
++
++ if ((status0 & GMAC0_RXDERR_INT_BIT) && (tp->intr0_enabled & GMAC0_RXDERR_INT_BIT))
++ {
++ tp->RxDerr_cnt[0]++;
++ printk("GMAC0 Rx AHB Bus Error!\n");
++ }
++ if ((status0 & GMAC0_RXPERR_INT_BIT) && (tp->intr0_enabled & GMAC0_RXPERR_INT_BIT))
++ {
++ tp->RxPerr_cnt[0]++;
++ printk("GMAC0 Rx Descriptor Protocol Error!\n");
++ }
++ if ((status0 & GMAC1_RXDERR_INT_BIT) && (tp->intr0_enabled & GMAC1_RXDERR_INT_BIT))
++ {
++ tp->RxDerr_cnt[1]++;
++ printk("GMAC1 Rx AHB Bus Error!\n");
++ }
++ if ((status0 & GMAC1_RXPERR_INT_BIT) && (tp->intr0_enabled & GMAC1_RXPERR_INT_BIT))
++ {
++ tp->RxPerr_cnt[1]++;
++ printk("GMAC1 Rx Descriptor Protocol Error!\n");
++ }
++ }
++
++#ifndef GMAX_TX_INTR_DISABLED
++ if (tp->port_id == 1 && netif_running(dev) &&
++ (((status0 & GMAC1_SWTQ10_FIN_INT_BIT) && (tp->intr0_enabled & GMAC1_SWTQ10_FIN_INT_BIT))
++ ||
++ ((status0 & GMAC1_SWTQ10_EOF_INT_BIT) && (tp->intr0_enabled & GMAC1_SWTQ10_EOF_INT_BIT))))
++ {
++ toe_gmac_tx_complete(&toe_private_data.gmac[1], 0, dev, 1);
++ }
++
++ if (tp->port_id == 0 && netif_running(dev) &&
++ (((status0 & GMAC0_SWTQ00_FIN_INT_BIT) && (tp->intr0_enabled & GMAC0_SWTQ00_FIN_INT_BIT))
++ ||
++ ((status0 & GMAC0_SWTQ00_EOF_INT_BIT) && (tp->intr0_enabled & GMAC0_SWTQ00_EOF_INT_BIT))))
++ {
++ toe_gmac_tx_complete(&toe_private_data.gmac[0], 0, dev, 1);
++ }
++#endif
++ }
++ // Interrupt Status 4
++ if (status4 & tp->intr4_enabled)
++ {
++ #define G1_INTR4_BITS (0xff000000)
++ #define G0_INTR4_BITS (0x00ff0000)
++
++ if (tp->port_id == 0)
++ {
++ if ((status4 & G0_INTR4_BITS) && (tp->intr4_enabled & G0_INTR4_BITS))
++ {
++ if (status4 & GMAC0_RESERVED_INT_BIT)
++ printk("GMAC0_RESERVED_INT_BIT is ON\n");
++ if (status4 & GMAC0_MIB_INT_BIT)
++ tp->mib_full_cnt++;
++ if (status4 & GMAC0_RX_PAUSE_ON_INT_BIT)
++ tp->rx_pause_on_cnt++;
++ if (status4 & GMAC0_TX_PAUSE_ON_INT_BIT)
++ tp->tx_pause_on_cnt++;
++ if (status4 & GMAC0_RX_PAUSE_OFF_INT_BIT)
++ tp->rx_pause_off_cnt++;
++ if (status4 & GMAC0_TX_PAUSE_OFF_INT_BIT)
++ tp->rx_pause_off_cnt++;
++ if (status4 & GMAC0_RX_OVERRUN_INT_BIT)
++ tp->rx_overrun_cnt++;
++ if (status4 & GMAC0_STATUS_CHANGE_INT_BIT)
++ tp->status_changed_cnt++;
++ }
++ }
++ else if (tp->port_id == 1)
++ {
++ if ((status4 & G1_INTR4_BITS) && (tp->intr4_enabled & G1_INTR4_BITS))
++ {
++ if (status4 & GMAC1_RESERVED_INT_BIT)
++ printk("GMAC1_RESERVED_INT_BIT is ON\n");
++ if (status4 & GMAC1_MIB_INT_BIT)
++ tp->mib_full_cnt++;
++ if (status4 & GMAC1_RX_PAUSE_ON_INT_BIT)
++ {
++ printk("Gmac pause on\n");
++ tp->rx_pause_on_cnt++;
++ }
++ if (status4 & GMAC1_TX_PAUSE_ON_INT_BIT)
++ {
++ printk("Gmac pause on\n");
++ tp->tx_pause_on_cnt++;
++ }
++ if (status4 & GMAC1_RX_PAUSE_OFF_INT_BIT)
++ {
++ printk("Gmac pause off\n");
++ tp->rx_pause_off_cnt++;
++ }
++ if (status4 & GMAC1_TX_PAUSE_OFF_INT_BIT)
++ {
++ printk("Gmac pause off\n");
++ tp->rx_pause_off_cnt++;
++ }
++ if (status4 & GMAC1_RX_OVERRUN_INT_BIT)
++ {
++ //printk("Gmac Rx Overrun \n");
++ tp->rx_overrun_cnt++;
++ }
++ if (status4 & GMAC1_STATUS_CHANGE_INT_BIT)
++ tp->status_changed_cnt++;
++ }
++ }
++ }
++
++ //toe_gmac_enable_interrupt(tp->irq);
++#ifdef IxscriptMate_1518
++ if (storlink_ctl.pauseoff == 1)
++ {
++ GMAC_CONFIG0_T config0;
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ }
++#endif
++// enable_irq(gmac_irq[dev_index]);
++ //printk("gmac_interrupt complete!\n\n");
++// return IRQ_RETVAL(handled);
++ return IRQ_RETVAL(1);
++}
++else
++{
++#endif //endif NAPI
++
++
++ /* disable GMAC interrupt */
++ toe_gmac_disable_interrupt(tp->irq);
++
++// isPtr->interrupts++;
++ /* read Interrupt status */
++ status0 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_0_REG);
++ status1 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_1_REG);
++ status2 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_2_REG);
++ status3 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_3_REG);
++ status4 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_4_REG);
++ // prompt warning if status bit ON but not enabled
++#if 0
++ if (status0 & ~tp->intr0_enabled)
++ printk("Intr 0 Status error. status = 0x%X, enable = 0x%X\n",
++ status0, tp->intr0_enabled);
++ if (status1 & ~tp->intr1_enabled)
++ printk("Intr 1 Status error. status = 0x%X, enable = 0x%X\n",
++ status1, tp->intr1_enabled);
++ if (status2 & ~tp->intr2_enabled)
++ printk("Intr 2 Status error. status = 0x%X, enable = 0x%X\n",
++ status2, tp->intr2_enabled);
++ if (status3 & ~tp->intr3_enabled)
++ printk("Intr 3 Status error. status = 0x%X, enable = 0x%X\n",
++ status3, tp->intr3_enabled);
++ if (status4 & ~tp->intr4_enabled)
++ printk("Intr 4 Status error. status = 0x%X, enable = 0x%X\n",
++ status4, tp->intr4_enabled);
++#endif
++#define INTERRUPT_SELECT 1
++ if (status0)
++ writel(status0 & tp->intr0_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_0_REG);
++ if (status1)
++ writel(status1 & tp->intr1_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_1_REG);
++ if (status2)
++ writel(status2 & tp->intr2_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_2_REG);
++ if (status3)
++ writel(status3 & tp->intr3_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_3_REG);
++ if (status4)
++ writel(status4 & tp->intr4_enabled, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_STATUS_4_REG);
++
++ /* handle freeq interrupt first */
++ if (status4 & tp->intr4_enabled) {
++ if ((status4 & SWFQ_EMPTY_INT_BIT) && (tp->intr4_enabled & SWFQ_EMPTY_INT_BIT))
++ {
++ // unsigned long data = REG32(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ //gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_ENABLE_4_REG,
++ // tp->intr4_enabled & ~SWFQ_EMPTY_INT_BIT, SWFQ_EMPTY_INT_BIT);
++
++ //gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_STATUS_4_REG,
++ // SWFQ_EMPTY_INT_BIT, SWFQ_EMPTY_INT_BIT);
++ if (toe->gmac[0].dev && netif_running(toe->gmac[0].dev))
++ toe_gmac_handle_default_rxq(toe->gmac[0].dev,&toe->gmac[0]);
++ if (toe->gmac[1].dev && netif_running(toe->gmac[1].dev))
++ toe_gmac_handle_default_rxq(toe->gmac[1].dev,&toe->gmac[1]);
++ printk("\nfreeq int\n");
++ toe_gmac_fill_free_q();
++ tp->sw_fq_empty_cnt++;
++
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_STATUS_4_REG, status4,
++ SWFQ_EMPTY_INT_BIT);
++ }
++ }
++
++ // Interrupt Status 1
++ if (status1 & tp->intr1_enabled)
++ {
++ #define G1_INTR0_BITS (GMAC1_HWTQ13_EOF_INT_BIT | GMAC1_HWTQ12_EOF_INT_BIT | GMAC1_HWTQ11_EOF_INT_BIT | GMAC1_HWTQ10_EOF_INT_BIT)
++ #define G0_INTR0_BITS (GMAC0_HWTQ03_EOF_INT_BIT | GMAC0_HWTQ02_EOF_INT_BIT | GMAC0_HWTQ01_EOF_INT_BIT | GMAC0_HWTQ00_EOF_INT_BIT)
++ // Handle GMAC 0/1 HW Tx queue 0-3 EOF events
++ // Only count
++ // TOE, Classification, and default queues interrupts are handled by ISR
++ // because they should pass packets to upper layer
++ if (tp->port_id == 0)
++ {
++#ifndef INTERRUPT_SELECT
++ if (netif_running(dev) && (status1 & G0_INTR0_BITS) && (tp->intr1_enabled & G0_INTR0_BITS))
++ {
++ if (status1 & GMAC0_HWTQ03_EOF_INT_BIT)
++ tp->hwtxq[3].eof_cnt++;
++ if (status1 & GMAC0_HWTQ02_EOF_INT_BIT)
++ tp->hwtxq[2].eof_cnt++;
++ if (status1 & GMAC0_HWTQ01_EOF_INT_BIT)
++ tp->hwtxq[1].eof_cnt++;
++ if (status1 & GMAC0_HWTQ00_EOF_INT_BIT)
++ tp->hwtxq[0].eof_cnt++;
++#endif //INTERRUPT_SELECT
++#ifndef INTERRUPT_SELECT
++ }
++#endif //INTERRUPT_SELECT
++ if (netif_running(dev) && (status1 & DEFAULT_Q0_INT_BIT) && (tp->intr1_enabled & DEFAULT_Q0_INT_BIT))
++ {
++ tp->default_q_intr_cnt++;
++ toe_gmac_handle_default_rxq(dev, tp);
++ }
++#ifdef CONFIG_SL351x_RXTOE
++ if (netif_running(dev) && (status1 & TOE_IQ_ALL_BITS) &&
++ (tp->intr1_enabled & TOE_IQ_ALL_BITS)) {
++ //printk("status %x, bits %x, slct %x\n", status1, TOE_IQ_ALL_BITS, tp->intr1_selected);
++ toe_gmac_handle_toeq(dev, tp, status1);
++ //toe_gmac_handle_toeq(dev, toe, tp, status1);
++ }
++#endif
++ }
++ else if (tp->port_id == 1)
++ {
++#ifndef INTERRUPT_SELECT
++ if (netif_running(dev) && (status1 & G1_INTR0_BITS) && (tp->intr1_enabled & G1_INTR0_BITS))
++ {
++ if (status1 & GMAC1_HWTQ13_EOF_INT_BIT)
++ tp->hwtxq[3].eof_cnt++;
++ if (status1 & GMAC1_HWTQ12_EOF_INT_BIT)
++ tp->hwtxq[2].eof_cnt++;
++ if (status1 & GMAC1_HWTQ11_EOF_INT_BIT)
++ tp->hwtxq[1].eof_cnt++;
++ if (status1 & GMAC1_HWTQ10_EOF_INT_BIT)
++ tp->hwtxq[0].eof_cnt++;
++#endif //INTERRUPT_SELECT
++#ifndef INTERRUPT_SELECT
++ }
++#endif //INTERRUPT_SELECT
++ if (netif_running(dev) && (status1 & DEFAULT_Q1_INT_BIT) && (tp->intr1_enabled & DEFAULT_Q1_INT_BIT))
++ {
++ tp->default_q_intr_cnt++;
++ toe_gmac_handle_default_rxq(dev, tp);
++ }
++#ifdef CONFIG_SL351x_RXTOE
++ if (netif_running(dev) && (status1 & TOE_IQ_ALL_BITS) &&
++ (tp->intr1_enabled & TOE_IQ_ALL_BITS)) {
++ //printk("status %x, bits %x, slct %x\n", status1, TOE_IQ_ALL_BITS, tp->intr1_selected);
++ toe_gmac_handle_toeq(dev, tp, status1);
++ //toe_gmac_handle_toeq(dev, toe, tp, status1);
++ }
++#endif
++ }
++ }
++
++
++ // Interrupt Status 0
++ if (status0 & tp->intr0_enabled)
++ {
++
++ #define ERR_INTR_BITS (GMAC0_TXDERR_INT_BIT | GMAC0_TXPERR_INT_BIT | \
++ GMAC1_TXDERR_INT_BIT | GMAC1_TXPERR_INT_BIT | \
++ GMAC0_RXDERR_INT_BIT | GMAC0_RXPERR_INT_BIT | \
++ GMAC1_RXDERR_INT_BIT | GMAC1_RXPERR_INT_BIT)
++#ifndef INTERRUPT_SELECT
++ if (status0 & ERR_INTR_BITS)
++ {
++ if ((status0 & GMAC0_TXDERR_INT_BIT) && (tp->intr0_enabled & GMAC0_TXDERR_INT_BIT))
++ {
++ tp->txDerr_cnt[0]++;
++ printk("GMAC0 TX AHB Bus Error!\n");
++ }
++ if ((status0 & GMAC0_TXPERR_INT_BIT) && (tp->intr0_enabled & GMAC0_TXPERR_INT_BIT))
++ {
++ tp->txPerr_cnt[0]++;
++ printk("GMAC0 Tx Descriptor Protocol Error!\n");
++ }
++ if ((status0 & GMAC1_TXDERR_INT_BIT) && (tp->intr0_enabled & GMAC1_TXDERR_INT_BIT))
++ {
++ tp->txDerr_cnt[1]++;
++ printk("GMAC1 Tx AHB Bus Error!\n");
++ }
++ if ((status0 & GMAC1_TXPERR_INT_BIT) && (tp->intr0_enabled & GMAC1_TXPERR_INT_BIT))
++ {
++ tp->txPerr_cnt[1]++;
++ printk("GMAC1 Tx Descriptor Protocol Error!\n");
++ }
++
++ if ((status0 & GMAC0_RXDERR_INT_BIT) && (tp->intr0_enabled & GMAC0_RXDERR_INT_BIT))
++ {
++ tp->RxDerr_cnt[0]++;
++ printk("GMAC0 Rx AHB Bus Error!\n");
++ }
++ if ((status0 & GMAC0_RXPERR_INT_BIT) && (tp->intr0_enabled & GMAC0_RXPERR_INT_BIT))
++ {
++ tp->RxPerr_cnt[0]++;
++ printk("GMAC0 Rx Descriptor Protocol Error!\n");
++ }
++ if ((status0 & GMAC1_RXDERR_INT_BIT) && (tp->intr0_enabled & GMAC1_RXDERR_INT_BIT))
++ {
++ tp->RxDerr_cnt[1]++;
++ printk("GMAC1 Rx AHB Bus Error!\n");
++ }
++ if ((status0 & GMAC1_RXPERR_INT_BIT) && (tp->intr0_enabled & GMAC1_RXPERR_INT_BIT))
++ {
++ tp->RxPerr_cnt[1]++;
++ printk("GMAC1 Rx Descriptor Protocol Error!\n");
++ }
++ }
++#endif //INTERRUPT_SELECT
++#ifndef GMAX_TX_INTR_DISABLED
++ if (tp->port_id == 1 && netif_running(dev) &&
++ (((status0 & GMAC1_SWTQ10_FIN_INT_BIT) && (tp->intr0_enabled & GMAC1_SWTQ10_FIN_INT_BIT))
++ ||
++ ((status0 & GMAC1_SWTQ10_EOF_INT_BIT) && (tp->intr0_enabled & GMAC1_SWTQ10_EOF_INT_BIT))))
++ {
++ toe_gmac_tx_complete(&toe_private_data.gmac[1], 0, dev, 1);
++ }
++
++ if (tp->port_id == 0 && netif_running(dev) &&
++ (((status0 & GMAC0_SWTQ00_FIN_INT_BIT) && (tp->intr0_enabled & GMAC0_SWTQ00_FIN_INT_BIT))
++ ||
++ ((status0 & GMAC0_SWTQ00_EOF_INT_BIT) && (tp->intr0_enabled & GMAC0_SWTQ00_EOF_INT_BIT))))
++ {
++ toe_gmac_tx_complete(&toe_private_data.gmac[0], 0, dev, 1);
++ }
++#endif
++ // clear enabled status bits
++ }
++ // Interrupt Status 4
++#ifndef INTERRUPT_SELECT
++ if (status4 & tp->intr4_enabled)
++ {
++ #define G1_INTR4_BITS (0xff000000)
++ #define G0_INTR4_BITS (0x00ff0000)
++
++ if (tp->port_id == 0)
++ {
++ if ((status4 & G0_INTR4_BITS) && (tp->intr4_enabled & G0_INTR4_BITS))
++ {
++ if (status4 & GMAC0_RESERVED_INT_BIT)
++ printk("GMAC0_RESERVED_INT_BIT is ON\n");
++ if (status4 & GMAC0_MIB_INT_BIT)
++ tp->mib_full_cnt++;
++ if (status4 & GMAC0_RX_PAUSE_ON_INT_BIT)
++ tp->rx_pause_on_cnt++;
++ if (status4 & GMAC0_TX_PAUSE_ON_INT_BIT)
++ tp->tx_pause_on_cnt++;
++ if (status4 & GMAC0_RX_PAUSE_OFF_INT_BIT)
++ tp->rx_pause_off_cnt++;
++ if (status4 & GMAC0_TX_PAUSE_OFF_INT_BIT)
++ tp->rx_pause_off_cnt++;
++ if (status4 & GMAC0_RX_OVERRUN_INT_BIT)
++ tp->rx_overrun_cnt++;
++ if (status4 & GMAC0_STATUS_CHANGE_INT_BIT)
++ tp->status_changed_cnt++;
++ }
++ }
++ else if (tp->port_id == 1)
++ {
++ if ((status4 & G1_INTR4_BITS) && (tp->intr4_enabled & G1_INTR4_BITS))
++ {
++ if (status4 & GMAC1_RESERVED_INT_BIT)
++ printk("GMAC1_RESERVED_INT_BIT is ON\n");
++ if (status4 & GMAC1_MIB_INT_BIT)
++ tp->mib_full_cnt++;
++ if (status4 & GMAC1_RX_PAUSE_ON_INT_BIT)
++ {
++ //printk("Gmac pause on\n");
++ tp->rx_pause_on_cnt++;
++ }
++ if (status4 & GMAC1_TX_PAUSE_ON_INT_BIT)
++ {
++ //printk("Gmac pause on\n");
++ tp->tx_pause_on_cnt++;
++ }
++ if (status4 & GMAC1_RX_PAUSE_OFF_INT_BIT)
++ {
++ //printk("Gmac pause off\n");
++ tp->rx_pause_off_cnt++;
++ }
++ if (status4 & GMAC1_TX_PAUSE_OFF_INT_BIT)
++ {
++ //printk("Gmac pause off\n");
++ tp->rx_pause_off_cnt++;
++ }
++ if (status4 & GMAC1_RX_OVERRUN_INT_BIT)
++ {
++ //printk("Gmac Rx Overrun \n");
++ tp->rx_overrun_cnt++;
++ }
++ if (status4 & GMAC1_STATUS_CHANGE_INT_BIT)
++ tp->status_changed_cnt++;
++ }
++ }
++#if 0
++ if ((status4 & SWFQ_EMPTY_INT_BIT) && (tp->intr4_enabled & SWFQ_EMPTY_INT_BIT))
++ {
++ // unsigned long data = REG32(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++// mac_stop_rxdma(tp->sc);
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_ENABLE_4_REG,
++ tp->intr4_enabled & ~SWFQ_EMPTY_INT_BIT, SWFQ_EMPTY_INT_BIT);
++
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_STATUS_4_REG,
++ SWFQ_EMPTY_INT_BIT, SWFQ_EMPTY_INT_BIT);
++ toe_gmac_fill_free_q();
++ tp->sw_fq_empty_cnt++;
++
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_STATUS_4_REG, status4,
++ SWFQ_EMPTY_INT_BIT);
++//#if 0
++/* if (netif_running(dev))
++ toe_gmac_handle_default_rxq(dev, tp);
++ printk("SWFQ_EMPTY_INT_BIT is ON!\n"); // should not be happened */
++//#endif
++ }
++#endif
++ }
++#endif //INTERRUPT_SELECT
++ toe_gmac_enable_interrupt(tp->irq);
++//enable gmac rx function when do RFC 2544
++#ifdef IxscriptMate_1518
++ if (storlink_ctl.pauseoff == 1)
++ {
++ GMAC_CONFIG0_T config0;
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ }
++#endif
++ //printk("gmac_interrupt complete!\n\n");
++// return IRQ_RETVAL(handled);
++ return IRQ_RETVAL(1);
++#ifdef CONFIG_SL_NAPI
++}
++#endif
++}
++
++/*----------------------------------------------------------------------
++* toe_gmac_handle_default_rxq
++* (1) Get rx Buffer for default Rx queue
++* (2) notify or call upper-routine to handle it
++* (3) get a new buffer and insert it into SW free queue
++* (4) Note: The SW free queue Read-Write Pointer should be locked when accessing
++*----------------------------------------------------------------------*/
++//static inline void toe_gmac_handle_default_rxq(struct net_device *dev, GMAC_INFO_T *tp)
++static void toe_gmac_handle_default_rxq(struct net_device *dev, GMAC_INFO_T *tp)
++{
++ TOE_INFO_T *toe;
++ GMAC_RXDESC_T *curr_desc;
++ struct sk_buff *skb;
++ DMA_RWPTR_T rwptr;
++ unsigned int pkt_size;
++ int max_cnt;
++ unsigned int desc_count;
++ unsigned int good_frame, chksum_status, rx_status;
++ struct net_device_stats *isPtr = (struct net_device_stats *)&tp->ifStatics;
++
++//when do ixia RFC 2544 test and packet size is select 1518 bytes,disable gmace rx function immediately after one interrupt come in.
++#ifdef IxscriptMate_1518
++ if (storlink_ctl.pauseoff == 1)
++ {
++ GMAC_CONFIG0_T config0;
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 1;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 1;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ }
++#endif
++ rwptr.bits32 = readl(&tp->default_qhdr->word1);
++#if 0
++ if (rwptr.bits.rptr != tp->rx_rwptr.bits.rptr)
++ {
++ mac_stop_txdma((struct net_device *)tp->dev);
++ printk("Default Queue HW RD ptr (0x%x) != SW RD Ptr (0x%x)\n",
++ rwptr.bits32, tp->rx_rwptr.bits.rptr);
++ while(1);
++ }
++#endif
++ toe = (TOE_INFO_T *)&toe_private_data;
++ max_cnt = DEFAULT_RXQ_MAX_CNT;
++ while ((--max_cnt) && rwptr.bits.rptr != rwptr.bits.wptr)
++// while (rwptr.bits.rptr != rwptr.bits.wptr)
++ {
++//if packet size is not 1518 for RFC 2544,enable gmac rx function.The other packet size have RX workaround.
++#ifdef IxscriptMate_1518
++ if (storlink_ctl.pauseoff == 1)
++ {
++ if (pkt_size != 1514)
++ {
++ GMAC_CONFIG0_T config0;
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ }
++ }
++#endif
++ curr_desc = (GMAC_RXDESC_T *)tp->default_desc_base + rwptr.bits.rptr;
++// consistent_sync(curr_desc, sizeof(GMAC_RXDESC_T), PCI_DMA_FROMDEVICE);
++ tp->default_q_cnt++;
++ tp->rx_curr_desc = (unsigned int)curr_desc;
++ rx_status = curr_desc->word0.bits.status;
++ chksum_status = curr_desc->word0.bits.chksum_status;
++ tp->rx_status_cnt[rx_status]++;
++ tp->rx_chksum_cnt[chksum_status]++;
++ pkt_size = curr_desc->word1.bits.byte_count; /*total byte count in a frame*/
++ desc_count = curr_desc->word0.bits.desc_count; /* get descriptor count per frame */
++ good_frame=1;
++ if ((curr_desc->word0.bits32 & (GMAC_RXDESC_0_T_derr | GMAC_RXDESC_0_T_perr))
++ || (pkt_size < 60)
++ || (chksum_status & 0x4)
++ || rx_status)
++ {
++ good_frame = 0;
++ if (curr_desc->word0.bits32 & GMAC_RXDESC_0_T_derr)
++ printk("%s::derr (GMAC-%d)!!!\n", __func__, tp->port_id);
++ if (curr_desc->word0.bits32 & GMAC_RXDESC_0_T_perr)
++ printk("%s::perr (GMAC-%d)!!!\n", __func__, tp->port_id);
++ if (rx_status)
++ {
++ if (rx_status == 4 || rx_status == 7)
++ isPtr->rx_crc_errors++;
++// printk("%s::Status=%d (GMAC-%d)!!!\n", __func__, rx_status, tp->port_id);
++ }
++#ifdef SL351x_GMAC_WORKAROUND
++ else if (pkt_size < 60)
++ {
++ if (tp->short_frames_cnt < GMAC_SHORT_FRAME_THRESHOLD)
++ tp->short_frames_cnt++;
++ if (tp->short_frames_cnt >= GMAC_SHORT_FRAME_THRESHOLD)
++ {
++ GMAC_CONFIG0_T config0;
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 1;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 1;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ }
++ }
++#endif
++// if (chksum_status)
++// printk("%s::Checksum Status=%d (GMAC-%d)!!!\n", __func__, chksum_status, tp->port_id);
++ skb = (struct sk_buff *)(REG32(__va(curr_desc->word2.buf_adr) - SKB_RESERVE_BYTES));
++ dev_kfree_skb_irq(skb);
++ }
++ if (good_frame)
++ {
++ if (curr_desc->word0.bits.drop)
++ printk("%s::Drop (GMAC-%d)!!!\n", __func__, tp->port_id);
++// if (chksum_status)
++// printk("%s::Checksum Status=%d (GMAC-%d)!!!\n", __func__, chksum_status, tp->port_id);
++
++ /* get frame information from the first descriptor of the frame */
++#ifdef SL351x_GMAC_WORKAROUND
++ if (tp->short_frames_cnt >= GMAC_SHORT_FRAME_THRESHOLD)
++ {
++ GMAC_CONFIG0_T config0;
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ }
++ tp->short_frames_cnt = 0;
++#endif
++ isPtr->rx_packets++;
++ skb = (struct sk_buff *)(REG32(__va(curr_desc->word2.buf_adr - SKB_RESERVE_BYTES)));
++ if (!skb)
++ {
++ printk("Fatal Error!!skb==NULL\n");
++ goto next_rx;
++ }
++ tp->curr_rx_skb = skb;
++ // consistent_sync((void *)__va(curr_desc->word2.buf_adr), pkt_size, PCI_DMA_FROMDEVICE);
++
++ // curr_desc->word2.buf_adr = 0;
++
++ skb_reserve (skb, RX_INSERT_BYTES); /* 16 byte align the IP fields. */
++ skb_put(skb, pkt_size);
++ skb->dev = dev;
++ if (chksum_status == RX_CHKSUM_IP_UDP_TCP_OK)
++ {
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++#ifdef CONFIG_SL351x_NAT
++ if (nat_cfg.enabled && curr_desc->word3.bits.l3_offset && curr_desc->word3.bits.l4_offset)
++ {
++ struct iphdr *ip_hdr;
++ ip_hdr = (struct iphdr *)&(skb->data[curr_desc->word3.bits.l3_offset]);
++ sl351x_nat_input(skb,
++ tp->port_id,
++ (void *)curr_desc->word3.bits.l3_offset,
++ (void *)curr_desc->word3.bits.l4_offset);
++ }
++#endif
++ skb->protocol = eth_type_trans(skb,dev); /* set skb protocol */
++#if 0
++#ifdef CONFIG_SL351x_RXTOE
++ if (storlink_ctl.rx_max_pktsize) {
++ struct iphdr *ip_hdr;
++ struct tcphdr *tcp_hdr;
++ int ip_hdrlen;
++
++ ip_hdr = (struct iphdr*)&(skb->data[0]);
++ if ((skb->protocol == __constant_htons(ETH_P_IP)) &&
++ ((ip_hdr->protocol & 0x00ff) == IPPROTO_TCP)) {
++ ip_hdrlen = ip_hdr->ihl << 2;
++ tcp_hdr = (struct tcphdr*)&(skb->data[ip_hdrlen]);
++ if (tcp_hdr->syn) {
++ struct toe_conn* connection = init_toeq(ip_hdr->version,
++ ip_hdr, tcp_hdr, toe, &(skb->data[0]) - 14);
++ TCP_SKB_CB(skb)->connection = connection;
++ // hash_dump_entry(TCP_SKB_CB(skb)->connection->hash_entry_index);
++ // printk("%s::skb data %x, conn %x, mode %x\n",
++ // __func__, skb->data, connection, connection->mode);
++ }
++ }
++ }
++#endif
++#endif
++ }
++ else if (chksum_status == RX_CHKSUM_IP_OK_ONLY)
++ {
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++#ifdef CONFIG_SL351x_NAT
++ if (nat_cfg.enabled && curr_desc->word3.bits.l3_offset && curr_desc->word3.bits.l4_offset)
++ {
++ struct iphdr *ip_hdr;
++ //struct tcphdr *tcp_hdr;
++ ip_hdr = (struct iphdr *)&(skb->data[curr_desc->word3.bits.l3_offset]);
++ //tcp_hdr = (struct tcphdr *)&(skb->data[curr_desc->word3.bits.l4_offset]);
++ if (ip_hdr->protocol == IPPROTO_UDP)
++ {
++ sl351x_nat_input(skb,
++ tp->port_id,
++ (void *)curr_desc->word3.bits.l3_offset,
++ (void *)curr_desc->word3.bits.l4_offset);
++ }
++ else if (ip_hdr->protocol == IPPROTO_GRE)
++ {
++ sl351x_nat_input(skb,
++ tp->port_id,
++ (void *)curr_desc->word3.bits.l3_offset,
++ (void *)curr_desc->word3.bits.l4_offset);
++ }
++ }
++#endif
++ skb->protocol = eth_type_trans(skb,dev); /* set skb protocol */
++ }
++ else
++ {
++ skb->protocol = eth_type_trans(skb,dev); /* set skb protocol */
++ }
++
++ netif_rx(skb); /* socket rx */
++ dev->last_rx = jiffies;
++
++ isPtr->rx_bytes += pkt_size;
++
++ }
++
++next_rx:
++ // advance one for Rx default Q 0/1
++ rwptr.bits.rptr = RWPTR_ADVANCE_ONE(rwptr.bits.rptr, tp->default_desc_num);
++ SET_RPTR(&tp->default_qhdr->word1, rwptr.bits.rptr);
++ tp->rx_rwptr.bits32 = rwptr.bits32;
++
++ toe_gmac_fill_free_q();
++ }
++}
++
++/*----------------------------------------------------------------------
++* gmac_get_phy_vendor
++*----------------------------------------------------------------------*/
++static unsigned int gmac_get_phy_vendor(int phy_addr)
++{
++ unsigned int reg_val;
++ reg_val=(mii_read(phy_addr,0x02) << 16) + mii_read(phy_addr,0x03);
++ return reg_val;
++}
++
++/*----------------------------------------------------------------------
++* gmac_set_phy_status
++*----------------------------------------------------------------------*/
++void gmac_set_phy_status(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ GMAC_STATUS_T status;
++ unsigned int reg_val, ability,wan_port_id;
++ unsigned int i = 0;
++
++#ifdef VITESSE_G5SWITCH
++ if((tp->port_id == GMAC_PORT1)&&(Giga_switch==1)){
++#if 0
++ rcv_mask = SPI_read(2,0,0x10); // Receive mask
++ rcv_mask |= 0x4F;
++ for(i=0;i<4;i++){
++ reg_val = BIT(26)|(i<<21)|(10<<16);
++ SPI_write(3,0,1,reg_val);
++ msleep(10);
++ reg_val = SPI_read(3,0,2);
++ if(reg_val & 0x0c00){
++ printk("Port%d:Giga mode\n",i);
++ SPI_write(1,i,0x00,0x300701B1);
++ SPI_write(1,i,0x00,0x10070181);
++ switch_pre_link[i]=LINK_UP;
++ switch_pre_speed[i]=GMAC_SPEED_1000;
++ }
++ else{
++ reg_val = BIT(26)|(i<<21)|(5<<16);
++ SPI_write(3,0,1,reg_val);
++ msleep(10);
++ ability = (reg_val = SPI_read(3,0,2)&0x5e0) >>5;
++ if ((ability & 0x0C)) /* 100M full duplex */
++ {
++ SPI_write(1,i,0x00,0x30050472);
++ SPI_write(1,i,0x00,0x10050442);
++ printk("Port%d:100M\n",i);
++ switch_pre_link[i]=LINK_UP;
++ switch_pre_speed[i]=GMAC_SPEED_100;
++ }
++ else if((ability & 0x03)) /* 10M full duplex */
++ {
++ SPI_write(1,i,0x00,0x30050473);
++ SPI_write(1,i,0x00,0x10050443);
++ printk("Port%d:10M\n",i);
++ switch_pre_link[i]=LINK_UP;
++ switch_pre_speed[i]=GMAC_SPEED_10;
++ }
++ else{
++ SPI_write(1,i,0x00,BIT(16)); // disable RX
++ SPI_write(5,0,0x0E,BIT(i)); // dicard packet
++ while((SPI_read(5,0,0x0C)&BIT(i))==0) // wait to be empty
++ msleep(1);
++
++ SPI_write(1,i,0x00,0x20000030); // PORT_RST
++ switch_pre_link[i]=LINK_DOWN;
++ switch_pre_speed[i]=GMAC_SPEED_10;
++ rcv_mask &= ~BIT(i);
++ SPI_write(2,0,0x10,rcv_mask); // Disable Receive
++ }
++ }
++ }
++#endif
++ gmac_get_switch_status(dev);
++ gmac_write_reg(tp->base_addr, GMAC_STATUS, 0x7d, 0x0000007f);
++// SPI_write(2,0,0x10,rcv_mask); // Enable Receive
++ return ;
++ }
++#endif
++
++ reg_val = gmac_get_phy_vendor(tp->phy_addr);
++ printk("GMAC-%d Addr %d Vendor ID: 0x%08x\n", tp->port_id, tp->phy_addr, reg_val);
++
++ switch (tp->phy_mode)
++ {
++ case GMAC_PHY_GMII:
++ mii_write(tp->phy_addr,0x04,0x05e1); /* advertisement 100M full duplex, pause capable on */
++ #ifdef CONFIG_SL3516_ASIC
++ mii_write(tp->phy_addr,0x09,0x0300); /* advertise 1000M full/half duplex */
++ #else
++ mii_write(tp->phy_addr,0x09,0x0000); /* advertise no 1000M full/half duplex */
++ #endif
++ break;
++ case GMAC_PHY_RGMII_100:
++ mii_write(tp->phy_addr,0x04,0x05e1); /* advertisement 100M full duplex, pause capable on */
++ mii_write(tp->phy_addr,0x09,0x0000); /* advertise no 1000M */
++ break;
++ case GMAC_PHY_RGMII_1000:
++ mii_write(tp->phy_addr,0x04,0x05e1); /* advertisement 100M full duplex, pause capable on */
++ #ifdef CONFIG_SL3516_ASIC
++ mii_write(tp->phy_addr,0x09,0x0300); /* advertise 1000M full/half duplex */
++ #else
++ mii_write(tp->phy_addr,0x09,0x0000); /* advertise no 1000M full/half duplex */
++ #endif
++ break;
++ case GMAC_PHY_MII:
++ default:
++ mii_write(tp->phy_addr,0x04,0x05e1); /* advertisement 100M full duplex, pause capable on */
++ mii_write(tp->phy_addr,0x09,0x0000); /* advertise no 1000M */
++ break;
++ }
++
++ mii_write(tp->phy_addr,0x18,0x0041); // Phy active led
++ if (tp->auto_nego_cfg)
++ {
++ reg_val = 0x1200 | (1 << 15);
++ mii_write(tp->phy_addr,0x00,reg_val); /* Enable and Restart Auto-Negotiation */
++ mdelay(500);
++ reg_val &= ~(1 << 15);
++ mii_write(tp->phy_addr, 0x00, reg_val);
++ }
++ else
++ {
++ reg_val = 0;
++ reg_val |= (tp->full_duplex_cfg) ? (1 << 8) : 0;
++ reg_val |= (tp->speed_cfg == GMAC_SPEED_1000) ? (1 << 6) : 0;
++ reg_val |= (tp->speed_cfg == GMAC_SPEED_100) ? (1 << 13) : 0;
++ mii_write(tp->phy_addr, 0x00, reg_val);
++ mdelay(100);
++
++ reg_val |= (1 << 15); // Reset PHY;
++ mii_write(tp->phy_addr, 0x00, reg_val);
++ }
++
++ status.bits32 = 0;
++ /* set PHY operation mode */
++ status.bits.mii_rmii = tp->phy_mode;
++ status.bits.reserved = 1;
++ mdelay(100);
++ while (((reg_val=mii_read(tp->phy_addr,0x01)) & 0x00000004)!=0x04)
++ {
++ msleep(100);
++ i++;
++ if (i > 30)
++ break;
++ }
++ if (i>30)
++ {
++ tp->pre_phy_status = LINK_DOWN;
++ status.bits.link = LINK_DOWN;
++ // clear_bit(__LINK_STATE_START, &dev->state);
++ printk("Link Down (0x%04x) ", reg_val);
++ if(Giga_switch == 1)
++ {
++ wan_port_id = 1;
++#ifdef CONFIG_SL351x_SYSCTL
++ storlink_ctl.link[ wan_port_id] = 0;
++#endif
++ }
++ else
++ {
++#ifdef CONFIG_SL351x_SYSCTL
++ storlink_ctl.link[ tp->port_id] = 0;
++#endif
++ }
++ }
++ else
++ {
++ tp->pre_phy_status = LINK_UP;
++ status.bits.link = LINK_UP;
++ // set_bit(__LINK_STATE_START, &dev->state);
++ printk("Link Up (0x%04x) ",reg_val);
++ if(Giga_switch == 1)
++ {
++ wan_port_id = 1;
++#ifdef CONFIG_SL351x_SYSCTL
++ storlink_ctl.link[ wan_port_id] = 1;
++#endif
++ }
++ else
++ {
++#ifdef CONFIG_SL351x_SYSCTL
++ storlink_ctl.link[ tp->port_id] = 1;
++#endif
++ }
++ }
++ // value = mii_read(PHY_ADDR,0x05);
++
++ ability = (mii_read(tp->phy_addr,0x05) & 0x05E0) >> 5;
++
++ //#ifdef CONFIG_SL3516_ASIC
++ reg_val = mii_read(tp->phy_addr,10);
++ printk("MII REG 10 = 0x%x\n",reg_val);
++
++ if ((reg_val & 0x0800) == 0x0800)
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 2;
++ if (status.bits.mii_rmii == GMAC_PHY_RGMII_100)
++ status.bits.mii_rmii = GMAC_PHY_RGMII_1000;
++
++ printk(" 1000M/Full \n");
++ }
++ else if ((reg_val & 0x0400) == 0x0400)
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 2;
++ if (status.bits.mii_rmii == GMAC_PHY_RGMII_100)
++ status.bits.mii_rmii = GMAC_PHY_RGMII_1000;
++
++ printk(" 1000M/Half \n");
++ }
++ //#endif
++ else
++ {
++ #ifdef CONFIG_SL3516_ASIC
++ if (status.bits.mii_rmii == GMAC_PHY_RGMII_1000)
++ status.bits.mii_rmii = GMAC_PHY_RGMII_100;
++ #endif
++ printk("MII REG 5 (bit 5:15) = 0x%x\n", ability);
++ if ((ability & 0x08)==0x08) /* 100M full duplex */
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 1;
++ printk(" 100M/Full\n");
++
++ }
++ else if ((ability & 0x04)==0x04) /* 100M half duplex */
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 1;
++ printk(" 100M/Half\n");
++
++ }
++ else if ((ability & 0x02)==0x02) /* 10M full duplex */
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 0;
++ printk(" 10M/Full\n");
++
++ }
++ else if ((ability & 0x01)==0x01) /* 10M half duplex */
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 0;
++ printk(" 10M/Half\n");
++
++ }
++ }
++ if ((ability & 0x20)==0x20)
++ {
++ tp->flow_control_enable = 1;
++ printk("Flow Control Enable.\n");
++ }
++ else
++ {
++ tp->flow_control_enable = 0;
++ printk("Flow Control Disable.\n");
++ }
++ tp->full_duplex_status = status.bits.duplex;
++ tp->speed_status = status.bits.speed;
++ if (!tp->auto_nego_cfg)
++ {
++ status.bits.duplex = tp->full_duplex_cfg;
++ status.bits.speed = tp->speed_cfg;
++ }
++ toe_gmac_disable_tx_rx(dev);
++ mdelay(10);
++ gmac_write_reg(tp->base_addr, GMAC_STATUS, status.bits32, 0x0000007f);
++ toe_gmac_enable_tx_rx(dev);
++}
++
++/*----------------------------------------------------------------------
++* gmac_phy_thread
++*----------------------------------------------------------------------*/
++static int gmac_phy_thread (void *data)
++{
++ struct net_device *dev = data;
++ GMAC_INFO_T *tp = dev->priv;
++ unsigned long timeout;
++
++ daemonize("%s", dev->name);
++ allow_signal(SIGTERM);
++// reparent_to_init();
++// spin_lock_irq(&current->sigmask_lock);
++// sigemptyset(&current->blocked);
++// recalc_sigpending(current);
++// spin_unlock_irq(&current->sigmask_lock);
++// strncpy (current->comm, dev->name, sizeof(current->comm) - 1);
++// current->comm[sizeof(current->comm) - 1] = '\0';
++
++ while (1)
++ {
++ timeout = next_tick;
++ do
++ {
++ timeout = interruptible_sleep_on_timeout (&tp->thr_wait, timeout);
++ } while (!signal_pending (current) && (timeout > 0));
++
++ if (signal_pending (current))
++ {
++// spin_lock_irq(&current->sigmask_lock);
++ flush_signals(current);
++// spin_unlock_irq(&current->sigmask_lock);
++ }
++
++ if (tp->time_to_die)
++ break;
++
++ // printk("%s : Polling MAC %d PHY Status...\n",__func__, tp->port_id);
++ rtnl_lock ();
++ if (tp->auto_nego_cfg){
++#ifdef VITESSE_G5SWITCH
++ if((tp->port_id == GMAC_PORT1)&&(Giga_switch==1))
++ gmac_get_switch_status(dev);
++ else
++#endif
++ gmac_get_phy_status(dev); //temp remove
++ }
++ rtnl_unlock ();
++ }
++ complete_and_exit (&tp->thr_exited, 0);
++}
++
++/*----------------------------------------------------------------------
++* gmac_get_switch_status
++*----------------------------------------------------------------------*/
++#ifdef VITESSE_G5SWITCH
++void gmac_get_switch_status(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ GMAC_CONFIG0_T config0,config0_mask;
++ unsigned int switch_port_id;
++ int get_link=0;
++
++ get_link = Get_Set_port_status();
++ if(get_link){ // link
++ if(ever_dwon){
++ ever_dwon = 0;
++ toe_gmac_enable_tx_rx(dev);
++ netif_wake_queue(dev);
++ set_bit(__LINK_STATE_START, &dev->state);
++ }
++ }
++ else{ // all down
++ //printk("All link down\n");
++ ever_dwon=1;
++ netif_stop_queue(dev);
++ toe_gmac_disable_tx_rx(dev);
++ clear_bit(__LINK_STATE_START, &dev->state);
++ }
++
++ if ( tp->port_id == 1 )
++ switch_port_id = 0;
++#ifdef CONFIG_SL351x_SYSCTL
++ if (get_link)
++ {
++ storlink_ctl.link[switch_port_id] = 1;
++ }
++ else
++ {
++ storlink_ctl.link[switch_port_id] = 0;
++ }
++ if (storlink_ctl.pauseoff == 1)
++ {
++ if (tp->flow_control_enable == 1)
++ {
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.tx_fc_en = 0; /* disable tx flow control */
++ config0.bits.rx_fc_en = 0; /* disable rx flow control */
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++ printk("Disable SWITCH Flow Control...\n");
++ }
++ tp->flow_control_enable = 0;
++ }
++ else
++#endif
++ {
++ if (tp->flow_control_enable == 0)
++ {
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.tx_fc_en = 1; /* enable tx flow control */
++ config0.bits.rx_fc_en = 1; /* enable rx flow control */
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++ printk("Enable SWITCH Flow Control...\n");
++ }
++ tp->flow_control_enable = 1;
++ }
++ return ;
++
++}
++#endif
++
++/*----------------------------------------------------------------------
++* gmac_get_phy_status
++*----------------------------------------------------------------------*/
++void gmac_get_phy_status(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = dev->priv;
++ GMAC_CONFIG0_T config0,config0_mask;
++ GMAC_STATUS_T status, old_status;
++ unsigned int reg_val,ability,wan_port_id;
++
++ old_status.bits32 = status.bits32 = gmac_read_reg(tp->base_addr, GMAC_STATUS);
++
++
++ /* read PHY status register */
++ reg_val = mii_read(tp->phy_addr,0x01);
++ if ((reg_val & 0x0024) == 0x0024) /* link is established and auto_negotiate process completed */
++ {
++ ability = (mii_read(tp->phy_addr,0x05) & 0x05E0) >> 5;
++ /* read PHY Auto-Negotiation Link Partner Ability Register */
++ #ifdef CONFIG_SL3516_ASIC
++ reg_val = mii_read(tp->phy_addr,10);
++ if ((reg_val & 0x0800) == 0x0800)
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 2;
++ if (status.bits.mii_rmii == GMAC_PHY_RGMII_100)
++ status.bits.mii_rmii = GMAC_PHY_RGMII_1000;
++ }
++ else if ((reg_val & 0x0400) == 0x0400)
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 2;
++ if (status.bits.mii_rmii == GMAC_PHY_RGMII_100)
++ status.bits.mii_rmii = GMAC_PHY_RGMII_1000;
++ }
++ else
++ #endif
++ {
++ #ifdef CONFIG_SL3516_ASIC
++ if (status.bits.mii_rmii == GMAC_PHY_RGMII_1000)
++ status.bits.mii_rmii = GMAC_PHY_RGMII_100;
++ #endif
++ if ((ability & 0x08)==0x08) /* 100M full duplex */
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 1;
++ }
++ else if ((ability & 0x04)==0x04) /* 100M half duplex */
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 1;
++ }
++ else if ((ability & 0x02)==0x02) /* 10M full duplex */
++ {
++ status.bits.duplex = 1;
++ status.bits.speed = 0;
++ }
++ else if ((ability & 0x01)==0x01) /* 10M half duplex */
++ {
++ status.bits.duplex = 0;
++ status.bits.speed = 0;
++ }
++ }
++ status.bits.link = LINK_UP; /* link up */
++ if(Giga_switch==1)
++ {
++ wan_port_id = 1;
++#ifdef CONFIG_SL351x_SYSCTL
++ storlink_ctl.link[ wan_port_id] = 1;
++ }
++ else
++ {
++ storlink_ctl.link[ tp->port_id] = 1;
++#endif
++ }
++ if ((ability & 0x20)==0x20)
++ {
++ if (tp->flow_control_enable == 0)
++ {
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.tx_fc_en = 1; /* enable tx flow control */
++ config0.bits.rx_fc_en = 1; /* enable rx flow control */
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++ printk("GMAC-%d Flow Control Enable.\n", tp->port_id);
++ }
++ tp->flow_control_enable = 1;
++ }
++ else
++ {
++ if (tp->flow_control_enable == 1)
++ {
++ config0.bits32 = 0;
++ config0_mask.bits32 = 0;
++ config0.bits.tx_fc_en = 0; /* disable tx flow control */
++ config0.bits.rx_fc_en = 0; /* disable rx flow control */
++ config0_mask.bits.tx_fc_en = 1;
++ config0_mask.bits.rx_fc_en = 1;
++ gmac_write_reg(tp->base_addr, GMAC_CONFIG0,config0.bits32,config0_mask.bits32);
++ printk("GMAC-%d Flow Control Disable.\n", tp->port_id);
++ }
++ tp->flow_control_enable = 0;
++ }
++
++ if (tp->pre_phy_status == LINK_DOWN)
++ {
++ printk("GMAC-%d LINK_UP......\n",tp->port_id);
++ tp->pre_phy_status = LINK_UP;
++ }
++ }
++ else
++ {
++ status.bits.link = LINK_DOWN; /* link down */
++ if(Giga_switch == 1)
++ {
++ wan_port_id = 1;
++#ifdef CONFIG_SL351x_SYSCTL
++ storlink_ctl.link[ wan_port_id] = 0;
++ }
++ else
++ {
++ storlink_ctl.link[ tp->port_id] = 0;
++#endif
++ }
++ if (tp->pre_phy_status == LINK_UP)
++ {
++ printk("GMAC-%d LINK_Down......\n",tp->port_id);
++ tp->pre_phy_status = LINK_DOWN;
++ }
++ }
++
++ tp->full_duplex_status = status.bits.duplex;
++ tp->speed_status = status.bits.speed;
++ if (!tp->auto_nego_cfg)
++ {
++ status.bits.duplex = tp->full_duplex_cfg;
++ status.bits.speed = tp->speed_cfg;
++ }
++
++ if (old_status.bits32 != status.bits32)
++ {
++ netif_stop_queue(dev);
++ toe_gmac_disable_tx_rx(dev);
++ clear_bit(__LINK_STATE_START, &dev->state);
++ printk("GMAC-%d Change Status Bits 0x%x-->0x%x\n",tp->port_id, old_status.bits32, status.bits32);
++ mdelay(10); // let GMAC consume packet
++ gmac_write_reg(tp->base_addr, GMAC_STATUS, status.bits32, 0x0000007f);
++ if (status.bits.link == LINK_UP)
++ {
++ toe_gmac_enable_tx_rx(dev);
++ netif_wake_queue(dev);
++ set_bit(__LINK_STATE_START, &dev->state);
++ }
++ }
++}
++
++/***************************************/
++/* define GPIO module base address */
++/***************************************/
++#define GPIO_BASE_ADDR (IO_ADDRESS(SL2312_GPIO_BASE))
++#define GPIO_BASE_ADDR1 (IO_ADDRESS(SL2312_GPIO_BASE1))
++
++/* define GPIO pin for MDC/MDIO */
++#ifdef CONFIG_SL3516_ASIC
++#define H_MDC_PIN 22
++#define H_MDIO_PIN 21
++#define G_MDC_PIN 22
++#define G_MDIO_PIN 21
++#else
++#define H_MDC_PIN 3
++#define H_MDIO_PIN 2
++#define G_MDC_PIN 0
++#define G_MDIO_PIN 1
++#endif
++
++//#define GPIO_MDC 0x80000000
++//#define GPIO_MDIO 0x00400000
++
++static unsigned int GPIO_MDC = 0;
++static unsigned int GPIO_MDIO = 0;
++static unsigned int GPIO_MDC_PIN = 0;
++static unsigned int GPIO_MDIO_PIN = 0;
++
++// For PHY test definition!!
++#define LPC_EECK 0x02
++#define LPC_EDIO 0x04
++#define LPC_GPIO_SET 3
++#define LPC_BASE_ADDR IO_ADDRESS(IT8712_IO_BASE)
++#define inb_gpio(x) inb(LPC_BASE_ADDR + IT8712_GPIO_BASE + x)
++#define outb_gpio(x, y) outb(y, LPC_BASE_ADDR + IT8712_GPIO_BASE + x)
++
++enum GPIO_REG
++{
++ GPIO_DATA_OUT = 0x00,
++ GPIO_DATA_IN = 0x04,
++ GPIO_PIN_DIR = 0x08,
++ GPIO_BY_PASS = 0x0c,
++ GPIO_DATA_SET = 0x10,
++ GPIO_DATA_CLEAR = 0x14,
++};
++/***********************/
++/* MDC : GPIO[31] */
++/* MDIO: GPIO[22] */
++/***********************/
++
++/***************************************************
++* All the commands should have the frame structure:
++*<PRE><ST><OP><PHYAD><REGAD><TA><DATA><IDLE>
++****************************************************/
++
++/*****************************************************************
++* Inject a bit to NWay register through CSR9_MDC,MDIO
++*******************************************************************/
++void mii_serial_write(char bit_MDO) // write data into mii PHY
++{
++#ifdef CONFIG_SL2312_LPC_IT8712
++ unsigned char iomode,status;
++
++ iomode = LPCGetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET);
++ iomode |= (LPC_EECK|LPC_EDIO) ; // Set EECK,EDIO,EECS output
++ LPCSetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET, iomode);
++
++ if(bit_MDO)
++ {
++ status = inb_gpio( LPC_GPIO_SET);
++ status |= LPC_EDIO ; //EDIO high
++ outb_gpio(LPC_GPIO_SET, status);
++ }
++ else
++ {
++ status = inb_gpio( LPC_GPIO_SET);
++ status &= ~(LPC_EDIO) ; //EDIO low
++ outb_gpio(LPC_GPIO_SET, status);
++ }
++
++ status |= LPC_EECK ; //EECK high
++ outb_gpio(LPC_GPIO_SET, status);
++
++ status &= ~(LPC_EECK) ; //EECK low
++ outb_gpio(LPC_GPIO_SET, status);
++
++#else
++ unsigned int addr;
++ unsigned int value;
++
++ addr = GPIO_BASE_ADDR + GPIO_PIN_DIR;
++ value = readl(addr) | GPIO_MDC | GPIO_MDIO; /* set MDC/MDIO Pin to output */
++ writel(value,addr);
++ if(bit_MDO)
++ {
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MDIO,addr); /* set MDIO to 1 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MDC,addr); /* set MDC to 1 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MDC,addr); /* set MDC to 0 */
++ }
++ else
++ {
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MDIO,addr); /* set MDIO to 0 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MDC,addr); /* set MDC to 1 */
++ addr = (GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MDC,addr); /* set MDC to 0 */
++ }
++
++#endif
++}
++
++/**********************************************************************
++* read a bit from NWay register through CSR9_MDC,MDIO
++***********************************************************************/
++unsigned int mii_serial_read(void) // read data from mii PHY
++{
++#ifdef CONFIG_SL2312_LPC_IT8712
++ unsigned char iomode,status;
++ unsigned int value ;
++
++ iomode = LPCGetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET);
++ iomode &= ~(LPC_EDIO) ; // Set EDIO input
++ iomode |= (LPC_EECK) ; // Set EECK,EECS output
++ LPCSetConfig(LDN_GPIO, 0xc8 + LPC_GPIO_SET, iomode);
++
++ status = inb_gpio( LPC_GPIO_SET);
++ status |= LPC_EECK ; //EECK high
++ outb_gpio(LPC_GPIO_SET, status);
++
++ status &= ~(LPC_EECK) ; //EECK low
++ outb_gpio(LPC_GPIO_SET, status);
++
++ value = inb_gpio( LPC_GPIO_SET);
++
++ value = value>>2 ;
++ value &= 0x01;
++
++ return value ;
++
++#else
++ unsigned int *addr;
++ unsigned int value;
++
++ addr = (unsigned int *)(GPIO_BASE_ADDR + GPIO_PIN_DIR);
++ value = readl(addr) & ~GPIO_MDIO; //0xffbfffff; /* set MDC to output and MDIO to input */
++ writel(value,addr);
++
++ addr = (unsigned int *)(GPIO_BASE_ADDR + GPIO_DATA_SET);
++ writel(GPIO_MDC,addr); /* set MDC to 1 */
++ addr = (unsigned int *)(GPIO_BASE_ADDR + GPIO_DATA_CLEAR);
++ writel(GPIO_MDC,addr); /* set MDC to 0 */
++
++ addr = (unsigned int *)(GPIO_BASE_ADDR + GPIO_DATA_IN);
++ value = readl(addr);
++ value = (value & (1<<GPIO_MDIO_PIN)) >> GPIO_MDIO_PIN;
++ return(value);
++
++#endif
++}
++
++/***************************************
++* preamble + ST
++***************************************/
++void mii_pre_st(void)
++{
++ unsigned char i;
++
++ for(i=0;i<32;i++) // PREAMBLE
++ mii_serial_write(1);
++ mii_serial_write(0); // ST
++ mii_serial_write(1);
++}
++
++
++/******************************************
++* Read MII register
++* phyad -> physical address
++* regad -> register address
++***************************************** */
++unsigned int mii_read(unsigned char phyad,unsigned char regad)
++{
++ unsigned int i,value;
++ unsigned int bit;
++
++ if (phyad == GPHY_ADDR)
++ {
++ GPIO_MDC_PIN = G_MDC_PIN; /* assigned MDC pin for giga PHY */
++ GPIO_MDIO_PIN = G_MDIO_PIN; /* assigned MDIO pin for giga PHY */
++ }
++ else
++ {
++ GPIO_MDC_PIN = H_MDC_PIN; /* assigned MDC pin for 10/100 PHY */
++ GPIO_MDIO_PIN = H_MDIO_PIN; /* assigned MDIO pin for 10/100 PHY */
++ }
++ GPIO_MDC = (1<<GPIO_MDC_PIN);
++ GPIO_MDIO = (1<<GPIO_MDIO_PIN);
++
++ mii_pre_st(); // PRE+ST
++ mii_serial_write(1); // OP
++ mii_serial_write(0);
++
++ for (i=0;i<5;i++) { // PHYAD
++ bit= ((phyad>>(4-i)) & 0x01) ? 1 :0 ;
++ mii_serial_write(bit);
++ }
++
++ for (i=0;i<5;i++) { // REGAD
++ bit= ((regad>>(4-i)) & 0x01) ? 1 :0 ;
++ mii_serial_write(bit);
++ }
++
++ mii_serial_read(); // TA_Z
++// if((bit=mii_serial_read()) !=0 ) // TA_0
++// {
++// return(0);
++// }
++ value=0;
++ for (i=0;i<16;i++) { // READ DATA
++ bit=mii_serial_read();
++ value += (bit<<(15-i)) ;
++ }
++
++ mii_serial_write(0); // dumy clock
++ mii_serial_write(0); // dumy clock
++
++ //printk("%s: phy_addr=0x%x reg_addr=0x%x value=0x%x \n",__func__,phyad,regad,value);
++ return(value);
++}
++
++/******************************************
++* Write MII register
++* phyad -> physical address
++* regad -> register address
++* value -> value to be write
++***************************************** */
++void mii_write(unsigned char phyad,unsigned char regad,unsigned int value)
++{
++ unsigned int i;
++ char bit;
++
++ printk("%s: phy_addr=0x%x reg_addr=0x%x value=0x%x \n",__func__,phyad,regad,value);
++ if (phyad == GPHY_ADDR)
++ {
++ GPIO_MDC_PIN = G_MDC_PIN; /* assigned MDC pin for giga PHY */
++ GPIO_MDIO_PIN = G_MDIO_PIN; /* assigned MDIO pin for giga PHY */
++ }
++ else
++ {
++ GPIO_MDC_PIN = H_MDC_PIN; /* assigned MDC pin for 10/100 PHY */
++ GPIO_MDIO_PIN = H_MDIO_PIN; /* assigned MDIO pin for 10/100 PHY */
++ }
++ GPIO_MDC = (1<<GPIO_MDC_PIN);
++ GPIO_MDIO = (1<<GPIO_MDIO_PIN);
++
++ mii_pre_st(); // PRE+ST
++ mii_serial_write(0); // OP
++ mii_serial_write(1);
++ for (i=0;i<5;i++) { // PHYAD
++ bit= ((phyad>>(4-i)) & 0x01) ? 1 :0 ;
++ mii_serial_write(bit);
++ }
++
++ for (i=0;i<5;i++) { // REGAD
++ bit= ((regad>>(4-i)) & 0x01) ? 1 :0 ;
++ mii_serial_write(bit);
++ }
++ mii_serial_write(1); // TA_1
++ mii_serial_write(0); // TA_0
++
++ for (i=0;i<16;i++) { // OUT DATA
++ bit= ((value>>(15-i)) & 0x01) ? 1 : 0 ;
++ mii_serial_write(bit);
++ }
++ mii_serial_write(0); // dumy clock
++ mii_serial_write(0); // dumy clock
++}
++
++/*----------------------------------------------------------------------
++* gmac_set_rx_mode
++*----------------------------------------------------------------------*/
++static void gmac_set_rx_mode(struct net_device *dev)
++{
++ GMAC_RX_FLTR_T filter;
++ unsigned int mc_filter[2]; /* Multicast hash filter */
++ int bit_nr;
++ unsigned int i;
++ GMAC_INFO_T *tp = dev->priv;
++
++// printk("%s : dev->flags = %x \n",__func__,dev->flags);
++// dev->flags |= IFF_ALLMULTI; /* temp */
++ filter.bits32 = 0;
++ filter.bits.error = 0;
++ if (dev->flags & IFF_PROMISC)
++ {
++ filter.bits.error = 1;
++ filter.bits.promiscuous = 1;
++ filter.bits.broadcast = 1;
++ filter.bits.multicast = 1;
++ filter.bits.unicast = 1;
++ mc_filter[1] = mc_filter[0] = 0xffffffff;
++ }
++ else if (dev->flags & IFF_ALLMULTI)
++ {
++// filter.bits.promiscuous = 1;
++ filter.bits.broadcast = 1;
++ filter.bits.multicast = 1;
++ filter.bits.unicast = 1;
++ mc_filter[1] = mc_filter[0] = 0xffffffff;
++ }
++ else
++ {
++ struct dev_mc_list *mclist;
++
++// filter.bits.promiscuous = 1;
++ filter.bits.broadcast = 1;
++ filter.bits.multicast = 1;
++ filter.bits.unicast = 1;
++ mc_filter[1] = mc_filter[0] = 0;
++ for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;i++, mclist = mclist->next)
++ {
++ bit_nr = ether_crc(ETH_ALEN,mclist->dmi_addr) & 0x0000003f;
++ if (bit_nr < 32)
++ {
++ mc_filter[0] = mc_filter[0] | (1<<bit_nr);
++ }
++ else
++ {
++ mc_filter[1] = mc_filter[1] | (1<<(bit_nr-32));
++ }
++ }
++ }
++ gmac_write_reg(tp->base_addr,GMAC_RX_FLTR,filter.bits32,0xffffffff); //chech base address!!!
