summaryrefslogtreecommitdiffstats
path: root/docs/config.tex
blob: 17417c99a1c2574aeac1d57397ffeade81f7c04a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
\subsubsection{Structure of the configuration files}

The config files are divided into sections and options/values.

Every section has a type, but does not necessarily have a name.
Every option has a name and a value and is assigned to the section
it was written under.

Syntax:

\begin{Verbatim}
config      <type> ["<name>"]      # Section
    option  <name> "<value>"       # Option
\end{Verbatim}

Every parameter needs to be a single string and is formatted exactly
like a parameter for a shell function. The same rules for Quoting and
special characters also apply, as it is parsed by the shell.

\subsubsection{Parsing configuration files in custom scripts}

To be able to load configuration files, you need to include the common
functions with:

\begin{Verbatim}
. /etc/functions.sh
\end{Verbatim}

Then you can use \texttt{config\_load \textit{<name>