++ gmac_write_reg(tp->base_addr,GMAC_MCAST_FIL0,mc_filter[0],0xffffffff);
++ gmac_write_reg(tp->base_addr,GMAC_MCAST_FIL1,mc_filter[1],0xffffffff);
++ return;
++}
++
++#ifdef CONFIG_SL_NAPI
++/*----------------------------------------------------------------------
++* gmac_rx_poll
++*----------------------------------------------------------------------*/
++static int gmac_rx_poll(struct net_device *dev, int *budget)
++{
++ TOE_INFO_T *toe;
++ GMAC_RXDESC_T *curr_desc;
++ struct sk_buff *skb;
++ DMA_RWPTR_T rwptr;
++ unsigned int pkt_size;
++ unsigned int desc_count;
++ unsigned int good_frame, chksum_status, rx_status;
++ int rx_pkts_num = 0;
++ int quota = min(dev->quota, *budget);
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ unsigned int status4;
++ volatile DMA_RWPTR_T fq_rwptr;
++ int max_cnt = TOE_SW_FREEQ_DESC_NUM;//TOE_SW_FREEQ_DESC_NUM = 64
++ //unsigned long rx_old_bytes;
++ struct net_device_stats *isPtr = (struct net_device_stats *)&tp->ifStatics;
++ //unsigned long long rx_time;
++
++
++
++#if 1
++ if (do_again)
++ {
++ toe_gmac_fill_free_q();
++ status4 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_4_REG);
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ //printk("\n%s:: do_again toe_gmac_fill_free_q =======>status4=0x%x =====fq_rwptr =0x%8x======>JKJKJKJKJKJKJKJKJ \n", __func__,status4,fq_rwptr.bits32);
++ if (fq_rwptr.bits.wptr != fq_rwptr.bits.rptr)
++ {
++ //status4 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_4_REG);
++ do_again =0;
++ //netif_rx_complete(dev);
++ gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_STATUS_4_REG, status4, 0x1);
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ rwptr.bits32 = readl(&tp->default_qhdr->word1);
++ }
++ else
++ return 1;
++ }
++#endif
++ rwptr.bits32 = readl(&tp->default_qhdr->word1);
++#if 0
++ if (rwptr.bits.rptr != tp->rx_rwptr.bits.rptr)
++ {
++ mac_stop_txdma((struct net_device *)tp->dev);
++ printk("Default Queue HW RD ptr (0x%x) != SW RD Ptr (0x%x)\n",
++ rwptr.bits32, tp->rx_rwptr.bits.rptr);
++ while(1);
++ }
++#endif
++ toe = (TOE_INFO_T *)&toe_private_data;
++
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ //printk("%s:---Before-------------->Default Queue HW RW ptr (0x%8x), fq_rwptr =0x%8x \n",__func__,rwptr.bits32,fq_rwptr.bits32 );
++ //printk("%s:---Before while rx_pkts_num=%d------rx_finished_idx=0x%x------->Default_Q [rwptr.bits.rptr(SW)=0x%x, rwptr.bits.wptr(HW) = 0x%x ]---->Free_Q(SW_HW) = 0x%8x \n",__func__,rx_pkts_num,rx_finished_idx,rwptr.bits.rptr,rwptr.bits.wptr,fq_rwptr.bits32 );
++// while ((--max_cnt) && (rwptr.bits.rptr != rwptr.bits.wptr) && (rx_pkts_num < quota))
++
++ while ((rwptr.bits.rptr != rwptr.bits.wptr) && (rx_pkts_num < quota))
++ {
++
++ curr_desc = (GMAC_RXDESC_T *)tp->default_desc_base + rwptr.bits.rptr;
++ tp->default_q_cnt++;
++ tp->rx_curr_desc = (unsigned int)curr_desc;
++ rx_status = curr_desc->word0.bits.status;
++ chksum_status = curr_desc->word0.bits.chksum_status;
++ tp->rx_status_cnt[rx_status]++;
++ tp->rx_chksum_cnt[chksum_status]++;
++ pkt_size = curr_desc->word1.bits.byte_count; /*total byte count in a frame*/
++ desc_count = curr_desc->word0.bits.desc_count; /* get descriptor count per frame */
++ good_frame=1;
++ if ((curr_desc->word0.bits32 & (GMAC_RXDESC_0_T_derr | GMAC_RXDESC_0_T_perr))
++ || (pkt_size < 60)
++ || (chksum_status & 0x4)
++ || rx_status )
++// || rx_status || (rwptr.bits.rptr > rwptr.bits.wptr ))
++ {
++ good_frame = 0;
++ if (curr_desc->word0.bits32 & GMAC_RXDESC_0_T_derr)
++ printk("%s::derr (GMAC-%d)!!!\n", __func__, tp->port_id);
++ if (curr_desc->word0.bits32 & GMAC_RXDESC_0_T_perr)
++ printk("%s::perr (GMAC-%d)!!!\n", __func__, tp->port_id);
++ if (rx_status)
++ {
++ if (rx_status == 4 || rx_status == 7)
++ isPtr->rx_crc_errors++;
++// printk("%s::Status=%d (GMAC-%d)!!!\n", __func__, rx_status, tp->port_id);
++ }
++#ifdef SL351x_GMAC_WORKAROUND
++ else if (pkt_size < 60)
++ {
++ if (tp->short_frames_cnt < GMAC_SHORT_FRAME_THRESHOLD)
++ tp->short_frames_cnt++;
++ if (tp->short_frames_cnt >= GMAC_SHORT_FRAME_THRESHOLD)
++ {
++ GMAC_CONFIG0_T config0;
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 1;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 1;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ }
++ }
++#endif
++// if (chksum_status)
++// printk("%s::Checksum Status=%d (GMAC-%d)!!!\n", __func__, chksum_status, tp->port_id);
++ skb = (struct sk_buff *)(REG32(__va(curr_desc->word2.buf_adr) - SKB_RESERVE_BYTES));
++ dev_kfree_skb_irq(skb);
++ }
++ if (good_frame)
++ {
++ if (curr_desc->word0.bits.drop)
++ printk("%s::Drop (GMAC-%d)!!!\n", __func__, tp->port_id);
++// if (chksum_status)
++// printk("%s::Checksum Status=%d (GMAC-%d)!!!\n", __func__, chksum_status, tp->port_id);
++
++#ifdef SL351x_GMAC_WORKAROUND
++ if (tp->short_frames_cnt >= GMAC_SHORT_FRAME_THRESHOLD)
++ {
++ GMAC_CONFIG0_T config0;
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ }
++ tp->short_frames_cnt = 0;
++#endif
++ /* get frame information from the first descriptor of the frame */
++ isPtr->rx_packets++;
++ //consistent_sync((void *)__va(curr_desc->word2.buf_adr), pkt_size, PCI_DMA_FROMDEVICE);
++ skb = (struct sk_buff *)(REG32(__va(curr_desc->word2.buf_adr) - SKB_RESERVE_BYTES));
++ tp->curr_rx_skb = skb;
++ // curr_desc->word2.buf_adr = 0;
++
++ //skb_reserve (skb, SKB_RESERVE_BYTES);
++ skb_reserve (skb, RX_INSERT_BYTES); /* 2 byte align the IP fields. */
++ //if ((skb->tail+pkt_size) > skb->end )
++ //printk("%s::------------->Here skb->len=%d,pkt_size= %d,skb->head=0x%x,skb->tail= 0x%x, skb->end= 0x%x\n", __func__, skb->len, pkt_size,skb->head,skb->tail,skb->end);
++ skb_put(skb, pkt_size);
++
++
++ skb->dev = dev;
++ if (chksum_status == RX_CHKSUM_IP_UDP_TCP_OK)
++ {
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++#ifdef CONFIG_SL351x_NAT
++ if (nat_cfg.enabled && curr_desc->word3.bits.l3_offset && curr_desc->word3.bits.l4_offset)
++ {
++ struct iphdr *ip_hdr;
++ ip_hdr = (struct iphdr *)&(skb->data[curr_desc->word3.bits.l3_offset]);
++ sl351x_nat_input(skb,
++ tp->port_id,
++ (void *)curr_desc->word3.bits.l3_offset,
++ (void *)curr_desc->word3.bits.l4_offset);
++ }
++#endif
++ skb->protocol = eth_type_trans(skb,dev); /* set skb protocol */
++#if 0
++#ifdef CONFIG_SL351x_RXTOE
++ if (storlink_ctl.rx_max_pktsize) {
++ struct iphdr *ip_hdr;
++ struct tcphdr *tcp_hdr;
++ int ip_hdrlen;
++
++ ip_hdr = (struct iphdr*)&(skb->data[0]);
++ if ((skb->protocol == __constant_htons(ETH_P_IP)) &&
++ ((ip_hdr->protocol & 0x00ff) == IPPROTO_TCP)) {
++ ip_hdrlen = ip_hdr->ihl << 2;
++ tcp_hdr = (struct tcphdr*)&(skb->data[ip_hdrlen]);
++ if (tcp_hdr->syn) {
++ struct toe_conn* connection = init_toeq(ip_hdr->version,
++ ip_hdr, tcp_hdr, toe, &(skb->data[0]) - 14);
++ TCP_SKB_CB(skb)->connection = connection;
++ // hash_dump_entry(TCP_SKB_CB(skb)->connection->hash_entry_index);
++ // printk("%s::skb data %x, conn %x, mode %x\n",
++ // __func__, skb->data, connection, connection->mode);
++ }
++ }
++ }
++#endif
++#endif
++ }
++ else if (chksum_status == RX_CHKSUM_IP_OK_ONLY)
++ {
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++#ifdef CONFIG_SL351x_NAT
++ if (nat_cfg.enabled && curr_desc->word3.bits.l3_offset && curr_desc->word3.bits.l4_offset)
++ {
++ struct iphdr *ip_hdr;
++ ip_hdr = (struct iphdr *)&(skb->data[curr_desc->word3.bits.l3_offset]);
++ if (ip_hdr->protocol == IPPROTO_UDP)
++ {
++ sl351x_nat_input(skb,
++ tp->port_id,
++ (void *)curr_desc->word3.bits.l3_offset,
++ (void *)curr_desc->word3.bits.l4_offset);
++ }
++ else if (ip_hdr->protocol == IPPROTO_GRE)
++ {
++ sl351x_nat_input(skb,
++ tp->port_id,
++ (void *)curr_desc->word3.bits.l3_offset,
++ (void *)curr_desc->word3.bits.l4_offset);
++ }
++ }
++#endif
++ skb->protocol = eth_type_trans(skb,dev); /* set skb protocol */
++ }
++ else
++ {
++ skb->protocol = eth_type_trans(skb,dev); /* set skb protocol */
++ }
++ //netif_rx(skb); /* socket rx */
++ netif_receive_skb(skb); //For NAPI
++ dev->last_rx = jiffies;
++
++ isPtr->rx_bytes += pkt_size;
++ //printk("------------------->isPtr->rx_bytes = %d\n",isPtr->rx_bytes);
++
++
++ }
++ // advance one for Rx default Q 0/1
++ rwptr.bits.rptr = RWPTR_ADVANCE_ONE(rwptr.bits.rptr, tp->default_desc_num);
++ SET_RPTR(&tp->default_qhdr->word1, rwptr.bits.rptr);
++ tp->rx_rwptr.bits32 = rwptr.bits32;
++ rx_pkts_num++;
++ //rwptr.bits32 = readl(&tp->default_qhdr->word1);//try read default_qhdr again
++ //fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ //printk("%s:---Loop -------->rx_pkts_num=%d------------>Default Queue HW RW ptr = (0x%8x), fq_rwptr =0x%8x \n",__func__,rx_pkts_num,rwptr.bits32,fq_rwptr.bits32 );
++#if 0
++ if ((status4 & 0x1) == 0)
++ {
++ //if (!((dev->last_rx <= (rx_time + 2)) && (isPtr->rx_bytes > (rx_old_bytes + 1000000 ))))
++ if (tp->total_q_cnt_napi < 1024)
++ {
++ tp->total_q_cnt_napi++;
++ toe_gmac_fill_free_q(); //for iperf test disable
++ }
++ //else
++ //printk("%s:---isPtr->rx_bytes =%u , rx_old_bytes =%u\n",__func__,isPtr->rx_bytes,rx_old_bytes );
++
++ }
++#endif
++ //rwptr.bits.rptr = RWPTR_ADVANCE_ONE(rwptr.bits.rptr, tp->default_desc_num);
++ //printk("%s:---Loop -------->rx_pkts_num=%d----rwptr.bits.rptr=0x%x-------->Default Queue HW RW ptr = (0x%8x), fq_rwptr =0x%8x \n",__func__,rx_pkts_num,rwptr.bits.rptr,rwptr.bits32,fq_rwptr.bits32 );
++ //printk("%s:---Loop rx_pkts_num=%d------rwptr.bits.rptr=0x%x------->Default_Q [rwptr.bits.rptr(SW)=0x%x, rwptr.bits.wptr(HW) = 0x%x ]---->Free_Q(SW_HW) = 0x%8x \n",__func__,rx_pkts_num,rwptr.bits.rptr,rwptr.bits.rptr,rwptr.bits.wptr,fq_rwptr.bits32 );
++ }
++ // advance one for Rx default Q 0/1
++
++ //rwptr.bits.rptr = RWPTR_ADVANCE_ONE(rwptr.bits.rptr, tp->default_desc_num);
++ //SET_RPTR(&tp->default_qhdr->word1, rwptr.bits.rptr);
++ //tp->rx_rwptr.bits32 = rwptr.bits32;
++ //rwptr.bits.rptr = rwptr.bits.rptr;
++
++ dev->quota -= rx_pkts_num;
++ *budget -= rx_pkts_num;
++
++ status4 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_4_REG);//try read SWFQ empty again
++ //fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ rwptr.bits32 = readl(&tp->default_qhdr->word1); //try read default_qhdr again
++ //printk("%s:---After rx_pkts_num=%d------rwptr.bits.rptr=0x%x------->Default_Q [rwptr.bits.rptr(SW)=0x%x, rwptr.bits.wptr(HW) = 0x%x ]---->Free_Q(SW_HW) = 0x%8x \n",__func__,rx_pkts_num,rwptr.bits.rptr,rwptr.bits.rptr,rwptr.bits.wptr,fq_rwptr.bits32 );
++// if (rwptr.bits.rptr > rwptr.bits.wptr )
++// {
++ //toe_gmac_disable_rx(dev);
++ //wait_event_interruptible_timeout(freeq_wait,
++ //(rx_pkts_num == 100), CMTP_INTEROP_TIMEOUT);
++ //printk("\n%s:: return 22222=======> rx_pkts_num =%d, rwptr.bits.rptr=%d, rwptr.bits.wptr = %d ====---------=======>JKJKJKJKJK\n",
++ //__func__,rx_pkts_num,rwptr.bits.rptr,rwptr.bits.wptr);
++// return 1;
++// }
++
++ if (rwptr.bits.rptr == rwptr.bits.wptr)
++ {
++ unsigned int data32;
++ //printk("%s:---[rwptr.bits.rptr == rwptr.bits.wptr] rx_pkts_num=%d------rwptr.bits.rptr=0x%x------->Default_Q [rwptr.bits.rptr(SW)=0x%x, rwptr.bits.wptr(HW) = 0x%x ]---->Free_Q(SW_HW) = 0x%8x \n",__func__,rx_pkts_num,rwptr.bits.rptr,rwptr.bits.rptr,rwptr.bits.wptr,fq_rwptr.bits32 );
++
++ /* Receive descriptor is empty now */
++#if 1
++ if (status4 & 0x1)
++ {
++ do_again =1;
++ //writel(0x40400000, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_ENABLE_4_REG); //disable SWFQ empty interrupt
++ //toe_gmac_disable_interrupt(tp->irq);
++ tp->sw_fq_empty_cnt++;
++ //toe_gmac_disable_rx(dev);
++ writel(0x07960202, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ writel(0x07960202, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ //printk("\n%s :: freeq int-----tp->sw_fq_empty_cnt =%d---------====================----------------->\n",__func__,tp->sw_fq_empty_cnt);
++ //while ((fq_rwptr.bits.wptr >= (fq_rwptr.bits.rptr+256)) || (fq_rwptr.bits.wptr <= (fq_rwptr.bits.rptr+256)))
++ //{
++ //gmac_write_reg(TOE_GLOBAL_BASE, GLOBAL_INTERRUPT_STATUS_4_REG, status4,
++ //0x1);
++ //printk("\n%s::fq_rwptr.wrptr = %x =======> ===========>here \n", __func__,fq_rwptr.bits32);
++ //if ((status4 & 0x1) == 0)
++ //break;
++ return 1;
++ //}
++
++ }
++#endif
++ //toe_gmac_fill_free_q();
++ netif_rx_complete(dev);
++ // enable GMAC-0 rx interrupt
++ // class-Q & TOE-Q are implemented in future
++ //data32 = readl(TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_1_REG);
++ //if (tp->port_id == 0)
++ //data32 |= DEFAULT_Q0_INT_BIT;
++ //else
++ //data32 |= DEFAULT_Q1_INT_BIT;
++ //writel(data32, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_ENABLE_1_REG);
++ writel(0x3, TOE_GLOBAL_BASE+GLOBAL_INTERRUPT_ENABLE_1_REG);
++ //printk("\n%s::netif_rx_complete--> rx_pkts_num =%d, rwptr.bits.rptr=0x%x, rwptr.bits.wptr = 0x%x ====---------=======>JKJKJKJKJK\n",
++ //__func__,rx_pkts_num,rwptr.bits.rptr,rwptr.bits.wptr);
++ writel(0x07960200, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ writel(0x07960200, TOE_GMAC1_BASE+GMAC_CONFIG0);
++ return 0;
++ }
++ else
++ {
++ //printk("\n%s:: return 1 -->status4= 0x%x,rx_pkts_num =%d, rwptr.bits.rptr=0x%x, rwptr.bits.wptr = 0x%x ======> \n", __func__,status4,rx_pkts_num,rwptr.bits.rptr,rwptr.bits.wptr);
++ return 1;
++ }
++}
++#endif
++
++/*----------------------------------------------------------------------
++* gmac_tx_timeout
++*----------------------------------------------------------------------*/
++void gmac_tx_timeout(struct net_device *dev)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++
++#ifdef CONFIG_SL351x_SYSCTL
++ if (tp->operation && storlink_ctl.link[tp->port_id])
++#else
++ if (tp->operation)
++#endif
++ {
++ netif_wake_queue(dev);
++ }
++}
++
++
++
++/*----------------------------------------------------------------------
++* mac_set_rule_reg
++*----------------------------------------------------------------------*/
++int mac_set_rule_reg(int mac, int rule, int enabled, u32 reg0, u32 reg1, u32 reg2)
++{
++ int total_key_dwords;
++
++ total_key_dwords = 1;
++
++ if (reg0 & MR_L2_BIT)
++ {
++ if (reg0 & MR_DA_BIT) total_key_dwords += 2;
++ if (reg0 & MR_SA_BIT) total_key_dwords += 2;
++ if ((reg0 & MR_DA_BIT) && ( reg0 & MR_SA_BIT)) total_key_dwords--;
++ if (reg0 & (MR_PPPOE_BIT | MR_VLAN_BIT)) total_key_dwords++;
++ }
++ if (reg0 & MR_L3_BIT)
++ {
++ if (reg0 & (MR_IP_HDR_LEN_BIT | MR_TOS_TRAFFIC_BIT | MR_SPR_BITS))
++ total_key_dwords++;
++ if (reg0 & MR_FLOW_LABLE_BIT) total_key_dwords++;
++ if ((reg0 & MR_IP_VER_BIT) == 0) // IPv4
++ {
++ if (reg1 & 0xff000000) total_key_dwords += 1;
++ if (reg1 & 0x00ff0000) total_key_dwords += 1;
++ }
++ else
++ {
++ if (reg1 & 0xff000000) total_key_dwords += 4;
++ if (reg1 & 0x00ff0000) total_key_dwords += 4;
++ }
++ }
++ if (reg0 & MR_L4_BIT)
++ {
++ if (reg1 & 0x0000f000) total_key_dwords += 1;
++ if (reg1 & 0x00000f00) total_key_dwords += 1;
++ if (reg1 & 0x000000f0) total_key_dwords += 1;
++ if (reg1 & 0x0000000f) total_key_dwords += 1;
++ if (reg2 & 0xf0000000) total_key_dwords += 1;
++ if (reg2 & 0x0f000000) total_key_dwords += 1;
++ }
++ if (reg0 & MR_L7_BIT)
++ {
++ if (reg2 & 0x00f00000) total_key_dwords += 1;
++ if (reg2 & 0x000f0000) total_key_dwords += 1;
++ if (reg2 & 0x0000f000) total_key_dwords += 1;
++ if (reg2 & 0x00000f00) total_key_dwords += 1;
++ if (reg2 & 0x000000f0) total_key_dwords += 1;
++ if (reg2 & 0x0000000f) total_key_dwords += 1;
++ }
++
++ if (total_key_dwords > HASH_MAX_KEY_DWORD)
++ return -1;
++
++ if (total_key_dwords == 0 && enabled)
++ return -2;
++
++ mac_set_rule_enable_bit(mac, rule, 0);
++ if (enabled)
++ {
++ mac_set_MRxCRx(mac, rule, 0, reg0);
++ mac_set_MRxCRx(mac, rule, 1, reg1);
++ mac_set_MRxCRx(mac, rule, 2, reg2);
++ mac_set_rule_action(mac, rule, total_key_dwords);
++ mac_set_rule_enable_bit(mac, rule, enabled);
++ }
++ else
++ {
++ mac_set_rule_action(mac, rule, 0);
++ }
++ return total_key_dwords;
++}
++
++/*----------------------------------------------------------------------
++* mac_get_rule_enable_bit
++*----------------------------------------------------------------------*/
++int mac_get_rule_enable_bit(int mac, int rule)
++{
++ switch (rule)
++ {
++ case 0: return ((mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG0) >> 15) & 1);
++ case 1: return ((mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG0) >> 31) & 1);
++ case 2: return ((mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG1) >> 15) & 1);
++ case 3: return ((mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG1) >> 31) & 1);
++ default: return 0;
++ }
++}
++
++/*----------------------------------------------------------------------
++* mac_set_rule_enable_bit
++*----------------------------------------------------------------------*/
++void mac_set_rule_enable_bit(int mac, int rule, int data)
++{
++ u32 reg;
++
++ if (data & ~1)
++ return;
++
++ switch (rule)
++ {
++ case 0:
++ reg = (mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG0) & ~(1<<15)) | (data << 15);
++ mac_write_dma_reg(mac, GMAC_HASH_ENGINE_REG0, reg);
++ break;
++ case 1:
++ reg = (mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG0) & ~(1<<31)) | (data << 31);
++ mac_write_dma_reg(mac, GMAC_HASH_ENGINE_REG0, reg);
++ break;
++ case 2:
++ reg = (mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG1) & ~(1<<15)) | (data << 15);
++ mac_write_dma_reg(mac, GMAC_HASH_ENGINE_REG1, reg);
++ break;
++ case 3:
++ reg = (mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG1) & ~(1<<31)) | (data << 31);
++ mac_write_dma_reg(mac, GMAC_HASH_ENGINE_REG1, reg);
++ }
++}
++
++/*----------------------------------------------------------------------
++* mac_set_rule_action
++*----------------------------------------------------------------------*/
++int mac_set_rule_action(int mac, int rule, int data)
++{
++ u32 reg;
++
++ if (data > 32)
++ return -1;
++
++ if (data)
++ data = (data << 6) | (data + HASH_ACTION_DWORDS);
++ switch (rule)
++ {
++ case 0:
++ reg = (mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG0) & ~(0x7ff));
++ mac_write_dma_reg(mac, GMAC_HASH_ENGINE_REG0, reg | data);
++ break;
++ case 1:
++ reg = (mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG0) & ~(0x7ff<<16));
++ mac_write_dma_reg(mac, GMAC_HASH_ENGINE_REG0, reg | (data << 16));
++ break;
++ case 2:
++ reg = (mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG1) & ~(0x7ff));
++ mac_write_dma_reg(mac, GMAC_HASH_ENGINE_REG1, reg | data);
++ break;
++ case 3:
++ reg = (mac_read_dma_reg(mac, GMAC_HASH_ENGINE_REG1) & ~(0x7ff<<16));
++ mac_write_dma_reg(mac, GMAC_HASH_ENGINE_REG1, reg | (data << 16));
++ break;
++ default:
++ return -1;
++ }
++
++ return 0;
++}
++/*----------------------------------------------------------------------
++* mac_get_MRxCRx
++*----------------------------------------------------------------------*/
++int mac_get_MRxCRx(int mac, int rule, int ctrlreg)
++{
++ int reg;
++
++ switch (rule)
++ {
++ case 0: reg = GMAC_MR0CR0 + ctrlreg * 4; break;
++ case 1: reg = GMAC_MR1CR0 + ctrlreg * 4; break;
++ case 2: reg = GMAC_MR2CR0 + ctrlreg * 4; break;
++ case 3: reg = GMAC_MR3CR0 + ctrlreg * 4; break;
++ default: return 0;
++ }
++ return mac_read_dma_reg(mac, reg);
++}
++
++/*----------------------------------------------------------------------
++* mac_set_MRxCRx
++*----------------------------------------------------------------------*/
++void mac_set_MRxCRx(int mac, int rule, int ctrlreg, u32 data)
++{
++ int reg;
++
++ switch (rule)
++ {
++ case 0: reg = GMAC_MR0CR0 + ctrlreg * 4; break;
++ case 1: reg = GMAC_MR1CR0 + ctrlreg * 4; break;
++ case 2: reg = GMAC_MR2CR0 + ctrlreg * 4; break;
++ case 3: reg = GMAC_MR3CR0 + ctrlreg * 4; break;
++ default: return;
++ }
++ mac_write_dma_reg(mac, reg, data);
++}
++
++/*----------------------------------------------------------------------
++* mac_set_rule_priority
++*----------------------------------------------------------------------*/
++void mac_set_rule_priority(int mac, int p0, int p1, int p2, int p3)
++{
++ int i;
++ GMAC_MRxCR0_T reg[4];
++
++ for (i=0; i<4; i++)
++ reg[i].bits32 = mac_get_MRxCRx(mac, i, 0);
++
++ reg[0].bits.priority = p0;
++ reg[1].bits.priority = p1;
++ reg[2].bits.priority = p2;
++ reg[3].bits.priority = p3;
++
++ for (i=0; i<4; i++)
++ mac_set_MRxCRx(mac, i, 0, reg[i].bits32);
++}
++
++/*----------------------------------------------------------------------
++* gmac_netdev_ioctl
++*----------------------------------------------------------------------*/
++static int gmac_netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
++{
++ int rc = 0;
++ unsigned char *hwa = rq->ifr_ifru.ifru_hwaddr.sa_data;
++
++#ifdef br_if_ioctl
++ struct ethtool_cmd ecmd; //br_if.c will call this ioctl
++ GMAC_INFO_T *tp = dev->priv;
++#endif
++
++#ifdef CONFIG_SL351x_NAT
++ if (cmd == SIOCDEVPRIVATE)
++ return sl351x_nat_ioctl(dev, rq, cmd);
++#endif
++
++ switch (cmd) {
++ case SIOCETHTOOL:
++#ifdef br_if_ioctl //br_if.c will call this ioctl
++ if (!netif_running(dev))
++ {
++ printk("Before changing the H/W address,please down the device.\n");
++ return -EINVAL;
++ }
++ memset((void *) &ecmd, 0, sizeof (ecmd));
++ ecmd.supported =
++ SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |
++ SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
++ SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
++ ecmd.port = PORT_TP;
++ ecmd.transceiver = XCVR_EXTERNAL;
++ ecmd.phy_address = tp->phy_addr;
++ switch (tp->speed_status)
++ {
++ case GMAC_SPEED_10: ecmd.speed = SPEED_10; break;
++ case GMAC_SPEED_100: ecmd.speed = SPEED_100; break;
++ case GMAC_SPEED_1000: ecmd.speed = SPEED_1000; break;
++ default: ecmd.speed = SPEED_10; break;
++ }
++ ecmd.duplex = tp->full_duplex_status ? DUPLEX_FULL : DUPLEX_HALF;
++ ecmd.advertising = ADVERTISED_TP;
++ ecmd.advertising |= ADVERTISED_Autoneg;
++ ecmd.autoneg = AUTONEG_ENABLE;
++ if (copy_to_user(rq->ifr_data, &ecmd, sizeof (ecmd)))
++ return -EFAULT;
++#endif
++
++ break;
++
++ case SIOCSIFHWADDR:
++ if (!netif_running(dev))
++ {
++ printk("Before changing the H/W address,please down the device.\n");
++ return -EINVAL;
++ }
++ gmac_set_mac_address(dev,hwa);
++ break;
++
++ case SIOCGMIIPHY: /* Get the address of the PHY in use. */
++ break;
++
++ case SIOCGMIIREG: /* Read the specified MII register. */
++ break;
++
++ case SIOCSMIIREG: /* Write the specified MII register */
++ break;
++
++ default:
++ rc = -EOPNOTSUPP;
++ break;
++ }
++
++ return rc;
++}
++
++#ifdef SL351x_GMAC_WORKAROUND
++
++#define GMAC_TX_STATE_OFFSET 0x60
++#define GMAC_RX_STATE_OFFSET 0x64
++#define GMAC_POLL_HANGED_NUM 200
++#define GMAC_RX_HANGED_STATE 0x4b2000
++#define GMAC_RX_HANGED_MASK 0xdff000
++#define GMAC_TX_HANGED_STATE 0x34012
++#define GMAC_TX_HANGED_MASK 0xfffff
++#define TOE_GLOBAL_REG_SIZE (0x78/sizeof(u32))
++#define TOE_DMA_REG_SIZE (0xd0/sizeof(u32))
++#define TOE_GMAC_REG_SIZE (0x30/sizeof(u32))
++#define GMAC0_RX_HANG_BIT (1 << 0)
++#define GMAC0_TX_HANG_BIT (1 << 1)
++#define GMAC1_RX_HANG_BIT (1 << 2)
++#define GMAC1_TX_HANG_BIT (1 << 3)
++
++int gmac_in_do_workaround;
++#if 0
++int debug_cnt, poll_max_cnt;
++#endif
++u32 gmac_workaround_cnt[4];
++u32 toe_global_reg[TOE_GLOBAL_REG_SIZE];
++u32 toe_dma_reg[GMAC_NUM][TOE_DMA_REG_SIZE];
++u32 toe_gmac_reg[GMAC_NUM][TOE_GMAC_REG_SIZE];
++u32 gmac_short_frame_workaround_cnt[2];
++
++static void sl351x_gmac_release_buffers(void);
++static void sl351x_gmac_release_swtx_q(void);
++static void sl351x_gmac_release_rx_q(void);
++#ifdef _TOEQ_CLASSQ_READY_
++static void sl351x_gmac_release_class_q(void);
++static void sl351x_gmac_release_toe_q(void);
++static void sl351x_gmac_release_intr_q(void);
++#endif
++static void sl351x_gmac_release_sw_free_q(void);
++static void sl351x_gmac_release_hw_free_q(void);
++#ifdef CONFIG_SL351x_NAT
++static int get_free_desc_cnt(unsigned long rwptr, int total);
++static void sl351x_gmac_release_hwtx_q(void);
++u32 sl351x_nat_workaround_cnt;
++#endif
++void sl351x_gmac_save_reg(void);
++void sl351x_gmac_restore_reg(void);
++
++
++/*----------------------------------------------------------------------
++* sl351x_poll_gmac_hanged_status
++* - Called by timer routine, period 10ms
++* - If (state != 0 && state == prev state && )
++*----------------------------------------------------------------------*/
++void sl351x_poll_gmac_hanged_status(u32 data)
++{
++ int i;
++ u32 state;
++ TOE_INFO_T *toe;
++ GMAC_INFO_T *tp;
++ u32 hanged_state;
++ // int old_operation[GMAC_NUM];
++#ifdef CONFIG_SL351x_NAT
++ u32 hw_free_cnt;
++#endif
++
++ if (gmac_in_do_workaround)
++ return;
++
++ gmac_in_do_workaround = 1;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ hanged_state = 0;
++
++#ifdef SL351x_TEST_WORKAROUND
++ if (toe->gmac[0].operation || toe->gmac[1].operation)
++ {
++ debug_cnt++;
++ if (debug_cnt == (30 * HZ))
++ {
++ debug_cnt = 0;
++ hanged_state = GMAC0_RX_HANG_BIT;
++ goto do_workaround;
++ }
++ }
++#endif
++ if (toe->gmac[0].operation)
++ hanged_state |= GMAC0_RX_HANG_BIT | GMAC0_TX_HANG_BIT;
++
++#if (GMAC_NUM > 1)
++ if (toe->gmac[1].operation)
++ hanged_state |= GMAC1_RX_HANG_BIT | GMAC1_TX_HANG_BIT;
++#endif
++
++ for (i=0; i<GMAC_POLL_HANGED_NUM; i++)
++ {
++ if (hanged_state & GMAC0_RX_HANG_BIT)
++ {
++ state = readl(TOE_GMAC0_BASE + GMAC_RX_STATE_OFFSET) & GMAC_RX_HANGED_MASK;
++ if (state != GMAC_RX_HANGED_STATE)
++ hanged_state &= ~GMAC0_RX_HANG_BIT;
++ }
++ if (hanged_state & GMAC0_TX_HANG_BIT)
++ {
++ state = readl(TOE_GMAC0_BASE + GMAC_TX_STATE_OFFSET) & GMAC_TX_HANGED_MASK;
++ if (state != GMAC_TX_HANGED_STATE)
++ hanged_state &= ~GMAC0_TX_HANG_BIT;
++ }
++#if (GMAC_NUM > 1)
++ if (hanged_state & GMAC1_RX_HANG_BIT)
++ {
++ state = readl(TOE_GMAC1_BASE + GMAC_RX_STATE_OFFSET) & GMAC_RX_HANGED_MASK;
++ if (state != GMAC_RX_HANGED_STATE)
++ hanged_state &= ~GMAC1_RX_HANG_BIT;
++ }
++ if (hanged_state & GMAC1_TX_HANG_BIT)
++ {
++ state = readl(TOE_GMAC1_BASE + GMAC_TX_STATE_OFFSET) & GMAC_TX_HANGED_MASK;
++ if (state != GMAC_TX_HANGED_STATE)
++ hanged_state &= ~GMAC1_TX_HANG_BIT;
++ }
++#endif
++ if (!hanged_state)
++ {
++#if 0
++ if (i < poll_max_cnt)
++ poll_max_cnt = i;
++#endif
++ if (toe->gmac[0].short_frames_cnt >= GMAC_SHORT_FRAME_THRESHOLD)
++ {
++ gmac_short_frame_workaround_cnt[0]++;
++ toe->gmac[0].short_frames_cnt = 0;
++ goto do_workaround;
++ }
++#if (GMAC_NUM > 1)
++ if (toe->gmac[1].short_frames_cnt >= GMAC_SHORT_FRAME_THRESHOLD)
++ {
++ gmac_short_frame_workaround_cnt[1]++;
++ toe->gmac[1].short_frames_cnt = 0;
++ goto do_workaround;
++ }
++#endif
++
++#ifdef CONFIG_SL351x_NAT
++ hw_free_cnt = readl(TOE_GLOBAL_BASE + GLOBAL_HWFQ_RWPTR_REG);
++ hw_free_cnt = get_free_desc_cnt(hw_free_cnt, TOE_HW_FREEQ_DESC_NUM);
++#ifdef NAT_WORKAROUND_BY_RESET_GMAC
++ if (readl(TOE_GLOBAL_BASE + 0x4084) && (hw_free_cnt <= PAUSE_SET_HW_FREEQ))
++ {
++ sl351x_nat_workaround_cnt++;
++ goto do_workaround;
++ }
++#else
++ if (readl(TOE_GLOBAL_BASE + 0x4084) && (hw_free_cnt <= (PAUSE_SET_HW_FREEQ*2)))
++ {
++ sl351x_nat_workaround_cnt++;
++ sl351x_nat_workaround_handler();
++ }
++#endif
++#endif
++ gmac_in_do_workaround = 0;
++ add_timer(&gmac_workround_timer_obj);
++ return;
++ }
++ }
++
++do_workaround:
++
++ gmac_initialized = 0;
++ if (hanged_state)
++ {
++ if (hanged_state & GMAC0_RX_HANG_BIT) gmac_workaround_cnt[0]++;
++ if (hanged_state & GMAC0_TX_HANG_BIT) gmac_workaround_cnt[1]++;
++ if (hanged_state & GMAC1_RX_HANG_BIT) gmac_workaround_cnt[2]++;
++ if (hanged_state & GMAC1_TX_HANG_BIT) gmac_workaround_cnt[3]++;
++ }
++
++ for (i=0; i<GMAC_NUM; i++)
++ {
++ tp=(GMAC_INFO_T *)&toe->gmac[i];
++ // old_operation[i] = tp->operation;
++ if (tp->operation)
++ {
++ netif_stop_queue(tp->dev);
++ clear_bit(__LINK_STATE_START, &tp->dev->state);
++ toe_gmac_disable_interrupt(tp->irq);
++ toe_gmac_disable_tx_rx(tp->dev);
++ toe_gmac_hw_stop(tp->dev);
++ }
++ }
++
++ // clear all status bits
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_0_REG);
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_1_REG);
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_2_REG);
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_3_REG);
++ writel(0xffffffff, TOE_GLOBAL_BASE + GLOBAL_INTERRUPT_STATUS_4_REG);
++
++#if 0
++ if ((hanged_state & GMAC0_RX_HANG_BIT) &&
++ (readl(TOE_GMAC0_DMA_BASE + 0xdc) & 0xf0))
++ {
++ struct sk_buff *skb;
++ unsigned int buf;
++ buf = readl(TOE_GMAC0_DMA_BASE + 0x68) & ~3;
++#ifdef CONFIG_SL351x_NAT
++ if (buf < toe->hwfq_buf_base_dma || buf > toe->hwfq_buf_end_dma)
++#endif
++ {
++ skb = (struct sk_buff *)(REG32(buf - SKB_RESERVE_BYTES));
++ printk("GMAC-0 free a loss SKB 0x%x\n", (u32)skb);
++ dev_kfree_skb(skb);
++ }
++ }
++ if ((hanged_state & GMAC1_RX_HANG_BIT) &&
++ (readl(TOE_GMAC1_DMA_BASE + 0xdc) & 0xf0))
++ {
++ struct sk_buff *skb;
++ unsigned int buf;
++ buf = readl(TOE_GMAC1_DMA_BASE + 0x68) & ~3;
++#ifdef CONFIG_SL351x_NAT
++ if (buf < toe->hwfq_buf_base_dma || buf > toe->hwfq_buf_end_dma)
++#endif
++ {
++ skb = (struct sk_buff *)(REG32(buf - SKB_RESERVE_BYTES));
++ printk("GMAC-1 free a loss SKB 0x%x\n", (u32)skb);
++ dev_kfree_skb(skb);
++ }
++ }
++#endif
++
++ sl351x_gmac_release_buffers();
++ sl351x_gmac_save_reg();
++ toe_gmac_sw_reset();
++ sl351x_gmac_restore_reg();
++
++ if (toe->gmac[0].default_qhdr->word1.bits32)
++ {
++ // printk("===> toe->gmac[0].default_qhdr->word1 = 0x%x\n", toe->gmac[0].default_qhdr->word1);
++ sl351x_gmac_release_rx_q();
++ writel(0, &toe->gmac[0].default_qhdr->word1);
++ }
++ if (toe->gmac[1].default_qhdr->word1.bits32)
++ {
++ // printk("===> toe->gmac[1].default_qhdr->word1 = 0x%x\n", toe->gmac[1].default_qhdr->word1);
++ sl351x_gmac_release_rx_q();
++ writel(0, &toe->gmac[1].default_qhdr->word1);
++ }
++
++ gmac_initialized = 1;
++
++#ifdef CONFIG_SL351x_NAT
++ writel(0, TOE_GLOBAL_BASE + 0x4084);
++#endif
++
++ for (i=0; i<GMAC_NUM; i++)
++ {
++ tp=(GMAC_INFO_T *)&toe->gmac[i];
++ if (tp->operation)
++ {
++ toe_gmac_enable_interrupt(tp->irq);
++ toe_gmac_hw_start(tp->dev);
++ toe_gmac_enable_tx_rx(tp->dev);
++ netif_wake_queue(tp->dev);
++ set_bit(__LINK_STATE_START, &tp->dev->state);
++ }
++ }
++
++ gmac_in_do_workaround = 0;
++ add_timer(&gmac_workround_timer_obj);
++}
++
++/*----------------------------------------------------------------------
++* get_free_desc_cnt
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static int get_free_desc_cnt(unsigned long rwptr, int total)
++{
++ unsigned short wptr = rwptr & 0xffff;
++ unsigned short rptr = rwptr >> 16;
++
++ if (wptr >= rptr)
++ return (total - wptr + rptr);
++ else
++ return (rptr - wptr);
++}
++#endif
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_buffers
++*----------------------------------------------------------------------*/
++static void sl351x_gmac_release_buffers(void)
++{
++ // Free buffers & Descriptors in all SW Tx Queues
++ sl351x_gmac_release_swtx_q();
++
++ // Free buffers in Default Rx Queues
++ sl351x_gmac_release_rx_q();
++
++#ifdef _TOEQ_CLASSQ_READY_
++ // Free buffers in Classification Queues
++ sl351x_gmac_release_class_q();
++
++ // Free buffers in TOE Queues
++ sl351x_gmac_release_toe_q();
++
++ // Free buffers in Interrupt Queues
++ sl351x_gmac_release_intr_q();
++#endif
++
++ // Free buffers & descriptors in SW free queue
++ sl351x_gmac_release_sw_free_q();
++
++ // Free buffers & descriptors in HW free queue
++ sl351x_gmac_release_hw_free_q();
++
++#ifdef CONFIG_SL351x_NAT
++ // Free buffers & descriptors in HW free queue
++ sl351x_gmac_release_hwtx_q();
++#endif
++}
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_swtx_q
++*----------------------------------------------------------------------*/
++static void sl351x_gmac_release_swtx_q(void)
++{
++ int i, j;
++ GMAC_TXDESC_T *curr_desc;
++ unsigned int desc_count;
++ TOE_INFO_T *toe;
++ GMAC_INFO_T *tp;
++ GMAC_SWTXQ_T *swtxq;
++ DMA_RWPTR_T rwptr;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ tp = (GMAC_INFO_T *)&toe->gmac[0];
++ for (i=0; i<GMAC_NUM; i++, tp++)
++ {
++ if (!tp->existed) continue;
++ swtxq = (GMAC_SWTXQ_T *)&tp->swtxq[0];
++ for (j=0; j<TOE_SW_TXQ_NUM; j++, swtxq++)
++ {
++ for (;;)
++ {
++ rwptr.bits32 = readl(swtxq->rwptr_reg);
++ if (rwptr.bits.rptr == swtxq->finished_idx)
++ break;
++ curr_desc = (GMAC_TXDESC_T *)swtxq->desc_base + swtxq->finished_idx;
++ // if (curr_desc->word0.bits.status_tx_ok)
++ {
++ desc_count = curr_desc->word0.bits.desc_count;
++ while (--desc_count)
++ {
++ curr_desc->word0.bits.status_tx_ok = 0;
++ swtxq->finished_idx = RWPTR_ADVANCE_ONE(swtxq->finished_idx, swtxq->total_desc_num);
++ curr_desc = (GMAC_TXDESC_T *)swtxq->desc_base + swtxq->finished_idx;
++ }
++
++ curr_desc->word0.bits.status_tx_ok = 0;
++ if (swtxq->tx_skb[swtxq->finished_idx])
++ {
++ dev_kfree_skb_irq(swtxq->tx_skb[swtxq->finished_idx]);
++ swtxq->tx_skb[swtxq->finished_idx] = NULL;
++ }
++ }
++ swtxq->finished_idx = RWPTR_ADVANCE_ONE(swtxq->finished_idx, swtxq->total_desc_num);
++ }
++ writel(0, swtxq->rwptr_reg);
++ swtxq->finished_idx = 0;
++ }
++ }
++
++}
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_rx_q
++*----------------------------------------------------------------------*/
++static void sl351x_gmac_release_rx_q(void)
++{
++ int i;
++ TOE_INFO_T *toe;
++ GMAC_INFO_T *tp;
++ DMA_RWPTR_T rwptr;
++ volatile GMAC_RXDESC_T *curr_desc;
++ struct sk_buff *skb;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ tp = (GMAC_INFO_T *)&toe->gmac[0];
++ for (i=0; i<GMAC_NUM; i++, tp++)
++ {
++ if (!tp->existed) continue;
++ rwptr.bits32 = readl(&tp->default_qhdr->word1);
++ while (rwptr.bits.rptr != rwptr.bits.wptr)
++ {
++ curr_desc = (GMAC_RXDESC_T *)tp->default_desc_base + rwptr.bits.rptr;
++ skb = (struct sk_buff *)(REG32(__va(curr_desc->word2.buf_adr) - SKB_RESERVE_BYTES));
++ dev_kfree_skb_irq(skb);
++ rwptr.bits.rptr = RWPTR_ADVANCE_ONE(rwptr.bits.rptr, tp->default_desc_num);
++ SET_RPTR(&tp->default_qhdr->word1, rwptr.bits.rptr);
++ rwptr.bits32 = readl(&tp->default_qhdr->word1);
++ } // while
++ writel(0, &tp->default_qhdr->word1);
++ tp->rx_rwptr.bits32 = 0;
++ } // for
++
++}
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_class_q
++*----------------------------------------------------------------------*/
++#ifdef _TOEQ_CLASSQ_READY_
++static void sl351x_gmac_release_class_q(void)
++{
++ int i;
++ TOE_INFO_T *toe;
++ CLASSQ_INFO_T *classq;
++ DMA_RWPTR_T rwptr;
++ volatile GMAC_RXDESC_T *curr_desc;
++ struct sk_buff *skb;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ classq = (CLASSQ_INFO_T *)&toe->classq[0];
++ for (i=0; i<TOE_CLASS_QUEUE_NUM; i++, classq++)
++ {
++ rwptr.bits32 = readl(&classq->qhdr->word1);
++ while (rwptr.bits.rptr != rwptr.bits.wptr)
++ {
++ curr_desc = (GMAC_RXDESC_T *)classq->desc_base + rwptr.bits.rptr;
++ skb = (struct sk_buff *)(REG32(__va(curr_desc->word2.buf_adr) - SKB_RESERVE_BYTES));
++ dev_kfree_skb_irq(skb);
++ rwptr.bits.rptr = RWPTR_ADVANCE_ONE(rwptr.bits.rptr, classq->desc_num);
++ SET_RPTR(&classq->qhdr->word1, rwptr.bits.rptr);
++ rwptr.bits32 = readl(&classq->qhdr->word1);
++ } // while
++ writel(0, &classq->qhdr->word1);
++ classq->rwptr.bits32 = 0;
++ } // for
++
++}
++#endif
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_toe_q
++*----------------------------------------------------------------------*/
++#ifdef _TOEQ_CLASSQ_READY_
++static void sl351x_gmac_release_toe_q(void)
++{
++ int i;
++ TOE_INFO_T *toe;
++ TOEQ_INFO_T *toeq_info;
++ TOE_QHDR_T *toe_qhdr;
++ DMA_RWPTR_T rwptr;
++ volatile GMAC_RXDESC_T *curr_desc;
++ unsigned int rptr, wptr;
++ GMAC_RXDESC_T *toe_curr_desc;
++ struct sk_buff *skb;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ toe_qhdr = (TOE_QHDR_T *)TOE_TOE_QUE_HDR_BASE;
++ for (i=0; i<TOE_TOE_QUEUE_NUM; i++, toe_qhdr++)
++ {
++ toeq_info = (TOEQ_INFO_T *)&toe->toeq[i];
++ wptr = toe_qhdr->word1.bits.wptr;
++ rptr = toe_qhdr->word1.bits.rptr;
++ while (rptr != wptr)
++ {
++ toe_curr_desc = (GMAC_RXDESC_T *)toeq_info->desc_base + rptr;
++ skb = (struct sk_buff *)(REG32(__va(toe_curr_desc->word2.buf_adr) - SKB_RESERVE_BYTES));
++ dev_kfree_skb_irq(skb);
++ rptr = RWPTR_ADVANCE_ONE(rptr, toeq_info->desc_num);
++ SET_RPTR(&toe_qhdr->word1.bits32, rptr);
++ wptr = toe_qhdr->word1.bits.wptr;
++ rptr = toe_qhdr->word1.bits.rptr;
++ }
++ toe_qhdr->word1.bits32 = 0;
++ toeq_info->rwptr.bits32 = 0;
++ }
++}
++#endif
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_intr_q
++*----------------------------------------------------------------------*/
++#ifdef _TOEQ_CLASSQ_READY_
++static void sl351x_gmac_release_intr_q(void)
++{
++}
++#endif
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_sw_free_q
++*----------------------------------------------------------------------*/
++static void sl351x_gmac_release_sw_free_q(void)
++{
++ TOE_INFO_T *toe;
++ volatile DMA_RWPTR_T fq_rwptr;
++ volatile GMAC_RXDESC_T *fq_desc;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++
++ while ((unsigned short)RWPTR_ADVANCE_ONE(fq_rwptr.bits.wptr, TOE_SW_FREEQ_DESC_NUM) != fq_rwptr.bits.rptr)
++ {
++ struct sk_buff *skb;
++ if ((skb = dev_alloc_skb(SW_RX_BUF_SIZE))==NULL) /* allocate socket buffer */
++ {
++ printk("%s::skb buffer allocation fail !\n",__func__); while(1);
++ }
++ // *(unsigned int *)(skb->data) = (unsigned int)skb;
++ REG32(skb->data) = (unsigned long)skb;
++ skb_reserve(skb, SKB_RESERVE_BYTES);
++
++ fq_rwptr.bits.wptr = RWPTR_ADVANCE_ONE(fq_rwptr.bits.wptr, TOE_SW_FREEQ_DESC_NUM);
++ fq_desc = (volatile GMAC_RXDESC_T *)toe->swfq_desc_base + fq_rwptr.bits.wptr;
++ fq_desc->word2.buf_adr = (unsigned int)__pa(skb->data);
++ SET_WPTR(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG, fq_rwptr.bits.wptr);
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ }
++
++ toe->fq_rx_rwptr.bits.wptr = TOE_SW_FREEQ_DESC_NUM - 1;
++ toe->fq_rx_rwptr.bits.rptr = 0;
++ writel(toe->fq_rx_rwptr.bits32, TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++
++}
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_hw_free_q
++*----------------------------------------------------------------------*/
++static void sl351x_gmac_release_hw_free_q(void)
++{
++ DMA_RWPTR_T rwptr_reg;
++
++#ifdef CONFIG_SL351x_NAT
++ int i;
++ TOE_INFO_T *toe;
++ GMAC_RXDESC_T *desc_ptr;
++ unsigned int buf_ptr;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++ desc_ptr = (GMAC_RXDESC_T *)toe->hwfq_desc_base;
++ buf_ptr = (unsigned int)toe->hwfq_buf_base_dma;
++ for (i=0; i<TOE_HW_FREEQ_DESC_NUM; i++)
++ {
++ desc_ptr->word0.bits.buffer_size = HW_RX_BUF_SIZE;
++ desc_ptr->word1.bits.sw_id = i;
++ desc_ptr->word2.buf_adr = (unsigned int)buf_ptr;
++ desc_ptr++;
++ buf_ptr += HW_RX_BUF_SIZE;
++ }
++#endif
++ rwptr_reg.bits.wptr = TOE_HW_FREEQ_DESC_NUM - 1;
++ rwptr_reg.bits.rptr = 0;
++ writel(rwptr_reg.bits32, TOE_GLOBAL_BASE + GLOBAL_HWFQ_RWPTR_REG);
++}
++
++/*----------------------------------------------------------------------
++* sl351x_gmac_release_hw_free_q
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static void sl351x_gmac_release_hwtx_q(void)
++{
++ int i;
++ unsigned int rwptr_addr;
++
++ rwptr_addr = TOE_GMAC0_DMA_BASE + GMAC_HW_TX_QUEUE0_PTR_REG;
++ for (i=0; i<TOE_HW_TXQ_NUM; i++)
++ {
++ writel(0, rwptr_addr);
++ rwptr_addr+=4;
++ }
++ rwptr_addr = TOE_GMAC1_DMA_BASE + GMAC_HW_TX_QUEUE0_PTR_REG;
++ for (i=0; i<TOE_HW_TXQ_NUM; i++)
++ {
++ writel(0, rwptr_addr);
++ rwptr_addr+=4;
++ }
++}
++#endif
++
++/*----------------------------------------------------------------------
++* sl351x_gmac_save_reg
++*----------------------------------------------------------------------*/
++void sl351x_gmac_save_reg(void)
++{
++ int i;
++ volatile u32 *destp;
++ unsigned int srce_addr;
++
++ srce_addr = TOE_GLOBAL_BASE;
++ destp = (volatile u32 *)toe_global_reg;
++ for (i=0; i<TOE_GLOBAL_REG_SIZE; i++, destp++, srce_addr+=4)
++ *destp = readl(srce_addr);
++
++ srce_addr = TOE_GMAC0_DMA_BASE;
++ destp = (volatile u32 *)&toe_dma_reg[0][0];
++ for (i=0; i<TOE_DMA_REG_SIZE; i++, destp++, srce_addr+=4)
++ {
++ if (srce_addr == (TOE_GMAC0_DMA_BASE+0x38))
++ srce_addr = (TOE_GMAC0_DMA_BASE+0x50);
++ if (srce_addr == (TOE_GMAC0_DMA_BASE+0x58))
++ srce_addr = (TOE_GMAC0_DMA_BASE+0x70);
++
++ *destp = readl(srce_addr);
++ }
++ srce_addr = TOE_GMAC1_DMA_BASE;
++ destp = (volatile u32 *)&toe_dma_reg[1][0];
++ for (i=0; i<TOE_DMA_REG_SIZE; i++, destp++, srce_addr+=4)
++ {
++ if (srce_addr == (TOE_GMAC0_DMA_BASE+0x38))
++ srce_addr = (TOE_GMAC0_DMA_BASE+0x50);
++ if (srce_addr == (TOE_GMAC0_DMA_BASE+0x58))
++ srce_addr = (TOE_GMAC0_DMA_BASE+0x70);
++
++ *destp = readl(srce_addr);
++ }
++
++ srce_addr = TOE_GMAC0_BASE;
++ destp = (volatile u32 *)&toe_gmac_reg[0][0];
++ for (i=0; i<TOE_GMAC_REG_SIZE; i++, destp++, srce_addr+=4)
++ *destp = readl(srce_addr);
++
++ srce_addr = TOE_GMAC1_BASE;
++ destp = (volatile u32 *)&toe_gmac_reg[1][0];
++ for (i=0; i<TOE_GMAC_REG_SIZE; i++, destp++, srce_addr+=4)
++ *destp = readl(srce_addr);
++}
++
++/*----------------------------------------------------------------------
++* sl351x_gmac_restore_reg
++*----------------------------------------------------------------------*/
++void sl351x_gmac_restore_reg(void)
++{
++ int i;
++ volatile u32 *srcep;
++ unsigned int dest_addr;
++
++ srcep = (volatile u32 *)&toe_dma_reg[0][0];
++ dest_addr = TOE_GMAC0_DMA_BASE;
++ for (i=0; i<TOE_DMA_REG_SIZE; i++, dest_addr+=4, srcep++)
++ {
++ if (dest_addr == (TOE_GMAC0_DMA_BASE+0x38))
++ dest_addr = (TOE_GMAC0_DMA_BASE+0x50);
++ if (dest_addr == (TOE_GMAC0_DMA_BASE+0x58))
++ dest_addr = (TOE_GMAC0_DMA_BASE+0x70);
++
++ writel(*srcep, dest_addr);
++ // gmac_write_reg(dest_addr, 0, *srcep, 0xffffffff);
++ }
++ srcep = (volatile u32 *)&toe_dma_reg[1][0];
++ dest_addr = TOE_GMAC1_DMA_BASE;
++ for (i=0; i<TOE_DMA_REG_SIZE; i++, dest_addr+=4, srcep++)
++ {
++ if (dest_addr == (TOE_GMAC0_DMA_BASE+0x38))
++ dest_addr = (TOE_GMAC0_DMA_BASE+0x50);
++ if (dest_addr == (TOE_GMAC0_DMA_BASE+0x58))
++ dest_addr = (TOE_GMAC0_DMA_BASE+0x70);
++
++ writel(*srcep, dest_addr);
++ // gmac_write_reg(dest_addr, 0, *srcep, 0xffffffff);
++ }
++
++ srcep = (volatile u32 *)&toe_gmac_reg[0][0];
++ dest_addr = TOE_GMAC0_BASE;
++ for (i=0; i<TOE_GMAC_REG_SIZE; i++, dest_addr+=4, srcep++)
++ writel(*srcep, dest_addr);
++
++ srcep = (volatile u32 *)&toe_gmac_reg[1][0];
++ dest_addr = TOE_GMAC1_BASE;
++ for (i=0; i<TOE_GMAC_REG_SIZE; i++, dest_addr+=4, srcep++)
++ writel(*srcep, dest_addr);
++
++ srcep = (volatile u32 *)toe_global_reg;
++ dest_addr = TOE_GLOBAL_BASE;
++ for (i=0; i<TOE_GLOBAL_REG_SIZE; i++, dest_addr+=4, srcep++)
++ writel(*srcep, dest_addr);
++
++}
++
++#ifdef CONFIG_SL351x_NAT
++/*----------------------------------------------------------------------
++* sl351x_nat_workaround_init
++*----------------------------------------------------------------------*/
++#define NAT_WORAROUND_DESC_POWER (6)
++#define NAT_WORAROUND_DESC_NUM (2 << NAT_WORAROUND_DESC_POWER)
++dma_addr_t sl351x_nat_workaround_desc_dma;
++void sl351x_nat_workaround_init(void)
++{
++ unsigned int desc_buf;
++
++ desc_buf = (unsigned int)DMA_MALLOC((NAT_WORAROUND_DESC_NUM * sizeof(GMAC_RXDESC_T)),
++ (dma_addr_t *)&sl351x_nat_workaround_desc_dma) ;
++ memset((void *)desc_buf, 0, NAT_WORAROUND_DESC_NUM * sizeof(GMAC_RXDESC_T));
++
++ // DMA Queue Base & Size
++ writel((sl351x_nat_workaround_desc_dma & DMA_Q_BASE_MASK) | NAT_WORAROUND_DESC_POWER,
++ TOE_GLOBAL_BASE + 0x4080);
++ writel(0, TOE_GLOBAL_BASE + 0x4084);
++}
++
++/*----------------------------------------------------------------------
++* sl351x_nat_workaround_handler
++*----------------------------------------------------------------------*/
++#ifndef NAT_WORKAROUND_BY_RESET_GMAC
++static void sl351x_nat_workaround_handler(void)
++{
++ int i;
++ DMA_RWPTR_T rwptr;
++ GMAC_RXDESC_T *desc_ptr;
++ unsigned int buf_ptr;
++ TOE_INFO_T *toe;
++ GMAC_CONFIG0_T config0;
++ unsigned int rwptr_addr;
++
++ toe = (TOE_INFO_T *)&toe_private_data;
++
++ // disable Rx of GMAC-0 & 1
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 1;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 1;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++
++ // wait GMAC-0 HW Tx finished
++ rwptr_addr = TOE_GMAC0_DMA_BASE + GMAC_HW_TX_QUEUE0_PTR_REG;
++ for (i=0; i<TOE_HW_TXQ_NUM; i++)
++ {
++ rwptr.bits32 = readl(rwptr_addr);
++ if (rwptr.bits.rptr != rwptr.bits.wptr)
++ return; // wait the HW to send packets and release buffers
++ rwptr_addr+=4;
++ }
++ rwptr_addr = TOE_GMAC1_DMA_BASE + GMAC_HW_TX_QUEUE0_PTR_REG;
++ for (i=0; i<TOE_HW_TXQ_NUM; i++)
++ {
++ rwptr.bits32 = readl(rwptr_addr);
++ if (rwptr.bits.rptr != rwptr.bits.wptr)
++ return; // wait the HW to send packets and release buffers
++ rwptr_addr+=4;
++ }
++
++ // printk("sl351x_nat_workaround_handler %d\n", sl351x_nat_workaround_cnt);
++ desc_ptr = (GMAC_RXDESC_T *)toe->hwfq_desc_base;
++ buf_ptr = (unsigned int)toe->hwfq_buf_base_dma;
++ for (i=0; i<TOE_HW_FREEQ_DESC_NUM; i++)
++ {
++ desc_ptr->word0.bits.buffer_size = HW_RX_BUF_SIZE;
++ desc_ptr->word1.bits.sw_id = i;
++ desc_ptr->word2.buf_adr = (unsigned int)buf_ptr;
++ desc_ptr++;
++ buf_ptr += HW_RX_BUF_SIZE;
++ }
++ rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_HWFQ_RWPTR_REG);
++ rwptr.bits.wptr = RWPTR_RECEDE_ONE(rwptr.bits.rptr, TOE_HW_FREEQ_DESC_NUM);
++ writel(rwptr.bits32, TOE_GLOBAL_BASE + GLOBAL_HWFQ_RWPTR_REG);
++ writel(0, TOE_GLOBAL_BASE + 0x4084);
++
++ // Enable Rx of GMAC-0 & 1
++ config0.bits32 = readl(TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC0_BASE+GMAC_CONFIG0);
++ config0.bits32 = readl(TOE_GMAC1_BASE+GMAC_CONFIG0);
++ config0.bits.dis_rx = 0;
++ writel(config0.bits32, TOE_GMAC1_BASE+GMAC_CONFIG0);
++}
++#endif
++#endif // CONFIG_SL351x_NAT
++
++#endif // SL351x_GMAC_WORKAROUND
++
++/* get the mac addresses from flash
++ *can't do this in module_init because mtd driver is initialized after ethernet
++ */
++static __init int sl351x_mac_address_init(void)
++{
++ GMAC_INFO_T *tp;
++ struct sockaddr sock;
++ int i;
++
++ /* get mac address from FLASH */
++ gmac_get_mac_address();
++
++ for (i = 0; i < GMAC_NUM; i++) {
++ tp = (GMAC_INFO_T *)&toe_private_data.gmac[i];
++ memcpy(&sock.sa_data[0],&eth_mac[tp->port_id][0],6);
++ gmac_set_mac_address(tp->dev,(void *)&sock);
++ }
++
++ return 0;
++}
++late_initcall(sl351x_mac_address_init);
++
++
+--- /dev/null
++++ b/drivers/net/sl351x_hash.c
+@@ -0,0 +1,713 @@
++/**************************************************************************
++* Copyright 2006 StorLink Semiconductors, Inc. All rights reserved.
++*--------------------------------------------------------------------------
++* Name : sl351x_hash.c
++* Description :
++* Handle Storlink SL351x Hash Functions
++*
++* History
++*
++* Date Writer Description
++*----------------------------------------------------------------------------
++* 03/13/2006 Gary Chen Create and implement
++*
++****************************************************************************/
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/compiler.h>
++#include <linux/pci.h>
++#include <linux/init.h>
++#include <linux/ioport.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/rtnetlink.h>
++#include <linux/delay.h>
++#include <linux/ethtool.h>
++#include <linux/mii.h>
++#include <linux/completion.h>
++#include <asm/hardware.h>
++#include <asm/io.h>
++#include <asm/irq.h>
++#include <asm/semaphore.h>
++#include <asm/arch/irqs.h>
++#include <asm/arch/it8712.h>
++#include <linux/mtd/kvctl.h>
++#include <linux/skbuff.h>
++#include <linux/in.h>
++#include <linux/ip.h>
++#include <linux/tcp.h>
++#include <linux/list.h>
++#define MIDWAY
++#define SL_LEPUS
++
++#include <asm/arch/sl2312.h>
++#include <asm/arch/sl351x_gmac.h>
++#include <asm/arch/sl351x_hash_cfg.h>
++
++#ifndef RXTOE_DEBUG
++#define RXTOE_DEBUG
++#endif
++#undef RXTOE_DEBUG
++
++/*----------------------------------------------------------------------
++* Definition
++*----------------------------------------------------------------------*/
++#define hash_printf printk
++
++#define HASH_TIMER_PERIOD (30) // seconds
++#define HASH_ILLEGAL_INDEX 0xffff
++
++/*----------------------------------------------------------------------
++* Variables
++*----------------------------------------------------------------------*/
++u32 hash_nat_owner_bits[HASH_TOTAL_ENTRIES/32];
++char hash_tables[HASH_TOTAL_ENTRIES][HASH_MAX_BYTES] __attribute__ ((aligned(16)));
++static struct timer_list hash_timer_obj;
++LIST_HEAD(hash_timeout_list);
++
++/*----------------------------------------------------------------------
++* Functions
++*----------------------------------------------------------------------*/
++void dm_long(u32 location, int length);
++static void hash_timer_func(u32 data);
++
++/*----------------------------------------------------------------------
++* hash_init
++*----------------------------------------------------------------------*/
++void sl351x_hash_init(void)
++{
++ int i;
++ volatile u32 *dp1, *dp2, dword;
++
++ dp1 = (volatile u32 *) TOE_V_BIT_BASE;
++ dp2 = (volatile u32 *) TOE_A_BIT_BASE;
++
++ for (i=0; i<HASH_TOTAL_ENTRIES/32; i++)
++ {
++ *dp1++ = 0;
++ dword = *dp2++; // read-clear
++ }
++ memset((void *)&hash_nat_owner_bits, 0, sizeof(hash_nat_owner_bits));
++ memset((void *)&hash_tables, 0, sizeof(hash_tables));
++
++ init_timer(&hash_timer_obj);
++ hash_timer_obj.expires = jiffies + (HASH_TIMER_PERIOD * HZ);
++ hash_timer_obj.data = (unsigned long)&hash_timer_obj;
++ hash_timer_obj.function = (void *)&hash_timer_func;
++ add_timer(&hash_timer_obj);
++
++#if (HASH_MAX_BYTES == 128)
++ writel((unsigned long)__pa(&hash_tables) | 3, // 32 words
++ TOE_GLOBAL_BASE + GLOBAL_HASH_TABLE_BASE_REG);
++#elif (HASH_MAX_BYTES == 64)
++ writel((unsigned long)__pa(&hash_tables) | 2, // 16 words
++ TOE_GLOBAL_BASE + GLOBAL_HASH_TABLE_BASE_REG);
++#else
++ #error Incorrect setting for HASH_MAX_BYTES
++#endif
++
++}
++/*----------------------------------------------------------------------
++* hash_add_entry
++*----------------------------------------------------------------------*/
++int hash_add_entry(HASH_ENTRY_T *entry)
++{
++ int rc;
++ u32 key[HASH_MAX_DWORDS];
++ rc = hash_build_keys((u32 *)&key, entry);
++ if (rc < 0)
++ return -1;
++ hash_write_entry(entry, (unsigned char*) &key[0]);
++// hash_set_valid_flag(entry->index, 1);
++// printk("Dump hash key!\n");
++// dump_hash_key(entry);
++ return entry->index;
++}
++
++/*----------------------------------------------------------------------
++* hash_set_valid_flag
++*----------------------------------------------------------------------*/
++void hash_set_valid_flag(int index, int valid)
++{
++ register u32 reg32;
++
++ reg32 = TOE_V_BIT_BASE + (index/32) * 4;
++
++ if (valid)
++ {
++ writel(readl(reg32) | (1 << (index%32)), reg32);
++ }
++ else
++ {
++ writel(readl(reg32) & ~(1 << (index%32)), reg32);
++ }
++}
++
++/*----------------------------------------------------------------------
++* hash_set_nat_owner_flag
++*----------------------------------------------------------------------*/
++void hash_set_nat_owner_flag(int index, int valid)
++{
++ if (valid)
++ {
++ hash_nat_owner_bits[index/32] |= (1 << (index % 32));
++ }
++ else
++ {
++ hash_nat_owner_bits[index/32] &= ~(1 << (index % 32));
++ }
++}
++
++
++/*----------------------------------------------------------------------
++* hash_build_keys
++*----------------------------------------------------------------------*/
++int hash_build_keys(u32 *destp, HASH_ENTRY_T *entry)
++{
++ u32 data;
++ unsigned char *cp;
++ int i, j;
++ unsigned short index;
++ int total;
++
++ memset((void *)destp, 0, HASH_MAX_BYTES);
++ cp = (unsigned char *)destp;
++
++ if (entry->key_present.port || entry->key_present.Ethertype)
++ {
++ HASH_PUSH_WORD(cp, entry->key.Ethertype); // word 0
++ HASH_PUSH_BYTE(cp, entry->key.port); // Byte 2
++ HASH_PUSH_BYTE(cp, 0); // Byte 3
++ }
++ else
++ {
++ HASH_PUSH_DWORD(cp, 0);
++ }
++
++ if (entry->key_present.da || entry->key_present.sa)
++ {
++ unsigned char mac[4];
++ if (entry->key_present.da)
++ {
++ for (i=0; i<4; i++)
++ HASH_PUSH_BYTE(cp, entry->key.da[i]);
++ }
++ mac[0] = (entry->key_present.da) ? entry->key.da[4] : 0;
++ mac[1] = (entry->key_present.da) ? entry->key.da[5] : 0;
++ mac[2] = (entry->key_present.sa) ? entry->key.sa[0] : 0;
++ mac[3] = (entry->key_present.sa) ? entry->key.sa[1] : 0;
++ data = mac[0] + (mac[1]<<8) + (mac[2]<<16) + (mac[3]<<24);
++ HASH_PUSH_DWORD(cp, data);
++ if (entry->key_present.sa)
++ {
++ for (i=2; i<6; i++)
++ HASH_PUSH_BYTE(cp, entry->key.sa[i]);
++ }
++ }
++
++ if (entry->key_present.pppoe_sid || entry->key_present.vlan_id)
++ {
++ HASH_PUSH_WORD(cp, entry->key.vlan_id); // low word
++ HASH_PUSH_WORD(cp, entry->key.pppoe_sid); // high word
++ }
++ if (entry->key_present.ipv4_hdrlen || entry->key_present.ip_tos || entry->key_present.ip_protocol)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.ip_protocol); // Byte 0
++ HASH_PUSH_BYTE(cp, entry->key.ip_tos); // Byte 1
++ HASH_PUSH_BYTE(cp, entry->key.ipv4_hdrlen); // Byte 2
++ HASH_PUSH_BYTE(cp, 0); // Byte 3
++ }
++
++ if (entry->key_present.ipv6_flow_label)
++ {
++ HASH_PUSH_DWORD(cp, entry->key.ipv6_flow_label); // low word
++ }
++ if (entry->key_present.sip)
++ {
++ // input (entry->key.sip[i]) is network-oriented
++ // output (hash key) is host-oriented
++ for (i=3; i>=0; i--)
++ HASH_PUSH_BYTE(cp, entry->key.sip[i]);
++ if (entry->key.ipv6)
++ {
++ for (i=4; i<16; i+=4)
++ {
++ for (j=i+3; j>=i; j--)
++ HASH_PUSH_BYTE(cp, entry->key.sip[j]);
++ }
++ }
++ }
++ if (entry->key_present.dip)
++ {
++ // input (entry->key.sip[i]) is network-oriented
++ // output (hash key) is host-oriented
++ for (i=3; i>=0; i--)
++ HASH_PUSH_BYTE(cp, entry->key.dip[i]);
++ if (entry->key.ipv6)
++ {
++ for (i=4; i<16; i+=4)
++ {
++ for (j=i+3; j>=i; j--)
++ HASH_PUSH_BYTE(cp, entry->key.dip[j]);
++ }
++ }
++ }
++
++ if (entry->key_present.l4_bytes_0_3)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[0]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[1]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[2]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[3]);
++ }
++ if (entry->key_present.l4_bytes_4_7)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[4]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[5]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[6]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[7]);
++ }
++ if (entry->key_present.l4_bytes_8_11)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[8]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[9]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[10]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[11]);
++ }
++ if (entry->key_present.l4_bytes_12_15)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[12]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[13]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[14]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[15]);
++ }
++ if (entry->key_present.l4_bytes_16_19)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[16]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[17]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[18]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[19]);
++ }
++ if (entry->key_present.l4_bytes_20_23)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[20]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[21]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[22]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[23]);
++ }
++ if (entry->key_present.l7_bytes_0_3)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[0]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[1]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[2]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[3]);
++ }
++ if (entry->key_present.l7_bytes_4_7)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[4]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[5]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[6]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[7]);
++ }
++ if (entry->key_present.l7_bytes_8_11)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[8]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[9]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[10]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[11]);
++ }
++ if (entry->key_present.l7_bytes_12_15)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[12]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[13]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[14]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[15]);
++ }
++ if (entry->key_present.l7_bytes_16_19)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[16]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[17]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[18]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[19]);
++ }
++ if (entry->key_present.l7_bytes_20_23)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[20]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[21]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[22]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[23]);
++ }
++
++ // get hash index
++ total = (u32)((u32)cp - (u32)destp) / (sizeof(u32));
++
++ if (total > HASH_MAX_KEY_DWORD)
++ {
++ //hash_printf("Total key words (%d) is too large (> %d)!\n",
++ // total, HASH_MAX_KEY_DWORD);
++ return -1;
++ }
++
++ if (entry->key_present.port || entry->key_present.Ethertype)
++ index = hash_gen_crc16((unsigned char *)destp, total * 4);
++ else
++ {
++ if (total == 1)
++ {
++ hash_printf("No key is assigned!\n");
++ return -1;
++ }
++
++ index = hash_gen_crc16((unsigned char *)(destp+1), (total-1) * 4);
++ }
++
++ entry->index = index & HASH_BITS_MASK;
++
++ //hash_printf("Total key words = %d, Hash Index= %d\n",
++ // total, entry->index);
++
++ cp = (unsigned char *)destp;
++ cp+=3;
++ HASH_PUSH_BYTE(cp, entry->rule); // rule
++
++ entry->total_dwords = total;
++
++ return total;
++}
++
++/*----------------------------------------------------------------------
++* hash_build_nat_keys
++*----------------------------------------------------------------------*/
++void hash_build_nat_keys(u32 *destp, HASH_ENTRY_T *entry)
++{
++ unsigned char *cp;
++ int i;
++ unsigned short index;
++ int total;
++
++ memset((void *)destp, 0, HASH_MAX_BYTES);
++
++ cp = (unsigned char *)destp + 2;
++ HASH_PUSH_BYTE(cp, entry->key.port);
++ cp++;
++
++ if (entry->key_present.pppoe_sid || entry->key_present.vlan_id)
++ {
++ HASH_PUSH_WORD(cp, entry->key.vlan_id); // low word
++ HASH_PUSH_WORD(cp, entry->key.pppoe_sid); // high word
++ }
++
++ HASH_PUSH_BYTE(cp, entry->key.ip_protocol);
++ cp+=3;
++
++ // input (entry->key.sip[i]) is network-oriented
++ // output (hash key) is host-oriented
++ for (i=3; i>=0; i--)
++ HASH_PUSH_BYTE(cp, entry->key.sip[i]);
++
++ // input (entry->key.sip[i]) is network-oriented
++ // output (hash key) is host-oriented
++ for (i=3; i>=0; i--)
++ HASH_PUSH_BYTE(cp, entry->key.dip[i]);
++
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[0]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[1]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[2]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[3]);
++
++ // get hash index
++ total = (u32)((u32)cp - (u32)destp) / (sizeof(u32));
++
++ index = hash_gen_crc16((unsigned char *)destp, total * 4);
++ entry->index = index & ((1 << HASH_BITS) - 1);
++
++ cp = (unsigned char *)destp;
++ cp+=3;
++ HASH_PUSH_BYTE(cp, entry->rule); // rule
++
++ entry->total_dwords = total;
++}
++
++/*----------------------------------------------------------------------
++* hash_build_toe_keys
++*----------------------------------------------------------------------*/
++int hash_build_toe_keys(u32 *destp, HASH_ENTRY_T *entry)
++{
++ unsigned long data;
++ unsigned char *cp;
++ unsigned short index;
++ int i;
++ int total;
++ //printk("%s\n", __func__);
++ memset((void*)destp, 0, HASH_MAX_BYTES);
++ cp = (unsigned char*)destp;
++
++ if(entry->key_present.port || entry->key_present.Ethertype) {
++ data = (entry->key.port << 16) + entry->key.Ethertype;
++ HASH_PUSH_DWORD(cp, data);
++ } else
++ HASH_PUSH_DWORD(cp, 0);
++
++ if (entry->key_present.da || entry->key_present.sa) {
++ unsigned char mac[4];
++ if (entry->key_present.da) {
++ data = (entry->key.da[0]) + (entry->key.da[1] << 8) +
++ (entry->key.da[2] << 16) + (entry->key.da[3] <<24);
++ HASH_PUSH_DWORD(cp, data);
++ }
++ mac[0] = (entry->key_present.da) ? entry->key.da[4] : 0;
++ mac[1] = (entry->key_present.da) ? entry->key.da[5] : 0;
++ mac[2] = (entry->key_present.sa) ? entry->key.sa[0] : 0;
++ mac[3] = (entry->key_present.sa) ? entry->key.sa[1] : 0;
++ data = mac[0] + (mac[1]<<8) + (mac[2]<<16) + (mac[3]<<24);
++ HASH_PUSH_DWORD(cp, data);
++ if (entry->key_present.sa) {
++ data = (entry->key.sa[2]) + (entry->key.sa[3] << 8) +
++ (entry->key.sa[4] << 16) + (entry->key.sa[5] <<24);
++ HASH_PUSH_DWORD(cp, data);
++ }
++ }
++
++ if (entry->key_present.ip_protocol) {
++ unsigned char ip_protocol;
++ ip_protocol = entry->key.ip_protocol;
++ data = ip_protocol;
++ HASH_PUSH_DWORD(cp, data);
++ }
++
++ if (entry->key_present.ipv6_flow_label) {
++ unsigned long flow_label;
++ flow_label = entry->key.ipv6_flow_label;
++ data = flow_label & 0xfffff;
++ HASH_PUSH_DWORD(cp, data);
++ }
++
++ if (entry->key_present.sip) {
++ {
++ data = IPIV(entry->key.sip[0], entry->key.sip[1],
++ entry->key.sip[2], entry->key.sip[3]);
++ HASH_PUSH_DWORD(cp, data);
++ if (entry->key.ipv6) {
++ for (i=4; i<16; i+=4) {
++ data = IPIV(entry->key.sip[i+0], entry->key.sip[i+1],
++ entry->key.sip[i+2], entry->key.sip[i+3]);
++ HASH_PUSH_DWORD(cp, data);
++ }
++ }
++ }
++ }
++
++ if (entry->key_present.dip) {
++ {
++ data = IPIV(entry->key.dip[0], entry->key.dip[1],
++ entry->key.dip[2], entry->key.dip[3]);
++ HASH_PUSH_DWORD(cp, data);
++ if (entry->key.ipv6) {
++ for (i=4; i<16; i+=4) {
++ data = IPIV(entry->key.dip[i+0], entry->key.dip[i+1],
++ entry->key.dip[i+2], entry->key.dip[i+3]);
++ HASH_PUSH_DWORD(cp, data);
++ }
++ }
++ }
++ }
++ if (entry->key_present.l4_bytes_0_3)
++ {
++ unsigned char *datap;
++ datap = &entry->key.l4_bytes[0];
++ data = datap[0] + (datap[1] << 8) + (datap[2] << 16) + (datap[3] << 24);
++ HASH_PUSH_DWORD(cp, data);
++ }
++ if (entry->key_present.l7_bytes_0_3)
++ {
++ unsigned char *datap;
++ datap = &entry->key.l7_bytes[0];
++ data = datap[0] + (datap[1] << 8) + (datap[2] << 16) + (datap[3] << 24);
++ HASH_PUSH_DWORD(cp, data);
++ }
++ if (entry->key_present.l7_bytes_4_7)
++ {
++ unsigned char *datap;
++ datap = &entry->key.l7_bytes[4];
++ data = datap[0] + (datap[1] << 8) + (datap[2] << 16) + (datap[3] << 24);
++ HASH_PUSH_DWORD(cp, data);
++ }
++
++ total = (unsigned long)((unsigned long)cp - (unsigned long)destp) / (sizeof(u32));
++ if (total > HASH_MAX_KEY_DWORD) {
++ //printf("Total key words (%d) is too large (> %d)!\n",
++ // total, HASH_MAX_KEY_DWORD);
++ return -1;
++ }
++ index = hash_gen_crc16((unsigned char*)(destp + 1), (total-1)*4);
++ entry->index = index & ((1 << HASH_BITS)-1);
++
++ cp = (unsigned char*) destp;
++ cp += 3;
++ HASH_PUSH_BYTE(cp, entry->rule);
++ entry->total_dwords = total;
++ return total;
++}
++
++/*----------------------------------------------------------------------
++* hash_add_toe_entry
++*----------------------------------------------------------------------*/
++int hash_add_toe_entry(HASH_ENTRY_T *entry)
++{
++ int rc;
++ u32 key[HASH_MAX_DWORDS];
++
++ rc = hash_build_toe_keys((u32 *)&key, entry);
++ if (rc < 0)
++ return -1;
++ hash_write_entry(entry, (unsigned char*) &key[0]);
++ //hash_dump_entry(entry->index);
++// hash_set_valid_flag(entry->index, 1);
++// printk("Dump hash key!\n");
++// dump_hash_key(entry);
++ return entry->index;
++}
++
++
++/*----------------------------------------------------------------------
++* hash_write_entry
++*----------------------------------------------------------------------*/
++int hash_write_entry(HASH_ENTRY_T *entry, unsigned char *key)
++{
++ int i;
++ u32 *srcep, *destp, *destp2;
++
++ srcep = (u32 *)key;
++ destp2 = destp = (u32 *)&hash_tables[entry->index][0];
++
++ for (i=0; i<(entry->total_dwords); i++, srcep++, destp++)
++ *destp = *srcep;
++
++ srcep = (u32 *)&entry->action;
++ *destp++ = *srcep;
++
++ srcep = (u32 *)&entry->param;
++ for (i=0; i<(sizeof(ENTRY_PARAM_T)/sizeof(*destp)); i++, srcep++, destp++)
++ *destp = *srcep;
++
++ memset(destp, 0, (HASH_MAX_DWORDS-entry->total_dwords-HASH_ACTION_DWORDS) * sizeof(u32));
++
++ consistent_sync(destp2, (entry->total_dwords+HASH_ACTION_DWORDS) * 4, PCI_DMA_TODEVICE);
++ return 0;
++}
++
++/*----------------------------------------------------------------------
++* hash_timer_func
++*----------------------------------------------------------------------*/
++static void hash_timer_func(u32 data)
++{
++ int i, j, idx;
++ volatile u32 *own_p, *valid_p;
++ u32 own_bits, a_bits;
++ int period = HASH_TIMER_PERIOD;
++
++ valid_p = (volatile u32 *)TOE_V_BIT_BASE;
++ own_p = (volatile u32 *)hash_nat_owner_bits;
++ for (i=0, idx=0; i<(HASH_TOTAL_ENTRIES/32); i++, own_p++, valid_p++, idx+=32)
++ {
++ a_bits = readl(TOE_A_BIT_BASE + (i*4));
++ own_bits = *own_p;
++ if (own_bits)
++ {
++ for (j=0; own_bits && j<32; j++)
++ {
++ if (own_bits & 1)
++ {
++ short *counter_p, *interval_p;
++ NAT_HASH_ENTRY_T *nat_entry;
++ GRE_HASH_ENTRY_T *gre_entry;
++ nat_entry = (NAT_HASH_ENTRY_T *)hash_get_entry(idx+j);
++ gre_entry = (GRE_HASH_ENTRY_T *)nat_entry;
++ if (nat_entry->key.ip_protocol == IPPROTO_GRE)
++ {
++ counter_p = (short *)&gre_entry->tmo.counter;
++ interval_p = (short *)&gre_entry->tmo.interval;
++ }
++ else
++ {
++ counter_p = (short *)&nat_entry->tmo.counter;
++ interval_p = (short *)&nat_entry->tmo.interval;
++ }
++ if (a_bits & 1)
++ {
++ *counter_p = *interval_p;
++ }
++ else
++ {
++ *counter_p -= HASH_TIMER_PERIOD;
++ if (*counter_p <= 0)
++ {
++ *valid_p &= ~(1 << j); // invalidate it
++ *own_p &= ~(1 << j); // release ownership for NAT
++ *counter_p = 0;
++ // hash_printf("%lu %s: Clear hash index: %d\n", jiffies/HZ, __func__, i*32+j);
++ }
++ else if (period > *counter_p)
++ {
++ period = *counter_p;
++ }
++ }
++ }
++ a_bits >>= 1;
++ own_bits >>=1;
++ }
++ }
++ }
++
++ hash_timer_obj.expires = jiffies + (period * HZ);
++ add_timer((struct timer_list *)data);
++}
++
++/*----------------------------------------------------------------------
++* dm_long
++*----------------------------------------------------------------------*/
++void dm_long(u32 location, int length)
++{
++ u32 *start_p, *curr_p, *end_p;
++ u32 *datap, data;
++ int i;
++
++ //if (length > 1024)
++ // length = 1024;
++
++ start_p = (u32 *)location;
++ end_p = (u32 *)location + length;
++ curr_p = (u32 *)((u32)location & 0xfffffff0);
++ datap = (u32 *)location;
++ while (curr_p < end_p)
++ {
++ hash_printf("0x%08x: ",(u32)curr_p & 0xfffffff0);
++ for (i=0; i<4; i++)
++ {
++ if (curr_p < start_p || curr_p >= end_p)
++ hash_printf(" ");
++ else
++ {
++ data = *datap;
++ hash_printf("%08X ", data);
++ }
++ if (i==1)
++ hash_printf("- ");
++
++ curr_p++;
++ datap++;
++ }
++ hash_printf("\n");
++ }
++}
++
++/*----------------------------------------------------------------------
++* hash_dump_entry
++*----------------------------------------------------------------------*/
++void hash_dump_entry(int index)
++{
++ hash_printf("Hash Index %d:\n", index);
++ dm_long((u32)&hash_tables[index][0], HASH_MAX_DWORDS);
++}
++
++
+--- /dev/null
++++ b/drivers/net/sl351x_nat.c
+@@ -0,0 +1,1736 @@
++/****************************************************************************
++* Copyright 2006 StorLink Semiconductors, Inc. All rights reserved.
++*----------------------------------------------------------------------------
++* Name : sl351x_nat.c
++* Description :
++* Handle Storlink SL351x NAT Functions
++*
++*
++* Packet Flow:
++*
++* (xmit)+<--- SW NAT -->+(xmit)
++* | ^^ |
++* | || |
++* | || |
++* Client <---> GMAC-x HW-NAT GMAC-y <---> Server
++*
++*
++* History
++*
++* Date Writer Description
++*----------------------------------------------------------------------------
++* 03/13/2006 Gary Chen Create and implement
++*
++*
++****************************************************************************/
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/compiler.h>
++#include <linux/pci.h>
++#include <linux/init.h>
++#include <linux/ioport.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/rtnetlink.h>
++#include <linux/delay.h>
++#include <linux/ethtool.h>
++#include <linux/mii.h>
++#include <linux/completion.h>
++#include <asm/hardware.h>
++#include <asm/io.h>
++#include <asm/irq.h>
++#include <asm/semaphore.h>
++#include <asm/arch/irqs.h>
++#include <asm/arch/it8712.h>
++#include <linux/mtd/kvctl.h>
++#include <linux/skbuff.h>
++#include <linux/if_ether.h>
++#include <linux/if_pppox.h>
++#include <linux/in.h>
++#include <linux/ip.h>
++#include <linux/tcp.h>
++#include <linux/udp.h>
++#include <linux/ppp_defs.h>
++
++#define MIDWAY
++#define SL_LEPUS
++
++#include <asm/arch/sl2312.h>
++#include <asm/arch/sl351x_gmac.h>
++#include <asm/arch/sl351x_hash_cfg.h>
++#include <asm/arch/sl351x_nat_cfg.h>
++#ifdef CONFIG_NETFILTER
++// #include <linux/netfilter/nf_conntrack.h>
++#include <linux/netfilter/nf_conntrack_tcp.h>
++#endif
++
++//#define NAT_DEBUG_MSG 1
++#define _NOT_CHECK_SIP_DIP
++//#define SL351x_NAT_TEST_BY_SMARTBITS 1 // Initialize 32 hash entries and test by SmartBITS
++#define VITESSE_G5SWITCH 1
++
++#ifdef CONFIG_SL351x_NAT
++
++/*----------------------------------------------------------------------
++* Definition
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL3516_ASIC
++#define CONFIG_SL351x_NAT_TCP_UDP
++#define CONFIG_SL351x_NAT_GRE
++#define CONFIG_SL351x_TCP_UDP_RULE_ID 0
++#define CONFIG_SL351x_GRE_RULE_ID 1
++#else
++#define CONFIG_SL351x_NAT_TCP_UDP
++//#define CONFIG_SL351x_NAT_GRE
++#define CONFIG_SL351x_TCP_UDP_RULE_ID 0
++#define CONFIG_SL351x_GRE_RULE_ID 0
++#endif
++
++#define nat_printf printk
++#define NAT_FTP_CTRL_PORT (21) // TCP
++#define NAT_H323_PORT (1720) // TCP
++#define NAT_T120_PORT (1503) // TCP
++#define NAT_PPTP_PORT (1723) // TCP
++#define NAT_TFTP_PORT (69) // UDP
++#define NAT_DNS_PORT (53) // UDP
++#define NAT_NTP_PORT (123) // UDP
++#define NAT_RAS_PORT (1719) // UDP
++#define NAT_BOOTP67_PORT (67) // UDP
++#define NAT_BOOTP68_PORT (68) // UDP
++
++#define NAT_TCP_PORT_MAX 64
++#define NAT_UDP_PORT_MAX 64
++
++#define GRE_PROTOCOL (0x880b)
++#define GRE_PROTOCOL_SWAP __constant_htons(0x880b)
++
++#ifdef VITESSE_G5SWITCH
++extern int Giga_switch;
++#endif
++
++typedef struct
++{
++ u16 flags_ver;
++ u16 protocol;
++ u16 payload_length;
++ u16 call_id;
++ u32 seq;
++ u32 ack;
++} GRE_PKTHDR_T;
++
++/*----------------------------------------------------------------------
++* NAT Configuration
++*
++* Note: Any change for network setting, the NAT configuration should
++* be changed also.
++* cfg->lan_port 0 if GMAC-0, 1: if GMAC-1
++* cfg->wan_port 0 if GMAC-0, 1: if GMAC-1
++* cfg->lan_ipaddr, cfg->lan_gateway, cfg->lan_netmask
++* cfg->wan_ipaddr, cfg->wan_gateway, cfg->wan_netmask
++*
++*----------------------------------------------------------------------*/
++NAT_CFG_T nat_cfg;
++static int nat_initialized;
++u32 nat_collision;
++
++#ifdef CONFIG_SL351x_NAT_TCP_UDP
++static u16 fixed_tcp_port_list[]={NAT_FTP_CTRL_PORT,
++ NAT_H323_PORT,
++ // NAT_T120_PORT,
++ NAT_PPTP_PORT,
++ 0};
++static u16 fixed_udp_port_list[]={NAT_DNS_PORT,
++ NAT_NTP_PORT,
++ NAT_TFTP_PORT,
++ NAT_RAS_PORT,
++ NAT_BOOTP67_PORT,
++ NAT_BOOTP68_PORT,
++ 0};
++#endif
++
++// #define _HAVE_DYNAMIC_PORT_LIST
++#ifdef _HAVE_DYNAMIC_PORT_LIST
++static u16 dynamic_tcp_port_list[NAT_TCP_PORT_MAX+1];
++static u16 dynamic_udp_port_list[NAT_UDP_PORT_MAX+1]};
++#endif
++
++/*----------------------------------------------------------------------
++* Functions
++*----------------------------------------------------------------------*/
++int sl351x_nat_tcp_udp_output(struct sk_buff *skb, int port);
++int sl351x_nat_udp_output(struct sk_buff *skb, int port);
++int sl351x_nat_gre_output(struct sk_buff *skb, int port);
++
++extern int mac_set_rule_reg(int mac, int rule, int enabled, u32 reg0, u32 reg1, u32 reg2);
++extern void hash_dump_entry(int index);
++extern void mac_get_hw_tx_weight(struct net_device *dev, char *weight);
++extern void mac_set_hw_tx_weight(struct net_device *dev, char *weight);
++
++#ifdef SL351x_NAT_TEST_BY_SMARTBITS
++static void nat_init_test_entry(void);
++#endif
++/*----------------------------------------------------------------------
++* sl351x_nat_init
++* initialize a NAT matching rule
++* Called by SL351x Driver
++* key : port, protocol, Sip, Dip, Sport, Dport
++* Action : Srce Q: HW Free Queue,
++* Dest Q: HW TxQ
++* Change DA
++* Change SA
++* Change Sip or Dip
++* Change Sport or Dport
++*----------------------------------------------------------------------*/
++void sl351x_nat_init(void)
++{
++ int rc;
++ GMAC_MRxCR0_T mrxcr0;
++ GMAC_MRxCR1_T mrxcr1;
++ GMAC_MRxCR2_T mrxcr2;
++ NAT_CFG_T *cfg;
++
++ if (nat_initialized)
++ return;
++
++ nat_initialized = 1;
++
++ if ((sizeof(NAT_HASH_ENTRY_T) > HASH_MAX_BYTES) ||
++ (sizeof(GRE_HASH_ENTRY_T) > HASH_MAX_BYTES))
++ {
++ nat_printf("NAT_HASH_ENTRY_T structure Size is too larger!\n");
++ while(1);
++ }
++
++ cfg = (NAT_CFG_T *)&nat_cfg;
++ memset((void *)cfg, 0, sizeof(NAT_CFG_T));
++#ifdef _HAVE_DYNAMIC_PORT_LIST
++ memset((void *)dynamic_tcp_port_list, 0, sizeof(dynamic_tcp_port_list));
++ memset((void *)dynamic_udp_port_list, 0, sizeof(dynamic_udp_port_list));
++#endif
++
++#ifdef VITESSE_G5SWITCH
++ if(Giga_switch)
++ {
++ cfg->enabled = 1;
++ cfg->tcp_udp_rule_id = CONFIG_SL351x_TCP_UDP_RULE_ID;
++ cfg->gre_rule_id = CONFIG_SL351x_GRE_RULE_ID;
++ cfg->lan_port = 1;
++ cfg->wan_port = 0;
++ cfg->default_hw_txq = 3;
++ cfg->tcp_tmo_interval = 60;
++ cfg->udp_tmo_interval = 180;
++ cfg->gre_tmo_interval = 60;
++ }
++ else
++ {
++ cfg->enabled = 1;
++ cfg->tcp_udp_rule_id = CONFIG_SL351x_TCP_UDP_RULE_ID;
++ cfg->gre_rule_id = CONFIG_SL351x_GRE_RULE_ID;
++ cfg->lan_port = 0;
++ cfg->wan_port = 1;
++ cfg->default_hw_txq = 3;
++ cfg->tcp_tmo_interval = 60;
++ cfg->udp_tmo_interval = 180;
++ cfg->gre_tmo_interval = 60;
++
++ }
++#endif
++
++#if 1 // debug purpose
++ cfg->ipcfg[0].total = 1;
++ cfg->ipcfg[0].entry[0].ipaddr = IPIV(192,168,2,92);
++ cfg->ipcfg[0].entry[0].netmask = IPIV(255,255,255,0);
++ cfg->ipcfg[1].total = 1;
++ cfg->ipcfg[1].entry[0].ipaddr = IPIV(192,168,1,200);
++ cfg->ipcfg[1].entry[0].netmask = IPIV(255,255,255,0);
++#endif
++
++#if 1
++ cfg->xport.total = 0;
++#else
++ cfg->xport.total = 4;
++
++ // H.323/H.225 Call setup
++ cfg->xport.entry[0].protocol = IPPROTO_TCP;
++ cfg->xport.entry[0].sport_start = 0;
++ cfg->xport.entry[0].sport_end = 0;
++ cfg->xport.entry[0].dport_start = 1720;
++ cfg->xport.entry[0].dport_end = 1720;
++ cfg->xport.entry[1].protocol = IPPROTO_TCP;
++ cfg->xport.entry[1].sport_start = 1720;
++ cfg->xport.entry[1].sport_end = 1720;
++ cfg->xport.entry[1].dport_start = 0;
++ cfg->xport.entry[1].dport_end = 0;
++
++ // RAS Setup
++ cfg->xport.entry[2].protocol = IPPROTO_UDP;
++ cfg->xport.entry[2].sport_start = 0;
++ cfg->xport.entry[2].sport_end = 0;
++ cfg->xport.entry[2].dport_start = 1719;
++ cfg->xport.entry[2].dport_end = 1719;
++ cfg->xport.entry[3].protocol = IPPROTO_UDP;
++ cfg->xport.entry[3].sport_start = 1719;
++ cfg->xport.entry[3].sport_end = 1719;
++ cfg->xport.entry[3].dport_start = 0;
++ cfg->xport.entry[3].dport_end = 0;
++#endif
++
++#ifdef CONFIG_SL351x_NAT_TCP_UDP
++ mrxcr0.bits32 = 0;
++ mrxcr1.bits32 = 0;
++ mrxcr2.bits32 = 0;
++ mrxcr0.bits.port = 1;
++ mrxcr0.bits.l3 = 1;
++ mrxcr0.bits.l4 = 1;
++ mrxcr1.bits.sip = 1;
++ mrxcr1.bits.dip = 1;
++ mrxcr1.bits.l4_byte0_15 = 0x0f; // Byte 0-3
++ mrxcr0.bits.sprx = 3;
++
++ rc = mac_set_rule_reg(cfg->lan_port, cfg->tcp_udp_rule_id, 1, mrxcr0.bits32, mrxcr1.bits32, mrxcr2.bits32);
++ if (rc < 0)
++ {
++ nat_printf("NAT Failed to set MAC-%d Rule %d!\n", cfg->lan_port, cfg->tcp_udp_rule_id);
++ }
++
++ if (cfg->lan_port != cfg->wan_port)
++ {
++ rc = mac_set_rule_reg(cfg->wan_port, cfg->tcp_udp_rule_id, 1, mrxcr0.bits32, mrxcr1.bits32, mrxcr2.bits32);
++ if (rc < 0)
++ {
++ nat_printf("NAT Failed to set MAC-%d Rule %d!\n", cfg->wan_port, cfg->tcp_udp_rule_id);
++ }
++ }
++#endif
++
++#ifdef CONFIG_SL351x_NAT_GRE
++ mrxcr0.bits32 = 0;
++ mrxcr1.bits32 = 0;
++ mrxcr2.bits32 = 0;
++ mrxcr0.bits.port = 1;
++ mrxcr0.bits.l3 = 1;
++ mrxcr0.bits.l4 = 1;
++ mrxcr1.bits.sip = 1;
++ mrxcr1.bits.dip = 1;
++ mrxcr1.bits.l4_byte0_15 = 0xcc; // Byte 2, 3, 6, 7
++ mrxcr0.bits.sprx = 4; // see GMAC driver about SPR
++
++ rc = mac_set_rule_reg(cfg->lan_port, cfg->gre_rule_id, 1, mrxcr0.bits32, mrxcr1.bits32, mrxcr2.bits32);
++ if (rc < 0)
++ {
++ nat_printf("NAT Failed to set MAC-%d Rule %d!\n", cfg->lan_port, cfg->gre_rule_id);
++ }
++
++ if (cfg->lan_port != cfg->wan_port)
++ {
++ rc = mac_set_rule_reg(cfg->wan_port, cfg->gre_rule_id, 1, mrxcr0.bits32, mrxcr1.bits32, mrxcr2.bits32);
++ if (rc < 0)
++ {
++ nat_printf("NAT Failed to set MAC-%d Rule %d!\n", cfg->wan_port, cfg->gre_rule_id);
++ }
++ }
++#endif
++
++#ifdef SL351x_NAT_TEST_BY_SMARTBITS
++ nat_init_test_entry();
++#endif
++}
++
++/*----------------------------------------------------------------------
++* nat_build_keys
++* Note: To call this routine, the key->rule_id MUST be zero
++*----------------------------------------------------------------------*/
++static inline int nat_build_keys(NAT_KEY_T *key)
++{
++ return hash_gen_crc16((unsigned char *)key, NAT_KEY_SIZE) & HASH_BITS_MASK;
++}
++
++/*----------------------------------------------------------------------
++* gre_build_keys
++* Note: To call this routine, the key->rule_id MUST be zero
++*----------------------------------------------------------------------*/
++static inline int gre_build_keys(GRE_KEY_T *key)
++{
++ return hash_gen_crc16((unsigned char *)key, GRE_KEY_SIZE) & HASH_BITS_MASK;
++}
++
++/*----------------------------------------------------------------------
++* nat_write_hash_entry
++*----------------------------------------------------------------------*/
++static inline int nat_write_hash_entry(int index, void *hash_entry)
++{
++ int i;
++ u32 *srcep, *destp, *destp2;
++
++ srcep = (u32 *)hash_entry;
++ destp = destp2 = (u32 *)&hash_tables[index][0];
++
++ for (i=0; i<(NAT_HASH_ENTRY_SIZE/sizeof(u32)); i++)
++ *destp++ = *srcep++;
++
++ consistent_sync(destp2, NAT_HASH_ENTRY_SIZE, PCI_DMA_TODEVICE);
++ return 0;
++}
++
++/*----------------------------------------------------------------------
++* gre_write_hash_entry
++*----------------------------------------------------------------------*/
++static inline int gre_write_hash_entry(int index, void *hash_entry)
++{
++ int i;
++ u32 *srcep, *destp, *destp2;
++
++ srcep = (u32 *)hash_entry;
++ destp = destp2 = (u32 *)&hash_tables[index][0];
++
++ for (i=0; i<(GRE_HASH_ENTRY_SIZE/sizeof(u32)); i++)
++ *destp++ = *srcep++;
++
++ consistent_sync(destp2, GRE_HASH_ENTRY_SIZE, PCI_DMA_TODEVICE);
++ return 0;
++}
++
++/*----------------------------------------------------------------------
++* sl351x_nat_find_ipcfg
++* return NULL if not found
++*----------------------------------------------------------------------*/
++static NAT_IP_ENTRY_T *sl351x_nat_find_ipcfg(u32 ipaddr, int port)
++{
++ int i;
++ NAT_IP_ENTRY_T *ipcfg;
++
++ ipcfg = (NAT_IP_ENTRY_T *)&nat_cfg.ipcfg[port].entry[0];
++ for (i=0; i<nat_cfg.ipcfg[port].total; i++, ipcfg++)
++ {
++ if (ipaddr == ipcfg->ipaddr)
++ {
++ return ipcfg;
++ }
++ }
++ return NULL;
++}
++
++/*----------------------------------------------------------------------
++* sl351x_nat_assign_qid
++*----------------------------------------------------------------------*/
++static int sl351x_nat_assign_qid(u8 proto, u32 sip, u32 dip, u16 sport, u16 dport)
++{
++ int i, total, qid;
++ NAT_WRULE_ENTRY_T *entry;
++
++ for (qid = 0; qid<CONFIG_NAT_TXQ_NUM; qid++)
++ {
++ if (qid == nat_cfg.default_hw_txq)
++ continue;
++
++ entry = (NAT_WRULE_ENTRY_T *)&nat_cfg.wrule[qid].entry[0];
++ total = nat_cfg.wrule[qid].total;
++ for (i=0; i<total; i++, entry++)
++ {
++ if (!entry->protocol || entry->protocol==proto)
++ {
++ //if (!entry->sip_start && !entry->dip_start && !entry->sport_start && !entry->dport_start)
++ // continue; // UI take care
++ if (entry->sip_start && !((sip >= entry->sip_start) &&
++ (sip <= entry->sip_end)))
++ continue;
++ if (entry->dip_start && !((dip >= entry->dip_start) &&
++ (dip <= entry->dip_end)))
++ continue;
++ if (entry->sport_start && !((sport >= entry->sport_start) &&
++ (sport <= entry->sport_end)))
++ continue;
++ if (entry->dport_start && !((dport >= entry->dport_start)
++ && (dport <= entry->dport_end)))
++ continue;
++ return qid;
++ }
++ }
++ }
++ return nat_cfg.default_hw_txq;
++}
++
++/*----------------------------------------------------------------------
++* sl351x_nat_input
++* Handle NAT input frames
++* Called by SL351x Driver - Handle Default Rx Queue
++* Notes: The caller must make sure that the l3off & l4offset should not be zero.
++* SL351x NAT Frames should meet the following conditions:
++* 1. TCP or UDP frame
++* 2. Cannot be special ALGs ports which TCP/UDP data is updated
++* 3. LAN-IN Frames:
++* Source IP is in the LAN subnet and Destination is not in the LAN subnet
++* 4. WAN-IN Frames
++* Destination IP is in the WAN port IP
++*
++* Example Ports
++* 1. TCP/UDP data is updated
++* (a) FTP Control Packet
++* (b) VoIP Packets
++* (c) etc. (add in future)
++* 2. UDP Low packet rate, not worth
++* (b) TFTP Destination Port is 69
++* (b) DNS 53
++* (c) NTP 123
++* (d) etc. (add in future)
++*----------------------------------------------------------------------*/
++void sl351x_nat_input(struct sk_buff *skb, int port, void *l3off, void *l4off)
++{
++ int i, found;
++ u32 sip, dip;
++ u16 sport, dport;
++ struct ethhdr *ether_hdr;
++ struct iphdr *ip_hdr;
++ struct tcphdr *tcp_hdr;
++ struct pppoe_hdr *pppoe_hdr;
++ NAT_CB_T *nat_cb;
++ u8 proto, pppoe_frame=0;
++ NAT_CFG_T *cfg;
++ u16 ppp_proto;
++ NAT_IP_ENTRY_T *ipcfg;
++ NAT_XPORT_ENTRY_T *xentry;
++ GRE_PKTHDR_T *gre_hdr;
++#ifdef CONFIG_SL351x_NAT_TCP_UDP
++ u16 *port_ptr;
++#endif
++
++ cfg = (NAT_CFG_T *)&nat_cfg;
++ if (!cfg->enabled || !cfg->ipcfg[port].total)
++ return;
++
++ ip_hdr = (struct iphdr *)&(skb->data[(u32)l3off]);
++ proto = ip_hdr->protocol;
++
++ tcp_hdr = (struct tcphdr *)&(skb->data[(u32)l4off]);
++ gre_hdr = (GRE_PKTHDR_T *)tcp_hdr;
++ sport = ntohs(tcp_hdr->source);
++ dport = ntohs(tcp_hdr->dest);
++
++ sip = ntohl(ip_hdr->saddr);
++ dip = ntohl(ip_hdr->daddr);
++
++ if (dip == IPIV(255,255,255,255))
++ return;
++
++ if (port == cfg->lan_port)
++ {
++ ipcfg = (NAT_IP_ENTRY_T *)&cfg->ipcfg[port].entry[0];
++ for (i=0, found=0; i<cfg->ipcfg[port].total; i++, ipcfg++)
++ {
++ u32 subnet = ipcfg->ipaddr & ipcfg->netmask;
++ if (((sip & ipcfg->netmask) == subnet) &&
++ ((dip & ipcfg->netmask) != subnet))
++ {
++ found = 1;
++ break;
++ }
++ }
++ if (!found)
++ return;
++ }
++ else
++ {
++#ifndef _NOT_CHECK_SIP_DIP // enable it if know and get the wan ip address
++ if (!sl351x_nat_find_ipcfg(dip, port))
++ {
++ printk("WAN->LAN Incorrect Dip %d.%d.%d.%d\n", HIPQUAD(dip));
++ return;
++ }
++#endif
++ ether_hdr = (struct ethhdr *)skb->data;
++ pppoe_hdr = (struct pppoe_hdr *)(ether_hdr + 1);
++ ppp_proto = *(u16 *)&pppoe_hdr->tag[0];
++ if (ether_hdr->h_proto == __constant_htons(ETH_P_PPP_SES) // 0x8864
++ && ppp_proto == __constant_htons(PPP_IP) ) // 0x21
++ {
++ pppoe_frame = 1;
++ }
++ }
++
++#ifdef CONFIG_SL351x_NAT_TCP_UDP
++ if (proto == IPPROTO_TCP)
++ {
++#ifdef NAT_DEBUG_MSG
++ nat_printf("From GMAC-%d: 0x%-4X TCP %d.%d.%d.%d [%d] --> %d.%d.%d.%d [%d]",
++ port, ntohs(ip_hdr->id),
++ NIPQUAD(ip_hdr->saddr), sport,
++ NIPQUAD(ip_hdr->daddr), dport);
++ if (tcp_flag_word(tcp_hdr) & TCP_FLAG_SYN) nat_printf(" SYN");
++ if (tcp_flag_word(tcp_hdr) & TCP_FLAG_FIN) nat_printf(" FIN");
++ if (tcp_flag_word(tcp_hdr) & TCP_FLAG_RST) nat_printf(" RST");
++ if (tcp_flag_word(tcp_hdr) & TCP_FLAG_ACK) nat_printf(" ACK");
++ nat_printf("\n");
++#endif
++ // if (tcp_flag_word(tcp_hdr) & (TCP_FLAG_SYN | TCP_FLAG_FIN | TCP_FLAG_RST))
++ if (tcp_flag_word(tcp_hdr) & (TCP_FLAG_SYN))
++ {
++ return;
++ }
++ port_ptr = fixed_tcp_port_list;
++ for (i=0; *port_ptr; i++, port_ptr++)
++ {
++ if (sport == *port_ptr || dport == *port_ptr)
++ return;
++ }
++#ifdef _HAVE_DYNAMIC_PORT_LIST
++ port_ptr = dynamic_tcp_port_list;
++ for (i=0; *port_ptr; i++, port_ptr++)
++ {
++ if (sport == *port_ptr || dport == *port_ptr)
++ return;
++ }
++#endif
++ }
++ else if (proto == IPPROTO_UDP)
++ {
++#ifdef NAT_DEBUG_MSG
++ nat_printf("From GMAC-%d: 0x%-4X UDP %d.%d.%d.%d [%d] --> %d.%d.%d.%d [%d]",
++ port, ntohs(ip_hdr->id),
++ NIPQUAD(ip_hdr->saddr), sport,
++ NIPQUAD(ip_hdr->daddr), dport);
++ nat_printf("\n");
++#endif
++ port_ptr = fixed_udp_port_list;
++ for (i=0; *port_ptr; i++, port_ptr++)
++ {
++ if (sport == *port_ptr || dport == *port_ptr)
++ return;
++ }
++#ifdef _HAVE_DYNAMIC_PORT_LIST
++ port_ptr = dynamic_udp_port_list;
++ for (i=0; *port_ptr; i++, port_ptr++)
++ {
++ if (sport == *port_ptr || dport == *port_ptr)
++ return;
++ }
++#endif
++ }
++ else
++#endif // CONFIG_SL351x_NAT_TCP_UDP
++#ifdef CONFIG_SL351x_NAT_GRE
++ if (proto == IPPROTO_GRE)
++ {
++ if (gre_hdr->protocol != GRE_PROTOCOL_SWAP)
++ return;
++#ifdef NAT_DEBUG_MSG
++ nat_printf("From GMAC-%d: 0x%-4X GRE %d.%d.%d.%d [%d] --> %d.%d.%d.%d",
++ port, ntohs(ip_hdr->id),
++ NIPQUAD(ip_hdr->saddr), ntohs(gre_hdr->call_id),
++ NIPQUAD(ip_hdr->daddr));
++ nat_printf("\n");
++#endif
++ }
++ else
++#endif
++ return;
++
++
++ // check xport list
++ xentry = (NAT_XPORT_ENTRY_T *)&cfg->xport.entry[0];
++ for (i=0; i<cfg->xport.total; i++, xentry++)
++ {
++ if (!xentry->protocol || xentry->protocol == proto)
++ {
++ //if (!xentry->sport_start && !xentry->dport_start) // UI take care
++ // continue;
++ if (xentry->sport_start && !((sport >= xentry->sport_start) &&
++ (sport <= xentry->sport_end)))
++ continue;
++ if (xentry->dport_start && !((dport >= xentry->dport_start)
++ && (dport <= xentry->dport_end)))
++ continue;
++ return;
++ }
++ }
++
++ nat_cb = NAT_SKB_CB(skb);
++ if (((u32)nat_cb & 3))
++ {
++ nat_printf("%s ERROR! nat_cb is not alignment!!!!!!\n", __func__);
++ return;
++ }
++ nat_cb->tag = NAT_CB_TAG;
++ memcpy(nat_cb->sa, skb->data+6, 6);
++ nat_cb->sip = ip_hdr->saddr;
++ nat_cb->dip = ip_hdr->daddr;
++ if (proto == IPPROTO_GRE)
++ {
++ nat_cb->sport = gre_hdr->protocol;
++ nat_cb->dport = gre_hdr->call_id;
++ }
++ else
++ {
++ nat_cb->sport = tcp_hdr->source;
++ nat_cb->dport = tcp_hdr->dest;
++ }
++ nat_cb->pppoe_frame = pppoe_frame;
++}
++
++/*----------------------------------------------------------------------
++* sl351x_nat_output
++* Handle NAT output frames
++* Called by SL351x Driver - Transmit
++*
++* 1. If not SL351x NAT frames, return FALSE
++* 2. LAN-to-WAN frames
++* (1) Sip must be WAN IP
++* 3. If TCP SY/RST/FIN frame, return
++* 4. Build the hash key and get the hash index
++* 5. If V-Bit is ON, return.
++* 6. Write hash entry and validate it
++*
++*----------------------------------------------------------------------*/
++int sl351x_nat_output(struct sk_buff *skb, int port)
++{
++ struct iphdr *ip_hdr;
++ u8 proto;
++ NAT_CB_T *nat_cb;
++
++ nat_cb = NAT_SKB_CB(skb);
++ if (nat_cb->tag != NAT_CB_TAG)
++ return 0;
++
++ if (((u32)nat_cb & 3))
++ {
++ nat_printf("%s ERROR! nat_cb is not alignment!!!!!!\n", __func__);
++ return 0;
++ }
++ ip_hdr = (struct iphdr *)skb->h.ipiph;
++ proto = ip_hdr->protocol;
++
++ switch (proto)
++ {
++ case IPPROTO_TCP:
++ case IPPROTO_UDP:
++ return sl351x_nat_tcp_udp_output(skb, port);
++ case IPPROTO_GRE:
++ return sl351x_nat_gre_output(skb, port);
++ }
++ return 0;
++}
++
++/*----------------------------------------------------------------------
++* sl351x_nat_tcp_udp_output
++* Handle NAT TCP/UDP output frames
++*----------------------------------------------------------------------*/
++int sl351x_nat_tcp_udp_output(struct sk_buff *skb, int port)
++{
++ u32 sip, dip;
++ struct ethhdr *ether_hdr;
++ struct iphdr *ip_hdr;
++ struct tcphdr *tcp_hdr;
++ struct pppoe_hdr *pppoe_hdr;
++ NAT_CB_T *nat_cb;
++ NAT_CFG_T *cfg;
++ u8 proto;
++ u16 sport, dport, ppp_proto;
++ u32 hash_data[HASH_MAX_DWORDS];
++ NAT_HASH_ENTRY_T *hash_entry;
++ int hash_index;
++ struct ip_conntrack *nat_ip_conntrack;
++ enum ip_conntrack_info ctinfo;
++
++ nat_cb = NAT_SKB_CB(skb);
++ cfg = (NAT_CFG_T *)&nat_cfg;
++
++ ether_hdr = (struct ethhdr *)skb->data;
++ ip_hdr = (struct iphdr *)skb->h.ipiph;
++ tcp_hdr = (struct tcphdr *)((u32)ip_hdr + (ip_hdr->ihl<<2));
++ sip = ntohl(ip_hdr->saddr);
++ dip = ntohl(ip_hdr->daddr);
++ proto = ip_hdr->protocol;
++ sport = ntohs(tcp_hdr->source);
++ dport = ntohs(tcp_hdr->dest);
++
++#ifdef NAT_DEBUG_MSG
++ {
++ nat_printf("To GMAC-%d: 0x%-4X [%d] %d.%d.%d.%d [%d] --> %d.%d.%d.%d [%d]",
++ port, ntohs(ip_hdr->id), proto,
++ NIPQUAD(ip_hdr->saddr), sport,
++ NIPQUAD(ip_hdr->daddr), dport);
++ if (proto == IPPROTO_TCP)
++ {
++ if (tcp_flag_word(tcp_hdr) & TCP_FLAG_SYN) nat_printf(" SYN");
++ if (tcp_flag_word(tcp_hdr) & TCP_FLAG_FIN) nat_printf(" FIN");
++ if (tcp_flag_word(tcp_hdr) & TCP_FLAG_RST) nat_printf(" RST");
++ if (tcp_flag_word(tcp_hdr) & TCP_FLAG_ACK) nat_printf(" ACK");
++ }
++ nat_printf("\n");
++ }
++#endif
++ nat_ip_conntrack = ip_conntrack_get(skb, &ctinfo);
++ if (!nat_ip_conntrack)
++ {
++ nat_printf("IP conntrack info is not found!\n");
++ return 0;
++ }
++ // nat_printf("nat_ip_conntrack = 0x%x, status=0x%lx, ctinfo=%d\n", (u32)nat_ip_conntrack, nat_ip_conntrack->status, ctinfo);
++ // if (nat_ip_conntrack->master || nat_ip_conntrack->helper)
++ if (nat_ip_conntrack->helper)
++ {
++ nat_printf("Sport=%d Dport=%d master=0x%x, helper=0x%x\n", sport, dport, (u32)nat_ip_conntrack->master, (u32)nat_ip_conntrack->helper);
++ return 0;
++ }
++
++ //if (proto == IPPROTO_TCP && !(nat_ip_conntrack->status & IPS_ASSURED))
++ // return 0;
++
++#ifdef NAT_DEBUG_MSG
++ nat_printf("nat_ip_conntrack=0x%x, nat_cb->state=%d\n", (u32)nat_ip_conntrack, nat_cb->state);
++ nat_printf("lan2wan_hash_index=%d, wan2lan_hash_index=%d\n", nat_ip_conntrack->lan2wan_hash_index, nat_ip_conntrack->wan2lan_hash_index);
++ nat_printf("lan2wan_collision=%d, wan2lan_collision=%d\n", nat_ip_conntrack->lan2wan_collision, nat_ip_conntrack->wan2lan_collision);
++#endif
++ if (proto == IPPROTO_TCP)
++ {
++ if (nat_cb->state >= TCP_CONNTRACK_FIN_WAIT && nat_cb->state <= TCP_CONNTRACK_CLOSE)
++ {
++ if (nat_ip_conntrack->lan2wan_hash_index)
++ {
++#ifdef NAT_DEBUG_MSG
++ nat_printf("Invalidate LAN->WAN hash entry %d\n", nat_ip_conntrack->lan2wan_hash_index - 1);
++#endif
++ hash_nat_disable_owner(nat_ip_conntrack->lan2wan_hash_index - 1);
++ hash_invalidate_entry(nat_ip_conntrack->lan2wan_hash_index - 1);
++ nat_ip_conntrack->lan2wan_hash_index = 0;
++ }
++ if (nat_ip_conntrack->wan2lan_hash_index)
++ {
++#ifdef NAT_DEBUG_MSG
++ nat_printf("Invalidate WAN->LAN hash entry %d\n", nat_ip_conntrack->wan2lan_hash_index - 1);
++#endif
++ hash_nat_disable_owner(nat_ip_conntrack->wan2lan_hash_index - 1);
++ hash_invalidate_entry(nat_ip_conntrack->wan2lan_hash_index - 1);
++ nat_ip_conntrack->wan2lan_hash_index = 0;
++ }
++ return 0;
++
++ }
++ else if (nat_cb->state != TCP_CONNTRACK_ESTABLISHED)
++ {
++ return 0;
++ }
++ }
++ if (proto == IPPROTO_TCP && (tcp_flag_word(tcp_hdr) & (TCP_FLAG_SYN | TCP_FLAG_FIN | TCP_FLAG_RST)))
++ // if (proto == IPPROTO_TCP && (tcp_flag_word(tcp_hdr) & (TCP_FLAG_SYN)))
++ return 0;
++
++ hash_entry = (NAT_HASH_ENTRY_T *)&hash_data;
++ if (port == cfg->wan_port) // LAN-to-WAN
++ {
++ if (nat_ip_conntrack->lan2wan_hash_index || nat_ip_conntrack->lan2wan_collision)
++ return 0;
++#ifndef _NOT_CHECK_SIP_DIP // enable it if know and get the wan ip address
++ if (!sl351x_nat_find_ipcfg(sip, port))
++ {
++ printk("LAN->WAN Incorrect Sip %d.%d.%d.%d\n", HIPQUAD(sip));
++ return 0;
++ }
++#endif
++ // Note: unused fields (including rule_id) MUST be zero
++ hash_entry->key.Ethertype = 0;
++ hash_entry->key.port_id = cfg->lan_port;
++ hash_entry->key.rule_id = 0;
++ hash_entry->key.ip_protocol = proto;
++ hash_entry->key.reserved1 = 0;
++ hash_entry->key.reserved2 = 0;
++ hash_entry->key.sip = ntohl(nat_cb->sip);
++ hash_entry->key.dip = ntohl(nat_cb->dip);
++ hash_entry->key.sport = nat_cb->sport;
++ hash_entry->key.dport = nat_cb->dport;
++
++ hash_index = nat_build_keys(&hash_entry->key);
++
++#ifdef NAT_DEBUG_LAN_HASH_TIMEOUT
++ if (hash_get_nat_owner_flag(hash_index))
++ return 0;
++#endif
++ if (hash_get_valid_flag(hash_index))
++ {
++ nat_ip_conntrack->lan2wan_collision = 1;
++ nat_collision++;
++#if 0
++ if (proto == IPPROTO_TCP && (tcp_flag_word(tcp_hdr) & (TCP_FLAG_FIN | TCP_FLAG_RST)))
++ {
++ if (memcmp((void *)&hash_entry->key, hash_get_entry(hash_index), sizeof(NAT_KEY_T)) == 0)
++ {
++ hash_nat_disable_owner(hash_index);
++ hash_invalidate_entry(hash_index); // Must last one, else HW Tx fast SW
++ // nat_printf("Invalidate nat hash entry %d\n", hash_index);
++ }
++ }
++#endif
++ return 0;
++ }
++
++ // write hash entry
++ hash_entry->key.rule_id = cfg->tcp_udp_rule_id;
++ memcpy(hash_entry->param.da, skb->data, 6);
++ memcpy(hash_entry->param.sa, skb->data+6, 6);
++ hash_entry->param.Sip = sip;
++ hash_entry->param.Dip = dip;
++ hash_entry->param.Sport = sport;
++ hash_entry->param.Dport = dport;
++ hash_entry->param.vlan = 0;
++ hash_entry->param.sw_id = 0;
++ hash_entry->param.mtu = 0;
++ // check PPPoE
++ pppoe_hdr = (struct pppoe_hdr *)(ether_hdr + 1);
++ ppp_proto = *(u16 *)&pppoe_hdr->tag[0];
++ if (ether_hdr->h_proto == __constant_htons(ETH_P_PPP_SES) // 0x8864
++ && ppp_proto == __constant_htons(PPP_IP) ) // 0x21
++ {
++ hash_entry->action.dword = NAT_PPPOE_LAN2WAN_ACTIONS;
++ hash_entry->param.pppoe = htons(pppoe_hdr->sid);
++ }
++ else
++ {
++ hash_entry->action.dword = NAT_LAN2WAN_ACTIONS;
++ hash_entry->param.pppoe = 0;
++ }
++ hash_entry->action.bits.dest_qid = sl351x_nat_assign_qid(proto, sip, dip, sport, dport);
++ hash_entry->action.bits.dest_qid += (cfg->wan_port==0) ? TOE_GMAC0_HW_TXQ0_QID : TOE_GMAC1_HW_TXQ0_QID;
++ hash_entry->tmo.counter = hash_entry->tmo.interval =
++ (proto == IPPROTO_TCP) ? cfg->tcp_tmo_interval : cfg->udp_tmo_interval;
++ nat_write_hash_entry(hash_index, hash_entry);
++ // nat_printf("%lu Validate a LAN hash entry %d\n", jiffies/HZ, hash_index);
++ // hash_dump_entry(hash_index);
++ hash_nat_enable_owner(hash_index);
++ hash_validate_entry(hash_index); // Must last one, else HW Tx fast than SW
++ nat_ip_conntrack->lan2wan_hash_index = hash_index + 1;
++ nat_ip_conntrack->hw_nat |= 1;
++ return 0;
++ }
++ else // WAN-to-LAN
++ {
++ if (nat_ip_conntrack->wan2lan_hash_index || nat_ip_conntrack->wan2lan_collision)
++ return 0;
++
++ // Note: unused fields (including rule_id) MUST be zero
++ hash_entry->key.Ethertype = 0;
++ hash_entry->key.port_id = cfg->wan_port;
++ hash_entry->key.rule_id = 0;
++ hash_entry->key.ip_protocol = proto;
++ hash_entry->key.reserved1 = 0;
++ hash_entry->key.reserved2 = 0;
++ hash_entry->key.sip = ntohl(nat_cb->sip);
++ hash_entry->key.dip = ntohl(nat_cb->dip);
++ hash_entry->key.sport = nat_cb->sport;
++ hash_entry->key.dport = nat_cb->dport;
++
++ hash_index = nat_build_keys(&hash_entry->key);
++
++#ifdef NAT_DEBUG_WAN_HASH_TIMEOUT
++ if (hash_get_nat_owner_flag(hash_index))
++ return 0;
++#endif
++ if (hash_get_valid_flag(hash_index))
++ {
++ nat_ip_conntrack->wan2lan_collision = 1;
++ nat_collision++;
++#if 0
++ if (proto == IPPROTO_TCP && (tcp_flag_word(tcp_hdr) & (TCP_FLAG_FIN | TCP_FLAG_RST)))
++ {
++ if (memcmp((void *)&hash_entry->key, hash_get_entry(hash_index), sizeof(NAT_KEY_T)) == 0)
++ {
++ hash_nat_disable_owner(hash_index);
++ hash_invalidate_entry(hash_index); // Must last one, else HW Tx fast SW
++ // nat_printf("Invalidate nat hash entry %d\n", hash_index);
++ }
++ }
++#endif
++ return 0;
++ }
++
++ // write hash entry
++ hash_entry->key.rule_id = cfg->tcp_udp_rule_id;
++ memcpy(hash_entry->param.da, skb->data, 6);
++ memcpy(hash_entry->param.sa, skb->data+6, 6);
++ hash_entry->param.Sip = sip;
++ hash_entry->param.Dip = dip;
++ hash_entry->param.Sport = sport;
++ hash_entry->param.Dport = dport;
++ hash_entry->param.vlan = 0;
++ hash_entry->param.pppoe = 0;
++ hash_entry->param.sw_id = 0;
++ hash_entry->param.mtu = 0;
++ hash_entry->action.dword = (nat_cb->pppoe_frame) ? NAT_PPPOE_WAN2LAN_ACTIONS : NAT_WAN2LAN_ACTIONS;
++ hash_entry->action.bits.dest_qid = sl351x_nat_assign_qid(proto, sip, dip, sport, dport);
++ hash_entry->action.bits.dest_qid += (cfg->lan_port==0) ? TOE_GMAC0_HW_TXQ0_QID : TOE_GMAC1_HW_TXQ0_QID;;
++ hash_entry->tmo.counter = hash_entry->tmo.interval =
++ (proto == IPPROTO_TCP) ? cfg->tcp_tmo_interval : cfg->udp_tmo_interval;
++ nat_write_hash_entry(hash_index, hash_entry);
++
++ // nat_printf("%lu Validate a WAN hash entry %d\n", jiffies/HZ, hash_index);
++ // hash_dump_entry(hash_index);
++ hash_nat_enable_owner(hash_index);
++ hash_validate_entry(hash_index); // Must last one, else HW Tx fast SW
++ nat_ip_conntrack->wan2lan_hash_index = hash_index + 1;
++ nat_ip_conntrack->hw_nat |= 2;
++ return 0;
++ }
++ return 0;
++}
++
++/*----------------------------------------------------------------------
++* sl351x_nat_gre_output
++* Handle NAT GRE output frames
++*----------------------------------------------------------------------*/
++int sl351x_nat_gre_output(struct sk_buff *skb, int port)
++{
++ u32 sip, dip;
++ struct ethhdr *ether_hdr;
++ struct iphdr *ip_hdr;
++ struct pppoe_hdr *pppoe_hdr;
++ GRE_PKTHDR_T *gre_hdr;
++ NAT_CB_T *nat_cb;
++ NAT_CFG_T *cfg;
++ u16 ppp_proto;
++ u32 hash_data[HASH_MAX_DWORDS];
++ GRE_HASH_ENTRY_T *hash_entry;
++ int hash_index;
++ struct ip_conntrack *nat_ip_conntrack;
++ enum ip_conntrack_info ctinfo;
++
++ nat_cb = NAT_SKB_CB(skb);
++ cfg = (NAT_CFG_T *)&nat_cfg;
++
++ ether_hdr = (struct ethhdr *)skb->data;
++ ip_hdr = (struct iphdr *)skb->h.ipiph;
++ gre_hdr = (GRE_PKTHDR_T *)((u32)ip_hdr + (ip_hdr->ihl<<2));
++ sip = ntohl(ip_hdr->saddr);
++ dip = ntohl(ip_hdr->daddr);
++
++#ifdef NAT_DEBUG_MSG
++ {
++ nat_printf("To GMAC-%d: 0x%-4X GRE %d.%d.%d.%d [%d] --> %d.%d.%d.%d",
++ port, ntohs(ip_hdr->id),
++ NIPQUAD(ip_hdr->saddr), ntohs(gre_hdr->call_id),
++ NIPQUAD(ip_hdr->daddr));
++ nat_printf("\n");
++ }
++#endif
++ nat_ip_conntrack = ip_conntrack_get(skb, &ctinfo);
++ if (nat_ip_conntrack)
++ {
++ // if (nat_ip_conntrack->master || nat_ip_conntrack->helper)
++ if (nat_ip_conntrack->helper)
++ {
++ nat_printf("GRE Call-ID=%d, master=0x%x, helper=0x%x\n", ntohs(gre_hdr->call_id), (u32)nat_ip_conntrack->master, (u32)nat_ip_conntrack->helper);
++ return 0;
++ }
++ if (!(nat_ip_conntrack->status & IPS_ASSURED))
++ return 0;
++ }
++
++ hash_entry = (GRE_HASH_ENTRY_T *)&hash_data;
++ if (port == cfg->wan_port) // LAN-to-WAN
++ {
++#ifdef _NOT_CHECK_SIP_DIP // enable it if know and get the wan ip address
++ if (!sl351x_nat_find_ipcfg(sip, port))
++ {
++ printk("LAN->WAN Incorrect Sip %d.%d.%d.%d\n", HIPQUAD(sip));
++ return 0;
++ }
++#endif
++ // Note: unused fields (including rule_id) MUST be zero
++ hash_entry->key.Ethertype = 0;
++ hash_entry->key.port_id = cfg->lan_port;
++ hash_entry->key.rule_id = 0;
++ hash_entry->key.ip_protocol = IPPROTO_GRE;
++ hash_entry->key.reserved1 = 0;
++ hash_entry->key.reserved2 = 0;
++ hash_entry->key.reserved3 = 0;
++ hash_entry->key.reserved4 = 0;
++ hash_entry->key.sip = ntohl(nat_cb->sip);
++ hash_entry->key.dip = ntohl(nat_cb->dip);
++ hash_entry->key.protocol = nat_cb->sport;
++ hash_entry->key.call_id = nat_cb->dport;
++
++ hash_index = gre_build_keys(&hash_entry->key);
++
++#ifdef NAT_DEBUG_LAN_HASH_TIMEOUT
++ if (hash_get_nat_owner_flag(hash_index))
++ return 0;
++#endif
++ if (hash_get_valid_flag(hash_index))
++ {
++ return 0;
++ }
++
++ // write hash entry
++ hash_entry->key.rule_id = cfg->gre_rule_id;
++ memcpy(hash_entry->param.da, skb->data, 6);
++ memcpy(hash_entry->param.sa, skb->data+6, 6);
++ hash_entry->param.Sip = sip;
++ hash_entry->param.Dip = dip;
++ hash_entry->param.Sport = 0;
++ hash_entry->param.Dport = ntohs(gre_hdr->call_id);
++ hash_entry->param.vlan = 0;
++ hash_entry->param.sw_id = 0;
++ hash_entry->param.mtu = 0;
++ // check PPPoE
++ pppoe_hdr = (struct pppoe_hdr *)(ether_hdr + 1);
++ ppp_proto = *(u16 *)&pppoe_hdr->tag[0];
++ if (ether_hdr->h_proto == __constant_htons(ETH_P_PPP_SES) // 0x8864
++ && ppp_proto == __constant_htons(PPP_IP) ) // 0x21
++ {
++ hash_entry->action.dword = NAT_PPPOE_PPTP_LAN2WAN_ACTIONS;
++ hash_entry->param.pppoe = htons(pppoe_hdr->sid);
++ }
++ else
++ {
++ hash_entry->action.dword = NAT_PPTP_LAN2WAN_ACTIONS;
++ hash_entry->param.pppoe = 0;
++ }
++ hash_entry->action.bits.dest_qid = sl351x_nat_assign_qid(IPPROTO_GRE, sip, dip, 0, ntohs(gre_hdr->call_id));
++ hash_entry->action.bits.dest_qid += (cfg->wan_port==0) ? TOE_GMAC0_HW_TXQ0_QID : TOE_GMAC1_HW_TXQ0_QID;
++ hash_entry->tmo.counter = hash_entry->tmo.interval = cfg->gre_tmo_interval;
++ gre_write_hash_entry(hash_index, hash_entry);
++ // nat_printf("%lu Validate a LAN hash entry %d\n", jiffies/HZ, hash_index);
++ // hash_dump_entry(hash_index);
++ hash_nat_enable_owner(hash_index);
++ hash_validate_entry(hash_index); // Must last one, else HW Tx fast than SW
++ return 0;
++ }
++ else // WAN-to-LAN
++ {
++ // Note: unused fields (including rule_id) MUST be zero
++ hash_entry->key.Ethertype = 0;
++ hash_entry->key.port_id = cfg->wan_port;
++ hash_entry->key.rule_id = 0;
++ hash_entry->key.ip_protocol = IPPROTO_GRE;
++ hash_entry->key.reserved1 = 0;
++ hash_entry->key.reserved2 = 0;
++ hash_entry->key.reserved3 = 0;
++ hash_entry->key.reserved4 = 0;
++ hash_entry->key.sip = ntohl(nat_cb->sip);
++ hash_entry->key.dip = ntohl(nat_cb->dip);
++ hash_entry->key.protocol = nat_cb->sport;
++ hash_entry->key.call_id = nat_cb->dport;
++
++ hash_index = gre_build_keys(&hash_entry->key);
++
++#ifdef NAT_DEBUG_WAN_HASH_TIMEOUT
++ if (hash_get_nat_owner_flag(hash_index))
++ return 0;
++#endif
++ if (hash_get_valid_flag(hash_index))
++ {
++ return 0;
++ }
++
++ // write hash entry
++ hash_entry->key.rule_id = cfg->gre_rule_id;
++ memcpy(hash_entry->param.da, skb->data, 6);
++ memcpy(hash_entry->param.sa, skb->data+6, 6);
++ hash_entry->param.Sip = sip;
++ hash_entry->param.Dip = dip;
++ hash_entry->param.Sport = 0;
++ hash_entry->param.Dport = ntohs(gre_hdr->call_id);
++ hash_entry->param.vlan = 0;
++ hash_entry->param.pppoe = 0;
++ hash_entry->param.sw_id = 0;
++ hash_entry->param.mtu = 0;
++ hash_entry->action.dword = (nat_cb->pppoe_frame) ? NAT_PPPOE_PPTP_WAN2LAN_ACTIONS : NAT_PPTP_WAN2LAN_ACTIONS;
++ hash_entry->action.bits.dest_qid = sl351x_nat_assign_qid(IPPROTO_GRE, sip, dip, 0, ntohs(gre_hdr->call_id));
++ hash_entry->action.bits.dest_qid += (cfg->lan_port==0) ? TOE_GMAC0_HW_TXQ0_QID : TOE_GMAC1_HW_TXQ0_QID;;
++ hash_entry->tmo.counter = hash_entry->tmo.interval = cfg->gre_tmo_interval;
++ gre_write_hash_entry(hash_index, hash_entry);
++
++ // nat_printf("%lu Validate a WAN hash entry %d\n", jiffies/HZ, hash_index);
++ // hash_dump_entry(hash_index);
++ hash_nat_enable_owner(hash_index);
++ hash_validate_entry(hash_index); // Must last one, else HW Tx fast SW
++ return 0;
++ }
++ return 0;
++}
++
++
++#ifdef _HAVE_DYNAMIC_PORT_LIST
++/*----------------------------------------------------------------------
++* sl_nat_add_port
++*----------------------------------------------------------------------*/
++void sl_nat_add_port(u8 protocol, u16 port)
++{
++ int i;
++ u16 *port_ptr;
++
++ if (protocol == IPPROTO_TCP)
++ port_ptr = dynamic_tcp_port_list;
++ else if (protocol == IPPROTO_UDP)
++ port_ptr = dynamic_udp_port_list;
++ else
++ return;
++
++ for (i=0; *port_ptr; i++)
++ {
++ if (port == *port_ptr)
++ return;
++ port_ptr++;
++ }
++ port_ptr++;
++ *port_ptr = port;
++}
++
++/*----------------------------------------------------------------------
++* sl_nat_remove_port
++*----------------------------------------------------------------------*/
++void sl_nat_remove_port(u8 protocol, u16 port)
++{
++ int i, j;
++ u16 *port_ptr, *next;
++
++ if (protocol == IPPROTO_TCP)
++ port_ptr = dynamic_tcp_port_list;
++ else if (protocol == IPPROTO_UDP)
++ port_ptr = dynamic_udp_port_list;
++ else
++ return;
++
++ for (i=0; *port_ptr; i++, port_ptr++)
++ {
++ if (port == *port_ptr)
++ {
++ port_next = port_ptr + 1;
++ for (j=i+1; *port_next; i++, j++)
++ *port_ptr++ = *port_next++;
++ *port_ptr = 0;
++ return;
++ }
++ }
++}
++#endif
++
++/*----------------------------------------------------------------------
++* sl351x_nat_ioctl
++*----------------------------------------------------------------------*/
++int sl351x_nat_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
++{
++ GMAC_INFO_T *tp = (GMAC_INFO_T *)dev->priv;
++ int i, j, port_id;
++ NATCMD_HDR_T nat_hdr;
++ NAT_REQ_E ctrl;
++ unsigned char *req_datap;
++ NAT_IP_ENTRY_T *ipcfg;
++ NAT_XPORT_ENTRY_T *xport_entry;
++ NAT_WRULE_ENTRY_T *wrule_entry;
++ unsigned int qid;
++
++ if (copy_from_user((void *)&nat_hdr, rq->ifr_data, sizeof(nat_hdr)))
++ return -EFAULT;
++ req_datap = (unsigned char *)rq->ifr_data + sizeof(nat_hdr);
++ port_id = tp->port_id;
++ switch (nat_hdr.cmd) {
++ case NATSSTATUS:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_STATUS_T))
++ return -EPERM;
++ if (copy_from_user((void *)&ctrl.status, req_datap, sizeof(ctrl.status)))
++ return -EFAULT;
++ if (ctrl.status.enable != 0 && ctrl.status.enable != 1)
++ return -EPERM;
++ // sl351x_nat_set_enabled_flag(ctrl.status.enable);
++ if (nat_cfg.enabled && (ctrl.status.enable == 0))
++ {
++ for (i=0; i<HASH_TOTAL_ENTRIES; i++)
++ {
++ if (hash_get_nat_owner_flag(i))
++ {
++ hash_nat_disable_owner(i);
++ hash_invalidate_entry(i);
++ }
++ }
++ }
++ nat_cfg.enabled = ctrl.status.enable;
++ break;
++ case NATGSTATUS:
++ if (nat_hdr.len != sizeof(NAT_STATUS_T))
++ return -EPERM;
++ ctrl.status.enable = nat_cfg.enabled;
++ if (copy_to_user(req_datap, (void *)&ctrl.status, sizeof(ctrl.status)))
++ return -EFAULT;
++ break;
++ case NATSETPORT:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_PORTCFG_T))
++ return -EPERM;
++ if (copy_from_user((void *)&ctrl.portcfg, req_datap, sizeof(ctrl.portcfg)))
++ return -EFAULT;
++ if (ctrl.portcfg.portmap == 0)
++ nat_cfg.lan_port = port_id;
++ else if (ctrl.portcfg.portmap == 1)
++ nat_cfg.wan_port = port_id;
++ else
++ return -EPERM;
++ break;
++ case NATGETPORT:
++ if (nat_hdr.len != sizeof(NAT_PORTCFG_T))
++ return -EPERM;
++ if (nat_cfg.lan_port == port_id)
++ ctrl.portcfg.portmap = 0;
++ else if (nat_cfg.wan_port == port_id)
++ ctrl.portcfg.portmap = 1;
++ else
++ return -EPERM;
++ if (copy_to_user(req_datap, (void *)&ctrl.portcfg, sizeof(ctrl.portcfg)))
++ return -EFAULT;
++ break;
++ case NATADDIP:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_IPCFG_T))
++ return -EPERM;
++ i = nat_cfg.ipcfg[port_id].total;
++ if (i >= CONFIG_NAT_MAX_IP_NUM)
++ return -E2BIG;
++ if (copy_from_user((void *)&nat_cfg.ipcfg[port_id].entry[i], req_datap, sizeof(NAT_IPCFG_T)))
++ return -EFAULT;
++ nat_cfg.ipcfg[port_id].total++;
++ break;
++ case NATDELIP:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_IPCFG_T))
++ return -EPERM;
++ if (copy_from_user((void *)&ctrl.ipcfg, req_datap, sizeof(ctrl.ipcfg)))
++ return -EFAULT;
++ ipcfg = (NAT_IP_ENTRY_T *)&nat_cfg.ipcfg[port_id].entry[0];
++ for (i=0; i<nat_cfg.ipcfg[port_id].total; i++, ipcfg++)
++ {
++ if (ipcfg->ipaddr == ctrl.ipcfg.entry.ipaddr)
++ {
++ NAT_IP_ENTRY_T *ipcfg_next;
++ ipcfg_next = ipcfg + 1;
++ for (j=i+1; j < nat_cfg.ipcfg[port_id].total; i++, j++)
++ {
++ memcpy((void *)ipcfg, (void *)ipcfg_next, sizeof(NAT_IP_ENTRY_T));
++ ipcfg++;
++ ipcfg_next++;
++ }
++ ipcfg->ipaddr = 0;
++ ipcfg->netmask = 0;
++ nat_cfg.ipcfg[port_id].total--;
++ return 0;
++ }
++ }
++ return -ENOENT;
++ case NATGETIP:
++ if (nat_hdr.len != sizeof(NAT_IPCFG_ALL_T))
++ return -EPERM;
++ if (copy_to_user(req_datap, (void *)&nat_cfg.ipcfg[port_id], sizeof(NAT_IPCFG_ALL_T)))
++ return -EFAULT;
++ break;
++ case NATAXPORT:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_XPORT_T))
++ return -EPERM;
++ i = nat_cfg.xport.total;
++ if (i >= CONFIG_NAT_MAX_XPORT)
++ return -E2BIG;
++ if (copy_from_user((void *)&nat_cfg.xport.entry[i], req_datap, sizeof(NAT_XPORT_T)))
++ return -EFAULT;
++ nat_cfg.xport.total++;
++ break;
++ case NATDXPORT:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_XPORT_T))
++ return -EPERM;
++ if (copy_from_user((void *)&ctrl.xport, req_datap, sizeof(NAT_XPORT_T)))
++ return -EFAULT;
++ xport_entry = (NAT_XPORT_ENTRY_T *)&nat_cfg.xport.entry[0];
++ for (i=0; i<nat_cfg.xport.total; i++, xport_entry++)
++ {
++ if (memcmp((void *)xport_entry, (void *)&ctrl.xport, sizeof(NAT_XPORT_ENTRY_T)) == 0)
++ {
++ NAT_XPORT_ENTRY_T *xport_next;
++ xport_next = xport_entry + 1;
++ for (j=i+1; j < nat_cfg.xport.total; i++, j++)
++ {
++ memcpy((void *)xport_entry, (void *)xport_next, sizeof(NAT_XPORT_ENTRY_T));
++ xport_entry++;
++ xport_next++;
++ }
++ memset((void *)xport_entry, 0, sizeof(NAT_XPORT_ENTRY_T));
++ nat_cfg.xport.total--;
++ return 0;
++ }
++ }
++ return -ENOENT;
++ case NATGXPORT:
++ if (nat_hdr.len != sizeof(NAT_XPORT_ALL_T))
++ return -EPERM;
++ if (copy_to_user(req_datap, (void *)&nat_cfg.xport, sizeof(NAT_XPORT_ALL_T)))
++ return -EFAULT;
++ break;
++ case NATSWEIGHT:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_WEIGHT_T))
++ return -EPERM;
++ if (copy_from_user((void *)&nat_cfg.weight, req_datap, sizeof(NAT_WEIGHT_T)))
++ return -EFAULT;
++ mac_set_hw_tx_weight(dev, (char *)&nat_cfg.weight);
++ break;
++ case NATGWEIGHT:
++ if (nat_hdr.len != sizeof(NAT_WEIGHT_T))
++ return -EPERM;
++ mac_get_hw_tx_weight(dev, (char *)&nat_cfg.weight);
++ if (copy_to_user(req_datap, (void *)&nat_cfg.weight, sizeof(NAT_WEIGHT_T)))
++ return -EFAULT;
++ break;
++ case NATAWRULE:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_WRULE_T))
++ return -EPERM;
++ if (copy_from_user((void *)&qid, req_datap, sizeof(qid)))
++ return -EFAULT;
++ if (qid > CONFIG_NAT_TXQ_NUM)
++ return -EPERM;
++ i = nat_cfg.wrule[qid].total;
++ if (i >= CONFIG_NAT_MAX_WRULE)
++ return -E2BIG;
++ if (copy_from_user((void *)&nat_cfg.wrule[qid].entry[i], req_datap+sizeof(qid), sizeof(NAT_WRULE_T)))
++ return -EFAULT;
++ nat_cfg.wrule[qid].total++;
++ break;
++ case NATDWRULE:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_WRULE_T))
++ return -EPERM;
++ if (copy_from_user((void *)&ctrl.wrule, req_datap, sizeof(NAT_WRULE_T)))
++ return -EFAULT;
++ qid = ctrl.wrule.qid;
++ if (qid >= CONFIG_NAT_TXQ_NUM)
++ return -EPERM;
++ wrule_entry = (NAT_WRULE_ENTRY_T *)&nat_cfg.wrule[qid].entry[0];
++ for (i=0; i<nat_cfg.wrule[qid].total; i++, wrule_entry++)
++ {
++ if (memcmp((void *)wrule_entry, (void *)&ctrl.wrule.entry, sizeof(NAT_WRULE_ENTRY_T)) == 0)
++ {
++ NAT_WRULE_ENTRY_T *wrule_next;
++ wrule_next = wrule_entry + 1;
++ for (j=i+1; j < nat_cfg.wrule[qid].total; i++, j++)
++ {
++ memcpy((void *)wrule_entry, (void *)wrule_next, sizeof(NAT_WRULE_ENTRY_T));
++ wrule_entry++;
++ wrule_next++;
++ }
++ memset((void *)wrule_entry, 0, sizeof(NAT_WRULE_ENTRY_T));
++ nat_cfg.wrule[qid].total--;
++ return 0;
++ }
++ }
++ return -ENOENT;
++ case NATGWRULE:
++ if (nat_hdr.len != sizeof(NAT_WRULE_ALL_T))
++ return -EPERM;
++ if (copy_from_user((void *)&qid, req_datap, sizeof(qid)))
++ return -EFAULT;
++ if (qid >= CONFIG_NAT_TXQ_NUM)
++ return -EPERM;
++ if (copy_to_user(req_datap, (void *)&nat_cfg.wrule[qid], sizeof(NAT_WRULE_ALL_T)))
++ return -EFAULT;
++ break;
++ case NATSDEFQ:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_QUEUE_T))
++ return -EPERM;
++ if (copy_from_user((void *)&nat_cfg.default_hw_txq, req_datap, sizeof(u32)))
++ return -EFAULT;
++ break;
++ case NATGDEFQ:
++ if (nat_hdr.len != sizeof(NAT_QUEUE_T))
++ return -EPERM;
++ if (copy_to_user(req_datap, (void *)&nat_cfg.default_hw_txq, sizeof(u32)))
++ return -EFAULT;
++ case NATRMIPCFG:
++ nat_cfg.ipcfg[port_id].total = 0;
++ break;
++ case NATTESTENTRY:
++ if (!capable(CAP_NET_ADMIN))
++ return -EPERM;
++ if (nat_hdr.len != sizeof(NAT_TESTENTRY_T))
++ return -EPERM;
++ if (copy_from_user((void *)&ctrl.init_entry, req_datap, sizeof(ctrl.init_entry)))
++ return -EFAULT;
++ if (ctrl.init_entry.init_enable != 0 && ctrl.init_entry.init_enable != 1)
++ return -EPERM;
++ nat_cfg.init_enabled = ctrl.init_entry.init_enable;
++ break;
++
++ default:
++ return -EPERM;
++ }
++
++ return 0;
++}
++
++/*----------------------------------------------------------------------
++* nat_init_test_entry
++* Initialize NAT test hash entries
++*
++* SmartBits P1 -----> Lepus GMAC 0 --------------+
++* |
++* |
++* P3 <----- Lepus GMAC 1 -- HW TxQ0 <--+
++* -- HW TxQ1 <--+
++* -- HW TxQ2 <--+
++* -- HW TxQ3 <--+
++*
++* SmartBits P1 <----- Lepus GMAC 0 -- HW TxQ0 <--+
++* -- HW TxQ1 <--+
++* -- HW TxQ2 <--+
++* -- HW TxQ3 <--+
++* |
++* |
++* P3 -----> Lepus GMAC 1 --------------+
++*
++* LAN GMAC0 <--------------------------------------------> GMAC1 WAN
++* 192.168.[x].[y]:50 --> 168.95.[x].[y]:80 ---TXQ[y-1]---> 192.168.2.254:200[y] --> 168.95.[x].[y]:80
++* 192.168.[x].[y]:50 <-- 168.95.[x].[y]:80 <--TXQ[y-1]---- 192.168.2.254:200[y] <-- 168.95.[x].[y]:80
++* where:
++* [x] : Packet Type
++* [y] : Tx Queue, 1 for TxQ0, 2 for TxQ1, 3 for TxQ2, 4 for TxQ3,
++*
++*
++* Packet Type:
++* 1. TCP Frames <---> TCP Frames
++* LAN GMAC0 <--------------------------------> GMAC1 WAN
++* 192.168.1.1:50 --> 168.95.1.1:80 ---TXQ0---> 192.168.2.254:2001 --> 168.95.1.1:80
++* 192.168.1.1:50 <-- 168.95.1.1:80 <--TXQ0---- 192.168.2.254:2001 <-- 168.95.1.1:80
++*
++* 192.168.1.2:50 --> 168.95.1.2:80 ---TXQ1---> 192.168.2.254:2002 --> 168.95.1.2:80
++* 192.168.1.2:50 <-- 168.95.1.2:80 <--TXQ1---- 192.168.2.254:2002 <-- 168.95.1.2:80
++*
++* 192.168.1.3:50 --> 168.95.1.3:80 ---TXQ2---> 192.168.2.254:2003 --> 168.95.1.3:80
++* 192.168.1.3:50 <-- 168.95.1.3:80 <--TXQ2---- 192.168.2.254:2003 <-- 168.95.1.3:80
++*
++* 192.168.1.4:50 --> 168.95.1.4:80 ---TXQ3---> 192.168.2.254:2004 --> 168.95.1.4:80
++* 192.168.1.4:50 <-- 168.95.1.4:80 <--TXQ3---- 192.168.2.254:2004 <-- 168.95.1.4:80
++*
++* 2 TCP Frames <----> PPPoE + TCP Frames
++* LAN GMAC0 <--------------------------------> GMAC1 WAN
++* 192.168.2.1:50 --> 168.95.2.1:80 ---TXQ0---> 192.168.2.254:2001 --> 168.95.2.1:80
++* 192.168.2.1:50 <-- 168.95.2.1:80 <--TXQ0---- 192.168.2.254:2001 <-- 168.95.2.1:80
++*
++* 192.168.2.2:50 --> 168.95.2.2:80 ---TXQ1---> 192.168.2.254:2002 --> 168.95.2.2:80
++* 192.168.2.2:50 <-- 168.95.2.2:80 <--TXQ1---- 192.168.2.254:2002 <-- 168.95.2.2:80
++*
++* 192.168.2.3:50 --> 168.95.2.3:80 ---TXQ2---> 192.168.2.254:2003 --> 168.95.2.3:80
++* 192.168.2.3:50 <-- 168.95.2.3:80 <--TXQ2---- 192.168.2.254:2003 <-- 168.95.2.3:80
++*
++* 192.168.2.4:50 --> 168.95.2.4:80 ---TXQ3---> 192.168.2.254:2004 --> 168.95.2.4:80
++* 192.168.2.4:50 <-- 168.95.2.4:80 <--TXQ3---- 192.168.2.254:2004 <-- 168.95.2.4:80
++*
++* 3 TCP Frames <----> VLAN + PPPoE + TCP Frames
++* LAN GMAC0 <--------------------------------> GMAC1 WAN
++* 192.168.3.1:50 --> 168.95.3.1:80 ---TXQ0---> 192.168.2.254:2001 --> 168.95.3.1:80
++* 192.168.3.1:50 <-- 168.95.3.1:80 <--TXQ0---- 192.168.2.254:2001 <-- 168.95.3.1:80
++*
++* 192.168.3.2:50 --> 168.95.3.2:80 ---TXQ1---> 192.168.2.254:2002 --> 168.95.3.2:80
++* 192.168.3.2:50 <-- 168.95.3.2:80 <--TXQ1---- 192.168.2.254:2002 <-- 168.95.3.2:80
++*
++* 192.168.3.3:50 --> 168.95.3.3:80 ---TXQ2---> 192.168.2.254:2003 --> 168.95.3.3:80
++* 192.168.3.3:50 <-- 168.95.3.3:80 <--TXQ2---- 192.168.2.254:2003 <-- 168.95.3.3:80
++*
++* 192.168.3.4:50 --> 168.95.3.4:80 ---TXQ3---> 192.168.2.254:2004 --> 168.95.3.4:80
++* 192.168.3.4:50 <-- 168.95.3.4:80 <--TXQ3---- 192.168.2.254:2004 <-- 168.95.3.4:80
++*
++* 4 VLAN-A + TCP Frames <----> VLAN-B + PPPoE + TCP Frames
++* LAN GMAC0 <--------------------------------> GMAC1 WAN
++* 192.168.4.1:50 --> 168.95.4.1:80 ---TXQ0---> 192.168.2.254:2001 --> 168.95.4.1:80
++* 192.168.4.1:50 <-- 168.95.4.1:80 <--TXQ0---- 192.168.2.254:2001 <-- 168.95.4.1:80
++*
++* 192.168.4.2:50 --> 168.95.4.2:80 ---TXQ1---> 192.168.2.254:2002 --> 168.95.4.2:80
++* 192.168.4.2:50 <-- 168.95.4.2:80 <--TXQ1---- 192.168.2.254:2002 <-- 168.95.4.2:80
++*
++* 192.168.4.3:50 --> 168.95.4.3:80 ---TXQ2---> 192.168.2.254:2003 --> 168.95.4.3:80
++* 192.168.4.3:50 <-- 168.95.4.3:80 <--TXQ2---- 192.168.2.254:2003 <-- 168.95.4.3:80
++*
++* 192.168.4.4:50 --> 168.95.4.4:80 ---TXQ3---> 192.168.2.254:2004 --> 168.95.4.4:80
++* 192.168.4.4:50 <-- 168.95.4.4:80 <--TXQ3---- 192.168.2.254:2004 <-- 168.95.4.4:80
++*
++*
++*
++*----------------------------------------------------------------------*/
++#ifdef SL351x_NAT_TEST_BY_SMARTBITS
++#define NAT_IPIV(a,b,c,d) ((a<<24)+(b<<16)+(c<<8)+d)
++#define NAT_TEST_CLIENT_IP NAT_IPIV(192,168,1,1)
++#define NAT_TEST_SERVER_IP NAT_IPIV(168,95,1,1)
++#define NAT_TEST_LAN_IP NAT_IPIV(192,168,1,254)
++#define NAT_TEST_WAN_IP NAT_IPIV(192,168,2,254)
++#define NAT_TEST_MAP_PORT_BASE 2001
++#define NAT_TEST_SPORT 50
++#define NAT_TEST_DPORT 80
++#define NAT_TEST_PROTOCOL 6
++u8 nat_test_lan_target_da[6]={0x00,0x11,0x22,0x33,0x44,0x55};
++u8 nat_test_wan_target_da[6]={0x00,0xaa,0xbb,0xcc,0xdd,0xee};
++u8 nat_test_lan_my_da[6]={0x00,0x11,0x11,0x11,0x11,0x11};
++u8 nat_test_wan_my_da[6]={0x00,0x22,0x22,0x22,0x22,0x22};
++static void nat_init_test_entry(void)
++{
++ int i, j ;
++ NAT_HASH_ENTRY_T *hash_entry;
++ u32 sip, dip;
++ u32 hash_data[HASH_MAX_DWORDS];
++ NAT_CFG_T *cfg;
++ int hash_index;
++
++ cfg = (NAT_CFG_T *)&nat_cfg;
++ hash_entry = (NAT_HASH_ENTRY_T *)&hash_data;
++ hash_entry->key.Ethertype = 0;
++ hash_entry->key.rule_id = 0;
++ hash_entry->key.ip_protocol = IPPROTO_TCP;
++ hash_entry->key.reserved1 = 0;
++ hash_entry->key.reserved2 = 0;
++ // hash_entry->key.sip = NAT_TEST_CLIENT_IP;
++ // hash_entry->key.dip = NAT_TEST_SERVER_IP;
++ hash_entry->key.sport = htons(NAT_TEST_SPORT);
++ hash_entry->key.dport = htons(NAT_TEST_DPORT);
++ hash_entry->key.rule_id = cfg->tcp_udp_rule_id;
++ hash_entry->action.dword = NAT_LAN2WAN_ACTIONS;
++
++ sip = NAT_TEST_CLIENT_IP;
++ dip = NAT_TEST_SERVER_IP;
++
++ // Init TCP <------> TCP hash entries
++ // LAN --> WAN
++ // (1) TCP --> TCP
++ // (2) TCP --> PPPoE + TCP
++ // (3) TCP --> VLAN-B + PPPoE + TCP
++ // (4) TCP + VLAN-A --> VLAN-B + PPPoE + TCP
++ memcpy(hash_entry->param.da, nat_test_wan_target_da, 6);
++ memcpy(hash_entry->param.sa, nat_test_wan_my_da, 6);
++ hash_entry->key.port_id = cfg->lan_port;
++ for (i=0; i<TOE_HW_TXQ_NUM; i++)
++ {
++ if (i < 2)
++ {
++ hash_entry->action.bits.dest_qid = i+2;
++ }
++ else
++ {
++ hash_entry->action.bits.dest_qid = i;
++ }
++ hash_entry->action.bits.dest_qid += (cfg->wan_port==0) ? TOE_GMAC0_HW_TXQ0_QID : TOE_GMAC1_HW_TXQ0_QID;
++ hash_entry->param.Sport = NAT_TEST_MAP_PORT_BASE+i;
++ hash_entry->param.Dport = NAT_TEST_DPORT;
++ for (j=0; j<4; j++)
++ {
++ hash_entry->key.sip = sip + i + j*0x100;
++ hash_entry->key.dip = dip + i + j*0x100;
++ hash_entry->param.Dip = hash_entry->key.dip;
++ hash_entry->param.Sip = NAT_TEST_WAN_IP;
++ switch (j)
++ {
++ case 0:
++ hash_entry->action.bits.pppoe = 0;
++ hash_entry->param.pppoe = 0;
++ hash_entry->action.bits.vlan = 0;
++ hash_entry->param.vlan = 0;
++ break;
++ case 1:
++ hash_entry->action.bits.pppoe = 1;
++ hash_entry->param.pppoe = i+1;
++ hash_entry->action.bits.vlan = 0;
++ hash_entry->param.vlan = 0;
++ break;
++ case 2:
++ hash_entry->action.bits.pppoe = 1;
++ hash_entry->param.pppoe = i+1;
++ hash_entry->action.bits.vlan = 1;
++ hash_entry->param.vlan = i+10;
++ break;
++ case 3:
++ hash_entry->action.bits.pppoe = 1;
++ hash_entry->param.pppoe = i+1;
++ hash_entry->action.bits.vlan = 1;
++ hash_entry->param.vlan = i+10;
++ break;
++ }
++ hash_entry->tmo.counter = hash_entry->tmo.interval = 0x7fff;
++ hash_index = nat_build_keys(&hash_entry->key);
++ nat_write_hash_entry(hash_index, hash_entry);
++ hash_nat_enable_owner(hash_index);
++ hash_validate_entry(hash_index); // Must last one, else HW Tx fast than SW
++ }
++ }
++
++
++ // WAN --> LAN
++ hash_entry->key.port_id = cfg->wan_port;
++ hash_entry->key.sport = htons(NAT_TEST_DPORT);
++ hash_entry->key.dport = htons(NAT_TEST_DPORT);
++ hash_entry->key.rule_id = cfg->tcp_udp_rule_id;
++ hash_entry->action.dword = NAT_WAN2LAN_ACTIONS;
++ hash_entry->key.sport = htons(NAT_TEST_DPORT);
++ memcpy(hash_entry->param.da, nat_test_lan_target_da, 6);
++ memcpy(hash_entry->param.sa, nat_test_lan_my_da, 6);
++ for (i=0; i<TOE_HW_TXQ_NUM; i++)
++ {
++ hash_entry->key.dport = htons(NAT_TEST_MAP_PORT_BASE + i);
++ if (i < 2)
++ {
++ hash_entry->action.bits.dest_qid = i+2;
++ }
++ else
++ {
++ hash_entry->action.bits.dest_qid = i;
++ }
++ hash_entry->action.bits.dest_qid += (cfg->lan_port==0) ? TOE_GMAC0_HW_TXQ0_QID : TOE_GMAC1_HW_TXQ0_QID;
++ hash_entry->param.Dport = NAT_TEST_SPORT;
++ hash_entry->param.Sport = NAT_TEST_DPORT;
++ hash_entry->param.da[5] = i;
++ for (j=0; j<4; j++)
++ {
++ hash_entry->key.sip = (dip + i + j*0x100);
++ hash_entry->key.dip = (NAT_TEST_WAN_IP);
++ hash_entry->param.Sip = hash_entry->key.sip;
++ hash_entry->param.Dip = sip + i + j*0x100;
++ switch (j)
++ {
++ case 0:
++ hash_entry->action.bits.pppoe = 0;
++ hash_entry->param.pppoe = 0;
++ hash_entry->action.bits.vlan = 0;
++ hash_entry->param.vlan = 0;
++ break;
++ case 1:
++ hash_entry->action.bits.pppoe = 2;
++ hash_entry->param.pppoe = i+1;
++ hash_entry->action.bits.vlan = 0;
++ hash_entry->param.vlan = 0;
++ break;
++ case 2:
++ hash_entry->action.bits.pppoe = 2;
++ hash_entry->param.pppoe = i+1;
++ hash_entry->action.bits.vlan = 2;
++ hash_entry->param.vlan = i+5;
++ break;
++ case 3:
++ hash_entry->action.bits.pppoe = 1;
++ hash_entry->param.pppoe = i+1;
++ hash_entry->action.bits.vlan = 1;
++ hash_entry->param.vlan = i+5;
++ break;
++ }
++ hash_entry->tmo.counter = hash_entry->tmo.interval = 0x7fff;
++ hash_index = nat_build_keys(&hash_entry->key);
++ nat_write_hash_entry(hash_index, hash_entry);
++ hash_nat_enable_owner(hash_index);
++ hash_validate_entry(hash_index); // Must last one, else HW Tx fast than SW
++ }
++ }
++}
++#endif // SL351x_NAT_TEST_BY_SMARTBITS
++
++#endif // CONFIG_SL351x_NAT
++
+--- /dev/null
++++ b/drivers/net/sl351x_proc.c
+@@ -0,0 +1,578 @@
++/****************************************************************************
++* Copyright 2006 Storlink Corp. All rights reserved.
++*----------------------------------------------------------------------------
++* Name : sl351x_proc.c
++* Description :
++* Handle Proc Routines for Storlink SL351x Platform
++*
++* History
++*
++* Date Writer Description
++*----------------------------------------------------------------------------
++* 04/13/2006 Gary Chen Create and implement
++*
++*
++****************************************************************************/
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/compiler.h>
++#include <linux/pci.h>
++#include <linux/init.h>
++#include <linux/ioport.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/rtnetlink.h>
++#include <linux/delay.h>
++#include <linux/ethtool.h>
++#include <linux/mii.h>
++#include <linux/completion.h>
++#include <asm/hardware.h>
++#include <asm/io.h>
++#include <asm/irq.h>
++#include <asm/semaphore.h>
++#include <asm/arch/irqs.h>
++#include <asm/arch/it8712.h>
++#include <linux/mtd/kvctl.h>
++#include <linux/skbuff.h>
++#include <linux/if_ether.h>
++#include <linux/if_pppox.h>
++#include <linux/in.h>
++#include <linux/ip.h>
++#include <linux/tcp.h>
++#include <linux/ppp_defs.h>
++#ifdef CONFIG_NETFILTER
++// #include <linux/netfilter_ipv4/ip_conntrack.h>
++#endif
++#include <linux/proc_fs.h>
++#include <linux/seq_file.h>
++#include <linux/percpu.h>
++#ifdef CONFIG_SYSCTL
++#include <linux/sysctl.h>
++#endif
++
++#define MIDWAY
++#define SL_LEPUS
++
++// #define PROC_DEBUG_MSG 1
++
++#include <asm/arch/sl2312.h>
++#include <asm/arch/sl351x_gmac.h>
++#include <asm/arch/sl351x_hash_cfg.h>
++#include <asm/arch/sl351x_nat_cfg.h>
++#include <asm/arch/sl351x_toe.h>
++
++#ifdef CONFIG_PROC_FS
++/*----------------------------------------------------------------------
++* Definition
++*----------------------------------------------------------------------*/
++#define proc_printf printk
++#define SL351x_GMAC_PROC_NAME "sl351x_gmac"
++#define SL351x_NAT_PROC_NAME "sl351x_nat"
++#define SL351x_TOE_PROC_NAME "sl351x_toe"
++
++/*----------------------------------------------------------------------
++* Function Definition
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static int nat_ct_open(struct inode *inode, struct file *file);
++static void *nat_ct_seq_start(struct seq_file *s, loff_t *pos);
++static void nat_ct_seq_stop(struct seq_file *s, void *v);
++static void *nat_ct_seq_next(struct seq_file *s, void *v, loff_t *pos);
++static int nat_ct_seq_show(struct seq_file *s, void *v);
++#endif
++
++#ifdef CONFIG_SL351x_RXTOE
++static int toe_ct_open(struct inode *inode, struct file *file);
++static void *toe_ct_seq_start(struct seq_file *s, loff_t *pos);
++static void toe_ct_seq_stop(struct seq_file *s, void *v);
++static void *toe_ct_seq_next(struct seq_file *s, void *v, loff_t *pos);
++static int toe_ct_seq_show(struct seq_file *s, void *v);
++extern int sl351x_get_toe_conn_flag(int index);
++extern struct toe_conn * sl351x_get_toe_conn_info(int index);
++#endif
++
++static int gmac_ct_open(struct inode *inode, struct file *file);
++static void *gmac_ct_seq_start(struct seq_file *s, loff_t *pos);
++static void gmac_ct_seq_stop(struct seq_file *s, void *v);
++static void *gmac_ct_seq_next(struct seq_file *s, void *v, loff_t *pos);
++static int gmac_ct_seq_show(struct seq_file *s, void *v);
++
++
++/*----------------------------------------------------------------------
++* Data
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SYSCTL
++// static struct ctl_table_header *nat_ct_sysctl_header;
++#endif
++
++#ifdef CONFIG_SL351x_NAT
++static struct seq_operations nat_ct_seq_ops = {
++ .start = nat_ct_seq_start,
++ .next = nat_ct_seq_next,
++ .stop = nat_ct_seq_stop,
++ .show = nat_ct_seq_show
++};
++
++static struct file_operations nat_file_ops= {
++ .owner = THIS_MODULE,
++ .open = nat_ct_open,
++ .read = seq_read,
++ .llseek = seq_lseek,
++ .release = seq_release
++};
++#endif // CONFIG_SL351x_NAT
++
++#ifdef CONFIG_SL351x_RXTOE
++static struct seq_operations toe_ct_seq_ops = {
++ .start = toe_ct_seq_start,
++ .next = toe_ct_seq_next,
++ .stop = toe_ct_seq_stop,
++ .show = toe_ct_seq_show
++};
++
++static struct file_operations toe_file_ops= {
++ .owner = THIS_MODULE,
++ .open = toe_ct_open,
++ .read = seq_read,
++ .llseek = seq_lseek,
++ .release = seq_release
++};
++#endif
++
++static struct seq_operations gmac_ct_seq_ops = {
++ .start = gmac_ct_seq_start,
++ .next = gmac_ct_seq_next,
++ .stop = gmac_ct_seq_stop,
++ .show = gmac_ct_seq_show
++};
++
++static struct file_operations gmac_file_ops= {
++ .owner = THIS_MODULE,
++ .open = gmac_ct_open,
++ .read = seq_read,
++ .llseek = seq_lseek,
++ .release = seq_release
++};
++
++#ifdef SL351x_GMAC_WORKAROUND
++extern u32 gmac_workaround_cnt[4];
++extern u32 gmac_short_frame_workaround_cnt[2];
++#ifdef CONFIG_SL351x_NAT
++ extern u32 sl351x_nat_workaround_cnt;
++#endif
++#endif
++/*----------------------------------------------------------------------
++* nat_ct_open
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static int nat_ct_open(struct inode *inode, struct file *file)
++{
++ return seq_open(file, &nat_ct_seq_ops);
++}
++#endif // CONFIG_SL351x_NAT
++/*----------------------------------------------------------------------
++* nat_ct_seq_start
++* find the first
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static void *nat_ct_seq_start(struct seq_file *s, loff_t *pos)
++{
++ int i;
++
++ // proc_printf("%s: *pos=%d\n", __func__, (int)*pos);
++ for (i=*pos; i<HASH_TOTAL_ENTRIES; i++)
++ {
++ if (hash_get_nat_owner_flag(i))
++ {
++ *pos = i;
++ return (void *)(i+1);
++ }
++ }
++ return NULL;
++}
++#endif // CONFIG_SL351x_NAT
++/*----------------------------------------------------------------------
++* nat_ct_seq_stop
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static void nat_ct_seq_stop(struct seq_file *s, void *v)
++{
++}
++#endif // CONFIG_SL351x_NAT
++/*----------------------------------------------------------------------
++* nat_ct_seq_next
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static void *nat_ct_seq_next(struct seq_file *s, void *v, loff_t *pos)
++{
++ int i;
++
++ // proc_printf("%s: *pos=%d\n", __func__, (int)*pos);
++ (*pos)++;
++ for (i=*pos; i<HASH_TOTAL_ENTRIES; i++)
++ {
++ if (hash_get_nat_owner_flag(i))
++ {
++ *pos = i;
++ return (void *)(i+1);
++ }
++ }
++ return NULL;
++}
++#endif // CONFIG_SL351x_NAT
++/*----------------------------------------------------------------------
++* nat_ct_seq_show
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_NAT
++static int nat_ct_seq_show(struct seq_file *s, void *v)
++{
++ int idx;
++ NAT_HASH_ENTRY_T *nat_entry;
++ GRE_HASH_ENTRY_T *gre_entry;
++
++ idx = (int)v;
++ if (idx<=0 || idx >HASH_TOTAL_ENTRIES)
++ return -ENOSPC;
++
++ idx--;
++ nat_entry = (NAT_HASH_ENTRY_T *)&hash_tables[idx];
++ gre_entry = (GRE_HASH_ENTRY_T *)nat_entry;
++ if (nat_entry->key.ip_protocol == IPPROTO_GRE)
++ {
++ if (seq_printf(s, "%4d: KEY MAC-%d [%d] %u.%u.%u.%u [%u]-->%u.%u.%u.%u\n",
++ idx, gre_entry->key.port_id, gre_entry->key.ip_protocol,
++ HIPQUAD(gre_entry->key.sip), ntohs(gre_entry->key.call_id),
++ HIPQUAD(gre_entry->key.dip)))
++ return -ENOSPC;
++ if (seq_printf(s, " PARAMETER: %u.%u.%u.%u -->%u.%u.%u.%u [%u] Timeout:%ds\n",
++ HIPQUAD(gre_entry->param.Sip),
++ HIPQUAD(gre_entry->param.Dip), gre_entry->param.Dport,
++ gre_entry->tmo.counter))
++ return -ENOSPC;
++ }
++ else
++ {
++ if (seq_printf(s, "%4d: KEY MAC-%d [%d] %u.%u.%u.%u [%u]-->%u.%u.%u.%u [%u]\n",
++ idx, nat_entry->key.port_id, nat_entry->key.ip_protocol,
++ HIPQUAD(nat_entry->key.sip), ntohs(nat_entry->key.sport),
++ HIPQUAD(nat_entry->key.dip), ntohs(nat_entry->key.dport)))
++ return -ENOSPC;
++ if (seq_printf(s, " PARAMETER: %u.%u.%u.%u [%u]-->%u.%u.%u.%u [%u] Timeout:%ds\n",
++ HIPQUAD(nat_entry->param.Sip), nat_entry->param.Sport,
++ HIPQUAD(nat_entry->param.Dip), nat_entry->param.Dport,
++ nat_entry->tmo.counter))
++ return -ENOSPC;
++ }
++ return 0;
++}
++#endif // CONFIG_SL351x_NAT
++
++/*----------------------------------------------------------------------
++* toe_ct_open
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_RXTOE
++static int toe_ct_open(struct inode *inode, struct file *file)
++{
++ return seq_open(file, &toe_ct_seq_ops);
++}
++#endif
++/*----------------------------------------------------------------------
++* toe_ct_seq_start
++* find the first
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_RXTOE
++static void *toe_ct_seq_start(struct seq_file *s, loff_t *pos)
++{
++ int i;
++
++ // proc_printf("%s: *pos=%d\n", __func__, (int)*pos);
++ for (i=*pos; i<TOE_TOE_QUEUE_NUM; i++)
++ {
++ if (sl351x_get_toe_conn_flag(i))
++ {
++ *pos = i;
++ return (void *)(i+1);
++ }
++ }
++ return NULL;
++}
++#endif
++/*----------------------------------------------------------------------
++* toe_ct_seq_stop
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_RXTOE
++static void toe_ct_seq_stop(struct seq_file *s, void *v)
++{
++}
++#endif
++/*----------------------------------------------------------------------
++* toe_ct_seq_next
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_RXTOE
++static void *toe_ct_seq_next(struct seq_file *s, void *v, loff_t *pos)
++{
++ int i;
++
++ // proc_printf("%s: *pos=%d\n", __func__, (int)*pos);
++ (*pos)++;
++ for (i=*pos; i<TOE_TOE_QUEUE_NUM; i++)
++ {
++ if (sl351x_get_toe_conn_flag(i))
++ {
++ *pos = i;
++ return (void *)(i+1);
++ }
++ }
++ return NULL;
++}
++#endif
++/*----------------------------------------------------------------------
++* toe_ct_seq_show
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_SL351x_RXTOE
++static int toe_ct_seq_show(struct seq_file *s, void *v)
++{
++ int idx;
++ struct toe_conn *toe_entry;
++
++ idx = (int)v;
++ if (idx<=0 || idx >TOE_TOE_QUEUE_NUM)
++ return -ENOSPC;
++
++ idx--;
++ toe_entry = (struct toe_conn *)sl351x_get_toe_conn_info(idx);
++ if (!toe_entry)
++ return -ENOSPC;
++
++ if (seq_printf(s, "%4d: Qid %d MAC-%d TCP %u.%u.%u.%u [%u]-->%u.%u.%u.%u [%u]\n",
++ idx, toe_entry->qid, toe_entry->gmac->port_id,
++ NIPQUAD(toe_entry->saddr[0]), ntohs(toe_entry->source),
++ NIPQUAD(toe_entry->daddr[0]), ntohs(toe_entry->dest)))
++ return -ENOSPC;
++ return 0;
++}
++#endif
++/*----------------------------------------------------------------------
++* gmac_ct_open
++*----------------------------------------------------------------------*/
++static int gmac_ct_open(struct inode *inode, struct file *file)
++{
++ return seq_open(file, &gmac_ct_seq_ops);
++}
++
++/*----------------------------------------------------------------------
++* gmac_ct_seq_start
++* find the first
++*----------------------------------------------------------------------*/
++static void *gmac_ct_seq_start(struct seq_file *s, loff_t *pos)
++{
++ int i;
++ i = (int)*pos + 1;;
++
++ if (i > 9)
++ return NULL;
++ else
++ return (void *)i;
++}
++
++/*----------------------------------------------------------------------
++* gmac_ct_seq_stop
++*----------------------------------------------------------------------*/
++static void gmac_ct_seq_stop(struct seq_file *s, void *v)
++{
++}
++
++/*----------------------------------------------------------------------
++* gmac_ct_seq_next
++*----------------------------------------------------------------------*/
++static void *gmac_ct_seq_next(struct seq_file *s, void *v, loff_t *pos)
++{
++ int i;
++
++ // proc_printf("%s: *pos=%d\n", __func__, (int)*pos);
++
++ (*pos)++;
++ i = (int)*pos + 1;;
++
++ if (i > 9)
++ return NULL;
++ else
++ return (void *)i;
++}
++
++/*----------------------------------------------------------------------
++* seq_dm_long
++*----------------------------------------------------------------------*/
++static void seq_dm_long(struct seq_file *s, u32 location, int length)
++{
++ u32 *start_p, *curr_p, *end_p;
++ u32 *datap, data;
++ int i;
++
++ //if (length > 1024)
++ // length = 1024;
++
++ start_p = (u32 *)location;
++ end_p = (u32 *)location + length;
++ curr_p = (u32 *)((u32)location & 0xfffffff0);
++ datap = (u32 *)location;
++ while (curr_p < end_p)
++ {
++ cond_resched();
++ seq_printf(s, "0x%08x: ",(u32)curr_p & 0xfffffff0);
++ for (i=0; i<4; i++)
++ {
++ if (curr_p < start_p || curr_p >= end_p)
++ seq_printf(s, " ");
++ else
++ {
++ data = *datap;
++ seq_printf(s, "%08X ", data);
++ }
++ if (i==1)
++ seq_printf(s, "- ");
++
++ curr_p++;
++ datap++;
++ }
++ seq_printf(s, "\n");
++ }
++}
++
++/*----------------------------------------------------------------------
++* gmac_ct_seq_show
++*----------------------------------------------------------------------*/
++static int gmac_ct_seq_show(struct seq_file *s, void *v)
++{
++ switch ((int)v)
++ {
++ case 1:
++ seq_printf(s, "\nGMAC Global Registers\n");
++ seq_dm_long(s, TOE_GLOBAL_BASE, 32);
++ break;
++ case 2:
++ seq_printf(s, "\nGMAC Non-TOE Queue Header\n");
++ seq_dm_long(s, TOE_NONTOE_QUE_HDR_BASE, 12);
++ break;
++ case 3:
++ seq_printf(s, "\nGMAC TOE Queue Header\n");
++ seq_dm_long(s, TOE_TOE_QUE_HDR_BASE, 12);
++ break;
++ case 4:
++ seq_printf(s, "\nGMAC-0 DMA Registers\n");
++ seq_dm_long(s, TOE_GMAC0_DMA_BASE, 52);
++ break;
++ case 5:
++ seq_printf(s, "\nGMAC-0 Registers\n");
++ seq_dm_long(s, TOE_GMAC0_BASE, 32);
++ break;
++ case 6:
++ seq_printf(s, "\nGMAC-1 DMA Registers\n");
++ seq_dm_long(s, TOE_GMAC1_DMA_BASE, 52);
++ break;
++ case 7:
++ seq_printf(s, "\nGMAC-1 Registers\n");
++ seq_dm_long(s, TOE_GMAC1_BASE, 32);
++ break;
++ case 8:
++ seq_printf(s, "\nGLOBAL Registers\n");
++ seq_dm_long(s, GMAC_GLOBAL_BASE_ADDR, 16);
++ break;
++ case 9:
++#ifdef SL351x_GMAC_WORKAROUND
++ seq_printf(s, "\nGMAC-0 Rx/Tx/Short Workaround: %u, %u, %u\n", gmac_workaround_cnt[0], gmac_workaround_cnt[1], gmac_short_frame_workaround_cnt[0]);
++ seq_printf(s, "GMAC-1 Rx/Tx/Short Workaround: %u, %u, %u\n", gmac_workaround_cnt[2], gmac_workaround_cnt[3], gmac_short_frame_workaround_cnt[1]);
++#ifdef CONFIG_SL351x_NAT
++ seq_printf(s, "NAT Workaround: %u\n", sl351x_nat_workaround_cnt);
++#endif
++#endif
++ break;
++ default:
++ return -ENOSPC;
++ }
++ return 0;
++}
++
++/*----------------------------------------------------------------------
++* init
++*----------------------------------------------------------------------*/
++static int __init init(void)
++{
++ struct proc_dir_entry *proc_gmac=NULL;
++
++#ifdef CONFIG_SL351x_NAT
++ struct proc_dir_entry *proc_nat=NULL;
++#endif
++
++#ifdef CONFIG_SL351x_RXTOE
++ struct proc_dir_entry *proc_toe=NULL;
++#endif
++
++#ifdef CONFIG_SYSCTL
++ // nat_ct_sysctl_header = NULL;
++#endif
++ proc_gmac = proc_net_fops_create(SL351x_GMAC_PROC_NAME, 0440, &gmac_file_ops);
++ if (!proc_gmac) goto init_bad;
++
++#ifdef CONFIG_SL351x_NAT
++ proc_nat = proc_net_fops_create(SL351x_NAT_PROC_NAME, 0440, &nat_file_ops);
++ if (!proc_nat) goto init_bad;
++#endif // CONFIG_SL351x_NAT
++
++#ifdef CONFIG_SL351x_RXTOE
++ proc_toe = proc_net_fops_create(SL351x_TOE_PROC_NAME, 0440, &toe_file_ops);
++ if (!proc_toe) goto init_bad;
++#endif
++
++#ifdef CONFIG_SYSCTL
++ // nat_ct_sysctl_header = register_sysctl_table(nat_ct_net_table, 0);
++ // if (!nat_ct_sysctl_header) goto init_bad;
++#endif
++
++ return 0;
++
++init_bad:
++ if (proc_gmac) proc_net_remove(SL351x_GMAC_PROC_NAME);
++
++#ifdef CONFIG_SL351x_NAT
++ if (proc_nat) proc_net_remove(SL351x_NAT_PROC_NAME);
++#endif
++
++#ifdef CONFIG_SL351x_RXTOE
++ if (proc_toe) proc_net_remove(SL351x_NAT_PROC_NAME);
++#endif
++
++#ifdef CONFIG_SYSCTL
++ // if (nat_ct_sysctl_header) unregister_sysctl_table(nat_ct_sysctl_header);
++#endif
++ proc_printf("SL351x NAT Proc: can't create proc or register sysctl.\n");
++ return -ENOMEM;
++}
++
++/*----------------------------------------------------------------------
++* fini
++*----------------------------------------------------------------------*/
++static void __exit fini(void)
++{
++ proc_net_remove(SL351x_GMAC_PROC_NAME);
++
++#ifdef CONFIG_SL351x_NAT
++ proc_net_remove(SL351x_NAT_PROC_NAME);
++#endif
++
++#ifdef CONFIG_SL351x_RXTOE
++ proc_net_remove(SL351x_TOE_PROC_NAME);
++#endif
++
++#ifdef CONFIG_SYSCTL
++ // unregister_sysctl_table(nat_ct_sysctl_header);
++#endif
++}
++
++/*----------------------------------------------------------------------
++* module
++*----------------------------------------------------------------------*/
++module_init(init);
++module_exit(fini);
++
++#endif // CONFIG_PROC_FS
+--- /dev/null
++++ b/drivers/net/sl351x_toe.c
+@@ -0,0 +1,1083 @@
++/**************************************************************************
++* Copyright 2006 StorLink Semiconductors, Inc. All rights reserved.
++*--------------------------------------------------------------------------
++* Name : sl351x_toe.c
++* Description :
++* Provide TOE routines for SL351x
++*
++* History
++*
++* Date Writer Description
++*----------------------------------------------------------------------------
++* Xiaochong
++*
++****************************************************************************/
++
++#include <linux/pci.h>
++#include <linux/ip.h>
++#include <linux/ipv6.h>
++#include <linux/tcp.h>
++#include <linux/slab.h>
++#include <linux/etherdevice.h>
++#include <asm/io.h>
++#include <linux/sysctl_storlink.h>
++#include <net/tcp.h>
++#include <linux/if_ether.h>
++#include <asm/arch/sl351x_gmac.h>
++#include <asm/arch/sl351x_toe.h>
++#include <asm/arch/sl351x_hash_cfg.h>
++#include <asm/arch/sl351x_nat_cfg.h>
++
++static int in_toe_isr;
++static int toe_initialized=0;
++
++static struct toe_conn toe_connections[TOE_TOE_QUEUE_NUM];
++EXPORT_SYMBOL(toe_connections);
++static __u32 toe_connection_bits[TOE_TOE_QUEUE_NUM/32] __attribute__ ((aligned(16)));
++struct sk_buff* gen_pure_ack(struct toe_conn* connection, TOE_QHDR_T* toe_qhdr, INTR_QHDR_T *intr_curr_desc);
++
++extern struct storlink_sysctl storlink_ctl;
++extern TOE_INFO_T toe_private_data;
++extern spinlock_t gmac_fq_lock;
++extern void mac_write_dma_reg(int mac, unsigned int offset, u32 data);
++extern int mac_set_rule_reg(int mac, int rule, int enabled, u32 reg0, u32 reg1, u32 reg2);
++extern int hash_add_toe_entry(HASH_ENTRY_T *entry);
++extern void toe_gmac_fill_free_q(void);
++
++#define _DEBUG_SKB_ 1
++#ifdef _DEBUG_SKB_
++/*---------------------------------------------------------------------------
++ * _debug_skb
++ *-------------------------------------------------------------------------*/
++static inline void _debug_skb(struct sk_buff *skb, GMAC_RXDESC_T *toe_curr_desc, u32 data)
++{
++ if ((u32)skb < 0x1000)
++ {
++ printk("%s skb=%x\n", __func__, (u32)skb);
++ while(1);
++ }
++ REG32(__va(toe_curr_desc->word2.buf_adr)-SKB_RESERVE_BYTES) = data;
++}
++#else
++#define _debug_skb(x, y, z)
++#endif
++
++/*---------------------------------------------------------------------------
++ * get_connection_seq_num
++ *-------------------------------------------------------------------------*/
++u32 get_connection_seq_num(unsigned short qid)
++{
++ TOE_QHDR_T *toe_qhdr;
++
++ toe_qhdr = (TOE_QHDR_T*)TOE_TOE_QUE_HDR_BASE;
++ toe_qhdr += qid;
++ return (u32)toe_qhdr->word3.seq_num;
++}
++EXPORT_SYMBOL(get_connection_seq_num);
++
++/*---------------------------------------------------------------------------
++ * get_connection_ack_num
++ *-------------------------------------------------------------------------*/
++u32 get_connection_ack_num(unsigned short qid)
++{
++ TOE_QHDR_T *toe_qhdr;
++
++ toe_qhdr = (TOE_QHDR_T*)TOE_TOE_QUE_HDR_BASE;
++ toe_qhdr += qid;
++ return (u32)toe_qhdr->word4.ack_num;
++}
++EXPORT_SYMBOL(get_connection_ack_num);
++
++/*---------------------------------------------------------------------------
++ * dump_toe_qhdr
++ *-------------------------------------------------------------------------*/
++void dump_toe_qhdr(TOE_QHDR_T *toe_qhdr)
++{
++ printk("TOE w1 %x, w2 %x, w3 %x\n", toe_qhdr->word1.bits32,
++ toe_qhdr->word2.bits32, toe_qhdr->word3.bits32);
++ printk("w4 %x, w5 %x, w6 %x\n", toe_qhdr->word4.bits32,
++ toe_qhdr->word5.bits32, toe_qhdr->word6.bits32);
++}
++
++/*---------------------------------------------------------------------------
++ * dump_intrq_desc
++ *-------------------------------------------------------------------------*/
++void dump_intrq_desc(INTR_QHDR_T *intr_curr_desc)
++{
++ printk("INTR w0 %x, w1 %x, seq %x\n", intr_curr_desc->word0.bits32,
++ intr_curr_desc->word1.bits32, intr_curr_desc->word2.bits32);
++ printk("ack %x, w4 %x\n", intr_curr_desc->word3.bits32,
++ intr_curr_desc->word4.bits32);
++}
++
++/*---------------------------------------------------------------------------
++ * This routine will initialize a TOE matching rule
++ * called by SL351x GMAC driver.
++ *-------------------------------------------------------------------------*/
++void sl351x_toe_init(void)
++{
++ GMAC_MRxCR0_T mrxcr0;
++ GMAC_MRxCR1_T mrxcr1;
++ GMAC_MRxCR2_T mrxcr2;
++ int rule, rc;
++
++ if (toe_initialized)
++ return;
++
++ toe_initialized = 1;
++
++#ifndef CONFIG_SL351x_NAT
++ mrxcr0.bits32 = 0;
++ mrxcr1.bits32 = 0;
++ mrxcr2.bits32 = 0;
++ mrxcr0.bits.l3 = 1;
++ mrxcr0.bits.l4 = 1;
++ mrxcr1.bits.sip = 1;
++ mrxcr1.bits.dip = 1;
++ mrxcr1.bits.l4_byte0_15 = 0x0f;
++ mrxcr0.bits.sprx = 1;
++ rule = 0;
++ rc = mac_set_rule_reg(0, rule, 1, mrxcr0.bits32, mrxcr1.bits32,
++ mrxcr2.bits32);
++ if (rc<0) {
++ printk("%s::Set MAC 0 rule fail!\n", __func__);
++ }
++ rc = mac_set_rule_reg(1, rule, 1, mrxcr0.bits32, mrxcr1.bits32,
++ mrxcr2.bits32);
++ if (rc<0) {
++ printk("%s::Set MAC 1 rule fail!\n", __func__);
++ }
++#endif // CONFIG_SL351x_NAT
++}
++
++/*---------------------------------------------------------------------------
++ * dump_intrq_desc
++ * assign an interrupt queue number to a give tcp queue
++ *-------------------------------------------------------------------------*/
++int get_interrupt_queue_id(int tcp_qid)
++{
++ return (int)(tcp_qid & 0x0003);
++}
++
++/*---------------------------------------------------------------------------
++ * reset_connection_index
++ * reset the connection bit by given index
++ *-------------------------------------------------------------------------*/
++void reset_connection_index(__u8 index)
++{
++ __u32 mask = ~(0xffffffff & (1<< (index&0x1f)));
++ toe_connection_bits[index>>5] = toe_connection_bits[index>>5] & mask;
++}
++
++/*---------------------------------------------------------------------------
++ * update_timer
++ *-------------------------------------------------------------------------*/
++void update_timer(struct toe_conn* connection)
++{
++// if (time_before(jiffies, connection->last_rx_jiffies+3))
++// if ((jiffies + 0xffffffff - connection->last_rx_jiffies) & 0x3)
++// if (connection->last_rx_jiffies > jiffies)
++// printk("%s::jif %g, last_rx_jif %g\n", __func__, jiffies, connection->last_rx_jiffies);
++/* if ((long)(jiffies + 2)< 3) { // overflow...
++ printk("%s::jiffies %x\n", __func__, jiffies);
++ } */
++// if ((long)(jiffies - connection->last_rx_jiffies)< 2)
++// return;
++ connection->last_rx_jiffies = jiffies;
++ // gary chen mod_timer(&connection->rx_timer, jiffies+2);
++ connection->rx_timer.expires = jiffies + 2;
++ add_timer(&connection->rx_timer);
++// printk("%s::nt %x, lj %x\n", __func__, (jiffies+2), connection->last_rx_jiffies);
++}
++
++/*---------------------------------------------------------------------------
++ * gen_pure_ack
++ *-------------------------------------------------------------------------*/
++struct sk_buff* gen_pure_ack(struct toe_conn* connection, TOE_QHDR_T* toe_qhdr,
++INTR_QHDR_T *intr_curr_desc)
++{
++ struct sk_buff *skb;
++ struct iphdr *ip_hdr;
++ struct tcphdr *tcp_hdr;
++ struct ethhdr *eth_hdr;
++
++ if ((skb= dev_alloc_skb(RX_BUF_SIZE))==NULL) {
++ printk("%s::alloc pure ack fail!\n", __func__);
++ return NULL;
++ }
++ skb_reserve(skb, RX_INSERT_BYTES);
++ memset(skb->data, 0, 60);
++
++ eth_hdr = (struct ethhdr*)&(skb->data[0]);
++ memcpy(eth_hdr, &connection->l2_hdr, sizeof(struct ethhdr));
++
++ ip_hdr = (struct iphdr*)&(skb->data[14]);
++ ip_hdr->version = connection->ip_ver;
++ ip_hdr->ihl = 20>>2;
++ ip_hdr->tot_len = ntohs(40);
++ ip_hdr->frag_off = htons(IP_DF);
++ ip_hdr->ttl = 128;
++ ip_hdr->protocol = 0x06;
++ ip_hdr->saddr = connection->saddr[0];
++ ip_hdr->daddr = connection->daddr[0];
++// printk("%s ip sa %x, da %x\n",
++// __func__, ntohl(ip_hdr->saddr), ntohl(ip_hdr->daddr));
++
++ tcp_hdr = (struct tcphdr*)&(skb->data[34]);
++ tcp_hdr->source = connection->source;
++ tcp_hdr->dest = connection->dest;
++ if (intr_curr_desc) {
++ tcp_hdr->seq = htonl(intr_curr_desc->word2.seq_num);
++ tcp_hdr->ack_seq = htonl(intr_curr_desc->word3.ack_num);
++ tcp_hdr->window = htons(intr_curr_desc->word0.bits.win_size);
++ } else {
++ tcp_hdr->seq = htonl(toe_qhdr->word3.seq_num);
++ tcp_hdr->ack_seq = htonl(toe_qhdr->word4.ack_num);
++ tcp_hdr->window = htons(toe_qhdr->word6.bits.WinSize);
++ }
++ tcp_hdr->ack = 1;
++ tcp_hdr->doff = 20 >> 2;
++#if 0
++ if (!intr_curr_desc) {
++ unsigned char byte;
++ for (i=0; i<20; i++) {
++ byte = skb->data[34+i];
++ printk("%x ", byte);
++ }
++ printk("\n");
++ }
++#endif
++ TCP_SKB_CB(skb)->connection = connection;
++ return skb;
++}
++
++/*---------------------------------------------------------------------------
++ * connection_rx_timer
++ *-------------------------------------------------------------------------*/
++void connection_rx_timer(unsigned long *data)
++{
++ struct toe_conn *connection = (struct toe_conn*)data;
++ unsigned int tcp_qid, toeq_wptr;
++ unsigned int pkt_size, desc_count;
++ struct sk_buff *skb;
++ GMAC_RXDESC_T *toe_curr_desc;
++ TOE_QHDR_T *toe_qhdr;
++ struct net_device *dev;
++ unsigned long conn_flags;
++ DMA_RWPTR_T toeq_rwptr;
++ unsigned short timeout_descs;
++
++ if (in_toe_isr)
++ printk("%s::in_toe_isr=%d!\n", __func__, in_toe_isr);
++
++ if (connection) {
++ /* should we disable gmac interrupt first? */
++ if (!connection->gmac)
++ printk("%s::conn gmac %x!\n", __func__, (u32)connection->gmac);
++ local_irq_save(conn_flags);
++ if (!spin_trylock(&connection->conn_lock)) {
++ local_irq_restore(conn_flags);
++ // timer should be updated by the toeq isr. So no need to update here.
++ printk("%s::conn_lock is held by ISR!\n", __func__);
++ return;
++ }
++ disable_irq(connection->gmac->irq);
++
++ /* disable hash entry and get toeq desc. */
++ hash_set_valid_flag(connection->hash_entry_index, 0);
++ do{} while(0); /* wait until HW finish */
++
++ dev = connection->dev;
++ if (!dev)
++ printk("%s::conn dev NULL!\n", __func__);
++ tcp_qid = connection->qid;
++ toe_qhdr = (TOE_QHDR_T *)(TOE_TOE_QUE_HDR_BASE +
++ tcp_qid * sizeof(TOE_QHDR_T));
++ toeq_rwptr.bits32 = readl(&toe_qhdr->word1);
++ toeq_wptr = toe_qhdr->word1.bits.wptr;
++ timeout_descs = toeq_wptr - toeq_rwptr.bits.rptr;
++
++ if (toeq_rwptr.bits.rptr == toeq_wptr) {
++ if (toe_qhdr->word5.bits32) {
++ // shall we check toe_qhdr->word2.bits?
++ skb = gen_pure_ack(connection, toe_qhdr, (INTR_QHDR_T *)NULL);
++ skb_put(skb, 54);
++ skb->dev = connection->dev;
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++ skb->protocol = eth_type_trans(skb, connection->dev);
++ netif_rx(skb);
++ connection->dev->last_rx = jiffies;
++ }
++ } else {
++ while (toeq_rwptr.bits.rptr != toeq_rwptr.bits.wptr) {
++ /* we just simply send those packets to tcp? */
++ toe_curr_desc = (GMAC_RXDESC_T*)(toe_private_data.toe_desc_base[tcp_qid]
++ + toeq_rwptr.bits.rptr * sizeof(GMAC_RXDESC_T));
++ connection->curr_desc = toe_curr_desc;
++ if (toe_curr_desc->word3.bits.ctrl_flag) {
++ printk("%s::ctrl flag! %x, conn rptr %d, to %d, jif %x, conn_jif %x\n",
++ __func__, toe_curr_desc->word3.bits32,
++ connection->toeq_rwptr.bits.rptr, timeout_descs,
++ (u32)jiffies, (u32)connection->last_rx_jiffies);
++ }
++ desc_count = toe_curr_desc->word0.bits.desc_count;
++ pkt_size = toe_curr_desc->word1.bits.byte_count;
++ consistent_sync((void*)__va(toe_curr_desc->word2.buf_adr), pkt_size,
++ PCI_DMA_FROMDEVICE);
++ skb = (struct sk_buff*)(REG32(__va(toe_curr_desc->word2.buf_adr)-
++ SKB_RESERVE_BYTES));
++ _debug_skb(skb, (GMAC_RXDESC_T *)toe_curr_desc, 0x02);
++ connection->curr_rx_skb = skb;
++ skb_reserve(skb, RX_INSERT_BYTES);
++ skb_put(skb, pkt_size);
++ skb->dev = dev;
++ skb->protocol = eth_type_trans(skb, dev);
++ {
++ struct iphdr* ip_hdr = (struct iphdr*)&(skb->data[0]);
++ if (toe_curr_desc->word3.bits.ctrl_flag)
++ printk("%s::ip id %x\n", __func__, ntohs(ip_hdr->id));
++ }
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++
++ netif_rx(skb);
++ dev->last_rx = jiffies;
++#if 0
++ if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
++ printk("%s::alloc buf fail!\n", __func__);
++ }
++ *(unsigned int*)(skb->data) = (unsigned int)skb;
++ connection->curr_rx_skb = skb;
++ skb_reserve(skb, SKB_RESERVE_BYTES);
++ spin_lock_irqsave(&connection->gmac->rx_mutex, flags);
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ if (toe_private_data.fq_rx_rwptr.bits.wptr != fq_rwptr.bits.wptr) {
++ mac_stop_txdma((struct net_device*)connection->dev);
++ spin_unlock_irqrestore(&connection->gmac->rx_mutex, flags);
++ while(1);
++ }
++ fq_desc = (GMAC_RXDESC_T*)toe_private_data.swfq_desc_base + fq_rwptr.bits.wptr;
++ fq_desc->word2.buf_adr = (unsigned int)__pa(skb->data);
++ fq_rwptr.bits.wptr = RWPTR_ADVANCE_ONE(fq_rwptr.bits.wptr, TOE_SW_FREEQ_DESC_NUM);
++ SET_WPTR(TOE_GLOBAL_BASE+GLOBAL_SWFQ_RWPTR_REG, fq_rwptr.bits.wptr);
++ toe_private_data.fq_rx_rwptr.bits32 = fq_rwptr.bits32;
++ spin_unlock_irqrestore(&connection->gmac->rx_mutex, flags);
++#endif
++// spin_lock_irqsave(&connection->gmac->rx_mutex, flags);
++ toeq_rwptr.bits.rptr = RWPTR_ADVANCE_ONE(toeq_rwptr.bits.rptr, TOE_TOE_DESC_NUM);
++ SET_RPTR(&toe_qhdr->word1, toeq_rwptr.bits.rptr);
++// spin_unlock_irqrestore(&connection->gmac->rx_mutex, flags);
++ connection->toeq_rwptr.bits32 = toeq_rwptr.bits32;
++ }
++ toeq_rwptr.bits32 = readl(&toe_qhdr->word1);
++// toe_gmac_fill_free_q();
++ }
++ connection->last_rx_jiffies = jiffies;
++ if (connection->status != TCP_CONN_CLOSED)
++ mod_timer(&connection->rx_timer, jiffies+2);
++ if (connection->status != TCP_CONN_ESTABLISHED)
++ printk("%s::conn status %x\n", __func__, connection->status);
++ hash_set_valid_flag(connection->hash_entry_index, 1);
++ enable_irq(connection->gmac->irq);
++ // Gary Chen spin_unlock_irqrestore(&connection->conn_lock, conn_flags);
++ }
++}
++
++/*---------------------------------------------------------------------------
++ * free_toeq_descs
++ *-------------------------------------------------------------------------*/
++void free_toeq_descs(int qid, TOE_INFO_T *toe)
++{
++ void *desc_ptr;
++
++ desc_ptr = (void*)toe->toe_desc_base[qid];
++ pci_free_consistent(NULL, TOE_TOE_DESC_NUM*sizeof(GMAC_RXDESC_T), desc_ptr,
++ (dma_addr_t)toe->toe_desc_base_dma[qid]);
++ toe->toe_desc_base[qid] = 0;
++}
++
++/*---------------------------------------------------------------------------
++ * set_toeq_hdr
++ *-------------------------------------------------------------------------*/
++void set_toeq_hdr(struct toe_conn* connection, TOE_INFO_T* toe, struct net_device *dev)
++{
++ volatile TOE_QHDR_T *toe_qhdr;
++ volatile unsigned int toeq_wptr; // toeq_rptr
++ volatile GMAC_RXDESC_T *toe_curr_desc;
++ struct sk_buff *skb;
++ unsigned int pkt_size;
++ DMA_RWPTR_T toeq_rwptr;
++
++ if (connection->status == TCP_CONN_CLOSING) {
++ connection->status = TCP_CONN_CLOSED;
++ hash_set_valid_flag(connection->hash_entry_index, 0);
++ // remove timer first.
++ // del_timer_sync(&(connection->rx_timer));
++ // check if any queued frames last time.
++ toe_qhdr = (volatile TOE_QHDR_T*)TOE_TOE_QUE_HDR_BASE;
++ toe_qhdr += connection->qid;
++ toeq_rwptr.bits32 = readl(&toe_qhdr->word1);
++
++ //toeq_rptr = toe_qhdr->word1.bits.rptr;
++ toeq_wptr = toe_qhdr->word1.bits.wptr;
++ while (toeq_rwptr.bits.rptr != toeq_wptr) {
++ printk("%s::pending frames in TOE Queue before closing!\n", __func__);
++ toe_curr_desc = (GMAC_RXDESC_T*)(toe->toe_desc_base[connection->qid] +
++ toe_qhdr->word1.bits.rptr*sizeof(GMAC_RXDESC_T));
++ connection->curr_desc = (GMAC_RXDESC_T *)toe_curr_desc;
++ pkt_size = toe_curr_desc->word1.bits.byte_count;
++ consistent_sync((void*)__va(toe_curr_desc->word2.buf_adr), pkt_size,
++ PCI_DMA_FROMDEVICE);
++ skb = (struct sk_buff*)(REG32(__va(toe_curr_desc->word2.buf_adr) -
++ SKB_RESERVE_BYTES));
++ _debug_skb(skb, (GMAC_RXDESC_T *)toe_curr_desc, 0x03);
++ connection->curr_rx_skb = skb;
++ skb_reserve(skb, RX_INSERT_BYTES);
++ skb_put(skb, pkt_size);
++ skb->dev = connection->dev;
++ skb->protocol = eth_type_trans(skb, connection->dev);
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++ netif_rx(skb);
++ connection->dev->last_rx = jiffies;
++
++ toeq_rwptr.bits.rptr = RWPTR_ADVANCE_ONE(toeq_rwptr.bits.rptr, TOE_TOE_DESC_NUM);
++ SET_RPTR(&toe_qhdr->word1, toeq_rwptr.bits.rptr);
++ }
++ free_toeq_descs(connection->qid, toe);
++ // shall we re-fill free queue?
++
++ reset_connection_index(connection->qid);
++ //memset(connection, 0, sizeof(struct toe_conn));
++ printk(" del timer and close connection %x, qid %d\n", (u32)connection, connection->qid);
++ return;
++ }
++ /* enable or setup toe queue header */
++ if (connection->status == TCP_CONN_CONNECTING && storlink_ctl.rx_max_pktsize) {
++ volatile TOE_QHDR_T *qhdr;
++ int iq_id;
++ connection->status = TCP_CONN_ESTABLISHED;
++ qhdr = (volatile TOE_QHDR_T*)((unsigned int)TOE_TOE_QUE_HDR_BASE +
++ connection->qid * sizeof(TOE_QHDR_T));
++
++ iq_id = get_interrupt_queue_id(connection->qid);
++ connection->dev = dev;
++ connection->gmac = dev->priv;
++ connection->toeq_rwptr.bits32 = 0;
++
++// qhdr->word6.bits.iq_num = iq_id;
++ qhdr->word6.bits.MaxPktSize = (connection->max_pktsize)>>2; // in word.
++ qhdr->word7.bits.AckThreshold = connection->ack_threshold;
++ qhdr->word7.bits.SeqThreshold = connection->seq_threshold;
++
++ // init timer.
++#if 1
++ init_timer(&connection->rx_timer);
++ connection->rx_timer.expires = jiffies + 5;
++ connection->rx_timer.data = (unsigned long)connection;
++ connection->rx_timer.function = (void *)&connection_rx_timer;
++ add_timer(&connection->rx_timer);
++ connection->last_rx_jiffies = jiffies;
++ printk("init_timer %x\n", (u32)jiffies);
++#endif
++ hash_set_valid_flag(connection->hash_entry_index, 1);
++ return;
++ } else {
++ printk("%s::conn status %x, rx_pktsize %d\n",
++ __func__, connection->status, storlink_ctl.rx_max_pktsize);
++ }
++}
++
++/*---------------------------------------------------------------------------
++ * get_connection_index
++ * get_connection_index will find an available index for the connection,
++ * when allocate a new connection is needed.
++ * we find available Qid from AV bits and write to hash_table, so that when RxTOE
++ * packet is received, sw_id from ToeQ descriptor is also the Qid of conneciton Q.
++ *-------------------------------------------------------------------------*/
++int get_connection_index(void)
++{
++ int i=0, j=0, index=-1;
++ __u32 connection_bits;
++
++ for (i = 0; i< TOE_TOE_QUEUE_NUM/32; i++) {
++ connection_bits = ~(toe_connection_bits[i]);
++ if (connection_bits == 0)
++ // all 32 bits are used.
++ continue;
++
++ for (j=0; j<32; j++) {
++ if (connection_bits & 0x01) {
++ index = i*32 + j;
++ return index;
++ }
++ connection_bits = connection_bits >> 1;
++ }
++ }
++ return index;
++}
++
++/*---------------------------------------------------------------------------
++ * set_toe_connection
++ *-------------------------------------------------------------------------*/
++void set_toe_connection(int index, int val)
++{
++ if (val) {
++ toe_connection_bits[index/32] |= (1<<(index%32));
++ } else {
++ toe_connection_bits[index/32] &= (~(1<<(index%32)));
++ }
++}
++
++/*---------------------------------------------------------------------------
++ * sl351x_get_toe_conn_flag
++ *-------------------------------------------------------------------------*/
++int sl351x_get_toe_conn_flag(int index)
++{
++ if (index < TOE_TOE_QUEUE_NUM)
++ return (toe_connection_bits[index/32] & (1 << (index %32)));
++ else
++ return 0;
++}
++
++/*---------------------------------------------------------------------------
++ * sl351x_get_toe_conn_info
++ *-------------------------------------------------------------------------*/
++struct toe_conn * sl351x_get_toe_conn_info(int index)
++{
++ if (index < TOE_TOE_QUEUE_NUM)
++ return (struct toe_conn *)&toe_connections[index];
++ else
++ return NULL;
++}
++
++/*---------------------------------------------------------------------------
++ * create_sw_toe_connection
++ *-------------------------------------------------------------------------*/
++struct toe_conn* create_sw_toe_connection(int qid, int ip_ver, void* ip_hdr,
++ struct tcphdr* tcp_hdr)
++{
++ struct toe_conn* connection = &(toe_connections[qid]);
++
++ connection->ip_ver = (__u8)ip_ver;
++ connection->qid = (__u8)qid;
++ connection->source = (__u16)tcp_hdr->source;
++ connection->dest = (__u16)tcp_hdr->dest;
++ if (ip_ver == 4) {
++ struct iphdr* iph = (struct iphdr*) ip_hdr;
++ connection->saddr[0] = (__u32)iph->saddr;
++ connection->daddr[0] = (__u32)iph->daddr;
++// printk("%s::saddr %x, daddr %x\n", __func__,
++// ntohl(connection->saddr[0]), ntohl(connection->daddr[0]));
++ } else if (ip_ver == 6) {
++ struct ipv6hdr *iph = (struct ipv6hdr*)ip_hdr;
++ int i=0;
++ for (i=0; i<4; i++) {
++ connection->saddr[i] = (__u32)iph->saddr.in6_u.u6_addr32[i];
++ connection->daddr[i] = (__u32)iph->daddr.in6_u.u6_addr32[i];
++ }
++ }
++ connection->status = TCP_CONN_CREATION;
++ return connection;
++}
++
++/*---------------------------------------------------------------------------
++ * fill_toeq_buf
++ *-------------------------------------------------------------------------*/
++int fill_toeq_buf(int index, TOE_INFO_T* toe)
++{
++ volatile TOE_QHDR_T *qhdr;
++ //struct toe_conn* connection;
++ GMAC_RXDESC_T *desc_ptr;
++
++ if (!toe->toe_desc_base[index]) {
++ // first time. init.
++ desc_ptr = (GMAC_RXDESC_T*)(pci_alloc_consistent(NULL, TOE_TOE_DESC_NUM
++ *sizeof(GMAC_RXDESC_T), (dma_addr_t*)&toe->toe_desc_base_dma[index]));
++
++ toe->toe_desc_num = TOE_TOE_DESC_NUM;
++ toe->toe_desc_base[index] = (unsigned int)desc_ptr;
++ }
++ qhdr = (volatile TOE_QHDR_T*)((unsigned int)TOE_TOE_QUE_HDR_BASE +
++ index*sizeof(TOE_QHDR_T));
++ //connection = (struct toe_conn*)&(toe_connections[index]);
++
++ qhdr->word0.base_size = ((unsigned int)toe->toe_desc_base_dma[index]&TOE_QHDR0_BASE_MASK)
++ | TOE_TOE_DESC_POWER;
++ qhdr->word1.bits32 = 0;
++ qhdr->word2.bits32 = 0;
++ qhdr->word3.bits32 = 0;
++ qhdr->word4.bits32 = 0;
++ qhdr->word5.bits32 = 0;
++ return 1;
++}
++
++/*---------------------------------------------------------------------------
++ * create_toe_hash_entry_smb
++ * add SMB header in hash entry.
++ *-------------------------------------------------------------------------*/
++int create_toe_hash_entry_smb(int ip_ver, void* ip_hdr, struct tcphdr* tcp_hdr,
++ int sw_id)
++{
++ HASH_ENTRY_T hash_entry, *entry;
++ int hash_entry_index;
++ int i;
++
++ entry = (HASH_ENTRY_T*)&hash_entry;
++ memset((void*)entry, 0, sizeof(HASH_ENTRY_T));
++ entry->rule = 0;
++
++ /* enable fields of hash key */
++ entry->key_present.ip_protocol = 1;
++ entry->key_present.sip = 1;
++ entry->key_present.dip = 1;
++ entry->key_present.l4_bytes_0_3 = 1; // src port and dest port
++ entry->key_present.l7_bytes_0_3 = 0; // do we need to enable NETBIOS? how?
++ entry->key_present.l7_bytes_4_7 = 1; // "SMB" header
++
++ /* hash key */
++ entry->key.ip_protocol = IPPROTO_TCP;
++ if (ip_ver == 4) {
++ struct iphdr *iph = (struct iphdr*)ip_hdr;
++ memcpy(entry->key.sip, &iph->saddr, 4);
++ memcpy(entry->key.dip, &iph->daddr, 4);
++ } else if (ip_ver == 6) {
++ struct ipv6hdr *iph = (struct ipv6hdr*)ip_hdr;
++ for (i=0; i<4; i++) {
++ memcpy(&(entry->key.sip[i*4]), &(iph->saddr.in6_u.u6_addr32[i]), 4);
++ memcpy(&(entry->key.dip[i*4]), &(iph->daddr.in6_u.u6_addr32[i]), 4);
++ }
++ }
++ *(__u16*)&entry->key.l4_bytes[0] = tcp_hdr->source;
++ *(__u16*)&entry->key.l4_bytes[2] = tcp_hdr->dest;
++
++ entry->key.l7_bytes[4] = 0xff;
++ entry->key.l7_bytes[5] = 0x53;
++ entry->key.l7_bytes[6] = 0x4d;
++ entry->key.l7_bytes[7] = 0x42;
++
++ /* action of hash entry match */
++ entry->action.sw_id = 1;
++ entry->action.dest_qid = (__u8)TOE_TOE_QID(sw_id);
++ entry->action.srce_qid = 0;
++ hash_entry_index = hash_add_toe_entry(entry);
++
++ return hash_entry_index;
++}
++
++// best performance of tcp streaming.
++/*---------------------------------------------------------------------------
++ * create_toe_hash_entry_smb
++ * add SMB header in hash entry.
++ *-------------------------------------------------------------------------*/
++int create_toe_hash_entry_ftp(int ip_ver, void* ip_hdr, struct tcphdr* tcphdr)
++{
++ return 0;
++}
++
++// is hash entry for nfs needed?
++
++/*
++ * Create a TOE hash entry by given ip addresses and tcp port numbers.
++ * hash entry index will be saved in sw connection.
++ */
++/*---------------------------------------------------------------------------
++ * create_toe_hash_entry
++ *-------------------------------------------------------------------------*/
++int create_toe_hash_entry(int ip_ver, void* ip_hdr, struct tcphdr* tcp_hdr, int sw_id)
++{
++ HASH_ENTRY_T hash_entry, *entry;
++// unsigned long hash_key[HASH_MAX_DWORDS];
++ int hash_entry_index;
++
++ entry = (HASH_ENTRY_T*) &hash_entry;
++ memset((void*)entry, 0, sizeof(HASH_ENTRY_T));
++ entry->rule = 0;
++ /* enable fields of hash key */
++ entry->key_present.ip_protocol = 1;
++ entry->key_present.sip = 1;
++ entry->key_present.dip = 1;
++ entry->key_present.l4_bytes_0_3 = 1; // src port and dest port
++
++ /* hash key */
++ entry->key.ip_protocol = IPPROTO_TCP;
++ if (ip_ver == 4) {
++ // key of ipv4
++ struct iphdr* iph = (struct iphdr*)ip_hdr;
++ memcpy(entry->key.sip, &iph->saddr, 4);
++ memcpy(entry->key.dip, &iph->daddr, 4);
++ } else if (ip_ver == 6) {
++ // key of ipv6
++ int i=0;
++ struct ipv6hdr *iph = (struct ipv6hdr*)ip_hdr;
++ for (i=0; i<4; i++) {
++ memcpy(&(entry->key.sip[i*4]), &(iph->saddr.in6_u.u6_addr32[i]), 4);
++ memcpy(&(entry->key.dip[i*4]), &(iph->daddr.in6_u.u6_addr32[i]), 4);
++ }
++ }
++ *(__u16*)&entry->key.l4_bytes[0] = tcp_hdr->source;
++ *(__u16*)&entry->key.l4_bytes[2] = tcp_hdr->dest;
++ // is it necessary to write ip version to hash key?
++
++ /* action of hash entry match */
++ entry->action.sw_id = 1;
++ entry->action.dest_qid = (__u8)TOE_TOE_QID(sw_id);
++ entry->action.srce_qid = 0; // 0 for SW FreeQ. 1 for HW FreeQ.
++ hash_entry_index = hash_add_toe_entry(entry);
++// printk("\n%s. sw_id %d, hash_entry index %x\n",
++// __func__, TOE_TOE_QID(sw_id), hash_entry_index);
++ return hash_entry_index;
++}
++
++/*---------------------------------------------------------------------------
++ * init_toeq
++ * 1. Reserve a TOE Queue id first, to get the sw toe_connection.
++ * 2. Setup the hash entry with given iphdr and tcphdr, save hash entry index
++ * in sw toe_connection.
++ * 3. Prepare sw toe_connection and allocate buffers.
++ * 4. Validate hash entry.
++ *-------------------------------------------------------------------------*/
++struct toe_conn* init_toeq(int ipver, void* iph, struct tcphdr* tcp_hdr,
++ TOE_INFO_T* toe, unsigned char* l2hdr)
++{
++// printk("\t*** %s, ipver %d\n", __func__, ipver);
++ int qid=-1;
++ struct toe_conn* connection;
++ int hash_entry_index;
++ // int i=0;
++ unsigned short dest_port = ntohs(tcp_hdr->dest);
++
++ if (dest_port == 445) {
++ printk("%s::SMB/CIFS connection\n", __func__);
++ } else if (dest_port == 20) {
++ printk("%s::ftp-data connection\n", __func__);
++ } else if (dest_port == 2049) {
++ printk("%s::nfs daemon connection\n", __func__);
++ }
++ qid = get_connection_index();
++ if (qid<0)
++ return 0; // setup toeq failure
++ set_toe_connection(qid, 1); // reserve this sw toeq.
++
++ //connection = (struct toe_conn*)&(toe_connections[qid]);
++ hash_entry_index = create_toe_hash_entry(ipver, iph, tcp_hdr, qid);
++ if (hash_entry_index <0) {
++ printk("%s::release toe hash entry!\n", __func__);
++ set_toe_connection(qid, 0); // release this sw toeq.
++ return 0;
++ }
++ connection = create_sw_toe_connection(qid, ipver, iph, tcp_hdr);
++ connection->hash_entry_index = (__u16) hash_entry_index;
++
++ fill_toeq_buf(qid, toe);
++ memcpy(&connection->l2_hdr, l2hdr, sizeof(struct ethhdr));
++ spin_lock_init(&connection->conn_lock);
++
++ return connection;
++}
++
++#if 0
++/*----------------------------------------------------------------------
++* toe_init_toe_queue
++* (1) Initialize the TOE Queue Header
++* Register: TOE_TOE_QUE_HDR_BASE (0x60003000)
++* (2) Initialize Descriptors of TOE Queues
++*----------------------------------------------------------------------*/
++void toe_init_toe_queue(TOE_INFO_T* toe)
++{
++}
++EXPORT_SYMBOL(toe_init_toe_queue);
++#endif
++
++/*---------------------------------------------------------------------------
++ * dump_jumbo_skb
++ *-------------------------------------------------------------------------*/
++void dump_jumbo_skb(struct jumbo_frame *jumbo_skb)
++{
++ if (jumbo_skb->skb0) {
++// printk("%s. jumbo skb %x, len %d\n",
++// __func__, jumbo_skb->skb0->data, jumbo_skb->skb0->len);
++ netif_rx(jumbo_skb->skb0);
++ }
++ jumbo_skb->skb0 = 0;
++ jumbo_skb->tail = 0;
++ jumbo_skb->iphdr0 = 0;
++ jumbo_skb->tcphdr0 = 0;
++}
++
++/* ---------------------------------------------------------------------
++ * Append skb to skb0. skb0 is the jumbo frame that will be passed to
++ * kernel tcp.
++ * --------------------------------------------------------------------*/
++void rx_append_skb(struct jumbo_frame *jumbo_skb, struct sk_buff* skb, int payload_len)
++{
++ struct iphdr* iphdr0 = (struct iphdr*)&(skb->data[0]);
++ int ip_hdrlen = iphdr0->ihl << 2;
++ struct tcphdr* tcphdr0 = (struct tcphdr*)&(skb->data[ip_hdrlen]);
++
++ if (!jumbo_skb->skb0) {
++ // head of the jumbo frame.
++ jumbo_skb->skb0 = skb;
++ jumbo_skb->tail = 0;
++ jumbo_skb->iphdr0 = iphdr0;
++ jumbo_skb->tcphdr0 = tcphdr0;
++ } else {
++ if (!jumbo_skb->tail)
++ skb_shinfo(jumbo_skb->skb0)->frag_list = skb;
++ else
++ (jumbo_skb->tail)->next = skb;
++ jumbo_skb->tail = skb;
++
++ // do we need to change truesize as well?
++ jumbo_skb->skb0->len += payload_len;
++ jumbo_skb->skb0->data_len += payload_len;
++
++ jumbo_skb->iphdr0->tot_len = htons(ntohs(jumbo_skb->iphdr0->tot_len)+payload_len);
++ jumbo_skb->tcphdr0->ack_seq = tcphdr0->ack_seq;
++ jumbo_skb->tcphdr0->window = tcphdr0->window;
++
++ skb->len += payload_len;
++ skb->data_len = 0;
++ skb->data += ntohs(iphdr0->tot_len) - payload_len;
++ }
++}
++
++/*----------------------------------------------------------------------
++* toe_gmac_handle_toeq
++* (1) read interrupt Queue to get TOE Q.
++* (2) get packet fro TOE Q and send to upper layer handler.
++* (3) allocate new buffers and put to TOE Q. Intr Q buffer is recycled.
++*----------------------------------------------------------------------*/
++void toe_gmac_handle_toeq(struct net_device *dev, GMAC_INFO_T* tp, __u32 status)
++{
++ //volatile INTRQ_INFO_T *intrq_info;
++ //TOEQ_INFO_T *toeq_info;
++ volatile NONTOE_QHDR_T *intr_qhdr;
++ volatile TOE_QHDR_T *toe_qhdr;
++ volatile INTR_QHDR_T *intr_curr_desc;
++ TOE_INFO_T *toe = &toe_private_data;
++
++ volatile GMAC_RXDESC_T *toe_curr_desc; // , *fq_desc;// *tmp_desc;
++ volatile DMA_RWPTR_T intr_rwptr, toeq_rwptr; // fq_rwptr;
++
++ unsigned int pkt_size, desc_count, tcp_qid;
++ volatile unsigned int toeq_wptr;
++ struct toe_conn* connection;
++ int i, frag_id = 0;
++ // unsigned long toeq_flags;
++ struct jumbo_frame jumbo_skb;
++ struct sk_buff *skb;
++ __u32 interrupt_status;
++
++ in_toe_isr++;
++
++ interrupt_status = status >> 24;
++ // get interrupt queue header
++ intr_qhdr = (volatile NONTOE_QHDR_T*)TOE_INTR_Q_HDR_BASE;
++ memset(&jumbo_skb, 0, sizeof(struct jumbo_frame));
++
++ for (i=0; i<TOE_INTR_QUEUE_NUM; i++, intr_qhdr++) {
++ if (!(interrupt_status & 0x0001)) {
++ // no interrupt of this IntQ
++ interrupt_status = interrupt_status >> 1;
++ continue;
++ }
++ interrupt_status = interrupt_status >> 1;
++ intr_rwptr.bits32 = readl(&intr_qhdr->word1);
++
++ while ( intr_rwptr.bits.rptr != intr_rwptr.bits.wptr) {
++ int max_pktsize = 1;
++ // get interrupt queue descriptor.
++ intr_curr_desc = (INTR_QHDR_T*)toe->intr_desc_base +
++ i* TOE_INTR_DESC_NUM + intr_rwptr.bits.rptr;
++// printk("%s::int %x\n", __func__, intr_curr_desc->word1.bits32);
++ // get toeq id
++ tcp_qid = (u8)intr_curr_desc->word1.bits.tcp_qid - (u8)TOE_TOE_QID(0);
++ // get toeq queue header
++ toe_qhdr = (volatile TOE_QHDR_T*) TOE_TOE_QUE_HDR_BASE;
++ toe_qhdr += tcp_qid;
++ connection = &toe_connections[tcp_qid];
++ del_timer(&connection->rx_timer);
++ // Gary Chen spin_lock_irqsave(&connection->conn_lock, toeq_flags);
++ // handling interrupts of this TOE Q.
++ if (intr_curr_desc->word1.bits.ctl || intr_curr_desc->word1.bits.osq ||
++ intr_curr_desc->word1.bits.abn)
++ max_pktsize = 0;
++ if (!max_pktsize || intr_curr_desc->word1.bits.TotalPktSize) {
++ desc_count=0;
++ // wptr in intl queue is where this TOE interrupt should stop.
++ toeq_rwptr.bits32 = readl(&toe_qhdr->word1);
++ toeq_wptr = intr_curr_desc->word0.bits.wptr;
++ if (connection->toeq_rwptr.bits.rptr != toeq_rwptr.bits.rptr)
++ printk("conn rptr %d, hw rptr %d\n",
++ connection->toeq_rwptr.bits.rptr, toeq_rwptr.bits.rptr);
++
++ if (intr_curr_desc->word1.bits.ctl &&
++ (toeq_rwptr.bits.rptr == toeq_wptr)) {
++ printk("\nctrl frame, but not in TOE queue! conn rptr %d, hw wptr %d\n",
++ connection->toeq_rwptr.bits.rptr, toeq_wptr);
++// dump_toe_qhdr(toe_qhdr);
++// dump_intrq_desc(intr_curr_desc);
++ }
++ // while (toeq_rwptr.bits.rptr != intr_curr_desc->word0.bits.wptr) {
++ while (toe_qhdr->word1.bits.rptr != intr_curr_desc->word0.bits.wptr) {
++ frag_id++;
++ toe_curr_desc = (volatile GMAC_RXDESC_T *)(toe->toe_desc_base[tcp_qid]
++ + toe_qhdr->word1.bits.rptr *sizeof(GMAC_RXDESC_T));
++ connection->curr_desc = (GMAC_RXDESC_T *)toe_curr_desc;
++ desc_count = toe_curr_desc->word0.bits.desc_count;
++ pkt_size = toe_curr_desc->word1.bits.byte_count;
++ consistent_sync((void*)__va(toe_curr_desc->word2.buf_adr), pkt_size,
++ PCI_DMA_FROMDEVICE);
++ skb = (struct sk_buff*)(REG32(__va(toe_curr_desc->word2.buf_adr)-
++ SKB_RESERVE_BYTES));
++ _debug_skb(skb, (GMAC_RXDESC_T *)toe_curr_desc, 0x01);
++ connection->curr_rx_skb = skb;
++ skb_reserve(skb, RX_INSERT_BYTES);
++ if ((skb->len + pkt_size) > (1514+16))
++ {
++ printk("skb->len=%d, pkt_size=%d\n",skb->len, pkt_size);
++ while(1);
++ }
++
++ skb_put(skb, pkt_size);
++ skb->dev = dev;
++ skb->protocol = eth_type_trans(skb, dev);
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++
++ if (toe_curr_desc->word3.bits32 & 0x1b000000)
++ dump_jumbo_skb(&jumbo_skb);
++
++ rx_append_skb(&jumbo_skb, skb, pkt_size-toe_curr_desc->word3.bits.l7_offset);
++// spin_lock_irqsave(&gmac_fq_lock, flags);
++ toeq_rwptr.bits.rptr = RWPTR_ADVANCE_ONE(toeq_rwptr.bits.rptr, TOE_TOE_DESC_NUM);
++ SET_RPTR(&toe_qhdr->word1, toeq_rwptr.bits.rptr);
++// spin_unlock_irqrestore(&gmac_fq_lock, flags);
++ if (storlink_ctl.fqint_threshold)
++ continue;
++#if 0
++//#if (HANDLE_FREEQ_METHOD == HANDLE_FREEQ_INDIVIDUAL)
++ if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
++ printk("%s::toe queue alloc buffer ", __func__);
++ }
++ *(unsigned int*)(skb->data) = (unsigned int)skb;
++ connection->curr_rx_skb = skb;
++ skb_reserve(skb, SKB_RESERVE_BYTES);
++
++ spin_lock_irqsave(&gmac_fq_lock, flags);
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++ if (toe->fq_rx_rwptr.bits.wptr != fq_rwptr.bits.wptr) {
++ printk("%s::fq_rx_rwptr %x\n", __func__, toe->fq_rx_rwptr.bits32);
++ mac_stop_txdma((struct net_device*) tp->dev);
++ spin_unlock_irqrestore(&gmac_fq_lock, flags);
++ while(1);
++ }
++ fq_desc = (GMAC_RXDESC_T*)toe->swfq_desc_base + fq_rwptr.bits.wptr;
++ fq_desc->word2.buf_adr = (unsigned int)__pa(skb->data);
++
++ fq_rwptr.bits.wptr = RWPTR_ADVANCE_ONE(fq_rwptr.bits.wptr, TOE_SW_FREEQ_DESC_NUM);
++ SET_WPTR(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG, fq_rwptr.bits.wptr);
++ toe->fq_rx_rwptr.bits32 = fq_rwptr.bits32;
++ spin_unlock_irqrestore(&gmac_fq_lock, flags);
++#endif
++ } // end of this multi-desc.
++ dump_jumbo_skb(&jumbo_skb);
++ dev->last_rx = jiffies;
++ connection->toeq_rwptr.bits32 = toeq_rwptr.bits32;
++ } else if (intr_curr_desc->word1.bits.sat) {
++ toeq_rwptr.bits32 = readl(&toe_qhdr->word1);
++ toeq_wptr = intr_curr_desc->word0.bits.wptr;
++ if (connection->toeq_rwptr.bits.rptr != toeq_rwptr.bits.rptr)
++ printk("SAT. conn rptr %d, hw rptr %d\n",
++ connection->toeq_rwptr.bits.rptr, toeq_rwptr.bits.rptr);
++/*
++ printk("%s::SAT int!, ackcnt %x, seqcnt %x, rptr %d, wptr %d, ack %x, qhack %x\n",
++ __func__, intr_curr_desc->word4.bits.AckCnt, intr_curr_desc->word4.bits.SeqCnt,
++ toeq_rptr, toeq_wptr, intr_curr_desc->word3.ack_num, toe_qhdr->word4.ack_num);*/
++ /* pure ack */
++ if (toeq_rwptr.bits.rptr == toeq_wptr) {
++ if (intr_curr_desc->word4.bits32) {
++ skb = gen_pure_ack(connection, (TOE_QHDR_T *)toe_qhdr, (INTR_QHDR_T *)intr_curr_desc);
++ skb_put(skb, 60);
++ skb->dev = connection->dev;
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++ skb->protocol = eth_type_trans(skb, connection->dev);
++ netif_rx(skb);
++ } else
++ printk("%s::SAT Interrupt!. But cnt is 0!\n", __func__);
++ } else {
++ // while (toeq_rwptr.bits.rptr != toeq_wptr) {
++ while (toe_qhdr->word1.bits.rptr != intr_curr_desc->word0.bits.wptr) {
++ toe_curr_desc = (volatile GMAC_RXDESC_T*)(toe->toe_desc_base[tcp_qid]
++ + toe_qhdr->word1.bits.rptr * sizeof(GMAC_RXDESC_T));
++ connection->curr_desc = (GMAC_RXDESC_T *)toe_curr_desc;
++ desc_count = toe_curr_desc->word0.bits.desc_count;
++ pkt_size = toe_curr_desc->word1.bits.byte_count;
++ consistent_sync((void*)__va(toe_curr_desc->word2.buf_adr), pkt_size,
++ PCI_DMA_FROMDEVICE);
++ // if ( ((toeq_rwptr.bits.rptr +1)&(TOE_TOE_DESC_NUM-1)) == toeq_wptr) {
++ if ( RWPTR_ADVANCE_ONE(toe_qhdr->word1.bits.rptr, TOE_TOE_DESC_NUM) == toeq_wptr) {
++ skb = (struct sk_buff*)(REG32(__va(toe_curr_desc->word2.buf_adr) -
++ SKB_RESERVE_BYTES));
++ _debug_skb(skb, (GMAC_RXDESC_T *)toe_curr_desc, 0x04);
++ connection->curr_rx_skb = skb;
++ skb_reserve(skb, RX_INSERT_BYTES);
++ skb_put(skb, pkt_size);
++ skb->dev = dev;
++ skb->protocol = eth_type_trans(skb, dev);
++ skb->ip_summed = CHECKSUM_UNNECESSARY;
++ // printk("toeq_rptr %d, wptr %d\n", toeq_rptr, toeq_wptr);
++ netif_rx(skb);
++ dev->last_rx = jiffies;
++/*
++ if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
++
++ }
++ *(unsigned int*)(skb->data) = (unsigned int) skb;
++ skb_reserve(skb, SKB_RESERVE_BYTES); */
++ } else {
++ // reuse this skb, append to free queue..
++ skb = (struct sk_buff*)(REG32(__va(toe_curr_desc->word2.buf_adr)-
++ SKB_RESERVE_BYTES));
++ _debug_skb(skb, (GMAC_RXDESC_T *)toe_curr_desc, 0x05);
++ connection->curr_rx_skb = skb;
++ dev_kfree_skb_irq(skb);
++ }
++#if 0
++ spin_lock_irqsave(&gmac_fq_lock, flags);
++ fq_rwptr.bits32 = readl(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG);
++/* if (toe->fq_rx_rwptr.bits.wptr != fq_rwptr.bits.wptr) {
++ printk("%s::fq_rx_rwptr %x\n", __func__, toe->fq_rx_rwptr.bits32);
++ mac_stop_txdma((struct net_device*) tp->dev);
++ spin_unlock_irqrestore(&gmac_fq_lock, flags);
++ while(1);
++ } */
++ fq_desc = (GMAC_RXDESC_T*)toe->swfq_desc_base + fq_rwptr.bits.wptr;
++ fq_desc->word2.buf_adr = (unsigned int)__pa(skb->data);
++
++ fq_rwptr.bits.wptr = RWPTR_ADVANCE_ONE(fq_rwptr.bits.wptr, TOE_SW_FREEQ_DESC_NUM);
++ SET_WPTR(TOE_GLOBAL_BASE + GLOBAL_SWFQ_RWPTR_REG, fq_rwptr.bits.wptr);
++ toe->fq_rx_rwptr.bits32 = fq_rwptr.bits32;
++ // spin_unlock_irqrestore(&gmac_fq_lock, flags);
++#endif
++// spin_lock_irqsave(&gmac_fq_lock, flags);
++ toeq_rwptr.bits.rptr = RWPTR_ADVANCE_ONE(toeq_rwptr.bits.rptr, TOE_TOE_DESC_NUM);
++ SET_RPTR(&toe_qhdr->word1, toeq_rwptr.bits.rptr);
++// spin_unlock_irqrestore(&gmac_fq_lock, flags);
++ }
++ } // end of ACK with options.
++ connection->toeq_rwptr.bits32 = toeq_rwptr.bits32;
++ // Gary Chen spin_unlock_irqrestore(&connection->conn_lock, toeq_flags);
++// }
++ };
++ update_timer(connection);
++ // any protection against interrupt queue header?
++ intr_rwptr.bits.rptr = RWPTR_ADVANCE_ONE(intr_rwptr.bits.rptr, TOE_INTR_DESC_NUM);
++ SET_RPTR(&intr_qhdr->word1, intr_rwptr.bits.rptr);
++ intr_rwptr.bits32 = readl(&intr_qhdr->word1);
++ toe_gmac_fill_free_q();
++ } // end of this interrupt Queue processing.
++ } // end of all interrupt Queues.
++
++ in_toe_isr = 0;
++}
++
++
+--- /dev/null
++++ b/drivers/net/sl_lepus_hash.c
+@@ -0,0 +1,553 @@
++/**************************************************************************
++* Copyright 2006 StorLink Semiconductors, Inc. All rights reserved.
++*--------------------------------------------------------------------------
++* Name : sl_lepus_hash.c
++* Description :
++* Handle Storlink Lepus Hash Functions
++*
++* History
++*
++* Date Writer Description
++*----------------------------------------------------------------------------
++* 03/13/2006 Gary Chen Create and implement
++*
++****************************************************************************/
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/compiler.h>
++#include <linux/pci.h>
++#include <linux/init.h>
++#include <linux/ioport.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/rtnetlink.h>
++#include <linux/delay.h>
++#include <linux/ethtool.h>
++#include <linux/mii.h>
++#include <linux/completion.h>
++#include <asm/hardware.h>
++#include <asm/io.h>
++#include <asm/irq.h>
++#include <asm/semaphore.h>
++#include <asm/arch/irqs.h>
++#include <asm/arch/it8712.h>
++#include <linux/mtd/kvctl.h>
++#include <linux/skbuff.h>
++#include <linux/ip.h>
++#include <linux/tcp.h>
++#include <linux/list.h>
++#define MIDWAY
++#define SL_LEPUS
++
++#include <asm/arch/sl2312.h>
++#include <asm/arch/sl_lepus_gmac.h>
++#include <asm/arch/sl_hash_cfg.h>
++
++#ifndef RXTOE_DEBUG
++#define RXTOE_DEBUG
++#endif
++#undef RXTOE_DEBUG
++
++/*----------------------------------------------------------------------
++* Definition
++*----------------------------------------------------------------------*/
++#define hash_printf printk
++
++#define HASH_TIMER_PERIOD (60*HZ) // seconds
++#define HASH_ILLEGAL_INDEX 0xffff
++
++/*----------------------------------------------------------------------
++* Variables
++*----------------------------------------------------------------------*/
++u32 hash_activate_bits[HASH_TOTAL_ENTRIES/32];
++u32 hash_nat_owner_bits[HASH_TOTAL_ENTRIES/32];
++char hash_tables[HASH_TOTAL_ENTRIES][HASH_MAX_BYTES] __attribute__ ((aligned(16)));
++static struct timer_list hash_timer_obj;
++LIST_HEAD(hash_timeout_list);
++
++/*----------------------------------------------------------------------
++* Functions
++*----------------------------------------------------------------------*/
++void dm_long(u32 location, int length);
++static void hash_timer_func(u32 data);
++
++/*----------------------------------------------------------------------
++* hash_init
++*----------------------------------------------------------------------*/
++void hash_init(void)
++{
++ int i;
++ volatile u32 *dp1, *dp2, dword;
++
++ dp1 = (volatile u32 *) TOE_V_BIT_BASE;
++ dp2 = (volatile u32 *) TOE_A_BIT_BASE;
++
++ for (i=0; i<HASH_TOTAL_ENTRIES/32; i++)
++ {
++ *dp1++ = 0;
++ dword = *dp2++; // read-clear
++ }
++ memset((void *)&hash_nat_owner_bits, 0, sizeof(hash_nat_owner_bits));
++ memset((void *)&hash_tables, 0, sizeof(hash_tables));
++
++ init_timer(&hash_timer_obj);
++ hash_timer_obj.expires = jiffies + HASH_TIMER_PERIOD;
++ hash_timer_obj.data = (unsigned long)&hash_timer_obj;
++ hash_timer_obj.function = (void *)&hash_timer_func;
++ add_timer(&hash_timer_obj);
++
++#if (HASH_MAX_BYTES == 128)
++ writel((unsigned long)__pa(&hash_tables) | 3, // 32 words
++ TOE_GLOBAL_BASE + GLOBAL_HASH_TABLE_BASE_REG);
++#elif (HASH_MAX_BYTES == 64)
++ writel((unsigned long)__pa(&hash_tables) | 2, // 16 words
++ TOE_GLOBAL_BASE + GLOBAL_HASH_TABLE_BASE_REG);
++#else
++ #error Incorrect setting for HASH_MAX_BYTES
++#endif
++
++}
++/*----------------------------------------------------------------------
++* hash_add_entry
++*----------------------------------------------------------------------*/
++int hash_add_entry(HASH_ENTRY_T *entry)
++{
++ int rc;
++ u32 key[HASH_MAX_DWORDS];
++ rc = hash_build_keys((u32 *)&key, entry);
++ if (rc < 0)
++ return -1;
++ hash_write_entry(entry, (unsigned char*) &key[0]);
++// hash_set_valid_flag(entry->index, 1);
++// printk("Dump hash key!\n");
++// dump_hash_key(entry);
++ return entry->index;
++}
++
++/*----------------------------------------------------------------------
++* hash_set_valid_flag
++*----------------------------------------------------------------------*/
++void hash_set_valid_flag(int index, int valid)
++{
++ register u32 reg32;
++
++ reg32 = TOE_V_BIT_BASE + (index/32) * 4;
++
++ if (valid)
++ {
++ writel(readl(reg32) | (1 << (index%32)), reg32);
++ }
++ else
++ {
++ writel(readl(reg32) & ~(1 << (index%32)), reg32);
++ }
++}
++
++/*----------------------------------------------------------------------
++* hash_set_nat_owner_flag
++*----------------------------------------------------------------------*/
++void hash_set_nat_owner_flag(int index, int valid)
++{
++ if (valid)
++ {
++ hash_nat_owner_bits[index/32] |= (1 << (index % 32));
++ }
++ else
++ {
++ hash_nat_owner_bits[index/32] &= ~(1 << (index % 32));
++ }
++}
++
++
++/*----------------------------------------------------------------------
++* hash_build_keys
++*----------------------------------------------------------------------*/
++int hash_build_keys(u32 *destp, HASH_ENTRY_T *entry)
++{
++ u32 data;
++ unsigned char *cp;
++ int i, j;
++ unsigned short index;
++ int total;
++
++ memset((void *)destp, 0, HASH_MAX_BYTES);
++ cp = (unsigned char *)destp;
++
++ if (entry->key_present.port || entry->key_present.Ethertype)
++ {
++ HASH_PUSH_WORD(cp, entry->key.Ethertype); // word 0
++ HASH_PUSH_BYTE(cp, entry->key.port); // Byte 2
++ HASH_PUSH_BYTE(cp, 0); // Byte 3
++ }
++ else
++ {
++ HASH_PUSH_DWORD(cp, 0);
++ }
++
++ if (entry->key_present.da || entry->key_present.sa)
++ {
++ unsigned char mac[4];
++ if (entry->key_present.da)
++ {
++ for (i=0; i<4; i++)
++ HASH_PUSH_BYTE(cp, entry->key.da[i]);
++ }
++ mac[0] = (entry->key_present.da) ? entry->key.da[4] : 0;
++ mac[1] = (entry->key_present.da) ? entry->key.da[5] : 0;
++ mac[2] = (entry->key_present.sa) ? entry->key.sa[0] : 0;
++ mac[3] = (entry->key_present.sa) ? entry->key.sa[1] : 0;
++ data = mac[0] + (mac[1]<<8) + (mac[2]<<16) + (mac[3]<<24);
++ HASH_PUSH_DWORD(cp, data);
++ if (entry->key_present.sa)
++ {
++ for (i=2; i<6; i++)
++ HASH_PUSH_BYTE(cp, entry->key.sa[i]);
++ }
++ }
++
++ if (entry->key_present.pppoe_sid || entry->key_present.vlan_id)
++ {
++ HASH_PUSH_WORD(cp, entry->key.vlan_id); // low word
++ HASH_PUSH_WORD(cp, entry->key.pppoe_sid); // high word
++ }
++ if (entry->key_present.ipv4_hdrlen || entry->key_present.ip_tos || entry->key_present.ip_protocol)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.ip_protocol); // Byte 0
++ HASH_PUSH_BYTE(cp, entry->key.ip_tos); // Byte 1
++ HASH_PUSH_BYTE(cp, entry->key.ipv4_hdrlen); // Byte 2
++ HASH_PUSH_BYTE(cp, 0); // Byte 3
++ }
++
++ if (entry->key_present.ipv6_flow_label)
++ {
++ HASH_PUSH_DWORD(cp, entry->key.ipv6_flow_label); // low word
++ }
++ if (entry->key_present.sip)
++ {
++ // input (entry->key.sip[i]) is network-oriented
++ // output (hash key) is host-oriented
++ for (i=3; i>=0; i--)
++ HASH_PUSH_BYTE(cp, entry->key.sip[i]);
++ if (entry->key.ipv6)
++ {
++ for (i=4; i<16; i+=4)
++ {
++ for (j=i+3; j>=i; j--)
++ HASH_PUSH_BYTE(cp, entry->key.sip[j]);
++ }
++ }
++ }
++ if (entry->key_present.dip)
++ {
++ // input (entry->key.sip[i]) is network-oriented
++ // output (hash key) is host-oriented
++ for (i=3; i>=0; i--)
++ HASH_PUSH_BYTE(cp, entry->key.dip[i]);
++ if (entry->key.ipv6)
++ {
++ for (i=4; i<16; i+=4)
++ {
++ for (j=i+3; j>=i; j--)
++ HASH_PUSH_BYTE(cp, entry->key.dip[j]);
++ }
++ }
++ }
++
++ if (entry->key_present.l4_bytes_0_3)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[0]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[1]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[2]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[3]);
++ }
++ if (entry->key_present.l4_bytes_4_7)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[4]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[5]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[6]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[7]);
++ }
++ if (entry->key_present.l4_bytes_8_11)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[8]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[9]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[10]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[11]);
++ }
++ if (entry->key_present.l4_bytes_12_15)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[12]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[13]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[14]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[15]);
++ }
++ if (entry->key_present.l4_bytes_16_19)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[16]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[17]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[18]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[19]);
++ }
++ if (entry->key_present.l4_bytes_20_23)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[20]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[21]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[22]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[23]);
++ }
++ if (entry->key_present.l7_bytes_0_3)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[0]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[1]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[2]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[3]);
++ }
++ if (entry->key_present.l7_bytes_4_7)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[4]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[5]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[6]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[7]);
++ }
++ if (entry->key_present.l7_bytes_8_11)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[8]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[9]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[10]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[11]);
++ }
++ if (entry->key_present.l7_bytes_12_15)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[12]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[13]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[14]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[15]);
++ }
++ if (entry->key_present.l7_bytes_16_19)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[16]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[17]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[18]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[19]);
++ }
++ if (entry->key_present.l7_bytes_20_23)
++ {
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[20]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[21]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[22]);
++ HASH_PUSH_BYTE(cp, entry->key.l7_bytes[23]);
++ }
++
++ // get hash index
++ total = (u32)((u32)cp - (u32)destp) / (sizeof(u32));
++
++ if (total > HASH_MAX_KEY_DWORD)
++ {
++ //hash_printf("Total key words (%d) is too large (> %d)!\n",
++ // total, HASH_MAX_KEY_DWORD);
++ return -1;
++ }
++
++ if (entry->key_present.port || entry->key_present.Ethertype)
++ index = hash_gen_crc16((unsigned char *)destp, total * 4);
++ else
++ {
++ if (total == 1)
++ {
++ hash_printf("No key is assigned!\n");
++ return -1;
++ }
++
++ index = hash_gen_crc16((unsigned char *)(destp+1), (total-1) * 4);
++ }
++
++ entry->index = index & HASH_BITS_MASK;
++
++ //hash_printf("Total key words = %d, Hash Index= %d\n",
++ // total, entry->index);
++
++ cp = (unsigned char *)destp;
++ cp+=3;
++ HASH_PUSH_BYTE(cp, entry->rule); // rule
++
++ entry->total_dwords = total;
++
++ return total;
++}
++
++/*----------------------------------------------------------------------
++* hash_build_nat_keys
++*----------------------------------------------------------------------*/
++void hash_build_nat_keys(u32 *destp, HASH_ENTRY_T *entry)
++{
++ unsigned char *cp;
++ int i;
++ unsigned short index;
++ int total;
++
++ memset((void *)destp, 0, HASH_MAX_BYTES);
++
++ cp = (unsigned char *)destp + 2;
++ HASH_PUSH_BYTE(cp, entry->key.port);
++ cp++;
++
++ if (entry->key_present.pppoe_sid || entry->key_present.vlan_id)
++ {
++ HASH_PUSH_WORD(cp, entry->key.vlan_id); // low word
++ HASH_PUSH_WORD(cp, entry->key.pppoe_sid); // high word
++ }
++
++ HASH_PUSH_BYTE(cp, entry->key.ip_protocol);
++ cp+=3;
++
++ // input (entry->key.sip[i]) is network-oriented
++ // output (hash key) is host-oriented
++ for (i=3; i>=0; i--)
++ HASH_PUSH_BYTE(cp, entry->key.sip[i]);
++
++ // input (entry->key.sip[i]) is network-oriented
++ // output (hash key) is host-oriented
++ for (i=3; i>=0; i--)
++ HASH_PUSH_BYTE(cp, entry->key.dip[i]);
++
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[0]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[1]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[2]);
++ HASH_PUSH_BYTE(cp, entry->key.l4_bytes[3]);
++
++ // get hash index
++ total = (u32)((u32)cp - (u32)destp) / (sizeof(u32));
++
++ index = hash_gen_crc16((unsigned char *)destp, total * 4);
++ entry->index = index & ((1 << HASH_BITS) - 1);
++
++ cp = (unsigned char *)destp;
++ cp+=3;
++ HASH_PUSH_BYTE(cp, entry->rule); // rule
++
++ entry->total_dwords = total;
++}
++
++
++/*----------------------------------------------------------------------
++* hash_write_entry
++*----------------------------------------------------------------------*/
++int hash_write_entry(HASH_ENTRY_T *entry, unsigned char *key)
++{
++ int i;
++ u32 *srcep, *destp, *destp2;
++
++ srcep = (u32 *)key;
++ destp2 = destp = (u32 *)&hash_tables[entry->index][0];
++
++ for (i=0; i<(entry->total_dwords); i++, srcep++, destp++)
++ *destp = *srcep;
++
++ srcep = (u32 *)&entry->action;
++ *destp++ = *srcep;
++
++ srcep = (u32 *)&entry->param;
++ for (i=0; i<(sizeof(ENTRY_PARAM_T)/sizeof(*destp)); i++, srcep++, destp++)
++ *destp = *srcep;
++
++ memset(destp, 0, (HASH_MAX_DWORDS-entry->total_dwords-HASH_ACTION_DWORDS) * sizeof(u32));
++
++ consistent_sync(destp2, (entry->total_dwords+HASH_ACTION_DWORDS) * 4, PCI_DMA_TODEVICE);
++ return 0;
++}
++
++/*----------------------------------------------------------------------
++* hash_timer_func
++*----------------------------------------------------------------------*/
++static void hash_timer_func(u32 data)
++{
++ int i, j;
++ volatile u32 *active_p, *own_p, *valid_p;
++ u32 a_bits, own_bits;
++
++ valid_p = (volatile u32 *)TOE_V_BIT_BASE;
++ active_p = (volatile u32 *)hash_activate_bits;
++ own_p = (volatile u32 *)hash_nat_owner_bits;
++ for (i=0; i<(HASH_TOTAL_ENTRIES/32); i++, own_p++, active_p++, valid_p++)
++ {
++ *active_p |= readl(TOE_A_BIT_BASE + (i*4));
++ a_bits = *active_p;
++ own_bits = *own_p;
++ if (own_bits)
++ {
++#ifndef DEBUG_NAT_MIXED_HW_SW_TX
++ a_bits = own_bits & ~a_bits;
++#else
++ a_bits = own_bits & a_bits;
++#endif
++ for (j=0; a_bits && j<32; j++)
++ {
++ if (a_bits & 1)
++ {
++ *valid_p &= ~(1 << j); // invalidate it
++#if !(defined(NAT_DEBUG_LAN_HASH_TIMEOUT) || defined(NAT_DEBUG_WAN_HASH_TIMEOUT))
++ *own_p &= ~(1 << j); // release ownership for NAT
++#endif
++// #ifdef DEBUG_NAT_MIXED_HW_SW_TX
++#if 0
++ hash_printf("%lu %s: Clear hash index: %d\n", jiffies/HZ, __func__, i*32+j);
++#endif
++ }
++ a_bits >>= 1;
++ }
++ *active_p &= ~own_bits; // deactivate it for next polling
++ }
++ }
++
++ hash_timer_obj.expires = jiffies + HASH_TIMER_PERIOD;
++ add_timer((struct timer_list *)data);
++}
++
++/*----------------------------------------------------------------------
++* dm_long
++*----------------------------------------------------------------------*/
++void dm_long(u32 location, int length)
++{
++ u32 *start_p, *curr_p, *end_p;
++ u32 *datap, data;
++ int i;
++
++ //if (length > 1024)
++ // length = 1024;
++
++ start_p = (u32 *)location;
++ end_p = (u32 *)location + length;
++ curr_p = (u32 *)((u32)location & 0xfffffff0);
++ datap = (u32 *)location;
++ while (curr_p < end_p)
++ {
++ hash_printf("0x%08x: ",(u32)curr_p & 0xfffffff0);
++ for (i=0; i<4; i++)
++ {
++ if (curr_p < start_p || curr_p >= end_p)
++ hash_printf(" ");
++ else
++ {
++ data = *datap;
++ hash_printf("%08X ", data);
++ }
++ if (i==1)
++ hash_printf("- ");
++
++ curr_p++;
++ datap++;
++ }
++ hash_printf("\n");
++ }
++}
++
++/*----------------------------------------------------------------------
++* hash_dump_entry
++*----------------------------------------------------------------------*/
++void hash_dump_entry(int index)
++{
++ hash_printf("Hash Index %d:\n", index);
++ dm_long((u32)&hash_tables[index][0], HASH_MAX_DWORDS);
++}
++
++
+--- /dev/null
++++ b/drivers/net/sl_switch.c
+@@ -0,0 +1,650 @@
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/init.h>
++#include <linux/ioport.h>
++#include <linux/delay.h>
++#include <asm/hardware.h>
++#include <asm/io.h>
++
++#define GMAC_GLOBAL_BASE_ADDR (IO_ADDRESS(SL2312_GLOBAL_BASE))
++#define GPIO_BASE_ADDR1 (IO_ADDRESS(SL2312_GPIO_BASE1))
++enum GPIO_REG
++{
++ GPIO_DATA_OUT = 0x00,
++ GPIO_DATA_IN = 0x04,
++ GPIO_PIN_DIR = 0x08,
++ GPIO_BY_PASS = 0x0c,
++ GPIO_DATA_SET = 0x10,
++ GPIO_DATA_CLEAR = 0x14,
++};
++
++#define GMAC_SPEED_10 0
++#define GMAC_SPEED_100 1
++#define GMAC_SPEED_1000 2
++
++enum phy_state
++{
++ LINK_DOWN = 0,
++ LINK_UP = 1
++};
++
++#ifndef BIT
++#define BIT(x) (1 << (x))
++#endif
++
++//int Get_Set_port_status();
++unsigned int SPI_read_bit(void);
++void SPI_write_bit(char bit_EEDO);
++void SPI_write(unsigned char block,unsigned char subblock,unsigned char addr,unsigned int value);
++unsigned int SPI_read(unsigned char block,unsigned char subblock,unsigned char addr);
++int SPI_default(void);
++void SPI_CS_enable(unsigned char enable);
++unsigned int SPI_get_identifier(void);
++void phy_write(unsigned char port_no,unsigned char reg,unsigned int val);
++unsigned int phy_read(unsigned char port_no,unsigned char reg);
++void phy_write_masked(unsigned char port_no,unsigned char reg,unsigned int val,unsigned int mask);
++void init_seq_7385(unsigned char port_no) ;
++void phy_receiver_init (unsigned char port_no);
++
++#define PORT_NO 4
++int switch_pre_speed[PORT_NO]={0,0,0,0};
++int switch_pre_link[PORT_NO]={0,0,0,0};
++
++
++
++
++
++/* NOTES
++ * The Protocol of the SPI are as follows:
++ *
++ * Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
++ * byte0 | Block id | r/w | sub-block |
++ * byte1 | Address |
++ * byte2 | Data |
++ * byte3 | Data |
++ * byte4 | Data |
++ * byte5 | Data |
++ */
++
++
++
++
++/***************************************/
++/* define GPIO module base address */
++/***************************************/
++#define GPIO_EECS 0x80000000 /* EECS: GPIO[22] */
++#define GPIO_MOSI 0x20000000 /* EEDO: GPIO[29] send to 6996*/
++#define GPIO_MISO 0x40000000 /* EEDI: GPIO[30] receive from 6996*/
++#define GPIO_EECK 0x10000000 /* EECK: GPIO[31] */
++
++/*************************************************************
++* SPI protocol for ADM6996 control
++**************************************************************/
++#define SPI_OP_LEN 0x08 // the length of start bit and opcode
++#define SPI_OPWRITE 0X05 // write
++#define SPI_OPREAD 0X06 // read
++#define SPI_OPERASE 0X07 // erase
++#define SPI_OPWTEN 0X04 // write enable
++#define SPI_OPWTDIS 0X04 // write disable
++#define SPI_OPERSALL 0X04 // erase all
++#define SPI_OPWTALL 0X04 // write all
++
++#define SPI_ADD_LEN 8 // bits of Address
++#define SPI_DAT_LEN 32 // bits of Data
++
++
++/****************************************/
++/* Function Declare */
++/****************************************/
++
++//unsigned int SPI_read_bit(void);
++//void SPI_write_bit(char bit_EEDO);
++//unsigned int SPI_read_bit(void);
++/******************************************
++* SPI_write
++* addr -> Write Address
++* value -> value to be write
++***************************************** */
++void phy_receiver_init (unsigned char port_no)
++{
++ phy_write(port_no,31,0x2a30);
++ phy_write_masked(port_no, 12, 0x0200, 0x0300);
++ phy_write(port_no,31,0);
++}
++
++void phy_write(unsigned char port_no,unsigned char reg,unsigned int val)
++{
++ unsigned int cmd;
++
++ cmd = (port_no<<21)|(reg<<16)|val;
++ SPI_write(3,0,1,cmd);
++}
++
++unsigned int phy_read(unsigned char port_no,unsigned char reg)
++{
++ unsigned int cmd,reg_val;
++
++ cmd = BIT(26)|(port_no<<21)|(reg<<16);
++ SPI_write(3,0,1,cmd);
++ msleep(2);
++ reg_val = SPI_read(3,0,2);
++ return reg_val;
++}
++
++void phy_write_masked(unsigned char port_no,unsigned char reg,unsigned int val,unsigned int mask)
++{
++ unsigned int cmd,reg_val;
++
++ cmd = BIT(26)|(port_no<<21)|(reg<<16); // Read reg_val
++ SPI_write(3,0,1,cmd);
++ mdelay(2);
++ reg_val = SPI_read(3,0,2);
++ reg_val &= ~mask; // Clear masked bit
++ reg_val |= (val&mask) ; // set masked bit ,if true
++ cmd = (port_no<<21)|(reg<<16)|reg_val;
++ SPI_write(3,0,1,cmd);
++}
++
++void init_seq_7385(unsigned char port_no)
++{
++ unsigned char rev;
++
++ phy_write(port_no, 31, 0x2a30);
++ phy_write_masked(port_no, 8, 0x0200, 0x0200);
++ phy_write(port_no, 31, 0x52b5);
++ phy_write(port_no, 16, 0xb68a);
++ phy_write_masked(port_no, 18, 0x0003, 0xff07);
++ phy_write_masked(port_no, 17, 0x00a2, 0x00ff);
++ phy_write(port_no, 16, 0x968a);
++ phy_write(port_no, 31, 0x2a30);
++ phy_write_masked(port_no, 8, 0x0000, 0x0200);
++ phy_write(port_no, 31, 0x0000); /* Read revision */
++ rev = phy_read(port_no, 3) & 0x000f;
++ if (rev == 0)
++ {
++ phy_write(port_no, 31, 0x2a30);
++ phy_write_masked(port_no, 8, 0x0200, 0x0200);
++ phy_write(port_no, 31, 0x52b5);
++ phy_write(port_no, 18, 0x0000);
++ phy_write(port_no, 17, 0x0689);
++ phy_write(port_no, 16, 0x8f92);
++ phy_write(port_no, 31, 0x52B5);
++ phy_write(port_no, 18, 0x0000);
++ phy_write(port_no, 17, 0x0E35);
++ phy_write(port_no, 16, 0x9786);
++ phy_write(port_no, 31, 0x2a30);
++ phy_write_masked(port_no, 8, 0x0000, 0x0200);
++ phy_write(port_no, 23, 0xFF80);
++ phy_write(port_no, 23, 0x0000);
++ }
++ phy_write(port_no, 31, 0x0000);
++ phy_write(port_no, 18, 0x0048);
++ if (rev == 0)
++ {
++ phy_write(port_no, 31, 0x2a30);
++ phy_write(port_no, 20, 0x6600);
++ phy_write(port_no, 31, 0x0000);
++ phy_write(port_no, 24, 0xa24e);
++ }
++ else
++ {
++ phy_write(port_no, 31, 0x2a30);
++ phy_write_masked(port_no, 22, 0x0240, 0x0fc0);
++ phy_write_masked(port_no, 20, 0x4000, 0x6000);
++ phy_write(port_no, 31, 1);
++ phy_write_masked(port_no, 20, 0x6000, 0xe000);
++ phy_write(port_no, 31, 0x0000);
++ }
++}
++
++int Get_Set_port_status()
++{
++ unsigned int reg_val,ability,rcv_mask,mac_config;
++ int is_link=0;
++ int i;
++
++ rcv_mask = SPI_read(2,0,0x10); // Receive mask
++
++ for(i=0;i<4;i++){
++ reg_val = phy_read(i,1);
++ if ((reg_val & 0x0024) == 0x0024) /* link is established and auto_negotiate process completed */
++ {
++ is_link=1;
++ if(switch_pre_link[i]==LINK_DOWN){ // Link Down ==> Link up
++
++ rcv_mask |= BIT(i); // Enable receive
++
++ reg_val = phy_read(i,10);
++ if(reg_val & 0x0c00){
++ printk("Port%d:Giga mode\n",i);
++// SPI_write(1,i,0x00,0x300701B1);
++ mac_config = 0x00060004|(6<<6);
++
++ SPI_write(1,i,0x00,((mac_config & 0xfffffff8) | 1) | 0x20000030); // reset port
++ mac_config |= (( BIT(i) << 19) | 0x08000000);
++ SPI_write(1,i,0x00,mac_config);
++ SPI_write(1,i,0x04,0x000300ff); // flow control
++
++ reg_val = SPI_read(5,0,0x12);
++ reg_val &= ~BIT(i);
++ SPI_write(5,0,0x12,reg_val);
++
++ reg_val = SPI_read(1,i,0x00);
++ reg_val |= 0x10010000;
++ SPI_write(1,i,0x00,reg_val);
++// SPI_write(1,i,0x00,0x10070181);
++ switch_pre_link[i]=LINK_UP;
++ switch_pre_speed[i]=GMAC_SPEED_1000;
++ }
++ else{
++ reg_val = phy_read(i,5);
++ ability = (reg_val&0x5e0) >>5;
++ if ((ability & 0x0C)) /* 100M */
++ {
++// SPI_write(1,i,0x00,0x30050472);
++ if((ability&0x08)==0) // Half
++ mac_config = 0x00040004 |(17<<6);
++ else // Full
++ mac_config = 0x00040004 |(17<<6);
++
++ SPI_write(1,i,0x00,((mac_config & 0xfffffff8) | 1) | 0x20000030); // reset port
++ mac_config |= (( BIT(i) << 19) | 0x08000000);
++ SPI_write(1,i,0x00,mac_config);
++ SPI_write(1,i,0x04,0x000300ff); // flow control
++
++ reg_val = SPI_read(5,0,0x12);
++ reg_val &= ~BIT(i);
++ SPI_write(5,0,0x12,reg_val);
++
++ reg_val = SPI_read(1,i,0x00);
++ reg_val &= ~0x08000000;
++ reg_val |= 0x10010000;
++ SPI_write(1,i,0x00,reg_val);
++// SPI_write(1,i,0x00,0x10050442);
++ printk("Port%d:100M\n",i);
++ switch_pre_link[i]=LINK_UP;
++ switch_pre_speed[i]=GMAC_SPEED_100;
++ }
++ else if((ability & 0x03)) /* 10M */
++ {
++// SPI_write(1,i,0x00,0x30050473);
++ if((ability&0x2)==0) // Half
++ mac_config = 0x00040004 |(17<<6);
++ else // Full
++ mac_config = 0x00040004 |(17<<6);
++
++ SPI_write(1,i,0x00,((mac_config & 0xfffffff8) | 1) | 0x20000030); // reset port
++ mac_config |= (( BIT(i) << 19) | 0x08000000);
++ SPI_write(1,i,0x00,mac_config);
++ SPI_write(1,i,0x04,0x000300ff); // flow control
++
++ reg_val = SPI_read(5,0,0x12);
++ reg_val &= ~BIT(i);
++ SPI_write(5,0,0x12,reg_val);
++
++ reg_val = SPI_read(1,i,0x00);
++ reg_val &= ~0x08000000;
++ reg_val |= 0x10010000;
++ SPI_write(1,i,0x00,reg_val);
++// SPI_write(1,i,0x00,0x10050443);
++ printk("Port%d:10M\n",i);
++ switch_pre_link[i]=LINK_UP;
++ switch_pre_speed[i]=GMAC_SPEED_10;
++ }
++ else{
++ SPI_write(1,i,0x00,0x20000030);
++ printk("Port%d:Unknown mode\n",i);
++ switch_pre_link[i]=LINK_DOWN;
++ switch_pre_speed[i]=GMAC_SPEED_10;
++ }
++ }
++ }
++ else{ // Link up ==> Link UP
++
++ }
++ }
++ else{ // Link Down
++ if(switch_pre_link[i]==LINK_UP){
++ printk("Port%d:Link Down\n",i);
++ //phy_receiver_init(i);
++ reg_val = SPI_read(1,i,0);
++ reg_val &= ~BIT(16);
++ SPI_write(1,i,0x00,reg_val); // disable RX
++ SPI_write(5,0,0x0E,BIT(i)); // dicard packet
++ while((SPI_read(5,0,0x0C)&BIT(i))==0) // wait to be empty
++ msleep(1);
++ SPI_write(1,i,0x00,0x20000030); // PORT_RST
++ SPI_write(5,0,0x0E,SPI_read(5,0,0x0E) & ~BIT(i));// accept packet
++
++ reg_val = SPI_read(5,0,0x12);
++ reg_val |= BIT(i);
++ SPI_write(5,0,0x12,reg_val);
++ }
++ switch_pre_link[i]=LINK_DOWN;
++ rcv_mask &= ~BIT(i); // disable receive
++ }
++ }
++
++ SPI_write(2,0,0x10,rcv_mask); // Receive mask
++ return is_link;
++
++}
++EXPORT_SYMBOL(Get_Set_port_status);
++
++void SPI_write(unsigned char block,unsigned char subblock,unsigned char addr,unsigned int value)
++{
++ int i;
++ char bit;
++ unsigned int data;
++
++ SPI_CS_enable(1);
++
++ data = (block<<5) | 0x10 | subblock;
++
++ //send write command
++ for(i=SPI_OP_LEN-1;i>=0;i--)
++ {
++ bit = (data>>i)& 0x01;
++ SPI_write_bit(bit);
++ }
++
++ // send 8 bits address (MSB first, LSB last)
++ for(i=SPI_ADD_LEN-1;i>=0;i--)
++ {
++ bit = (addr>>i)& 0x01;
++ SPI_write_bit(bit);
++ }
++ // send 32 bits data (MSB first, LSB last)
++ for(i=SPI_DAT_LEN-1;i>=0;i--)
++ {
++ bit = (value>>i)& 0x01;
++ SPI_write_bit(bit);
++ }
++
++ SPI_CS_enable(0); // CS low
++
++}
++
++
++/************************************
++* SPI_write_bit
++* bit_EEDO -> 1 or 0 to be written
++************************************/
++void SPI_write_bit(char bit_EEDO)
++{
++ unsigned int addr;
++ unsigned int value;
++
++ addr = (GPIO_BASE_ADDR1 + GPIO_PIN_DIR);
++ value = readl(addr) |GPIO_EECK |GPIO_MOSI ; /* set EECK/MISO Pin to output */
++ writel(value,addr);
++ if(bit_EEDO)
++ {
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_SET);
++ writel(GPIO_MOSI,addr); /* set MISO to 1 */
++
++ }
++ else
++ {
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_CLEAR);
++ writel(GPIO_MOSI,addr); /* set MISO to 0 */
++ }
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_SET);
++ writel(GPIO_EECK,addr); /* set EECK to 1 */
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_CLEAR);
++ writel(GPIO_EECK,addr); /* set EECK to 0 */
++
++ //return ;
++}
++
++/**********************************************************************
++* read a bit from ADM6996 register
++***********************************************************************/
++unsigned int SPI_read_bit(void) // read data from
++{
++ unsigned int addr;
++ unsigned int value;
++
++ addr = (GPIO_BASE_ADDR1 + GPIO_PIN_DIR);
++ value = readl(addr) & (~GPIO_MISO); // set EECK to output and MISO to input
++ writel(value,addr);
++
++ addr =(GPIO_BASE_ADDR1 + GPIO_DATA_SET);
++ writel(GPIO_EECK,addr); // set EECK to 1
++
++
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_IN);
++ value = readl(addr) ;
++
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_CLEAR);
++ writel(GPIO_EECK,addr); // set EECK to 0
++
++
++ value = value >> 30;
++ return value ;
++}
++
++/******************************************
++* SPI_default
++* EEPROM content default value
++*******************************************/
++int SPI_default(void)
++{
++ int i;
++ unsigned reg_val,cmd;
++
++#if 0
++ SPI_write(7,0,0x1C,0x01); // map code space to 0
++
++ reg_val = SPI_read(7,0,0x10);
++ reg_val |= 0x0146;
++ reg_val &= ~0x0001;
++ SPI_write(7,0,0x10,reg_val); // reset iCPU and enable ext_access
++ SPI_write(7,0,0x11,0x0000); // start address
++ for(i=0;i<sizeof(vts_img);i++){
++ SPI_write(7,0,0x12,vts_img[i]); // fill in ROM data
++ }
++ reg_val |= BIT(0)|BIT(3);
++ SPI_write(7,0,0x10,reg_val); // release iCPU
++ SPI_write(7,0,0x10,SPI_read(7,0,0x10)&~BIT(7)); // release iCPU
++ return ;
++#endif
++
++
++ for(i=0;i<15;i++){
++ if(i!=6 && i!=7)
++ SPI_write(3,2,0,0x1010400+i); // Initial memory
++ mdelay(1);
++ }
++
++ mdelay(30);
++
++ SPI_write(2,0,0xB0,0x05); // Clear MAC table
++ SPI_write(2,0,0xD0,0x03); // Clear VLAN
++
++ //for(i=0;i<5;i++)
++ SPI_write(1,6,0x19,0x2C); // Double Data rate
++
++ for(i=0;i<4;i++){
++ SPI_write(1,i,0x00,0x30050472); // MAC configure
++ SPI_write(1,i,0x00,0x10050442); // MAC configure
++ SPI_write(1,i,0x10,0x5F4); // Max length
++ SPI_write(1,i,0x04,0x00030000); // Flow control
++ SPI_write(1,i,0xDF,0x00000001); // Flow control
++ SPI_write(1,i,0x08,0x000050c2); // Flow control mac high
++ SPI_write(1,i,0x0C,0x002b00f1); // Flow control mac low
++ SPI_write(1,i,0x6E,BIT(3)); // forward pause frame
++ }
++ SPI_write(1,i,0x00,0x20000030); // set port 4 as reset
++
++ SPI_write(1,6,0x00,0x300701B1); // MAC configure
++ SPI_write(1,6,0x00,0x10070181); // MAC configure
++ SPI_write(1,6,0x10,0x5F4); // Max length
++ SPI_write(1,6,0x04,0x00030000); // Flow control
++ SPI_write(1,6,0xDF,0x00000002); // Flow control
++ SPI_write(1,6,0x08,0x000050c2); // Flow control mac high
++ SPI_write(1,6,0x0C,0x002b00f1); // Flow control mac low
++ SPI_write(1,6,0x6E,BIT(3)); // forward pause frame
++
++
++ //SPI_write(7,0,0x05,0x31); // MII delay for loader
++ //SPI_write(7,0,0x05,0x01); // MII delay for kernel
++ SPI_write(7,0,0x05,0x33);
++
++ SPI_write(2,0,0x10,0x4F); // Receive mask
++
++ mdelay(50);
++
++ SPI_write(7,0,0x14,0x02); // Release Reset
++
++ mdelay(3);
++
++ for(i=0;i<4;i++){
++ init_seq_7385(i);
++ phy_receiver_init(i);
++ cmd = BIT(26)|(i<<21)|(0x1B<<16); // Config LED
++ SPI_write(3,0,1,cmd);
++ mdelay(10);
++ reg_val = SPI_read(3,0,2);
++ reg_val &= 0xFF00;
++ reg_val |= 0x61;
++ cmd = (i<<21)|(0x1B<<16)|reg_val;
++ SPI_write(3,0,1,cmd);
++
++ cmd = BIT(26)|(i<<21)|(0x04<<16); // Pause enable
++ SPI_write(3,0,1,cmd);
++ mdelay(10);
++ reg_val = SPI_read(3,0,2);
++ reg_val |= BIT(10)|BIT(11);
++ cmd = (i<<21)|(0x04<<16)|reg_val;
++ SPI_write(3,0,1,cmd);
++
++ cmd = BIT(26)|(i<<21)|(0x0<<16); // collision test and re-negotiation
++ SPI_write(3,0,1,cmd);
++ mdelay(10);
++ reg_val = SPI_read(3,0,2);
++ reg_val |= BIT(7)|BIT(8)|BIT(9);
++ cmd = (i<<21)|(0x0<<16)|reg_val;
++ SPI_write(3,0,1,cmd);
++ }
++ init_seq_7385(i);
++ writel(0x5787a7f0,GMAC_GLOBAL_BASE_ADDR+0x1c);//For switch timing
++ return 4; // return port_no
++}
++EXPORT_SYMBOL(SPI_default);
++
++/***********************************************************
++* SPI_CS_enable
++* before access ,you have to enable Chip Select. (pull high)
++* When fisish, you should pull low !!
++*************************************************************/
++void SPI_CS_enable(unsigned char enable)
++{
++
++ unsigned int addr,value;
++
++ addr = (GPIO_BASE_ADDR1 + GPIO_PIN_DIR);
++ value = readl(addr) |GPIO_EECS |GPIO_EECK; /* set EECS/EECK Pin to output */
++ writel(value,addr);
++
++ if(enable)
++ {
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_CLEAR);
++ writel(GPIO_EECK,addr); /* set EECK to 0 */ // pull low clk first
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_CLEAR);
++ writel(GPIO_EECS,addr); /* set EECS to 0 */
++
++ }
++ else
++ {
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_SET);
++ writel(GPIO_EECK,addr); /* set EECK to 1 */ // pull high clk before disable
++ writel(GPIO_EECS,addr); /* set EECS to 1 */
++ }
++}
++
++
++/************************************************
++* SPI_read
++* table -> which table to be read: 1/count 0/EEPROM
++* addr -> Address to be read
++* return : Value of the register
++*************************************************/
++unsigned int SPI_read(unsigned char block,unsigned char subblock,unsigned char addr)
++{
++ int i;
++ char bit;
++ unsigned int data,value=0;
++
++ SPI_CS_enable(1);
++
++ data = (block<<5) | subblock;
++
++ //send write command
++ for(i=SPI_OP_LEN-1;i>=0;i--)
++ {
++ bit = (data>>i)& 0x01;
++ SPI_write_bit(bit);
++ }
++
++ // send 8 bits address (MSB first, LSB last)
++ for(i=SPI_ADD_LEN-1;i>=0;i--)
++ {
++ bit = (addr>>i)& 0x01;
++ SPI_write_bit(bit);
++ }
++
++ // dummy read for chip ready
++ for(i=0;i<8;i++)
++ SPI_read_bit();
++
++
++ // read 32 bits data (MSB first, LSB last)
++ for(i=SPI_DAT_LEN-1;i>=0;i--)
++ {
++ bit = SPI_read_bit();
++ value |= bit<<i;
++ }
++
++ SPI_CS_enable(0); // CS low
++ return(value);
++
++}
++
++void pull_low_gpio(unsigned int val)
++{
++
++ unsigned int addr,value;
++
++ addr = (GPIO_BASE_ADDR1 + GPIO_DATA_CLEAR);
++ writel(val,addr); /* set pin low to save power*/
++
++ addr = (GPIO_BASE_ADDR1 + GPIO_PIN_DIR);
++ value = readl(addr) & ~ val; /* set Pin to input */
++ writel(value,addr);
++
++// value = readl(GMAC_GLOBAL_BASE_ADDR+0x0C); // reset GPIO1 module(self clear)
++// value |= BIT(21);
++// writel(value,GMAC_GLOBAL_BASE_ADDR+0x0C);
++}
++
++unsigned int SPI_get_identifier(void)
++{
++ unsigned int flag=0;
++
++ SPI_write(7,0,0x01,0x01);
++ flag = SPI_read(7,0,0x18); // chip id
++ if((flag & 0x0ffff000)==0x07385000){
++ printk("Get VSC-switch ID 0x%08x\n",flag);
++ //Giga_switch = 1;;
++ return 1;
++ }
++ else{
++ printk("VSC-switch not found\n");
++ //Giga_switch = 0;
++ pull_low_gpio(GPIO_EECK|GPIO_MOSI|GPIO_MISO|GPIO_EECS); // reduce power consume
++ return 0;
++ }
++}
++EXPORT_SYMBOL(SPI_get_identifier);
++
+--- /dev/null
++++ b/include/asm-arm/arch-sl2312/sl351x_gmac.h
+@@ -0,0 +1,2223 @@
++/****************************************************************************
++* Copyright 2006 StorLink Semiconductors, Inc. All rights reserved.
++*--------------------------------------------------------------------------
++* Name : sl351x_gmac.h
++* Description :
++* Define for device driver of Storlink SL351x network Engine
++*
++* Historych
++*
++* Date Writer Description
++* ----------- ----------- -------------------------------------------------
++* 08/22/2005 Gary Chen Create and implement
++*
++****************************************************************************/
++#ifndef _GMAC_SL351x_H
++#define _GMAC_SL351x_H
++#include <linux/skbuff.h>
++
++#define SL351x_GMAC_WORKAROUND 1
++
++#undef BIG_ENDIAN
++#define BIG_ENDIAN 0
++#define GMAC_DEBUG 1
++#define GMAC_NUM 2
++//#define L2_jumbo_frame 1
++
++#define _PACKED_ __attribute__ ((aligned(1), packed))
++
++#ifndef BIT
++#define BIT(x) (1 << (x))
++#endif
++
++#define REG32(addr) (*(volatile unsigned long * const)(addr))
++
++#define DMA_MALLOC(size,handle) pci_alloc_consistent(NULL,size,handle)
++#define DMA_MFREE(mem,size,handle) pci_free_consistent(NULL,size,mem,handle)
++
++// Define frame size
++#define ETHER_ADDR_LEN 6
++#define GMAC_MAX_ETH_FRAME_SIZE 1514
++#define GMAC_TX_BUF_SIZE ((GMAC_MAX_ETH_FRAME_SIZE + 31) & (~31))
++#define MAX_ISR_WORK 20
++
++#ifdef L2_jumbo_frame
++#define SW_RX_BUF_SIZE 9234 // 2048 ,9234
++#else
++#define SW_RX_BUF_SIZE 1536 // 2048
++#endif
++
++#define HW_RX_BUF_SIZE 1536 // 2048
++
++#define GMAC_DEV_TX_TIMEOUT (10*HZ) //add by CH
++#define SKB_RESERVE_BYTES 16
++
++/**********************************************************************
++ * Base Register
++ **********************************************************************/
++#define TOE_BASE (IO_ADDRESS(SL2312_TOE_BASE))
++#define GMAC_GLOBAL_BASE_ADDR (IO_ADDRESS(SL2312_GLOBAL_BASE))
++
++#define TOE_GLOBAL_BASE (TOE_BASE + 0x0000)
++#define TOE_NONTOE_QUE_HDR_BASE (TOE_BASE + 0x2000)
++#define TOE_TOE_QUE_HDR_BASE (TOE_BASE + 0x3000)
++#define TOE_V_BIT_BASE (TOE_BASE + 0x4000)
++#define TOE_A_BIT_BASE (TOE_BASE + 0x6000)
++#define TOE_GMAC0_DMA_BASE (TOE_BASE + 0x8000)
++#define TOE_GMAC0_BASE (TOE_BASE + 0xA000)
++#define TOE_GMAC1_DMA_BASE (TOE_BASE + 0xC000)
++#define TOE_GMAC1_BASE (TOE_BASE + 0xE000)
++
++/**********************************************************************
++ * Queue ID
++ **********************************************************************/
++#define TOE_SW_FREE_QID 0x00
++#define TOE_HW_FREE_QID 0x01
++#define TOE_GMAC0_SW_TXQ0_QID 0x02
++#define TOE_GMAC0_SW_TXQ1_QID 0x03
++#define TOE_GMAC0_SW_TXQ2_QID 0x04
++#define TOE_GMAC0_SW_TXQ3_QID 0x05
++#define TOE_GMAC0_SW_TXQ4_QID 0x06
++#define TOE_GMAC0_SW_TXQ5_QID 0x07
++#define TOE_GMAC0_HW_TXQ0_QID 0x08
++#define TOE_GMAC0_HW_TXQ1_QID 0x09
++#define TOE_GMAC0_HW_TXQ2_QID 0x0A
++#define TOE_GMAC0_HW_TXQ3_QID 0x0B
++#define TOE_GMAC1_SW_TXQ0_QID 0x12
++#define TOE_GMAC1_SW_TXQ1_QID 0x13
++#define TOE_GMAC1_SW_TXQ2_QID 0x14
++#define TOE_GMAC1_SW_TXQ3_QID 0x15
++#define TOE_GMAC1_SW_TXQ4_QID 0x16
++#define TOE_GMAC1_SW_TXQ5_QID 0x17
++#define TOE_GMAC1_HW_TXQ0_QID 0x18
++#define TOE_GMAC1_HW_TXQ1_QID 0x19
++#define TOE_GMAC1_HW_TXQ2_QID 0x1A
++#define TOE_GMAC1_HW_TXQ3_QID 0x1B
++#define TOE_GMAC0_DEFAULT_QID 0x20
++#define TOE_GMAC1_DEFAULT_QID 0x21
++#define TOE_CLASSIFICATION_QID(x) (0x22 + x) // 0x22 ~ 0x2F
++#define TOE_TOE_QID(x) (0x40 + x) // 0x40 ~ 0x7F
++
++/**********************************************************************
++ * TOE DMA Queue Number should be 2^n, n = 6...12
++ * TOE DMA Queues are the following queue types:
++ * SW Free Queue, HW Free Queue,
++ * GMAC 0/1 SW TX Q0-5, and GMAC 0/1 HW TX Q0-5
++ * They have same descriptor numbers.
++ * The base address and descriptor number are configured at
++ * DMA Queues Descriptor Ring Base Address/Size Register (offset 0x0004)
++ **********************************************************************/
++#define TOE_SW_FREEQ_DESC_POWER 10
++#define TOE_SW_FREEQ_DESC_NUM (1<<TOE_SW_FREEQ_DESC_POWER)
++#define TOE_HW_FREEQ_DESC_POWER 8
++#define TOE_HW_FREEQ_DESC_NUM (1<<TOE_HW_FREEQ_DESC_POWER)
++#define TOE_GMAC0_SWTXQ_DESC_POWER 8
++#define TOE_GMAC0_SWTXQ_DESC_NUM (1<<TOE_GMAC0_SWTXQ_DESC_POWER)
++#define TOE_GMAC0_HWTXQ_DESC_POWER 8
++#define TOE_GMAC0_HWTXQ_DESC_NUM (1<<TOE_GMAC0_HWTXQ_DESC_POWER)
++#define TOE_GMAC1_SWTXQ_DESC_POWER 8
++#define TOE_GMAC1_SWTXQ_DESC_NUM (1<<TOE_GMAC1_SWTXQ_DESC_POWER)
++#define TOE_GMAC1_HWTXQ_DESC_POWER 8
++#define TOE_GMAC1_HWTXQ_DESC_NUM (1<<TOE_GMAC1_HWTXQ_DESC_POWER)
++#define TOE_DEFAULT_Q0_DESC_POWER 8
++#define TOE_DEFAULT_Q0_DESC_NUM (1<<TOE_DEFAULT_Q0_DESC_POWER)
++#define TOE_DEFAULT_Q1_DESC_POWER 8
++#define TOE_DEFAULT_Q1_DESC_NUM (1<<TOE_DEFAULT_Q1_DESC_POWER)
++#define TOE_TOE_DESC_POWER 8
++#define TOE_TOE_DESC_NUM (1<<TOE_TOE_DESC_POWER)
++#define TOE_CLASS_DESC_POWER 8
++#define TOE_CLASS_DESC_NUM (1<<TOE_CLASS_DESC_POWER)
++#define TOE_INTR_DESC_POWER 8
++#define TOE_INTR_DESC_NUM (1<<TOE_INTR_DESC_POWER)
++
++#define TOE_TOE_QUEUE_MAX 64
++#define TOE_TOE_QUEUE_NUM 64
++#define TOE_CLASS_QUEUE_MAX 14
++#define TOE_CLASS_QUEUE_NUM 14
++#define TOE_INTR_QUEUE_MAX 4
++#define TOE_INTR_QUEUE_NUM 4
++#define TOE_SW_TXQ_MAX 6
++#define TOE_SW_TXQ_NUM 1
++#define TOE_HW_TXQ_MAX 4
++#define TOE_HW_TXQ_NUM 4
++#define _max(x,y) ((x>y) ? x :y)
++#define TX_DESC_NUM _max(TOE_GMAC0_SWTXQ_DESC_NUM, TOE_GMAC1_SWTXQ_DESC_NUM)
++
++#define RWPTR_ADVANCE_ONE(x, max) ((x == (max -1)) ? 0 : x+1)
++#define RWPTR_RECEDE_ONE(x, max) ((x == 0) ? (max -1) : x-1)
++#define SET_WPTR(addr, data) (*(volatile u16 * const)((u32)(addr)+2) = (u16)data)
++#define SET_RPTR(addr, data) (*(volatile u16 * const)((u32)(addr)) = (u16)data)
++
++/**********************************************************************
++ * Global registers
++ * #define TOE_GLOBAL_BASE (TOE_BASE + 0x0000)
++ * Base 0x60000000
++ **********************************************************************/
++#define GLOBAL_TOE_VERSION_REG 0x0000
++#define GLOBAL_SW_FREEQ_BASE_SIZE_REG 0x0004
++#define GLOBAL_HW_FREEQ_BASE_SIZE_REG 0x0008
++#define GLOBAL_DMA_SKB_SIZE_REG 0x0010
++#define GLOBAL_SWFQ_RWPTR_REG 0x0014
++#define GLOBAL_HWFQ_RWPTR_REG 0x0018
++#define GLOBAL_INTERRUPT_STATUS_0_REG 0x0020
++#define GLOBAL_INTERRUPT_ENABLE_0_REG 0x0024
++#define GLOBAL_INTERRUPT_SELECT_0_REG 0x0028
++#define GLOBAL_INTERRUPT_STATUS_1_REG 0x0030
++#define GLOBAL_INTERRUPT_ENABLE_1_REG 0x0034
++#define GLOBAL_INTERRUPT_SELECT_1_REG 0x0038
++#define GLOBAL_INTERRUPT_STATUS_2_REG 0x0040
++#define GLOBAL_INTERRUPT_ENABLE_2_REG 0x0044
++#define GLOBAL_INTERRUPT_SELECT_2_REG 0x0048
++#define GLOBAL_INTERRUPT_STATUS_3_REG 0x0050
++#define GLOBAL_INTERRUPT_ENABLE_3_REG 0x0054
++#define GLOBAL_INTERRUPT_SELECT_3_REG 0x0058
++#define GLOBAL_INTERRUPT_STATUS_4_REG 0x0060
++#define GLOBAL_INTERRUPT_ENABLE_4_REG 0x0064
++#define GLOBAL_INTERRUPT_SELECT_4_REG 0x0068
++#define GLOBAL_HASH_TABLE_BASE_REG 0x006C
++#define GLOBAL_QUEUE_THRESHOLD_REG 0x0070
++
++/**********************************************************************
++ * GMAC 0/1 DMA/TOE register
++ * #define TOE_GMAC0_DMA_BASE (TOE_BASE + 0x8000)
++ * #define TOE_GMAC1_DMA_BASE (TOE_BASE + 0xC000)
++ * Base 0x60008000 or 0x6000C000
++ **********************************************************************/
++#define GMAC_DMA_CTRL_REG 0x0000
++#define GMAC_TX_WEIGHTING_CTRL_0_REG 0x0004
++#define GMAC_TX_WEIGHTING_CTRL_1_REG 0x0008
++#define GMAC_SW_TX_QUEUE0_PTR_REG 0x000C
++#define GMAC_SW_TX_QUEUE1_PTR_REG 0x0010
++#define GMAC_SW_TX_QUEUE2_PTR_REG 0x0014
++#define GMAC_SW_TX_QUEUE3_PTR_REG 0x0018
++#define GMAC_SW_TX_QUEUE4_PTR_REG 0x001C
++#define GMAC_SW_TX_QUEUE5_PTR_REG 0x0020
++#define GMAC_HW_TX_QUEUE0_PTR_REG 0x0024
++#define GMAC_HW_TX_QUEUE1_PTR_REG 0x0028
++#define GMAC_HW_TX_QUEUE2_PTR_REG 0x002C
++#define GMAC_HW_TX_QUEUE3_PTR_REG 0x0030
++#define GMAC_DMA_TX_FIRST_DESC_REG 0x0038
++#define GMAC_DMA_TX_CURR_DESC_REG 0x003C
++#define GMAC_DMA_TX_DESC_WORD0_REG 0x0040
++#define GMAC_DMA_TX_DESC_WORD1_REG 0x0044
++#define GMAC_DMA_TX_DESC_WORD2_REG 0x0048
++#define GMAC_DMA_TX_DESC_WORD3_REG 0x004C
++#define GMAC_SW_TX_QUEUE_BASE_REG 0x0050
++#define GMAC_HW_TX_QUEUE_BASE_REG 0x0054
++#define GMAC_DMA_RX_FIRST_DESC_REG 0x0058
++#define GMAC_DMA_RX_CURR_DESC_REG 0x005C
++#define GMAC_DMA_RX_DESC_WORD0_REG 0x0060
++#define GMAC_DMA_RX_DESC_WORD1_REG 0x0064
++#define GMAC_DMA_RX_DESC_WORD2_REG 0x0068
++#define GMAC_DMA_RX_DESC_WORD3_REG 0x006C
++#define GMAC_HASH_ENGINE_REG0 0x0070
++#define GMAC_HASH_ENGINE_REG1 0x0074
++#define GMAC_MR0CR0 0x0078 // matching rule 0 Control register 0
++#define GMAC_MR0CR1 0x007C // matching rule 0 Control register 1
++#define GMAC_MR0CR2 0x0080 // matching rule 0 Control register 2
++#define GMAC_MR1CR0 0x0084 // matching rule 1 Control register 0
++#define GMAC_MR1CR1 0x0088 // matching rule 1 Control register 1
++#define GMAC_MR1CR2 0x008C // matching rule 1 Control register 2
++#define GMAC_MR2CR0 0x0090 // matching rule 2 Control register 0
++#define GMAC_MR2CR1 0x0094 // matching rule 2 Control register 1
++#define GMAC_MR2CR2 0x0098 // matching rule 2 Control register 2
++#define GMAC_MR3CR0 0x009C // matching rule 3 Control register 0
++#define GMAC_MR3CR1 0x00A0 // matching rule 3 Control register 1
++#define GMAC_MR3CR2 0x00A4 // matching rule 3 Control register 2
++#define GMAC_SPR0 0x00A8 // Support Protocol Regsister 0
++#define GMAC_SPR1 0x00AC // Support Protocol Regsister 1
++#define GMAC_SPR2 0x00B0 // Support Protocol Regsister 2
++#define GMAC_SPR3 0x00B4 // Support Protocol Regsister 3
++#define GMAC_SPR4 0x00B8 // Support Protocol Regsister 4
++#define GMAC_SPR5 0x00BC // Support Protocol Regsister 5
++#define GMAC_SPR6 0x00C0 // Support Protocol Regsister 6
++#define GMAC_SPR7 0x00C4 // Support Protocol Regsister 7
++#define GMAC_AHB_WEIGHT_REG 0x00C8 // GMAC Hash/Rx/Tx AHB Weighting register
++
++/**********************************************************************
++ * TOE GMAC 0/1 register
++ * #define TOE_GMAC0_BASE (TOE_BASE + 0xA000)
++ * #define TOE_GMAC1_BASE (TOE_BASE + 0xE000)
++ * Base 0x6000A000 or 0x6000E000
++ **********************************************************************/
++enum GMAC_REGISTER {
++ GMAC_STA_ADD0 = 0x0000,
++ GMAC_STA_ADD1 = 0x0004,
++ GMAC_STA_ADD2 = 0x0008,
++ GMAC_RX_FLTR = 0x000c,
++ GMAC_MCAST_FIL0 = 0x0010,
++ GMAC_MCAST_FIL1 = 0x0014,
++ GMAC_CONFIG0 = 0x0018,
++ GMAC_CONFIG1 = 0x001c,
++ GMAC_CONFIG2 = 0x0020,
++ GMAC_CONFIG3 = 0x0024,
++ GMAC_RESERVED = 0x0028,
++ GMAC_STATUS = 0x002c,
++ GMAC_IN_DISCARDS= 0x0030,
++ GMAC_IN_ERRORS = 0x0034,
++ GMAC_IN_MCAST = 0x0038,
++ GMAC_IN_BCAST = 0x003c,
++ GMAC_IN_MAC1 = 0x0040, // for STA 1 MAC Address
++ GMAC_IN_MAC2 = 0x0044 // for STA 2 MAC Address
++};
++/**********************************************************************
++ * TOE version Register (offset 0x0000)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int reserved : 15; // bit 31:17
++ unsigned int v_bit_mode : 1; // bit 16 1: 128-entry
++ unsigned int device_id : 12; // bit 15:4 Device ID
++ unsigned int revision_id : 4; // bit 3:0 Revision ID
++#else
++ unsigned int revision_id : 4; // bit 3:0 Revision ID
++ unsigned int device_id : 12; // bit 15:4 Device ID
++ unsigned int v_bit_mode : 1; // bit 16 1: 128-entry
++ unsigned int reserved : 15; // bit 31:17
++#endif
++ } bits;
++} TOE_VERSION_T;
++
++
++/**********************************************************************
++ * DMA Queues description Ring Base Address/Size Register (offset 0x0004)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int base_size;
++} DMA_Q_BASE_SIZE_T;
++#define DMA_Q_BASE_MASK (~0x0f)
++
++/**********************************************************************
++ * DMA SKB Buffer register (offset 0x0008)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_0008
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int hw_skb_size : 16; // bit 31:16 HW Free poll SKB Size
++ unsigned int sw_skb_size : 16; // bit 15:0 SW Free poll SKB Size
++#else
++ unsigned int sw_skb_size : 16; // bit 15:0 SW Free poll SKB Size
++ unsigned int hw_skb_size : 16; // bit 31:16 HW Free poll SKB Size
++#endif
++ } bits;
++} DMA_SKB_SIZE_T;
++
++/**********************************************************************
++ * DMA SW Free Queue Read/Write Pointer Register (offset 0x000C)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_000c
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int wptr : 16; // bit 31:16 Write Ptr, RW
++ unsigned int rptr : 16; // bit 15:0 Read Ptr, RO
++#else
++ unsigned int rptr : 16; // bit 15:0 Read Ptr, RO
++ unsigned int wptr : 16; // bit 31:16 Write Ptr, RW
++#endif
++ } bits;
++} DMA_RWPTR_T;
++
++/**********************************************************************
++ * DMA HW Free Queue Read/Write Pointer Register (offset 0x0010)
++ **********************************************************************/
++// see DMA_RWPTR_T structure
++
++/**********************************************************************
++ * Interrupt Status Register 0 (offset 0x0020)
++ * Interrupt Mask Register 0 (offset 0x0024)
++ * Interrupt Select Register 0 (offset 0x0028)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_0020
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int txDerr1 : 1; // bit 31 GMAC1 AHB Bus Error while Tx
++ unsigned int txPerr1 : 1; // bit 30 GMAC1 Tx Descriptor Protocol Error
++ unsigned int txDerr0 : 1; // bit 29 GMAC0 AHB Bus Error while Tx
++ unsigned int txPerr0 : 1; // bit 28 GMAC0 Tx Descriptor Protocol Error
++ unsigned int rxDerr1 : 1; // bit 27 GMAC1 AHB Bus Error while Rx
++ unsigned int rxPerr1 : 1; // bit 26 GMAC1 Rx Descriptor Protocol Error
++ unsigned int rxDerr0 : 1; // bit 25 GMAC0 AHB Bus Error while Rx
++ unsigned int rxPerr0 : 1; // bit 24 GMAC0 Rx Descriptor Protocol Error
++ unsigned int swtq15_fin : 1; // bit 23 GMAC1 SW Tx Queue 5 Finish Interrupt
++ unsigned int swtq14_fin : 1; // bit 22 GMAC1 SW Tx Queue 4 Finish Interrupt
++ unsigned int swtq13_fin : 1; // bit 21 GMAC1 SW Tx Queue 3 Finish Interrupt
++ unsigned int swtq12_fin : 1; // bit 20 GMAC1 SW Tx Queue 2 Finish Interrupt
++ unsigned int swtq11_fin : 1; // bit 19 GMAC1 SW Tx Queue 1 Finish Interrupt
++ unsigned int swtq10_fin : 1; // bit 18 GMAC1 SW Tx Queue 0 Finish Interrupt
++ unsigned int swtq05_fin : 1; // bit 17 GMAC0 SW Tx Queue 5 Finish Interrupt
++ unsigned int swtq04_fin : 1; // bit 16 GMAC0 SW Tx Queue 4 Finish Interrupt
++ unsigned int swtq03_fin : 1; // bit 15 GMAC0 SW Tx Queue 3 Finish Interrupt
++ unsigned int swtq02_fin : 1; // bit 14 GMAC0 SW Tx Queue 2 Finish Interrupt
++ unsigned int swtq01_fin : 1; // bit 13 GMAC0 SW Tx Queue 1 Finish Interrupt
++ unsigned int swtq00_fin : 1; // bit 12 GMAC0 SW Tx Queue 0 Finish Interrupt
++ unsigned int swtq15_eof : 1; // bit 11 GMAC1 SW Tx Queue 5 EOF Interrupt
++ unsigned int swtq14_eof : 1; // bit 10 GMAC1 SW Tx Queue 4 EOF Interrupt
++ unsigned int swtq13_eof : 1; // bit 9 GMAC1 SW Tx Queue 3 EOF Interrupt
++ unsigned int swtq12_eof : 1; // bit 8 GMAC1 SW Tx Queue 2 EOF Interrupt
++ unsigned int swtq11_eof : 1; // bit 7 GMAC1 SW Tx Queue 1 EOF Interrupt
++ unsigned int swtq10_eof : 1; // bit 6 GMAC1 SW Tx Queue 0 EOF Interrupt
++ unsigned int swtq05_eof : 1; // bit 5 GMAC0 SW Tx Queue 5 EOF Interrupt
++ unsigned int swtq04_eof : 1; // bit 4 GMAC0 SW Tx Queue 4 EOF Interrupt
++ unsigned int swtq03_eof : 1; // bit 3 GMAC0 SW Tx Queue 3 EOF Interrupt
++ unsigned int swtq02_eof : 1; // bit 2 GMAC0 SW Tx Queue 2 EOF Interrupt
++ unsigned int swtq01_eof : 1; // bit 1 GMAC0 SW Tx Queue 1 EOF Interrupt
++ unsigned int swtq00_eof : 1; // bit 0 GMAC0 SW Tx Queue 0 EOF Interrupt
++#else
++ unsigned int swtq00_eof : 1; // bit 0 GMAC0 SW Tx Queue 0 EOF Interrupt
++ unsigned int swtq01_eof : 1; // bit 1 GMAC0 SW Tx Queue 1 EOF Interrupt
++ unsigned int swtq02_eof : 1; // bit 2 GMAC0 SW Tx Queue 2 EOF Interrupt
++ unsigned int swtq03_eof : 1; // bit 3 GMAC0 SW Tx Queue 3 EOF Interrupt
++ unsigned int swtq04_eof : 1; // bit 4 GMAC0 SW Tx Queue 4 EOF Interrupt
++ unsigned int swtq05_eof : 1; // bit 5 GMAC0 SW Tx Queue 5 EOF Interrupt
++ unsigned int swtq10_eof : 1; // bit 6 GMAC1 SW Tx Queue 0 EOF Interrupt
++ unsigned int swtq11_eof : 1; // bit 7 GMAC1 SW Tx Queue 1 EOF Interrupt
++ unsigned int swtq12_eof : 1; // bit 8 GMAC1 SW Tx Queue 2 EOF Interrupt
++ unsigned int swtq13_eof : 1; // bit 9 GMAC1 SW Tx Queue 3 EOF Interrupt
++ unsigned int swtq14_eof : 1; // bit 10 GMAC1 SW Tx Queue 4 EOF Interrupt
++ unsigned int swtq15_eof : 1; // bit 11 GMAC1 SW Tx Queue 5 EOF Interrupt
++ unsigned int swtq00_fin : 1; // bit 12 GMAC0 SW Tx Queue 0 Finish Interrupt
++ unsigned int swtq01_fin : 1; // bit 13 GMAC0 SW Tx Queue 1 Finish Interrupt
++ unsigned int swtq02_fin : 1; // bit 14 GMAC0 SW Tx Queue 2 Finish Interrupt
++ unsigned int swtq03_fin : 1; // bit 15 GMAC0 SW Tx Queue 3 Finish Interrupt
++ unsigned int swtq04_fin : 1; // bit 16 GMAC0 SW Tx Queue 4 Finish Interrupt
++ unsigned int swtq05_fin : 1; // bit 17 GMAC0 SW Tx Queue 5 Finish Interrupt
++ unsigned int swtq10_fin : 1; // bit 18 GMAC1 SW Tx Queue 0 Finish Interrupt
++ unsigned int swtq11_fin : 1; // bit 19 GMAC1 SW Tx Queue 1 Finish Interrupt
++ unsigned int swtq12_fin : 1; // bit 20 GMAC1 SW Tx Queue 2 Finish Interrupt
++ unsigned int swtq13_fin : 1; // bit 21 GMAC1 SW Tx Queue 3 Finish Interrupt
++ unsigned int swtq14_fin : 1; // bit 22 GMAC1 SW Tx Queue 4 Finish Interrupt
++ unsigned int swtq15_fin : 1; // bit 23 GMAC1 SW Tx Queue 5 Finish Interrupt
++ unsigned int rxPerr0 : 1; // bit 24 GMAC0 Rx Descriptor Protocol Error
++ unsigned int rxDerr0 : 1; // bit 25 GMAC0 AHB Bus Error while Rx
++ unsigned int rxPerr1 : 1; // bit 26 GMAC1 Rx Descriptor Protocol Error
++ unsigned int rxDerr1 : 1; // bit 27 GMAC1 AHB Bus Error while Rx
++ unsigned int txPerr0 : 1; // bit 28 GMAC0 Tx Descriptor Protocol Error
++ unsigned int txDerr0 : 1; // bit 29 GMAC0 AHB Bus Error while Tx
++ unsigned int txPerr1 : 1; // bit 30 GMAC1 Tx Descriptor Protocol Error
++ unsigned int txDerr1 : 1; // bit 31 GMAC1 AHB Bus Error while Tx
++#endif
++ } bits;
++} INTR_REG0_T;
++
++#define GMAC1_TXDERR_INT_BIT BIT(31)
++#define GMAC1_TXPERR_INT_BIT BIT(30)
++#define GMAC0_TXDERR_INT_BIT BIT(29)
++#define GMAC0_TXPERR_INT_BIT BIT(28)
++#define GMAC1_RXDERR_INT_BIT BIT(27)
++#define GMAC1_RXPERR_INT_BIT BIT(26)
++#define GMAC0_RXDERR_INT_BIT BIT(25)
++#define GMAC0_RXPERR_INT_BIT BIT(24)
++#define GMAC1_SWTQ15_FIN_INT_BIT BIT(23)
++#define GMAC1_SWTQ14_FIN_INT_BIT BIT(22)
++#define GMAC1_SWTQ13_FIN_INT_BIT BIT(21)
++#define GMAC1_SWTQ12_FIN_INT_BIT BIT(20)
++#define GMAC1_SWTQ11_FIN_INT_BIT BIT(19)
++#define GMAC1_SWTQ10_FIN_INT_BIT BIT(18)
++#define GMAC0_SWTQ05_FIN_INT_BIT BIT(17)
++#define GMAC0_SWTQ04_FIN_INT_BIT BIT(16)
++#define GMAC0_SWTQ03_FIN_INT_BIT BIT(15)
++#define GMAC0_SWTQ02_FIN_INT_BIT BIT(14)
++#define GMAC0_SWTQ01_FIN_INT_BIT BIT(13)
++#define GMAC0_SWTQ00_FIN_INT_BIT BIT(12)
++#define GMAC1_SWTQ15_EOF_INT_BIT BIT(11)
++#define GMAC1_SWTQ14_EOF_INT_BIT BIT(10)
++#define GMAC1_SWTQ13_EOF_INT_BIT BIT(9)
++#define GMAC1_SWTQ12_EOF_INT_BIT BIT(8)
++#define GMAC1_SWTQ11_EOF_INT_BIT BIT(7)
++#define GMAC1_SWTQ10_EOF_INT_BIT BIT(6)
++#define GMAC0_SWTQ05_EOF_INT_BIT BIT(5)
++#define GMAC0_SWTQ04_EOF_INT_BIT BIT(4)
++#define GMAC0_SWTQ03_EOF_INT_BIT BIT(3)
++#define GMAC0_SWTQ02_EOF_INT_BIT BIT(2)
++#define GMAC0_SWTQ01_EOF_INT_BIT BIT(1)
++#define GMAC0_SWTQ00_EOF_INT_BIT BIT(0)
++
++
++/**********************************************************************
++ * Interrupt Status Register 1 (offset 0x0030)
++ * Interrupt Mask Register 1 (offset 0x0034)
++ * Interrupt Select Register 1 (offset 0x0038)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_0030
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int toe_iq3_full : 1; // bit 31 TOE Interrupt Queue 3 Full Interrupt
++ unsigned int toe_iq2_full : 1; // bit 30 TOE Interrupt Queue 2 Full Interrupt
++ unsigned int toe_iq1_full : 1; // bit 29 TOE Interrupt Queue 1 Full Interrupt
++ unsigned int toe_iq0_full : 1; // bit 28 TOE Interrupt Queue 0 Full Interrupt
++ unsigned int toe_iq3_intr : 1; // bit 27 TOE Interrupt Queue 3 with Interrupts
++ unsigned int toe_iq2_intr : 1; // bit 26 TOE Interrupt Queue 2 with Interrupts
++ unsigned int toe_iq1_intr : 1; // bit 25 TOE Interrupt Queue 1 with Interrupts
++ unsigned int toe_iq0_intr : 1; // bit 24 TOE Interrupt Queue 0 with Interrupts
++ unsigned int hwtq13_eof : 1; // bit 23 GMAC1 HW Tx Queue3 EOF Interrupt
++ unsigned int hwtq12_eof : 1; // bit 22 GMAC1 HW Tx Queue2 EOF Interrupt
++ unsigned int hwtq11_eof : 1; // bit 21 GMAC1 HW Tx Queue1 EOF Interrupt
++ unsigned int hwtq10_eof : 1; // bit 20 GMAC1 HW Tx Queue0 EOF Interrupt
++ unsigned int hwtq03_eof : 1; // bit 19 GMAC0 HW Tx Queue3 EOF Interrupt
++ unsigned int hwtq02_eof : 1; // bit 18 GMAC0 HW Tx Queue2 EOF Interrupt
++ unsigned int hwtq01_eof : 1; // bit 17 GMAC0 HW Tx Queue1 EOF Interrupt
++ unsigned int hwtq00_eof : 1; // bit 16 GMAC0 HW Tx Queue0 EOF Interrupt
++ unsigned int class_rx : 14; // bit 15:2 Classification Queue Rx Interrupt
++ unsigned int default_q1_eof : 1; // bit 1 Default Queue 1 EOF Interrupt
++ unsigned int default_q0_eof : 1; // bit 0 Default Queue 0 EOF Interrupt
++#else
++ unsigned int default_q0_eof : 1; // bit 0 Default Queue 0 EOF Interrupt
++ unsigned int default_q1_eof : 1; // bit 1 Default Queue 1 EOF Interrupt
++ unsigned int class_rx : 14; // bit 15:2 Classification Queue Rx Interrupt
++ unsigned int hwtq00_eof : 1; // bit 16 GMAC0 HW Tx Queue0 EOF Interrupt
++ unsigned int hwtq01_eof : 1; // bit 17 GMAC0 HW Tx Queue1 EOF Interrupt
++ unsigned int hwtq02_eof : 1; // bit 18 GMAC0 HW Tx Queue2 EOF Interrupt
++ unsigned int hwtq03_eof : 1; // bit 19 GMAC0 HW Tx Queue3 EOF Interrupt
++ unsigned int hwtq10_eof : 1; // bit 20 GMAC1 HW Tx Queue0 EOF Interrupt
++ unsigned int hwtq11_eof : 1; // bit 21 GMAC1 HW Tx Queue1 EOF Interrupt
++ unsigned int hwtq12_eof : 1; // bit 22 GMAC1 HW Tx Queue2 EOF Interrupt
++ unsigned int hwtq13_eof : 1; // bit 23 GMAC1 HW Tx Queue3 EOF Interrupt
++ unsigned int toe_iq0_intr : 1; // bit 24 TOE Interrupt Queue 0 with Interrupts
++ unsigned int toe_iq1_intr : 1; // bit 25 TOE Interrupt Queue 1 with Interrupts
++ unsigned int toe_iq2_intr : 1; // bit 26 TOE Interrupt Queue 2 with Interrupts
++ unsigned int toe_iq3_intr : 1; // bit 27 TOE Interrupt Queue 3 with Interrupts
++ unsigned int toe_iq0_full : 1; // bit 28 TOE Interrupt Queue 0 Full Interrupt
++ unsigned int toe_iq1_full : 1; // bit 29 TOE Interrupt Queue 1 Full Interrupt
++ unsigned int toe_iq2_full : 1; // bit 30 TOE Interrupt Queue 2 Full Interrupt
++ unsigned int toe_iq3_full : 1; // bit 31 TOE Interrupt Queue 3 Full Interrupt
++#endif
++ } bits;
++} INTR_REG1_T;
++
++#define TOE_IQ3_FULL_INT_BIT BIT(31)
++#define TOE_IQ2_FULL_INT_BIT BIT(30)
++#define TOE_IQ1_FULL_INT_BIT BIT(29)
++#define TOE_IQ0_FULL_INT_BIT BIT(28)
++#define TOE_IQ3_INT_BIT BIT(27)
++#define TOE_IQ2_INT_BIT BIT(26)
++#define TOE_IQ1_INT_BIT BIT(25)
++#define TOE_IQ0_INT_BIT BIT(24)
++#define GMAC1_HWTQ13_EOF_INT_BIT BIT(23)
++#define GMAC1_HWTQ12_EOF_INT_BIT BIT(22)
++#define GMAC1_HWTQ11_EOF_INT_BIT BIT(21)
++#define GMAC1_HWTQ10_EOF_INT_BIT BIT(20)
++#define GMAC0_HWTQ03_EOF_INT_BIT BIT(19)
++#define GMAC0_HWTQ02_EOF_INT_BIT BIT(18)
++#define GMAC0_HWTQ01_EOF_INT_BIT BIT(17)
++#define GMAC0_HWTQ00_EOF_INT_BIT BIT(16)
++#define CLASS_RX_INT_BIT(x) BIT((x+2))
++#define DEFAULT_Q1_INT_BIT BIT(1)
++#define DEFAULT_Q0_INT_BIT BIT(0)
++
++#define TOE_IQ_INT_BITS (TOE_IQ0_INT_BIT | TOE_IQ1_INT_BIT | \
++ TOE_IQ2_INT_BIT | TOE_IQ3_INT_BIT)
++#define TOE_IQ_FULL_BITS (TOE_IQ0_FULL_INT_BIT | TOE_IQ1_FULL_INT_BIT | \
++ TOE_IQ2_FULL_INT_BIT | TOE_IQ3_FULL_INT_BIT)
++#define TOE_IQ_ALL_BITS (TOE_IQ_INT_BITS | TOE_IQ_FULL_BITS)
++#define TOE_CLASS_RX_INT_BITS 0xfffc
++
++/**********************************************************************
++ * Interrupt Status Register 2 (offset 0x0040)
++ * Interrupt Mask Register 2 (offset 0x0044)
++ * Interrupt Select Register 2 (offset 0x0048)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_0040
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int toe_q31_full : 1; // bit 31 TOE Queue 31 Full Interrupt
++ unsigned int toe_q30_full : 1; // bit 30 TOE Queue 30 Full Interrupt
++ unsigned int toe_q29_full : 1; // bit 29 TOE Queue 29 Full Interrupt
++ unsigned int toe_q28_full : 1; // bit 28 TOE Queue 28 Full Interrupt
++ unsigned int toe_q27_full : 1; // bit 27 TOE Queue 27 Full Interrupt
++ unsigned int toe_q26_full : 1; // bit 26 TOE Queue 26 Full Interrupt
++ unsigned int toe_q25_full : 1; // bit 25 TOE Queue 25 Full Interrupt
++ unsigned int toe_q24_full : 1; // bit 24 TOE Queue 24 Full Interrupt
++ unsigned int toe_q23_full : 1; // bit 23 TOE Queue 23 Full Interrupt
++ unsigned int toe_q22_full : 1; // bit 22 TOE Queue 22 Full Interrupt
++ unsigned int toe_q21_full : 1; // bit 21 TOE Queue 21 Full Interrupt
++ unsigned int toe_q20_full : 1; // bit 20 TOE Queue 20 Full Interrupt
++ unsigned int toe_q19_full : 1; // bit 19 TOE Queue 19 Full Interrupt
++ unsigned int toe_q18_full : 1; // bit 18 TOE Queue 18 Full Interrupt
++ unsigned int toe_q17_full : 1; // bit 17 TOE Queue 17 Full Interrupt
++ unsigned int toe_q16_full : 1; // bit 16 TOE Queue 16 Full Interrupt
++ unsigned int toe_q15_full : 1; // bit 15 TOE Queue 15 Full Interrupt
++ unsigned int toe_q14_full : 1; // bit 14 TOE Queue 14 Full Interrupt
++ unsigned int toe_q13_full : 1; // bit 13 TOE Queue 13 Full Interrupt
++ unsigned int toe_q12_full : 1; // bit 12 TOE Queue 12 Full Interrupt
++ unsigned int toe_q11_full : 1; // bit 11 TOE Queue 11 Full Interrupt
++ unsigned int toe_q10_full : 1; // bit 10 TOE Queue 10 Full Interrupt
++ unsigned int toe_q9_full : 1; // bit 9 TOE Queue 9 Full Interrupt
++ unsigned int toe_q8_full : 1; // bit 8 TOE Queue 8 Full Interrupt
++ unsigned int toe_q7_full : 1; // bit 7 TOE Queue 7 Full Interrupt
++ unsigned int toe_q6_full : 1; // bit 6 TOE Queue 6 Full Interrupt
++ unsigned int toe_q5_full : 1; // bit 5 TOE Queue 5 Full Interrupt
++ unsigned int toe_q4_full : 1; // bit 4 TOE Queue 4 Full Interrupt
++ unsigned int toe_q3_full : 1; // bit 3 TOE Queue 3 Full Interrupt
++ unsigned int toe_q2_full : 1; // bit 2 TOE Queue 2 Full Interrupt
++ unsigned int toe_q1_full : 1; // bit 1 TOE Queue 1 Full Interrupt
++ unsigned int toe_q0_full : 1; // bit 0 TOE Queue 0 Full Interrupt
++#else
++ unsigned int toe_q0_full : 1; // bit 0 TOE Queue 0 Full Interrupt
++ unsigned int toe_q1_full : 1; // bit 1 TOE Queue 1 Full Interrupt
++ unsigned int toe_q2_full : 1; // bit 2 TOE Queue 2 Full Interrupt
++ unsigned int toe_q3_full : 1; // bit 3 TOE Queue 3 Full Interrupt
++ unsigned int toe_q4_full : 1; // bit 4 TOE Queue 4 Full Interrupt
++ unsigned int toe_q5_full : 1; // bit 5 TOE Queue 5 Full Interrupt
++ unsigned int toe_q6_full : 1; // bit 6 TOE Queue 6 Full Interrupt
++ unsigned int toe_q7_full : 1; // bit 7 TOE Queue 7 Full Interrupt
++ unsigned int toe_q8_full : 1; // bit 8 TOE Queue 8 Full Interrupt
++ unsigned int toe_q9_full : 1; // bit 9 TOE Queue 9 Full Interrupt
++ unsigned int toe_q10_full : 1; // bit 10 TOE Queue 10 Full Interrupt
++ unsigned int toe_q11_full : 1; // bit 11 TOE Queue 11 Full Interrupt
++ unsigned int toe_q12_full : 1; // bit 12 TOE Queue 12 Full Interrupt
++ unsigned int toe_q13_full : 1; // bit 13 TOE Queue 13 Full Interrupt
++ unsigned int toe_q14_full : 1; // bit 14 TOE Queue 14 Full Interrupt
++ unsigned int toe_q15_full : 1; // bit 15 TOE Queue 15 Full Interrupt
++ unsigned int toe_q16_full : 1; // bit 16 TOE Queue 16 Full Interrupt
++ unsigned int toe_q17_full : 1; // bit 17 TOE Queue 17 Full Interrupt
++ unsigned int toe_q18_full : 1; // bit 18 TOE Queue 18 Full Interrupt
++ unsigned int toe_q19_full : 1; // bit 19 TOE Queue 19 Full Interrupt
++ unsigned int toe_q20_full : 1; // bit 20 TOE Queue 20 Full Interrupt
++ unsigned int toe_q21_full : 1; // bit 21 TOE Queue 21 Full Interrupt
++ unsigned int toe_q22_full : 1; // bit 22 TOE Queue 22 Full Interrupt
++ unsigned int toe_q23_full : 1; // bit 23 TOE Queue 23 Full Interrupt
++ unsigned int toe_q24_full : 1; // bit 24 TOE Queue 24 Full Interrupt
++ unsigned int toe_q25_full : 1; // bit 25 TOE Queue 25 Full Interrupt
++ unsigned int toe_q26_full : 1; // bit 26 TOE Queue 26 Full Interrupt
++ unsigned int toe_q27_full : 1; // bit 27 TOE Queue 27 Full Interrupt
++ unsigned int toe_q28_full : 1; // bit 28 TOE Queue 28 Full Interrupt
++ unsigned int toe_q29_full : 1; // bit 29 TOE Queue 29 Full Interrupt
++ unsigned int toe_q30_full : 1; // bit 30 TOE Queue 30 Full Interrupt
++ unsigned int toe_q31_full : 1; // bit 31 TOE Queue 31 Full Interrupt
++#endif
++ } bits;
++} INTR_REG2_T;
++
++#define TOE_QL_FULL_INT_BIT(x) BIT(x)
++
++/**********************************************************************
++ * Interrupt Status Register 3 (offset 0x0050)
++ * Interrupt Mask Register 3 (offset 0x0054)
++ * Interrupt Select Register 3 (offset 0x0058)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_0050
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int toe_q63_full : 1; // bit 63 TOE Queue 63 Full Interrupt
++ unsigned int toe_q62_full : 1; // bit 62 TOE Queue 62 Full Interrupt
++ unsigned int toe_q61_full : 1; // bit 61 TOE Queue 61 Full Interrupt
++ unsigned int toe_q60_full : 1; // bit 60 TOE Queue 60 Full Interrupt
++ unsigned int toe_q59_full : 1; // bit 59 TOE Queue 59 Full Interrupt
++ unsigned int toe_q58_full : 1; // bit 58 TOE Queue 58 Full Interrupt
++ unsigned int toe_q57_full : 1; // bit 57 TOE Queue 57 Full Interrupt
++ unsigned int toe_q56_full : 1; // bit 56 TOE Queue 56 Full Interrupt
++ unsigned int toe_q55_full : 1; // bit 55 TOE Queue 55 Full Interrupt
++ unsigned int toe_q54_full : 1; // bit 54 TOE Queue 54 Full Interrupt
++ unsigned int toe_q53_full : 1; // bit 53 TOE Queue 53 Full Interrupt
++ unsigned int toe_q52_full : 1; // bit 52 TOE Queue 52 Full Interrupt
++ unsigned int toe_q51_full : 1; // bit 51 TOE Queue 51 Full Interrupt
++ unsigned int toe_q50_full : 1; // bit 50 TOE Queue 50 Full Interrupt
++ unsigned int toe_q49_full : 1; // bit 49 TOE Queue 49 Full Interrupt
++ unsigned int toe_q48_full : 1; // bit 48 TOE Queue 48 Full Interrupt
++ unsigned int toe_q47_full : 1; // bit 47 TOE Queue 47 Full Interrupt
++ unsigned int toe_q46_full : 1; // bit 46 TOE Queue 46 Full Interrupt
++ unsigned int toe_q45_full : 1; // bit 45 TOE Queue 45 Full Interrupt
++ unsigned int toe_q44_full : 1; // bit 44 TOE Queue 44 Full Interrupt
++ unsigned int toe_q43_full : 1; // bit 43 TOE Queue 43 Full Interrupt
++ unsigned int toe_q42_full : 1; // bit 42 TOE Queue 42 Full Interrupt
++ unsigned int toe_q41_full : 1; // bit 41 TOE Queue 41 Full Interrupt
++ unsigned int toe_q40_full : 1; // bit 40 TOE Queue 40 Full Interrupt
++ unsigned int toe_q39_full : 1; // bit 39 TOE Queue 39 Full Interrupt
++ unsigned int toe_q38_full : 1; // bit 38 TOE Queue 38 Full Interrupt
++ unsigned int toe_q37_full : 1; // bit 37 TOE Queue 37 Full Interrupt
++ unsigned int toe_q36_full : 1; // bit 36 TOE Queue 36 Full Interrupt
++ unsigned int toe_q35_full : 1; // bit 35 TOE Queue 35 Full Interrupt
++ unsigned int toe_q34_full : 1; // bit 34 TOE Queue 34 Full Interrupt
++ unsigned int toe_q33_full : 1; // bit 33 TOE Queue 33 Full Interrupt
++ unsigned int toe_q32_full : 1; // bit 32 TOE Queue 32 Full Interrupt
++#else
++ unsigned int toe_q32_full : 1; // bit 32 TOE Queue 32 Full Interrupt
++ unsigned int toe_q33_full : 1; // bit 33 TOE Queue 33 Full Interrupt
++ unsigned int toe_q34_full : 1; // bit 34 TOE Queue 34 Full Interrupt
++ unsigned int toe_q35_full : 1; // bit 35 TOE Queue 35 Full Interrupt
++ unsigned int toe_q36_full : 1; // bit 36 TOE Queue 36 Full Interrupt
++ unsigned int toe_q37_full : 1; // bit 37 TOE Queue 37 Full Interrupt
++ unsigned int toe_q38_full : 1; // bit 38 TOE Queue 38 Full Interrupt
++ unsigned int toe_q39_full : 1; // bit 39 TOE Queue 39 Full Interrupt
++ unsigned int toe_q40_full : 1; // bit 40 TOE Queue 40 Full Interrupt
++ unsigned int toe_q41_full : 1; // bit 41 TOE Queue 41 Full Interrupt
++ unsigned int toe_q42_full : 1; // bit 42 TOE Queue 42 Full Interrupt
++ unsigned int toe_q43_full : 1; // bit 43 TOE Queue 43 Full Interrupt
++ unsigned int toe_q44_full : 1; // bit 44 TOE Queue 44 Full Interrupt
++ unsigned int toe_q45_full : 1; // bit 45 TOE Queue 45 Full Interrupt
++ unsigned int toe_q46_full : 1; // bit 46 TOE Queue 46 Full Interrupt
++ unsigned int toe_q47_full : 1; // bit 47 TOE Queue 47 Full Interrupt
++ unsigned int toe_q48_full : 1; // bit 48 TOE Queue 48 Full Interrupt
++ unsigned int toe_q49_full : 1; // bit 49 TOE Queue 49 Full Interrupt
++ unsigned int toe_q50_full : 1; // bit 50 TOE Queue 50 Full Interrupt
++ unsigned int toe_q51_full : 1; // bit 51 TOE Queue 51 Full Interrupt
++ unsigned int toe_q52_full : 1; // bit 52 TOE Queue 52 Full Interrupt
++ unsigned int toe_q53_full : 1; // bit 53 TOE Queue 53 Full Interrupt
++ unsigned int toe_q54_full : 1; // bit 54 TOE Queue 54 Full Interrupt
++ unsigned int toe_q55_full : 1; // bit 55 TOE Queue 55 Full Interrupt
++ unsigned int toe_q56_full : 1; // bit 56 TOE Queue 56 Full Interrupt
++ unsigned int toe_q57_full : 1; // bit 57 TOE Queue 57 Full Interrupt
++ unsigned int toe_q58_full : 1; // bit 58 TOE Queue 58 Full Interrupt
++ unsigned int toe_q59_full : 1; // bit 59 TOE Queue 59 Full Interrupt
++ unsigned int toe_q60_full : 1; // bit 60 TOE Queue 60 Full Interrupt
++ unsigned int toe_q61_full : 1; // bit 61 TOE Queue 61 Full Interrupt
++ unsigned int toe_q62_full : 1; // bit 62 TOE Queue 62 Full Interrupt
++ unsigned int toe_q63_full : 1; // bit 63 TOE Queue 63 Full Interrupt
++#endif
++ } bits;
++} INTR_REG3_T;
++
++#define TOE_QH_FULL_INT_BIT(x) BIT(x-32)
++
++/**********************************************************************
++ * Interrupt Status Register 4 (offset 0x0060)
++ * Interrupt Mask Register 4 (offset 0x0064)
++ * Interrupt Select Register 4 (offset 0x0068)
++ **********************************************************************/
++typedef union
++{
++ unsigned char byte;
++ struct bit_0060
++ {
++#if (BIG_ENDIAN==1)
++ unsigned char reserved : 1; //
++ unsigned char cnt_full : 1; // MIB counters half full interrupt
++ unsigned char rx_pause_on : 1; // received pause on frame interrupt
++ unsigned char tx_pause_on : 1; // transmit pause on frame interrupt
++ unsigned char rx_pause_off : 1; // received pause off frame interrupt
++ unsigned char tx_pause_off : 1; // received pause off frame interrupt
++ unsigned char rx_overrun : 1; // GMAC Rx FIFO overrun interrupt
++ unsigned char status_changed: 1; // Status Changed Intr for RGMII Mode
++#else
++ unsigned char status_changed: 1; // Status Changed Intr for RGMII Mode
++ unsigned char rx_overrun : 1; // GMAC Rx FIFO overrun interrupt
++ unsigned char tx_pause_off : 1; // received pause off frame interrupt
++ unsigned char rx_pause_off : 1; // received pause off frame interrupt
++ unsigned char tx_pause_on : 1; // transmit pause on frame interrupt
++ unsigned char rx_pause_on : 1; // received pause on frame interrupt
++ unsigned char cnt_full : 1; // MIB counters half full interrupt
++ unsigned char reserved : 1; //
++#endif
++ } _PACKED_ bits;
++} _PACKED_ GMAC_INTR_T;
++
++typedef union
++{
++ unsigned int bits32;
++ struct bit_0060_2
++ {
++#if (BIG_ENDIAN==1)
++ GMAC_INTR_T gmac1;
++ GMAC_INTR_T gmac0;
++ unsigned int class_qf_int: 14; // bit 15:2 Classification Rx Queue13-0 Full Intr.
++ unsigned int hwfq_empty : 1; // bit 1 Hardware Free Queue Empty Intr.
++ unsigned int swfq_empty : 1; // bit 0 Software Free Queue Empty Intr.
++#else
++#endif
++ unsigned int swfq_empty : 1; // bit 0 Software Free Queue Empty Intr.
++ unsigned int hwfq_empty : 1; // bit 1 Hardware Free Queue Empty Intr.
++ unsigned int class_qf_int: 14; // bit 15:2 Classification Rx Queue13-0 Full Intr.
++ GMAC_INTR_T gmac0;
++ GMAC_INTR_T gmac1;
++ } bits;
++} INTR_REG4_T;
++
++#define GMAC1_RESERVED_INT_BIT BIT(31)
++#define GMAC1_MIB_INT_BIT BIT(30)
++#define GMAC1_RX_PAUSE_ON_INT_BIT BIT(29)
++#define GMAC1_TX_PAUSE_ON_INT_BIT BIT(28)
++#define GMAC1_RX_PAUSE_OFF_INT_BIT BIT(27)
++#define GMAC1_TX_PAUSE_OFF_INT_BIT BIT(26)
++#define GMAC1_RX_OVERRUN_INT_BIT BIT(25)
++#define GMAC1_STATUS_CHANGE_INT_BIT BIT(24)
++#define GMAC0_RESERVED_INT_BIT BIT(23)
++#define GMAC0_MIB_INT_BIT BIT(22)
++#define GMAC0_RX_PAUSE_ON_INT_BIT BIT(21)
++#define GMAC0_TX_PAUSE_ON_INT_BIT BIT(20)
++#define GMAC0_RX_PAUSE_OFF_INT_BIT BIT(19)
++#define GMAC0_TX_PAUSE_OFF_INT_BIT BIT(18)
++#define GMAC0_RX_OVERRUN_INT_BIT BIT(17)
++#define GMAC0_STATUS_CHANGE_INT_BIT BIT(16)
++#define CLASS_RX_FULL_INT_BIT(x) BIT((x+2))
++#define HWFQ_EMPTY_INT_BIT BIT(1)
++#define SWFQ_EMPTY_INT_BIT BIT(0)
++
++#if 1
++#define GMAC0_INT_BITS (GMAC0_MIB_INT_BIT)
++#define GMAC1_INT_BITS (GMAC1_MIB_INT_BIT)
++#else
++#define GMAC0_INT_BITS (GMAC0_RESERVED_INT_BIT | GMAC0_MIB_INT_BIT | \
++ GMAC0_RX_PAUSE_ON_INT_BIT | GMAC0_TX_PAUSE_ON_INT_BIT | \
++ GMAC0_RX_PAUSE_OFF_INT_BIT | GMAC0_TX_PAUSE_OFF_INT_BIT | \
++ GMAC0_RX_OVERRUN_INT_BIT | GMAC0_STATUS_CHANGE_INT_BIT)
++#define GMAC1_INT_BITS (GMAC1_RESERVED_INT_BIT | GMAC1_MIB_INT_BIT | \
++ GMAC1_RX_PAUSE_ON_INT_BIT | GMAC1_TX_PAUSE_ON_INT_BIT | \
++ GMAC1_RX_PAUSE_OFF_INT_BIT | GMAC1_TX_PAUSE_OFF_INT_BIT | \
++ GMAC1_RX_OVERRUN_INT_BIT | GMAC1_STATUS_CHANGE_INT_BIT)
++#endif
++
++#define CLASS_RX_FULL_INT_BITS 0xfffc
++
++/**********************************************************************
++ * GLOBAL_QUEUE_THRESHOLD_REG (offset 0x0070)
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_0070_2
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int toe_class : 8; // 31:24
++ unsigned int intrq : 8; // 23:16
++ unsigned int hwfq_empty : 8; // 15:8 Hardware Free Queue Empty Threshold
++ unsigned int swfq_empty : 8; // 7:0 Software Free Queue Empty Threshold
++#else
++#endif
++ unsigned int swfq_empty : 8; // 7:0 Software Free Queue Empty Threshold
++ unsigned int hwfq_empty : 8; // 15:8 Hardware Free Queue Empty Threshold
++ unsigned int intrq : 8; // 23:16
++ unsigned int toe_class : 8; // 31:24
++ } bits;
++} QUEUE_THRESHOLD_T;
++
++
++/**********************************************************************
++ * GMAC DMA Control Register
++ * GMAC0 offset 0x8000
++ * GMAC1 offset 0xC000
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8000
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int rd_enable : 1; // bit 31 Rx DMA Enable
++ unsigned int td_enable : 1; // bit 30 Tx DMA Enable
++ unsigned int loopback : 1; // bit 29 Loopback TxDMA to RxDMA
++ unsigned int drop_small_ack : 1; // bit 28 1: Drop, 0: Accept
++ unsigned int reserved : 10; // bit 27:18
++ unsigned int rd_insert_bytes : 2; // bit 17:16
++ unsigned int rd_prot : 4; // bit 15:12 DMA Protection Control
++ unsigned int rd_burst_size : 2; // bit 11:10 DMA max burst size for every AHB request
++ unsigned int rd_bus : 2; // bit 9:8 Peripheral Bus Width
++ unsigned int td_prot : 4; // bit 7:4 TxDMA protection control
++ unsigned int td_burst_size : 2; // bit 3:2 TxDMA max burst size for every AHB request
++ unsigned int td_bus : 2; // bit 1:0 Peripheral Bus Width
++#else
++ unsigned int td_bus : 2; // bit 1:0 Peripheral Bus Width
++ unsigned int td_burst_size : 2; // bit 3:2 TxDMA max burst size for every AHB request
++ unsigned int td_prot : 4; // bit 7:4 TxDMA protection control
++ unsigned int rd_bus : 2; // bit 9:8 Peripheral Bus Width
++ unsigned int rd_burst_size : 2; // bit 11:10 DMA max burst size for every AHB request
++ unsigned int rd_prot : 4; // bit 15:12 DMA Protection Control
++ unsigned int rd_insert_bytes : 2; // bit 17:16
++ unsigned int reserved : 10; // bit 27:18
++ unsigned int drop_small_ack : 1; // bit 28 1: Drop, 0: Accept
++ unsigned int loopback : 1; // bit 29 Loopback TxDMA to RxDMA
++ unsigned int td_enable : 1; // bit 30 Tx DMA Enable
++ unsigned int rd_enable : 1; // bit 31 Rx DMA Enable
++#endif
++ } bits;
++} GMAC_DMA_CTRL_T;
++
++/**********************************************************************
++ * GMAC Tx Weighting Control Register 0
++ * GMAC0 offset 0x8004
++ * GMAC1 offset 0xC004
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8004
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int reserved : 8; // bit 31:24
++ unsigned int hw_tq3 : 6; // bit 23:18 HW TX Queue 0
++ unsigned int hw_tq2 : 6; // bit 17:12 HW TX Queue 1
++ unsigned int hw_tq1 : 6; // bit 11:6 HW TX Queue 2
++ unsigned int hw_tq0 : 6; // bit 5:0 HW TX Queue 3
++#else
++ unsigned int hw_tq0 : 6; // bit 5:0 HW TX Queue 3
++ unsigned int hw_tq1 : 6; // bit 11:6 HW TX Queue 2
++ unsigned int hw_tq2 : 6; // bit 17:12 HW TX Queue 1
++ unsigned int hw_tq3 : 6; // bit 23:18 HW TX Queue 0
++ unsigned int reserved : 8; // bit 31:24
++#endif
++ } bits;
++} GMAC_TX_WCR0_T; // Weighting Control Register 0
++
++/**********************************************************************
++ * GMAC Tx Weighting Control Register 1
++ * GMAC0 offset 0x8008
++ * GMAC1 offset 0xC008
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8008
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int reserved : 2; // bit 31:30
++ unsigned int sw_tq5 : 5; // bit 29:25 SW TX Queue 5
++ unsigned int sw_tq4 : 5; // bit 24:20 SW TX Queue 4
++ unsigned int sw_tq3 : 5; // bit 19:15 SW TX Queue 3
++ unsigned int sw_tq2 : 5; // bit 14:10 SW TX Queue 2
++ unsigned int sw_tq1 : 5; // bit 9:5 SW TX Queue 1
++ unsigned int sw_tq0 : 5; // bit 4:0 SW TX Queue 0
++#else
++ unsigned int sw_tq0 : 5; // bit 4:0 SW TX Queue 0
++ unsigned int sw_tq1 : 5; // bit 9:5 SW TX Queue 1
++ unsigned int sw_tq2 : 5; // bit 14:10 SW TX Queue 2
++ unsigned int sw_tq3 : 5; // bit 19:15 SW TX Queue 3
++ unsigned int sw_tq4 : 5; // bit 24:20 SW TX Queue 4
++ unsigned int sw_tq5 : 5; // bit 29:25 SW TX Queue 5
++ unsigned int reserved : 2; // bit 31:30
++#endif
++ } bits;
++} GMAC_TX_WCR1_T; // Weighting Control Register 1
++
++/**********************************************************************
++ * Queue Read/Write Pointer
++ * GMAC SW TX Queue 0~5 Read/Write Pointer register
++ * GMAC0 offset 0x800C ~ 0x8020
++ * GMAC1 offset 0xC00C ~ 0xC020
++ * GMAC HW TX Queue 0~3 Read/Write Pointer register
++ * GMAC0 offset 0x8024 ~ 0x8030
++ * GMAC1 offset 0xC024 ~ 0xC030
++ **********************************************************************/
++// see DMA_RWPTR_T structure
++
++/**********************************************************************
++ * GMAC DMA Tx First Description Address Register
++ * GMAC0 offset 0x8038
++ * GMAC1 offset 0xC038
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8038
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int td_first_des_ptr : 28; // bit 31:4 first descriptor address
++ unsigned int td_busy : 1; // bit 3 1: TxDMA busy; 0: TxDMA idle
++ unsigned int reserved : 3;
++#else
++ unsigned int reserved : 3;
++ unsigned int td_busy : 1; // bit 3 1: TxDMA busy; 0: TxDMA idle
++ unsigned int td_first_des_ptr : 28; // bit 31:4 first descriptor address
++#endif
++ } bits;
++} GMAC_TXDMA_FIRST_DESC_T;
++
++/**********************************************************************
++ * GMAC DMA Tx Current Description Address Register
++ * GMAC0 offset 0x803C
++ * GMAC1 offset 0xC03C
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_803C
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int td_curr_desc_ptr : 28; // bit 31:4 current descriptor address
++ unsigned int reserved : 4;
++#else
++ unsigned int reserved : 4;
++ unsigned int td_curr_desc_ptr : 28; // bit 31:4 current descriptor address
++#endif
++ } bits;
++} GMAC_TXDMA_CURR_DESC_T;
++
++/**********************************************************************
++ * GMAC DMA Tx Description Word 0 Register
++ * GMAC0 offset 0x8040
++ * GMAC1 offset 0xC040
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8040
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int reserved : 1; // bit 31
++ unsigned int derr : 1; // bit 30 data error during processing this descriptor
++ unsigned int perr : 1; // bit 29 protocol error during processing this descriptor
++ unsigned int status_rvd : 6; // bit 28:23 Tx Status, Reserved bits
++ unsigned int status_tx_ok : 1; // bit 22 Tx Status, 1: Successful 0: Failed
++ unsigned int desc_count : 6; // bit 21:16 number of descriptors used for the current frame
++ unsigned int buffer_size : 16; // bit 15:0 Transfer size
++#else
++ unsigned int buffer_size : 16; // bit 15:0 Transfer size
++ unsigned int desc_count : 6; // bit 21:16 number of descriptors used for the current frame
++ unsigned int status_tx_ok : 1; // bit 22 Tx Status, 1: Successful 0: Failed
++ unsigned int status_rvd : 6; // bit 28:23 Tx Status, Reserved bits
++ unsigned int perr : 1; // bit 29 protocol error during processing this descriptor
++ unsigned int derr : 1; // bit 30 data error during processing this descriptor
++ unsigned int reserved : 1; // bit 31
++#endif
++ } bits;
++} GMAC_TXDESC_0_T;
++
++/**********************************************************************
++ * GMAC DMA Tx Description Word 1 Register
++ * GMAC0 offset 0x8044
++ * GMAC1 offset 0xC044
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct txdesc_word1
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int reserved : 9; // bit 31:23 Tx Flag, Reserved
++ unsigned int ip_fixed_len: 1; // bit 22
++ unsigned int bypass_tss : 1; // bit 21
++ unsigned int udp_chksum : 1; // bit 20 UDP Checksum Enable
++ unsigned int tcp_chksum : 1; // bit 19 TCP Checksum Enable
++ unsigned int ipv6_enable : 1; // bit 18 IPV6 Tx Enable
++ unsigned int ip_chksum : 1; // bit 17 IPV4 Header Checksum Enable
++ unsigned int mtu_enable : 1; // bit 16 TSS segmentation use MTU setting
++ unsigned int byte_count : 16; // bit 15: 0 Tx Frame Byte Count
++#else
++ unsigned int byte_count : 16; // bit 15: 0 Tx Frame Byte Count
++ unsigned int mtu_enable : 1; // bit 16 TSS segmentation use MTU setting
++ unsigned int ip_chksum : 1; // bit 17 IPV4 Header Checksum Enable
++ unsigned int ipv6_enable : 1; // bit 18 IPV6 Tx Enable
++ unsigned int tcp_chksum : 1; // bit 19 TCP Checksum Enable
++ unsigned int udp_chksum : 1; // bit 20 UDP Checksum Enable
++ unsigned int bypass_tss : 1; // bit 21
++ unsigned int ip_fixed_len: 1; // bit 22
++ unsigned int reserved : 9; // bit 31:23 Tx Flag, Reserved
++#endif
++ } bits;
++} GMAC_TXDESC_1_T;
++
++#define TSS_IP_FIXED_LEN_BIT BIT(22)
++#define TSS_UDP_CHKSUM_BIT BIT(20)
++#define TSS_TCP_CHKSUM_BIT BIT(19)
++#define TSS_IPV6_ENABLE_BIT BIT(18)
++#define TSS_IP_CHKSUM_BIT BIT(17)
++#define TSS_MTU_ENABLE_BIT BIT(16)
++
++/**********************************************************************
++ * GMAC DMA Tx Description Word 2 Register
++ * GMAC0 offset 0x8048
++ * GMAC1 offset 0xC048
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int buf_adr;
++} GMAC_TXDESC_2_T;
++
++/**********************************************************************
++ * GMAC DMA Tx Description Word 3 Register
++ * GMAC0 offset 0x804C
++ * GMAC1 offset 0xC04C
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct txdesc_word3
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int sof_eof : 2; // bit 31:30 11: only one, 10: first, 01: last, 00: linking
++ unsigned int eofie : 1; // bit 29 End of frame interrupt enable
++ unsigned int reserved : 18; // bit 28:11
++ unsigned int mtu_size : 11; // bit 10: 0 Tx Frame Byte Count
++#else
++ unsigned int mtu_size : 11; // bit 10: 0 Tx Frame Byte Count
++ unsigned int reserved : 18; // bit 28:11
++ unsigned int eofie : 1; // bit 29 End of frame interrupt enable
++ unsigned int sof_eof : 2; // bit 31:30 11: only one, 10: first, 01: last, 00: linking
++#endif
++ } bits;
++} GMAC_TXDESC_3_T;
++#define SOF_EOF_BIT_MASK 0x3fffffff
++#define SOF_BIT 0x80000000
++#define EOF_BIT 0x40000000
++#define EOFIE_BIT BIT(29)
++#define MTU_SIZE_BIT_MASK 0x7ff
++
++/**********************************************************************
++ * GMAC Tx Descriptor
++ **********************************************************************/
++typedef struct
++{
++ GMAC_TXDESC_0_T word0;
++ GMAC_TXDESC_1_T word1;
++ GMAC_TXDESC_2_T word2;
++ GMAC_TXDESC_3_T word3;
++} GMAC_TXDESC_T;
++
++
++/**********************************************************************
++ * GMAC DMA Rx First Description Address Register
++ * GMAC0 offset 0x8058
++ * GMAC1 offset 0xC058
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8058
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int rd_first_des_ptr : 28; // bit 31:4 first descriptor address
++ unsigned int rd_busy : 1; // bit 3 1-RxDMA busy; 0-RxDMA idle
++ unsigned int reserved : 3; // bit 2:0
++#else
++ unsigned int reserved : 3; // bit 2:0
++ unsigned int rd_busy : 1; // bit 3 1-RxDMA busy; 0-RxDMA idle
++ unsigned int rd_first_des_ptr : 28; // bit 31:4 first descriptor address
++#endif
++ } bits;
++} GMAC_RXDMA_FIRST_DESC_T;
++
++/**********************************************************************
++ * GMAC DMA Rx Current Description Address Register
++ * GMAC0 offset 0x805C
++ * GMAC1 offset 0xC05C
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_805C
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int rd_curr_des_ptr : 28; // bit 31:4 current descriptor address
++ unsigned int reserved : 4; // bit 3:0
++#else
++ unsigned int reserved : 4; // bit 3:0
++ unsigned int rd_curr_des_ptr : 28; // bit 31:4 current descriptor address
++#endif
++ } bits;
++} GMAC_RXDMA_CURR_DESC_T;
++
++/**********************************************************************
++ * GMAC DMA Rx Description Word 0 Register
++ * GMAC0 offset 0x8060
++ * GMAC1 offset 0xC060
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8060
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int drop : 1; // bit 31 TOE/CIS Queue Full dropped packet to default queue
++ unsigned int derr : 1; // bit 30 data error during processing this descriptor
++ unsigned int perr : 1; // bit 29 protocol error during processing this descriptor
++ unsigned int chksum_status : 3; // bit 28:26 Check Sum Status
++ unsigned int status : 4; // bit 24:22 Status of rx frame
++ unsigned int desc_count : 6; // bit 21:16 number of descriptors used for the current frame
++ unsigned int buffer_size : 16; // bit 15:0 number of descriptors used for the current frame
++#else
++ unsigned int buffer_size : 16; // bit 15:0 number of descriptors used for the current frame
++ unsigned int desc_count : 6; // bit 21:16 number of descriptors used for the current frame
++ unsigned int status : 4; // bit 24:22 Status of rx frame
++ unsigned int chksum_status : 3; // bit 28:26 Check Sum Status
++ unsigned int perr : 1; // bit 29 protocol error during processing this descriptor
++ unsigned int derr : 1; // bit 30 data error during processing this descriptor
++ unsigned int drop : 1; // bit 31 TOE/CIS Queue Full dropped packet to default queue
++#endif
++ } bits;
++} GMAC_RXDESC_0_T;
++
++#define GMAC_RXDESC_0_T_derr BIT(30)
++#define GMAC_RXDESC_0_T_perr BIT(29)
++#define GMAC_RXDESC_0_T_chksum_status(x) BIT((x+26))
++#define GMAC_RXDESC_0_T_status(x) BIT((x+22))
++#define GMAC_RXDESC_0_T_desc_count(x) BIT((x+16))
++
++#define RX_CHKSUM_IP_UDP_TCP_OK 0
++#define RX_CHKSUM_IP_OK_ONLY 1
++#define RX_CHKSUM_NONE 2
++#define RX_CHKSUM_IP_ERR_UNKNOWN 4
++#define RX_CHKSUM_IP_ERR 5
++#define RX_CHKSUM_TCP_UDP_ERR 6
++#define RX_CHKSUM_NUM 8
++
++#define RX_STATUS_GOOD_FRAME 0
++#define RX_STATUS_TOO_LONG_GOOD_CRC 1
++#define RX_STATUS_RUNT_FRAME 2
++#define RX_STATUS_SFD_NOT_FOUND 3
++#define RX_STATUS_CRC_ERROR 4
++#define RX_STATUS_TOO_LONG_BAD_CRC 5
++#define RX_STATUS_ALIGNMENT_ERROR 6
++#define RX_STATUS_TOO_LONG_BAD_ALIGN 7
++#define RX_STATUS_RX_ERR 8
++#define RX_STATUS_DA_FILTERED 9
++#define RX_STATUS_BUFFER_FULL 10
++#define RX_STATUS_NUM 16
++
++
++/**********************************************************************
++ * GMAC DMA Rx Description Word 1 Register
++ * GMAC0 offset 0x8064
++ * GMAC1 offset 0xC064
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct rxdesc_word1
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int sw_id : 16; // bit 31:16 Software ID
++ unsigned int byte_count : 16; // bit 15: 0 Rx Frame Byte Count
++#else
++ unsigned int byte_count : 16; // bit 15: 0 Rx Frame Byte Count
++ unsigned int sw_id : 16; // bit 31:16 Software ID
++#endif
++ } bits;
++} GMAC_RXDESC_1_T;
++
++/**********************************************************************
++ * GMAC DMA Rx Description Word 2 Register
++ * GMAC0 offset 0x8068
++ * GMAC1 offset 0xC068
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int buf_adr;
++} GMAC_RXDESC_2_T;
++
++#define RX_INSERT_NONE 0
++#define RX_INSERT_1_BYTE 1
++#define RX_INSERT_2_BYTE 2
++#define RX_INSERT_3_BYTE 3
++
++#define RX_INSERT_BYTES RX_INSERT_2_BYTE
++/**********************************************************************
++ * GMAC DMA Rx Description Word 3 Register
++ * GMAC0 offset 0x806C
++ * GMAC1 offset 0xC06C
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct rxdesc_word3
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int sof_eof : 2; // bit 31:30 11: only one, 10: first, 01: last, 00: linking
++ unsigned int eofie : 1; // bit 29 End of frame interrupt enable
++ unsigned int ctrl_flag : 1; // bit 28 Control Flag is present
++ unsigned int out_of_seq : 1; // bit 27 Out of Sequence packet
++ unsigned int option : 1; // bit 26 IPV4 option or IPV6 extension header
++ unsigned int abnormal : 1; // bit 25 abnormal case found
++ unsigned int dup_ack : 1; // bit 24 Duplicated ACK detected
++ unsigned int l7_offset : 8; // bit 23: 16 L7 data offset
++ unsigned int l4_offset : 8; // bit 15: 8 L4 data offset
++ unsigned int l3_offset : 8; // bit 7: 0 L3 data offset
++#else
++ unsigned int l3_offset : 8; // bit 7: 0 L3 data offset
++ unsigned int l4_offset : 8; // bit 15: 8 L4 data offset
++ unsigned int l7_offset : 8; // bit 23: 16 L7 data offset
++ unsigned int dup_ack : 1; // bit 24 Duplicated ACK detected
++ unsigned int abnormal : 1; // bit 25 abnormal case found
++ unsigned int option : 1; // bit 26 IPV4 option or IPV6 extension header
++ unsigned int out_of_seq : 1; // bit 27 Out of Sequence packet
++ unsigned int ctrl_flag : 1; // bit 28 Control Flag is present
++ unsigned int eofie : 1; // bit 29 End of frame interrupt enable
++ unsigned int sof_eof : 2; // bit 31:30 11: only one, 10: first, 01: last, 00: linking
++#endif
++ } bits;
++} GMAC_RXDESC_3_T;
++
++/**********************************************************************
++ * GMAC Rx Descriptor
++ **********************************************************************/
++typedef struct
++{
++ GMAC_RXDESC_0_T word0;
++ GMAC_RXDESC_1_T word1;
++ GMAC_RXDESC_2_T word2;
++ GMAC_RXDESC_3_T word3;
++} GMAC_RXDESC_T;
++
++/**********************************************************************
++ * GMAC Hash Engine Enable/Action Register 0 Offset Register
++ * GMAC0 offset 0x8070
++ * GMAC1 offset 0xC070
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8070
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int mr1en : 1; // bit 31 Enable Matching Rule 1
++ unsigned int reserved1 : 1; // bit 30
++ unsigned int timing : 3; // bit 29:27
++ unsigned int mr1_action : 5; // bit 26:22 Matching Rule 1 action offset
++ unsigned int mr1hel : 6; // bit 21:16 match rule 1 hash entry size
++ unsigned int mr0en : 1; // bit 15 Enable Matching Rule 0
++ unsigned int reserved0 : 4; // bit 14:11
++ unsigned int mr0_action : 5; // bit 10:6 Matching Rule 0 action offset
++ unsigned int mr0hel : 6; // bit 5:0 match rule 0 hash entry size
++#else
++ unsigned int mr0hel : 6; // bit 5:0 match rule 0 hash entry size
++ unsigned int mr0_action : 5; // bit 10:6 Matching Rule 0 action offset
++ unsigned int reserved0 : 4; // bit 14:11
++ unsigned int mr0en : 1; // bit 15 Enable Matching Rule 0
++ unsigned int mr1hel : 6; // bit 21:16 match rule 1 hash entry size
++ unsigned int mr1_action : 5; // bit 26:22 Matching Rule 1 action offset
++ unsigned int timing : 3; // bit 29:27
++ unsigned int reserved1 : 1; // bit 30
++ unsigned int mr1en : 1; // bit 31 Enable Matching Rule 1
++#endif
++ } bits;
++} GMAC_HASH_ENABLE_REG0_T;
++
++/**********************************************************************
++ * GMAC Hash Engine Enable/Action Register 1 Offset Register
++ * GMAC0 offset 0x8074
++ * GMAC1 offset 0xC074
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8074
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int mr3en : 1; // bit 31 Enable Matching Rule 3
++ unsigned int reserved3 : 4; // bit 30:27
++ unsigned int mr3_action : 5; // bit 26:22 Matching Rule 3 action offset
++ unsigned int mr3hel : 6; // bit 21:16 match rule 3 hash entry size
++ unsigned int mr2en : 1; // bit 15 Enable Matching Rule 2
++ unsigned int reserved2 : 4; // bit 14:11
++ unsigned int mr2_action : 5; // bit 10:6 Matching Rule 2 action offset
++ unsigned int mr2hel : 6; // bit 5:0 match rule 2 hash entry size
++#else
++ unsigned int mr2hel : 6; // bit 5:0 match rule 2 hash entry size
++ unsigned int mr2_action : 5; // bit 10:6 Matching Rule 2 action offset
++ unsigned int reserved2 : 4; // bit 14:11
++ unsigned int mr2en : 1; // bit 15 Enable Matching Rule 2
++ unsigned int mr3hel : 6; // bit 21:16 match rule 3 hash entry size
++ unsigned int mr3_action : 5; // bit 26:22 Matching Rule 3 action offset
++ unsigned int reserved1 : 4; // bit 30:27
++ unsigned int mr3en : 1; // bit 31 Enable Matching Rule 3
++#endif
++ } bits;
++} GMAC_HASH_ENABLE_REG1_T;
++
++
++/**********************************************************************
++ * GMAC Matching Rule Control Register 0
++ * GMAC0 offset 0x8078
++ * GMAC1 offset 0xC078
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_8078
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int l2 : 1; // bit 31 L2 matching enable
++ unsigned int l3 : 1; // bit 30 L3 matching enable
++ unsigned int l4 : 1; // bit 29 L4 matching enable
++ unsigned int l7 : 1; // bit 28 L7 matching enable
++ unsigned int port : 1; // bit 27 PORT ID matching enable
++ unsigned int priority : 3; // bit 26:24 priority if multi-rules matched
++ unsigned int da : 1; // bit 23 MAC DA enable
++ unsigned int sa : 1; // bit 22 MAC SA enable
++ unsigned int ether_type : 1; // bit 21 Ethernet type enable
++ unsigned int vlan : 1; // bit 20 VLAN ID enable
++ unsigned int pppoe : 1; // bit 19 PPPoE Session ID enable
++ unsigned int reserved1 : 3; // bit 18:16
++ unsigned int ip_version : 1; // bit 15 0: IPV4, 1: IPV6
++ unsigned int ip_hdr_len : 1; // bit 14 IPV4 Header length
++ unsigned int flow_lable : 1; // bit 13 IPV6 Flow label
++ unsigned int tos_traffic : 1; // bit 12 IPV4 TOS or IPV6 Traffice Class
++ unsigned int reserved2 : 4; // bit 11:8
++ unsigned int sprx : 8; // bit 7:0 Support Protocol Register 7:0
++#else
++ unsigned int sprx : 8; // bit 7:0 Support Protocol Register 7:0
++ unsigned int reserved2 : 4; // bit 11:8
++ unsigned int tos_traffic : 1; // bit 12 IPV4 TOS or IPV6 Traffice Class
++ unsigned int flow_lable : 1; // bit 13 IPV6 Flow label
++ unsigned int ip_hdr_len : 1; // bit 14 IPV4 Header length
++ unsigned int ip_version : 1; // bit 15 0: IPV4, 1: IPV6
++ unsigned int reserved1 : 3; // bit 18:16
++ unsigned int pppoe : 1; // bit 19 PPPoE Session ID enable
++ unsigned int vlan : 1; // bit 20 VLAN ID enable
++ unsigned int ether_type : 1; // bit 21 Ethernet type enable
++ unsigned int sa : 1; // bit 22 MAC SA enable
++ unsigned int da : 1; // bit 23 MAC DA enable
++ unsigned int priority : 3; // bit 26:24 priority if multi-rules matched
++ unsigned int port : 1; // bit 27 PORT ID matching enable
++ unsigned int l7 : 1; // bit 28 L7 matching enable
++ unsigned int l4 : 1; // bit 29 L4 matching enable
++ unsigned int l3 : 1; // bit 30 L3 matching enable
++ unsigned int l2 : 1; // bit 31 L2 matching enable
++#endif
++ } bits;
++} GMAC_MRxCR0_T;
++
++#define MR_L2_BIT BIT(31)
++#define MR_L3_BIT BIT(30)
++#define MR_L4_BIT BIT(29)
++#define MR_L7_BIT BIT(28)
++#define MR_PORT_BIT BIT(27)
++#define MR_PRIORITY_BIT BIT(26)
++#define MR_DA_BIT BIT(23)
++#define MR_SA_BIT BIT(22)
++#define MR_ETHER_TYPE_BIT BIT(21)
++#define MR_VLAN_BIT BIT(20)
++#define MR_PPPOE_BIT BIT(19)
++#define MR_IP_VER_BIT BIT(15)
++#define MR_IP_HDR_LEN_BIT BIT(14)
++#define MR_FLOW_LABLE_BIT BIT(13)
++#define MR_TOS_TRAFFIC_BIT BIT(12)
++#define MR_SPR_BIT(x) BIT(x)
++#define MR_SPR_BITS 0xff
++
++/**********************************************************************
++ * GMAC Matching Rule Control Register 1
++ * GMAC0 offset 0x807C
++ * GMAC1 offset 0xC07C
++ **********************************************************************/
++ typedef union
++{
++ unsigned int bits32;
++ struct bit_807C
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int sip : 1; // bit 31 Srce IP
++ unsigned int sip_netmask : 7; // bit 30:24 Srce IP net mask, number of mask bits
++ unsigned int dip : 1; // bit 23 Dest IP
++ unsigned int dip_netmask : 7; // bit 22:16 Dest IP net mask, number of mask bits
++ unsigned int l4_byte0_15 : 16; // bit 15: 0
++#else
++ unsigned int l4_byte0_15 : 16; // bit 15: 0
++ unsigned int dip_netmask : 7; // bit 22:16 Dest IP net mask, number of mask bits
++ unsigned int dip : 1; // bit 23 Dest IP
++ unsigned int sip_netmask : 7; // bit 30:24 Srce IP net mask, number of mask bits
++ unsigned int sip : 1; // bit 31 Srce IP
++#endif
++ } bits;
++} GMAC_MRxCR1_T;
++
++/**********************************************************************
++ * GMAC Matching Rule Control Register 2
++ * GMAC0 offset 0x8080
++ * GMAC1 offset 0xC080
++ **********************************************************************/
++ typedef union
++{
++ unsigned int bits32;
++ struct bit_8080
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int l4_byte16_24: 8; // bit 31: 24
++ unsigned int l7_byte0_23 : 24; // bit 23:0
++#else
++ unsigned int l7_byte0_23 : 24; // bit 23:0
++ unsigned int l4_byte16_24: 8; // bit 31: 24
++#endif
++ } bits;
++} GMAC_MRxCR2_T;
++
++
++/**********************************************************************
++ * GMAC Support registers
++ * GMAC0 offset 0x80A8
++ * GMAC1 offset 0xC0A8
++ **********************************************************************/
++ typedef union
++{
++ unsigned int bits32;
++ struct bit_80A8
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int reserved: 21; // bit 31:11
++ unsigned int swap : 3; // bit 10:8 Swap
++ unsigned int protocol: 8; // bit 7:0 Supported protocol
++#else
++ unsigned int protocol: 8; // bit 7:0 Supported protocol
++ unsigned int swap : 3; // bit 10:8 Swap
++ unsigned int reserved: 21; // bit 31:11
++#endif
++ } bits;
++} GMAC_SPR_T;
++
++/**********************************************************************
++ * GMAC_AHB_WEIGHT registers
++ * GMAC0 offset 0x80C8
++ * GMAC1 offset 0xC0C8
++ **********************************************************************/
++ typedef union
++{
++ unsigned int bits32;
++ struct bit_80C8
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int reserved : 7; // 31:25
++ unsigned int tqDV_threshold : 5; // 24:20 DMA TqCtrl to Start tqDV FIFO Threshold
++ unsigned int pre_req : 5; // 19:15 Rx Data Pre Request FIFO Threshold
++ unsigned int tx_weight : 5; // 14:10
++ unsigned int rx_weight : 5; // 9:5
++ unsigned int hash_weight : 5; // 4:0
++#else
++ unsigned int hash_weight : 5; // 4:0
++ unsigned int rx_weight : 5; // 9:5
++ unsigned int tx_weight : 5; // 14:10
++ unsigned int pre_req : 5; // 19:15 Rx Data Pre Request FIFO Threshold
++ unsigned int tqDV_threshold : 5; // 24:20 DMA TqCtrl to Start tqDV FIFO Threshold
++ unsigned int reserved : 7; // 31:25
++#endif
++ } bits;
++} GMAC_AHB_WEIGHT_T;
++/**********************************************************************
++ * the register structure of GMAC
++ **********************************************************************/
++
++/**********************************************************************
++ * GMAC RX FLTR
++ * GMAC0 Offset 0xA00C
++ * GMAC1 Offset 0xE00C
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_000c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 27;
++ unsigned int error : 1; /* enable receive of all error frames */
++ unsigned int promiscuous : 1; /* enable receive of all frames */
++ unsigned int broadcast : 1; /* enable receive of broadcast frames */
++ unsigned int multicast : 1; /* enable receive of multicast frames that pass multicast filter */
++ unsigned int unicast : 1; /* enable receive of unicast frames that are sent to STA address */
++#else
++ unsigned int unicast : 1; /* enable receive of unicast frames that are sent to STA address */
++ unsigned int multicast : 1; /* enable receive of multicast frames that pass multicast filter */
++ unsigned int broadcast : 1; /* enable receive of broadcast frames */
++ unsigned int promiscuous : 1; /* enable receive of all frames */
++ unsigned int error : 1; /* enable receive of all error frames */
++ unsigned int : 27;
++#endif
++ } bits;
++} GMAC_RX_FLTR_T;
++
++/**********************************************************************
++ * GMAC Configuration 0
++ * GMAC0 Offset 0xA018
++ * GMAC1 Offset 0xE018
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_0018
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int reserved : 2; // 31
++ unsigned int port1_chk_classq : 1; // 29
++ unsigned int port0_chk_classq : 1; // 28
++ unsigned int port1_chk_toeq : 1; // 27
++ unsigned int port0_chk_toeq : 1; // 26
++ unsigned int port1_chk_hwq : 1; // 25
++ unsigned int port0_chk_hwq : 1; // 24
++ unsigned int rx_err_detect : 1; // 23
++ unsigned int ipv6_exthdr_order: 1; // 22
++ unsigned int rxc_inv : 1; // 21
++ unsigned int rgmm_edge : 1; // 20
++ unsigned int rx_tag_remove : 1; /* 19: Remove Rx VLAN tag */
++ unsigned int ipv6_rx_chksum : 1; /* 18: IPv6 RX Checksum enable */
++ unsigned int ipv4_rx_chksum : 1; /* 17: IPv4 RX Checksum enable */
++ unsigned int rgmii_en : 1; /* 16: RGMII in-band status enable */
++ unsigned int tx_fc_en : 1; /* 15: TX flow control enable */
++ unsigned int rx_fc_en : 1; /* 14: RX flow control enable */
++ unsigned int sim_test : 1; /* 13: speed up timers in simulation */
++ unsigned int dis_col : 1; /* 12: disable 16 collisions abort function */
++ unsigned int dis_bkoff : 1; /* 11: disable back-off function */
++ unsigned int max_len : 3; /* 8-10 maximum receive frame length allowed */
++ unsigned int adj_ifg : 4; /* 4-7: adjust IFG from 96+/-56 */
++ unsigned int flow_ctrl : 1; /* 3: flow control also trigged by Rx queues */
++ unsigned int loop_back : 1; /* 2: transmit data loopback enable */
++ unsigned int dis_rx : 1; /* 1: disable receive */
++ unsigned int dis_tx : 1; /* 0: disable transmit */
++#else
++ unsigned int dis_tx : 1; /* 0: disable transmit */
++ unsigned int dis_rx : 1; /* 1: disable receive */
++ unsigned int loop_back : 1; /* 2: transmit data loopback enable */
++ unsigned int flow_ctrl : 1; /* 3: flow control also trigged by Rx queues */
++ unsigned int adj_ifg : 4; /* 4-7: adjust IFG from 96+/-56 */
++ unsigned int max_len : 3; /* 8-10 maximum receive frame length allowed */
++ unsigned int dis_bkoff : 1; /* 11: disable back-off function */
++ unsigned int dis_col : 1; /* 12: disable 16 collisions abort function */
++ unsigned int sim_test : 1; /* 13: speed up timers in simulation */
++ unsigned int rx_fc_en : 1; /* 14: RX flow control enable */
++ unsigned int tx_fc_en : 1; /* 15: TX flow control enable */
++ unsigned int rgmii_en : 1; /* 16: RGMII in-band status enable */
++ unsigned int ipv4_rx_chksum : 1; /* 17: IPv4 RX Checksum enable */
++ unsigned int ipv6_rx_chksum : 1; /* 18: IPv6 RX Checksum enable */
++ unsigned int rx_tag_remove : 1; /* 19: Remove Rx VLAN tag */
++ unsigned int rgmm_edge : 1; // 20
++ unsigned int rxc_inv : 1; // 21
++ unsigned int ipv6_exthdr_order: 1; // 22
++ unsigned int rx_err_detect : 1; // 23
++ unsigned int port0_chk_hwq : 1; // 24
++ unsigned int port1_chk_hwq : 1; // 25
++ unsigned int port0_chk_toeq : 1; // 26
++ unsigned int port1_chk_toeq : 1; // 27
++ unsigned int port0_chk_classq : 1; // 28
++ unsigned int port1_chk_classq : 1; // 29
++ unsigned int reserved : 2; // 31
++#endif
++ } bits;
++} GMAC_CONFIG0_T;
++
++/**********************************************************************
++ * GMAC Configuration 1
++ * GMAC0 Offset 0xA01C
++ * GMAC1 Offset 0xE01C
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_001c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int reserved : 16;
++ unsigned int rel_threshold : 8; /* flow control release threshold */
++ unsigned int set_threshold : 8; /* flow control set threshold */
++#else
++ unsigned int set_threshold : 8; /* flow control set threshold */
++ unsigned int rel_threshold : 8; /* flow control release threshold */
++ unsigned int reserved : 16;
++#endif
++ } bits;
++} GMAC_CONFIG1_T;
++
++#define GMAC_FLOWCTRL_SET_MAX 32
++#define GMAC_FLOWCTRL_SET_MIN 0
++#define GMAC_FLOWCTRL_RELEASE_MAX 32
++#define GMAC_FLOWCTRL_RELEASE_MIN 0
++
++/**********************************************************************
++ * GMAC Configuration 2
++ * GMAC0 Offset 0xA020
++ * GMAC1 Offset 0xE020
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_0020
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int rel_threshold : 16; /* flow control release threshold */
++ unsigned int set_threshold : 16; /* flow control set threshold */
++#else
++ unsigned int set_threshold : 16; /* flow control set threshold */
++ unsigned int rel_threshold : 16; /* flow control release threshold */
++#endif
++ } bits;
++} GMAC_CONFIG2_T;
++
++/**********************************************************************
++ * GMAC Configuration 3
++ * GMAC0 Offset 0xA024
++ * GMAC1 Offset 0xE024
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_0024
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int rel_threshold : 16; /* flow control release threshold */
++ unsigned int set_threshold : 16; /* flow control set threshold */
++#else
++ unsigned int set_threshold : 16; /* flow control set threshold */
++ unsigned int rel_threshold : 16; /* flow control release threshold */
++#endif
++ } bits;
++} GMAC_CONFIG3_T;
++
++
++/**********************************************************************
++ * GMAC STATUS
++ * GMAC0 Offset 0xA02C
++ * GMAC1 Offset 0xE02C
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit1_002c
++ {
++#if (BIG_ENDIAN==1)
++ unsigned int : 25;
++ unsigned int mii_rmii : 2; /* PHY interface type */
++ unsigned int reserved : 1;
++ unsigned int duplex : 1; /* duplex mode */
++ unsigned int speed : 2; /* link speed(00->2.5M 01->25M 10->125M) */
++ unsigned int link : 1; /* link status */
++#else
++ unsigned int link : 1; /* link status */
++ unsigned int speed : 2; /* link speed(00->2.5M 01->25M 10->125M) */
++ unsigned int duplex : 1; /* duplex mode */
++ unsigned int reserved : 1;
++ unsigned int mii_rmii : 2; /* PHY interface type */
++ unsigned int : 25;
++#endif
++ } bits;
++} GMAC_STATUS_T;
++
++#define GMAC_SPEED_10 0
++#define GMAC_SPEED_100 1
++#define GMAC_SPEED_1000 2
++
++#define GMAC_PHY_MII 0
++#define GMAC_PHY_GMII 1
++#define GMAC_PHY_RGMII_100 2
++#define GMAC_PHY_RGMII_1000 3
++
++/**********************************************************************
++ * Queue Header
++ * (1) TOE Queue Header
++ * (2) Non-TOE Queue Header
++ * (3) Interrupt Queue Header
++ *
++ * memory Layout
++ * TOE Queue Header
++ * 0x60003000 +---------------------------+ 0x0000
++ * | TOE Queue 0 Header |
++ * | 8 * 4 Bytes |
++ * +---------------------------+ 0x0020
++ * | TOE Queue 1 Header |
++ * | 8 * 4 Bytes |
++ * +---------------------------+ 0x0040
++ * | ...... |
++ * | |
++ * +---------------------------+
++ *
++ * Non TOE Queue Header
++ * 0x60002000 +---------------------------+ 0x0000
++ * | Default Queue 0 Header |
++ * | 2 * 4 Bytes |
++ * +---------------------------+ 0x0008
++ * | Default Queue 1 Header |
++ * | 2 * 4 Bytes |
++ * +---------------------------+ 0x0010
++ * | Classification Queue 0 |
++ * | 2 * 4 Bytes |
++ * +---------------------------+
++ * | Classification Queue 1 |
++ * | 2 * 4 Bytes |
++ * +---------------------------+ (n * 8 + 0x10)
++ * | ... |
++ * | 2 * 4 Bytes |
++ * +---------------------------+ (13 * 8 + 0x10)
++ * | Classification Queue 13 |
++ * | 2 * 4 Bytes |
++ * +---------------------------+ 0x80
++ * | Interrupt Queue 0 |
++ * | 2 * 4 Bytes |
++ * +---------------------------+
++ * | Interrupt Queue 1 |
++ * | 2 * 4 Bytes |
++ * +---------------------------+
++ * | Interrupt Queue 2 |
++ * | 2 * 4 Bytes |
++ * +---------------------------+
++ * | Interrupt Queue 3 |
++ * | 2 * 4 Bytes |
++ * +---------------------------+
++ *
++ **********************************************************************/
++#define TOE_QUEUE_HDR_ADDR(n) (TOE_TOE_QUE_HDR_BASE + n * 32)
++#define TOE_Q_HDR_AREA_END (TOE_QUEUE_HDR_ADDR(TOE_TOE_QUEUE_MAX+1))
++#define TOE_DEFAULT_Q0_HDR_BASE (TOE_NONTOE_QUE_HDR_BASE + 0x00)
++#define TOE_DEFAULT_Q1_HDR_BASE (TOE_NONTOE_QUE_HDR_BASE + 0x08)
++#define TOE_CLASS_Q_HDR_BASE (TOE_NONTOE_QUE_HDR_BASE + 0x10)
++#define TOE_INTR_Q_HDR_BASE (TOE_NONTOE_QUE_HDR_BASE + 0x80)
++#define INTERRUPT_QUEUE_HDR_ADDR(n) (TOE_INTR_Q_HDR_BASE + n * 8)
++#define NONTOE_Q_HDR_AREA_END (INTERRUPT_QUEUE_HDR_ADDR(TOE_INTR_QUEUE_MAX+1))
++/**********************************************************************
++ * TOE Queue Header Word 0
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int base_size;
++} TOE_QHDR0_T;
++
++#define TOE_QHDR0_BASE_MASK (~0x0f)
++
++/**********************************************************************
++ * TOE Queue Header Word 1
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_qhdr1
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int wptr : 16; // bit 31:16
++ unsigned int rptr : 16; // bit 15:0
++#else
++ unsigned int rptr : 16; // bit 15:0
++ unsigned int wptr : 16; // bit 31:16
++#endif
++ } bits;
++} TOE_QHDR1_T;
++
++/**********************************************************************
++ * TOE Queue Header Word 2
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_qhdr2
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int usd : 1; // bit 31 0: if no data assembled yet
++ unsigned int ctl : 1; // bit 30 1: have control flag bits (except ack)
++ unsigned int osq : 1; // bit 29 1: out of sequence
++ unsigned int sat : 1; // bit 28 1: SeqCnt > SeqThreshold, or AckCnt > AckThreshold
++ unsigned int ip_opt : 1; // bit 27 1: have IPV4 option or IPV6 Extension header
++ unsigned int tcp_opt : 1; // bit 26 1: Have TCP option
++ unsigned int abn : 1; // bit 25 1: Abnormal case Found
++ unsigned int dack : 1; // bit 24 1: Duplicated ACK
++ unsigned int reserved : 7; // bit 23:17
++ unsigned int TotalPktSize : 17; // bit 16: 0 Total packet size
++#else
++ unsigned int TotalPktSize : 17; // bit 16: 0 Total packet size
++ unsigned int reserved : 7; // bit 23:17
++ unsigned int dack : 1; // bit 24 1: Duplicated ACK
++ unsigned int abn : 1; // bit 25 1: Abnormal case Found
++ unsigned int tcp_opt : 1; // bit 26 1: Have TCP option
++ unsigned int ip_opt : 1; // bit 27 1: have IPV4 option or IPV6 Extension header
++ unsigned int sat : 1; // bit 28 1: SeqCnt > SeqThreshold, or AckCnt > AckThreshold
++ unsigned int osq : 1; // bit 29 1: out of sequence
++ unsigned int ctl : 1; // bit 30 1: have control flag bits (except ack)
++ unsigned int usd : 1; // bit 31 0: if no data assembled yet
++#endif
++ } bits;
++} TOE_QHDR2_T;
++
++/**********************************************************************
++ * TOE Queue Header Word 3
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int seq_num;
++} TOE_QHDR3_T;
++
++/**********************************************************************
++ * TOE Queue Header Word 4
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int ack_num;
++} TOE_QHDR4_T;
++
++/**********************************************************************
++ * TOE Queue Header Word 5
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_qhdr5
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int SeqCnt : 16; // bit 31:16
++ unsigned int AckCnt : 16; // bit 15:0
++#else
++ unsigned int AckCnt : 16; // bit 15:0
++ unsigned int SeqCnt : 16; // bit 31:16
++#endif
++ } bits;
++} TOE_QHDR5_T;
++
++/**********************************************************************
++ * TOE Queue Header Word 6
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_qhdr6
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int MaxPktSize : 14; // bit 31:18
++ unsigned int iq_num : 2; // bit 17:16
++ unsigned int WinSize : 16; // bit 15:0
++#else
++ unsigned int WinSize : 16; // bit 15:0
++ unsigned int iq_num : 2; // bit 17:16
++ unsigned int MaxPktSize : 14; // bit 31:18
++#endif
++ } bits;
++} TOE_QHDR6_T;
++
++/**********************************************************************
++ * TOE Queue Header Word 7
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_qhdr7
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int SeqThreshold : 16; // bit 31:16
++ unsigned int AckThreshold : 16; // bit 15:0
++#else
++ unsigned int AckThreshold : 16; // bit 15:0
++ unsigned int SeqThreshold : 16; // bit 31:16
++#endif
++ } bits;
++} TOE_QHDR7_T;
++
++/**********************************************************************
++ * TOE Queue Header
++ **********************************************************************/
++typedef struct
++{
++ TOE_QHDR0_T word0;
++ TOE_QHDR1_T word1;
++ TOE_QHDR2_T word2;
++ TOE_QHDR3_T word3;
++ TOE_QHDR4_T word4;
++ TOE_QHDR5_T word5;
++ TOE_QHDR6_T word6;
++ TOE_QHDR7_T word7;
++} TOE_QHDR_T;
++
++/**********************************************************************
++ * NONTOE Queue Header Word 0
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int base_size;
++} NONTOE_QHDR0_T;
++
++#define NONTOE_QHDR0_BASE_MASK (~0x0f)
++
++/**********************************************************************
++ * NONTOE Queue Header Word 1
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_nonqhdr1
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int wptr : 16; // bit 31:16
++ unsigned int rptr : 16; // bit 15:0
++#else
++ unsigned int rptr : 16; // bit 15:0
++ unsigned int wptr : 16; // bit 31:16
++#endif
++ } bits;
++} NONTOE_QHDR1_T;
++
++/**********************************************************************
++ * Non-TOE Queue Header
++ **********************************************************************/
++typedef struct
++{
++ NONTOE_QHDR0_T word0;
++ NONTOE_QHDR1_T word1;
++} NONTOE_QHDR_T;
++
++/**********************************************************************
++ * Interrupt Queue Header Word 0
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_intrqhdr0
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int wptr : 16; // bit 31:16 Write Pointer where hw stopped
++ unsigned int win_size : 16; // bit 15:0 Descriptor Ring Size
++#else
++ unsigned int win_size : 16; // bit 15:0 Descriptor Ring Size
++ unsigned int wptr : 16; // bit 31:16 Write Pointer where hw stopped
++#endif
++ } bits;
++} INTR_QHDR0_T;
++
++/**********************************************************************
++ * Interrupt Queue Header Word 1
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_intrqhdr1
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int ctl : 1; // bit 31 1: have control flag bits (except ack)
++ unsigned int osq : 1; // bit 30 1: out of sequence
++ unsigned int sat : 1; // bit 29 1: SeqCnt > SeqThreshold, or AckCnt > AckThreshold
++ unsigned int ip_opt : 1; // bit 28 1: have IPV4 option or IPV6 Extension header
++ unsigned int tcp_opt : 1; // bit 27 1: Have TCP option
++ unsigned int abn : 1; // bit 26 1: Abnormal case Found
++ unsigned int dack : 1; // bit 25 1: Duplicated ACK
++ unsigned int tcp_qid : 8; // bit 24:17 TCP Queue ID
++ unsigned int TotalPktSize : 17; // bit 16: 0 Total packet size
++#else
++ unsigned int TotalPktSize : 17; // bit 16: 0 Total packet size
++ unsigned int tcp_qid : 8; // bit 24:17 TCP Queue ID
++ unsigned int dack : 1; // bit 25 1: Duplicated ACK
++ unsigned int abn : 1; // bit 26 1: Abnormal case Found
++ unsigned int tcp_opt : 1; // bit 27 1: Have TCP option
++ unsigned int ip_opt : 1; // bit 28 1: have IPV4 option or IPV6 Extension header
++ unsigned int sat : 1; // bit 29 1: SeqCnt > SeqThreshold, or AckCnt > AckThreshold
++ unsigned int osq : 1; // bit 30 1: out of sequence
++ unsigned int ctl : 1; // bit 31 1: have control flag bits (except ack)
++#endif
++ } bits;
++} INTR_QHDR1_T;
++
++/**********************************************************************
++ * Interrupt Queue Header Word 2
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int seq_num;
++} INTR_QHDR2_T;
++
++/**********************************************************************
++ * Interrupt Queue Header Word 3
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ unsigned int ack_num;
++} INTR_QHDR3_T;
++
++/**********************************************************************
++ * Interrupt Queue Header Word 4
++ **********************************************************************/
++typedef union
++{
++ unsigned int bits32;
++ struct bit_intrqhdr4
++ {
++#if (BIG_ENDIAN==1)
++
++ unsigned int SeqCnt : 16; // bit 31:16 Seq# change since last seq# intr.
++ unsigned int AckCnt : 16; // bit 15:0 Ack# change since last ack# intr.
++#else
++ unsigned int AckCnt : 16; // bit 15:0 Ack# change since last ack# intr.
++ unsigned int SeqCnt : 16; // bit 31:16 Seq# change since last seq# intr.
++#endif
++ } bits;
++} INTR_QHDR4_T;
++
++/**********************************************************************
++ * Interrupt Queue Header
++ **********************************************************************/
++typedef struct
++{
++ INTR_QHDR0_T word0;
++ INTR_QHDR1_T word1;
++ INTR_QHDR2_T word2;
++ INTR_QHDR3_T word3;
++ INTR_QHDR4_T word4;
++ unsigned int word5;
++ unsigned int word6;
++ unsigned int word7;
++} INTR_QHDR_T;
++
++/**********************************************************************
++ * GMAC Conf
++ **********************************************************************/
++typedef struct gmac_conf {
++ struct net_device *dev;
++ int portmap;
++ int vid;
++ int flag; /* 1: active 0: non-active */
++} sys_gmac_conf;
++
++/**********************************************************************
++ * GMAC private data
++ **********************************************************************/
++typedef struct {
++ unsigned int rwptr_reg;
++ unsigned int desc_base;
++ unsigned int total_desc_num;
++ unsigned short finished_idx;
++ GMAC_TXDESC_T *curr_tx_desc;
++ GMAC_TXDESC_T *curr_finished_desc;
++ struct sk_buff *tx_skb[TX_DESC_NUM];
++ unsigned long total_sent;
++ unsigned long total_finished;
++ unsigned long intr_cnt;
++} GMAC_SWTXQ_T;
++
++typedef struct {
++ unsigned int desc_base;
++ unsigned long eof_cnt;
++} GMAC_HWTXQ_T;
++
++typedef struct gmac_private{
++ struct net_device *dev;
++ unsigned int existed;
++ unsigned int port_id; // 0 or 1
++ unsigned int base_addr;
++ unsigned int dma_base_addr;
++ unsigned char *mac_addr1;
++ unsigned char *mac_addr2;
++ unsigned int swtxq_desc_base;
++ unsigned int hwtxq_desc_base;
++ GMAC_SWTXQ_T swtxq[TOE_SW_TXQ_NUM];
++ GMAC_HWTXQ_T hwtxq[TOE_HW_TXQ_NUM];
++ NONTOE_QHDR_T *default_qhdr;
++ unsigned int default_desc_base;
++ unsigned int default_desc_num;
++ unsigned int rx_curr_desc;
++ DMA_RWPTR_T rx_rwptr;
++ struct sk_buff *curr_rx_skb;
++ dma_addr_t default_desc_base_dma;
++ dma_addr_t swtxq_desc_base_dma;
++ dma_addr_t hwtxq_desc_base_dma;
++ unsigned int irq;
++ unsigned int flow_control_enable ;
++ unsigned int pre_phy_status;
++ unsigned int full_duplex_cfg;
++ unsigned int speed_cfg;
++ unsigned int auto_nego_cfg;
++ unsigned int full_duplex_status;
++ unsigned int speed_status;
++ unsigned int phy_mode; /* 0->MII 1->GMII 2->RGMII(10/100) 3->RGMII(1000) */
++ unsigned int phy_addr;
++ unsigned int intr0_enabled; // 1: enabled
++ unsigned int intr1_enabled; // 1: enabled
++ unsigned int intr2_enabled; // 1: enabled
++ unsigned int intr3_enabled; // 1: enabled
++ unsigned int intr4_enabled; // 1: enabled
++// unsigned int intr4_enabled_1; // 1: enabled
++ unsigned int intr0_selected; // 1: selected
++ unsigned int intr1_selected; // 1: selected
++ unsigned int intr2_selected; // 1: selected
++ unsigned int intr3_selected; // 1: selected
++ unsigned int intr4_selected; // 1: selected
++ // void (*gmac_rcv_handler)(struct sk_buff *, int);
++ struct net_device_stats ifStatics;
++ unsigned long txDerr_cnt[GMAC_NUM];
++ unsigned long txPerr_cnt[GMAC_NUM];
++ unsigned long RxDerr_cnt[GMAC_NUM];
++ unsigned long RxPerr_cnt[GMAC_NUM];
++ unsigned int isr_rx_cnt;
++ unsigned int isr_tx_cnt;
++ unsigned long rx_discard;
++ unsigned long rx_error;
++ unsigned long rx_mcast;
++ unsigned long rx_bcast;
++ unsigned long rx_status_cnt[8];
++ unsigned long rx_chksum_cnt[8];
++ unsigned long rx_sta1_ucast; // for STA 1 MAC Address
++ unsigned long rx_sta2_ucast; // for STA 2 MAC Address
++ unsigned long mib_full_cnt;
++ unsigned long rx_pause_on_cnt;
++ unsigned long tx_pause_on_cnt;
++ unsigned long rx_pause_off_cnt;
++ unsigned long tx_pause_off_cnt;
++ unsigned long rx_overrun_cnt;
++ unsigned long status_changed_cnt;
++ unsigned long default_q_cnt;
++ unsigned long hw_fq_empty_cnt;
++ unsigned long sw_fq_empty_cnt;
++ unsigned long default_q_intr_cnt;
++ pid_t thr_pid;
++ wait_queue_head_t thr_wait;
++ struct completion thr_exited;
++ spinlock_t lock;
++ int time_to_die;
++ int operation;
++#ifdef SL351x_GMAC_WORKAROUND
++ unsigned long short_frames_cnt;
++#endif
++}GMAC_INFO_T ;
++
++typedef struct toe_private {
++ unsigned int swfq_desc_base;
++ unsigned int hwfq_desc_base;
++ unsigned int hwfq_buf_base;
++// unsigned int toe_desc_base[TOE_TOE_QUEUE_NUM];
++// unsigned int toe_desc_num;
++// unsigned int class_desc_base;
++// unsigned int class_desc_num;
++// unsigned int intr_desc_base;
++// unsigned int intr_desc_num;
++// unsigned int intr_buf_base;
++ DMA_RWPTR_T fq_rx_rwptr;
++ GMAC_INFO_T gmac[GMAC_NUM];
++ dma_addr_t sw_freeq_desc_base_dma;
++ dma_addr_t hw_freeq_desc_base_dma;
++ dma_addr_t hwfq_buf_base_dma;
++ dma_addr_t hwfq_buf_end_dma;
++// dma_addr_t toe_desc_base_dma[TOE_TOE_QUEUE_NUM];
++// dma_addr_t class_desc_base_dma;
++// dma_addr_t intr_desc_base_dma;
++// dma_addr_t intr_buf_base_dma;
++// unsigned long toe_iq_intr_full_cnt[TOE_INTR_QUEUE_NUM];
++// unsigned long toe_iq_intr_cnt[TOE_INTR_QUEUE_NUM];
++// unsigned long toe_q_intr_full_cnt[TOE_TOE_QUEUE_NUM];
++// unsigned long class_q_intr_full_cnt[TOE_CLASS_QUEUE_NUM];
++// unsigned long class_q_intr_cnt[TOE_CLASS_QUEUE_NUM];
++} TOE_INFO_T;
++
++extern TOE_INFO_T toe_private_data;
++
++#define GMAC_PORT0 0
++#define GMAC_PORT1 1
++/**********************************************************************
++ * PHY Definition
++ **********************************************************************/
++#define HPHY_ADDR 0x01
++#define GPHY_ADDR 0x02
++
++enum phy_state
++{
++ LINK_DOWN = 0,
++ LINK_UP = 1
++};
++
++/* transmit timeout value */
++
++#endif //_GMAC_SL351x_H
+--- /dev/null
++++ b/include/asm-arm/arch-sl2312/sl351x_hash_cfg.h
+@@ -0,0 +1,365 @@
++/*-----------------------------------------------------------------------------------
++* sl351x_hash_cfg.h
++*
++* Description:
++*
++* History:
++*
++* 9/14/2005 Gary Chen Create
++*
++*-------------------------------------------------------------------------------------*/
++#ifndef _SL351x_HASH_CFG_H_
++#define _SL351x_HASH_CFG_H_ 1
++
++// #define NAT_DEBUG_MSG 1
++// #define DEBUG_NAT_MIXED_HW_SW_TX 1
++#ifdef DEBUG_NAT_MIXED_HW_SW_TX
++ // #define NAT_DEBUG_LAN_HASH_TIMEOUT 1
++ // #define NAT_DEBUG_WAN_HASH_TIMEOUT 1
++#endif
++
++#define IPIV(a,b,c,d) ((a<<24)+(b<<16)+(c<<8)+d)
++#define IPIV1(a) ((a>>24)&0xff)
++#define IPIV2(a) ((a>>16)&0xff)
++#define IPIV3(a) ((a>>8)&0xff)
++#define IPIV4(a) ((a)&0xff)
++
++#define HASH_MAX_BYTES 64 // 128
++#define HASH_ACTION_DWORDS 9
++#define HASH_MAX_DWORDS (HASH_MAX_BYTES / sizeof(u32))
++#define HASH_MAX_KEY_DWORD (HASH_MAX_DWORDS - HASH_ACTION_DWORDS)
++#define HASH_INIT_KEY 0x534C4F52
++#define HASH_BITS 12 // 12 : Normal, 7: Simulation
++#define HASH_TOTAL_ENTRIES (1 << HASH_BITS)
++#define HASH_MAX_ENTRIES (1 << 12)
++#define HASH_TOE_ENTRIES (HASH_TOTAL_ENTRIES >> 5)
++#define HASH_BITS_MASK ((1 << HASH_BITS) - 1)
++
++#define hash_lock(lock) // spin_lock_bh(lock)
++#define hash_unlock(lock) // spin_unlock_bh(lock)
++
++/*----------------------------------------------------------------------
++ * special macro
++ ----------------------------------------------------------------------*/
++#define HASH_PUSH_WORD(cp, data) {*cp++ = (((u16)(data)) ) & 0xff; \
++ *cp++ = (((u16)(data)) >> 8) & 0xff;}
++#define HASH_PUSH_DWORD(cp, data) {*cp++ = (u8)(((u32)(data)) ) & 0xff; \
++ *cp++ = (u8)(((u32)(data)) >> 8) & 0xff; \
++ *cp++ = (u8)(((u32)(data)) >> 16) & 0xff; \
++ *cp++ = (u8)(((u32)(data)) >> 24) & 0xff;}
++#define HASH_PUSH_BYTE(cp, data) {*cp++ = ((u8)(data)) & 0xff;}
++
++/*----------------------------------------------------------------------
++ * key
++ ----------------------------------------------------------------------*/
++typedef struct {
++ u8 port;
++ u16 Ethertype;
++ u8 da[6];
++ u8 sa[6];
++ u16 pppoe_sid;
++ u16 vlan_id;
++ u8 ipv4_hdrlen;
++ u8 ip_tos;
++ u8 ip_protocol;
++ u32 ipv6_flow_label;
++ u8 sip[16];
++ u8 dip[16];
++ //__u32 sip[4];
++ //__u32 dip[4];
++ u8 l4_bytes[24];
++ u8 l7_bytes[24];
++ u8 ipv6; // 1: IPv6, 0: IPV4
++} ENTRY_KEY_T;
++
++/*----------------------------------------------------------------------
++ * key for NAT
++ * Note: packed
++ ----------------------------------------------------------------------*/
++typedef struct {
++ u16 Ethertype; // not used
++ u8 port_id;
++ u8 rule_id;
++ u8 ip_protocol;
++ u8 reserved1; // ip_tos, not used
++ u16 reserved2; // not used
++ u32 sip;
++ u32 dip;
++ u16 sport;
++ u16 dport;
++} NAT_KEY_T;
++
++#define NAT_KEY_DWORD_SIZE (sizeof(NAT_KEY_T)/sizeof(u32))
++#define NAT_KEY_SIZE (sizeof(NAT_KEY_T))
++
++/*----------------------------------------------------------------------
++ * key for NAT
++ * Note: packed
++ ----------------------------------------------------------------------*/
++typedef struct {
++ u16 Ethertype; // not used
++ u8 port_id;
++ u8 rule_id;
++ u8 ip_protocol;
++ u8 reserved1; // ip_tos, not used
++ u16 reserved2; // not used
++ u32 sip;
++ u32 dip;
++ u16 reserved3;
++ u16 protocol;
++ u16 reserved4;
++ u16 call_id;
++} GRE_KEY_T;
++
++#define GRE_KEY_DWORD_SIZE (sizeof(GRE_KEY_T)/sizeof(u32))
++#define GRE_KEY_SIZE (sizeof(GRE_KEY_T))
++/*----------------------------------------------------------------------
++ * key present or not
++ ----------------------------------------------------------------------*/
++typedef struct {
++ u32 port : 1;
++ u32 Ethertype : 1;
++ u32 da : 1;
++ u32 sa : 1;
++ u32 pppoe_sid : 1;
++ u32 vlan_id : 1;
++ u32 ipv4_hdrlen : 1;
++ u32 ip_tos : 1;
++ u32 ip_protocol : 1;
++ u32 ipv6_flow_label : 1;
++ u32 sip : 1;
++ u32 dip : 1;
++ u32 l4_bytes_0_3 : 1;
++ u32 l4_bytes_4_7 : 1;
++ u32 l4_bytes_8_11 : 1;
++ u32 l4_bytes_12_15 : 1;
++ u32 l4_bytes_16_19 : 1;
++ u32 l4_bytes_20_23 : 1;
++ u32 l7_bytes_0_3 : 1;
++ u32 l7_bytes_4_7 : 1;
++ u32 l7_bytes_8_11 : 1;
++ u32 l7_bytes_12_15 : 1;
++ u32 l7_bytes_16_19 : 1;
++ u32 l7_bytes_20_23 : 1;
++ u32 reserved : 8;
++} KEY_FIELD_T;
++
++/*----------------------------------------------------------------------
++ * action
++ ----------------------------------------------------------------------*/
++typedef struct {
++ u32 reserved0 : 5; // bit 0:4
++ u32 pppoe : 2; // bit 5:6
++ u32 vlan : 2; // bit 7:8
++ u32 sa : 1; // bit 9
++ u32 da : 1; // bit 10
++ u32 Dport : 1; // bit 11
++ u32 Sport : 1; // bit 12
++ u32 Dip : 1; // bit 13
++ u32 Sip : 1; // bit 14
++ u32 sw_id : 1; // bit 15
++ u32 frag : 1; // bit 16
++ u32 option : 1; // bit 17
++ u32 ttl_0 : 1; // bit 18
++ u32 ttl_1 : 1; // bit 19
++ u32 mtu : 1; // bit 20
++ u32 exception : 1; // bit 21
++ u32 srce_qid : 1; // bit 22
++ u32 discard : 1; // bit 23
++ u32 dest_qid : 8; // bit 24:31
++} ENTRY_ACTION_T;
++
++#define ACTION_DISCARD_BIT BIT(23)
++#define ACTION_SRCE_QID_BIT BIT(22)
++#define ACTION_EXCEPTION_BIT BIT(21)
++#define ACTION_MTU_BIT BIT(20)
++#define ACTION_TTL_1_BIT BIT(19)
++#define ACTION_TTL_0_BIT BIT(18)
++#define ACTION_IP_OPTION BIT(17)
++#define ACTION_FRAG_BIT BIT(16)
++#define ACTION_SWID_BIT BIT(15)
++#define ACTION_SIP_BIT BIT(14)
++#define ACTION_DIP_BIT BIT(13)
++#define ACTION_SPORT_BIT BIT(12)
++#define ACTION_DPORT_BIT BIT(11)
++#define ACTION_DA_BIT BIT(10)
++#define ACTION_SA_BIT BIT(9)
++#define ACTION_VLAN_DEL_BIT BIT(8)
++#define ACTION_VLAN_INS_BIT BIT(7)
++#define ACTION_PPPOE_DEL_BIT BIT(6)
++#define ACTION_PPPOE_INS_BIT BIT(5)
++#define ACTION_L4_THIRD_BIT BIT(4)
++#define ACTION_L4_FOURTH_BIT BIT(3)
++
++#define NAT_ACTION_BITS (ACTION_SRCE_QID_BIT | ACTION_EXCEPTION_BIT | \
++ ACTION_TTL_1_BIT | ACTION_TTL_0_BIT | \
++ ACTION_IP_OPTION | ACTION_FRAG_BIT | \
++ ACTION_DA_BIT | ACTION_SA_BIT)
++#define NAT_LAN2WAN_ACTIONS (NAT_ACTION_BITS | ACTION_SIP_BIT | ACTION_SPORT_BIT)
++#define NAT_WAN2LAN_ACTIONS (NAT_ACTION_BITS | ACTION_DIP_BIT | ACTION_DPORT_BIT)
++#define NAT_PPPOE_LAN2WAN_ACTIONS (NAT_LAN2WAN_ACTIONS | ACTION_PPPOE_INS_BIT)
++#define NAT_PPPOE_WAN2LAN_ACTIONS (NAT_WAN2LAN_ACTIONS | ACTION_PPPOE_DEL_BIT)
++#define NAT_PPTP_LAN2WAN_ACTIONS (NAT_ACTION_BITS | ACTION_SIP_BIT | ACTION_L4_FOURTH_BIT)
++#define NAT_PPTP_WAN2LAN_ACTIONS (NAT_ACTION_BITS | ACTION_DIP_BIT | ACTION_L4_FOURTH_BIT)
++#define NAT_PPPOE_PPTP_LAN2WAN_ACTIONS (NAT_PPTP_LAN2WAN_ACTIONS | ACTION_PPPOE_INS_BIT)
++#define NAT_PPPOE_PPTP_WAN2LAN_ACTIONS (NAT_PPTP_WAN2LAN_ACTIONS | ACTION_PPPOE_DEL_BIT)
++
++/*----------------------------------------------------------------------
++ * parameter
++ ----------------------------------------------------------------------*/
++typedef struct {
++ u8 da[6];
++ u8 sa[6];
++ u16 vlan;
++ u16 pppoe;
++ u32 Sip;
++ u32 Dip;
++ u16 Sport;
++ u16 Dport;
++ u16 sw_id;
++ u16 mtu;
++} ENTRY_PARAM_T;
++
++/*----------------------------------------------------------------------
++ * Hash Entry
++ ----------------------------------------------------------------------*/
++typedef struct {
++ char rule;
++ ENTRY_KEY_T key;
++ KEY_FIELD_T key_present;
++ ENTRY_ACTION_T action;
++ ENTRY_PARAM_T param;
++ int index;
++ int total_dwords;
++} HASH_ENTRY_T;
++
++/*----------------------------------------------------------------------
++ * NAT Hash Entry
++ ----------------------------------------------------------------------*/
++typedef struct {
++ short counter;
++ short interval;
++} HASH_TIMEOUT_T;
++
++/*----------------------------------------------------------------------
++ * NAT Hash Entry for TCP/UDP protocol
++ ----------------------------------------------------------------------*/
++typedef struct {
++ NAT_KEY_T key;
++ union {
++ u32 dword;
++ ENTRY_ACTION_T bits;
++ } action;
++ ENTRY_PARAM_T param;
++ HASH_TIMEOUT_T tmo; // used by software only, to use memory space efficiently
++} NAT_HASH_ENTRY_T;
++
++#define NAT_HASH_ENTRY_SIZE (sizeof(NAT_HASH_ENTRY_T))
++
++/*----------------------------------------------------------------------
++ * GRE Hash Entry for PPTP/GRE protocol
++ ----------------------------------------------------------------------*/
++typedef struct {
++ GRE_KEY_T key;
++ union {
++ u32 dword;
++ ENTRY_ACTION_T bits;
++ } action;
++ ENTRY_PARAM_T param;
++ HASH_TIMEOUT_T tmo; // used by software only, to use memory space efficiently
++} GRE_HASH_ENTRY_T;
++
++#define GRE_HASH_ENTRY_SIZE (sizeof(GRE_HASH_ENTRY_T))
++
++/*----------------------------------------------------------------------
++ * External Variables
++ ----------------------------------------------------------------------*/
++extern char hash_tables[HASH_TOTAL_ENTRIES][HASH_MAX_BYTES] __attribute__ ((aligned(16)));
++extern u32 hash_nat_owner_bits[HASH_TOTAL_ENTRIES/32];
++/*----------------------------------------------------------------------
++* hash_get_valid_flag
++*----------------------------------------------------------------------*/
++static inline int hash_get_valid_flag(int index)
++{
++ volatile u32 *hash_valid_bits_ptr = (volatile u32 *)TOE_V_BIT_BASE;
++
++#ifdef SL351x_GMAC_WORKAROUND
++ if (index >= (0x80 * 8) && index < (0x8c * 8))
++ return 1;
++#endif
++ return (hash_valid_bits_ptr[index/32] & (1 << (index %32)));
++}
++
++/*----------------------------------------------------------------------
++* hash_get_nat_owner_flag
++*----------------------------------------------------------------------*/
++static inline int hash_get_nat_owner_flag(int index)
++{
++ return (hash_nat_owner_bits[index/32] & (1 << (index %32)));
++}
++
++/*----------------------------------------------------------------------
++* hash_validate_entry
++*----------------------------------------------------------------------*/
++static inline void hash_validate_entry(int index)
++{
++ volatile u32 *hash_valid_bits_ptr = (volatile u32 *)TOE_V_BIT_BASE;
++ register int ptr = index/32, bits = 1 << (index %32);
++
++ hash_valid_bits_ptr[ptr] |= bits;
++}
++
++/*----------------------------------------------------------------------
++* hash_invalidate_entry
++*----------------------------------------------------------------------*/
++static inline void hash_invalidate_entry(int index)
++{
++ volatile u32 *hash_valid_bits_ptr = (volatile u32 *)TOE_V_BIT_BASE;
++ register int ptr = index/32, bits = 1 << (index %32);
++
++ hash_valid_bits_ptr[ptr] &= ~(bits);
++}
++
++/*----------------------------------------------------------------------
++* hash_nat_enable_owner
++*----------------------------------------------------------------------*/
++static inline void hash_nat_enable_owner(int index)
++{
++ hash_nat_owner_bits[index/32] |= (1 << (index % 32));
++}
++
++/*----------------------------------------------------------------------
++* hash_nat_disable_owner
++*----------------------------------------------------------------------*/
++static inline void hash_nat_disable_owner(int index)
++{
++ hash_nat_owner_bits[index/32] &= ~(1 << (index % 32));
++}
++
++/*----------------------------------------------------------------------
++* hash_get_entry
++*----------------------------------------------------------------------*/
++static inline void *hash_get_entry(int index)
++{
++ return (void*) &hash_tables[index][0];
++}
++
++/*----------------------------------------------------------------------
++* Functions
++*----------------------------------------------------------------------*/
++extern int hash_add_entry(HASH_ENTRY_T *entry);
++extern void sl351x_hash_init(void);
++extern void hash_set_valid_flag(int index, int valid);
++extern void hash_set_nat_owner_flag(int index, int valid);
++extern void *hash_get_entry(int index);
++extern int hash_build_keys(u32 *destp, HASH_ENTRY_T *entry);
++extern void hash_build_nat_keys(u32 *destp, HASH_ENTRY_T *entry);
++extern int hash_write_entry(HASH_ENTRY_T *entry, u8 *key);
++extern int hash_add_entry(HASH_ENTRY_T *entry);
++extern u16 hash_crc16(u16 crc, u8 *datap, u32 len);
++extern u16 hash_gen_crc16(u8 *datap, u32 len);
++
++#endif // _SL351x_HASH_CFG_H_
++
++
++
+--- /dev/null
++++ b/include/asm-arm/arch-sl2312/sl351x_nat_cfg.h
+@@ -0,0 +1,211 @@
++/**************************************************************************
++* Copyright 2006 StorLink Semiconductors, Inc. All rights reserved.
++*--------------------------------------------------------------------------
++* sl_nat_cfg.h
++*
++* Description:
++* - Define the Device Control Commands for NAT Configuration
++*
++* History:
++*
++* 4/28/2006 Gary Chen Create
++*
++*-----------------------------------------------------------------------------*/
++#ifndef _SL351x_NAT_CFG_H_
++#define _SL351x_NAT_CFG_H_ 1
++
++/*----------------------------------------------------------------------
++* Confiuration
++*----------------------------------------------------------------------*/
++#ifdef CONFIG_NETFILTER
++#define CONFIG_SL351x_NAT 1
++#undef CONFIG_SL351x_NAT
++#undef CONFIG_SL351x_SYSCTL
++#endif
++#define CONFIG_NAT_MAX_IP_NUM 4 // per device (eth0 or eth1)
++#define CONFIG_NAT_MAX_XPORT 64
++#define CONFIG_NAT_MAX_WRULE 16 // per Queue
++#define CONFIG_NAT_TXQ_NUM 4
++/*----------------------------------------------------------------------
++* Command set
++*----------------------------------------------------------------------*/
++#define SIOCDEVSL351x SIOCDEVPRIVATE // 0x89F0
++#define NATSSTATUS 0
++#define NATGSTATUS 1
++#define NATSETPORT 2
++#define NATGETPORT 3
++#define NATADDIP 4
++#define NATDELIP 5
++#define NATGETIP 6
++#define NATAXPORT 7
++#define NATDXPORT 8
++#define NATGXPORT 9
++#define NATSWEIGHT 10
++#define NATGWEIGHT 11
++#define NATAWRULE 12
++#define NATDWRULE 13
++#define NATGWRULE 14
++#define NATSDEFQ 15
++#define NATGDEFQ 16
++#define NATRMIPCFG 17 // remove IP config
++#define NATTESTENTRY 18
++#define NATSETMEM 19
++#define NATSHOWMEM 20
++/*----------------------------------------------------------------------
++* Command Structure
++*----------------------------------------------------------------------*/
++// Common Header
++typedef struct {
++ unsigned short cmd; // command ID
++ unsigned short len; // data length, excluding this header
++} NATCMD_HDR_T;
++
++// NATSSTATUS & NATGSTATUS commands
++typedef struct {
++ unsigned char enable;
++} NAT_STATUS_T;
++
++// NATSETPORT & NATGETPORT commands
++typedef struct {
++ unsigned char portmap;
++} NAT_PORTCFG_T;
++
++typedef struct {
++ unsigned int ipaddr;
++ unsigned int netmask;
++} NAT_IP_ENTRY_T;
++
++// NATADDIP & NATDELIP commands
++typedef struct {
++ NAT_IP_ENTRY_T entry;
++} NAT_IPCFG_T;
++
++// NATGETIP command
++typedef struct {
++ unsigned int total;
++ NAT_IP_ENTRY_T entry[CONFIG_NAT_MAX_IP_NUM];
++} NAT_IPCFG_ALL_T;
++
++typedef struct {
++ unsigned int protocol;
++ unsigned short sport_start;
++ unsigned short sport_end;
++ unsigned short dport_start;
++ unsigned short dport_end;
++} NAT_XPORT_ENTRY_T;
++
++// NATAXPORT & NATDXPORT Commands
++typedef struct {
++ NAT_XPORT_ENTRY_T entry;
++} NAT_XPORT_T;
++
++// NATGXPORT Command
++typedef struct {
++ unsigned int total;
++ NAT_XPORT_ENTRY_T entry[CONFIG_NAT_MAX_XPORT];
++} NAT_XPORT_ALL_T;
++
++// NATSWEIGHT & NATGWEIGHT Commands
++typedef struct {
++ unsigned char weight[CONFIG_NAT_TXQ_NUM];
++} NAT_WEIGHT_T;
++
++typedef struct {
++ unsigned int protocol;
++ unsigned int sip_start;
++ unsigned int sip_end;
++ unsigned int dip_start;
++ unsigned int dip_end;
++ unsigned short sport_start;
++ unsigned short sport_end;
++ unsigned short dport_start;
++ unsigned short dport_end;
++} NAT_WRULE_ENTRY_T;
++
++// NATAWRULE & NATDWRULE Commands
++typedef struct {
++ unsigned int qid;
++ NAT_WRULE_ENTRY_T entry;
++} NAT_WRULE_T;
++
++// NATGWRULE Command
++typedef struct {
++ unsigned int total;
++ NAT_WRULE_ENTRY_T entry[CONFIG_NAT_MAX_WRULE];
++} NAT_WRULE_ALL_T;
++
++// NATSDEFQ & NATGDEFQ commands
++typedef struct {
++ unsigned int qid;
++} NAT_QUEUE_T;
++
++// NATTESTENTRY
++typedef struct {
++ u_int16_t cmd; // command ID
++ u_int16_t len; // data length, excluding this header
++ u_int8_t init_enable;
++} NAT_TESTENTRY_T;
++
++typedef union
++{
++ NAT_STATUS_T status;
++ NAT_PORTCFG_T portcfg;
++ NAT_IPCFG_T ipcfg;
++ NAT_XPORT_T xport;
++ NAT_WEIGHT_T weight;
++ NAT_WRULE_T wrule;
++ NAT_QUEUE_T queue;
++ NAT_TESTENTRY_T init_entry;
++} NAT_REQ_E;
++
++/*----------------------------------------------------------------------
++* NAT Configuration
++* - Used by driver only
++*----------------------------------------------------------------------*/
++typedef struct {
++ unsigned int enabled;
++ unsigned int init_enabled;
++ unsigned int tcp_udp_rule_id;
++ unsigned int gre_rule_id;
++ unsigned int lan_port;
++ unsigned int wan_port;
++ unsigned int default_hw_txq;
++ short tcp_tmo_interval;
++ short udp_tmo_interval;
++ short gre_tmo_interval;
++ NAT_IPCFG_ALL_T ipcfg[2]; // LAN/WAN port
++ NAT_XPORT_ALL_T xport;
++ NAT_WEIGHT_T weight;
++ NAT_WRULE_ALL_T wrule[CONFIG_NAT_TXQ_NUM];
++} NAT_CFG_T;
++
++/*----------------------------------------------------------------------
++* NAT Control Block
++* - Used by driver only
++* - Stores LAN-IN or WAN-IN information
++* - WAN-OUT and LAN-OUT driver use them to build up a hash entry
++* - NOTES: To update this data structure, MUST take care of alignment issue
++* - MUST make sure that the size of skbuff structure must
++* be larger than (40 + sizof(NAT_CB_T))
++*----------------------------------------------------------------------*/
++typedef struct {
++ unsigned short tag;
++ unsigned char sa[6];
++ unsigned int sip;
++ unsigned int dip;
++ unsigned short sport;
++ unsigned short dport;
++ unsigned char pppoe_frame;
++ unsigned char state; // same to enum tcp_conntrack
++ unsigned char reserved[2];
++} NAT_CB_T;
++
++#define NAT_CB_TAG 0x4C53 // "SL"
++#define NAT_CB_SIZE sizeof(NAT_CB_T)
++// #define NAT_SKB_CB(skb) (NAT_CB_T *)(((unsigned int)&((skb)->cb[40]) + 3) & ~3) // for align 4
++#define NAT_SKB_CB(skb) (NAT_CB_T *)&((skb)->cb[40]) // for align 4
++
++#endif // _SL351x_NAT_CFG_H_
++
++
++
+--- /dev/null
++++ b/include/asm-arm/arch-sl2312/sl351x_toe.h
+@@ -0,0 +1,88 @@
++/**************************************************************************
++* Copyright 2006 StorLink Semiconductors, Inc. All rights reserved.
++*--------------------------------------------------------------------------
++* Name : sl351x_toe.h
++* Description :
++* Define for TOE driver of Storlink SL351x
++*
++* History
++*
++* Date Writer Description
++*----------------------------------------------------------------------------
++* Xiaochong Create
++*
++****************************************************************************/
++#ifndef __SL351x_TOE_H
++#define __SL351x_TOE_H 1
++#include <net/sock.h>
++#include <asm/arch/sl351x_gmac.h>
++#include <linux/timer.h>
++#include <linux/netdevice.h>
++#include <linux/ip.h>
++#include <linux/if_ether.h>
++/*
++ * TOE_CONN_T is data structure of tcp connection info, used at both
++ * device layer and kernel tcp layer
++ * skb is the jumbo frame
++ */
++
++struct toe_conn{
++ __u8 qid; // connection qid 0~63.
++ __u8 ip_ver; // 0: not used; 4: ipv4; 6: ipv6.
++ /* hash key of the connection */
++ __u16 source;
++ __u16 dest;
++ __u32 saddr[4];
++ __u32 daddr[4];
++
++ __u32 seq;
++ __u32 ack_seq;
++
++ /* these fields are used to set TOE QHDR */
++ __u32 ack_threshold;
++ __u32 seq_threshold;
++ __u16 max_pktsize;
++
++ /* used by sw toe, accumulated ack_seq of ack frames */
++ __u16 ack_cnt;
++ /* used by sw toe, accumulated data frames held at driver */
++ __u16 cur_pktsize;
++
++ __u8 status;
++#define TCP_CONN_UNDEFINE 0X00
++#define TCP_CONN_CREATION 0X01
++#define TCP_CONN_CONNECTING 0X02
++#define TCP_CONN_ESTABLISHED 0X04
++#define TCP_CONN_RESET 0X08 // this is used for out-of-order
++ // or congestion window is small
++#define TCP_CONN_CLOSING 0X10
++#define TCP_CONN_CLOSED 0x11
++
++ __u16 hash_entry_index; /* associated hash entry */
++
++ // one timer per connection. Otherwise all connections should be scanned
++ // in a timeout interrupt, and timeout interrupt is triggered no matter
++ // a connection is actually timeout or not.
++ struct timer_list rx_timer;
++ unsigned long last_rx_jiffies;
++ GMAC_INFO_T *gmac;
++ struct net_device *dev;
++
++ // for generating pure ack frame.
++ struct ethhdr l2_hdr;
++ struct iphdr l3_hdr;
++
++ spinlock_t conn_lock;
++ DMA_RWPTR_T toeq_rwptr;
++ GMAC_RXDESC_T *curr_desc;
++ struct sk_buff *curr_rx_skb;
++};
++
++struct jumbo_frame {
++ struct sk_buff *skb0; // the head of jumbo frame
++ struct sk_buff *tail; // the tail of jumbo frame
++ struct iphdr *iphdr0; // the ip hdr of skb0.
++ struct tcphdr *tcphdr0; // the tcp hdr of skb0.
++};
++
++#endif // __SL351x_TOE_H
+--- a/drivers/net/Kconfig
++++ b/drivers/net/Kconfig
+@@ -2131,6 +2131,42 @@
+
+ The safe and default value for this is N.
+
++config NET_GMAC
++ tristate "Storlink Gigabit Ethernet support"
++ depends on ARCH_SL2312
++ help
++ This driver supports Storlink dual Gigabit Ethernet.
++
++config NET_SL2312
++ tristate "Storlink Gigabit Ethernet support"
++ depends on NET_GMAC
++ help
++ This driver supports Storlink dual Gigabit Ethernet.
++
++config NET_SL351X
++ tristate "Storlink Lepus Gigabit Ethernet support"
++ depends on NET_GMAC
++ help
++ This driver supports Storlink TOE and NAT dual Gigabit Ethernet.
++
++config SL2312_TSO
++ bool "Tx Segmentation Enable"
++ depends on NET_GMAC
++ help
++ TBD
++
++config SL2312_MPAGE
++ bool "Tx Multipage Enable"
++ depends on NET_GMAC
++ help
++ TBD
++
++config SL2312_RECVFILE
++ bool "Rx Multipage Enable"
++ depends on NET_GMAC
++ help
++ TBD
++
+ config DL2K
+ tristate "D-Link DL2000-based Gigabit Ethernet support"
+ depends on PCI
+--- a/drivers/net/Makefile
++++ b/drivers/net/Makefile
+@@ -236,4 +236,8 @@
+
+ obj-$(CONFIG_FS_ENET) += fs_enet/
+
+-obj-$(CONFIG_NETXEN_NIC) += netxen/
++
++obj-$(CONFIG_NET_SL351X)+= sl351x_gmac.o sl351x_nat.o sl351x_hash.o sl351x_crc16.o sl351x_proc.o sl_switch.o
++obj-$(CONFIG_NET_SL2312)+= sl2312_emac.o
++
++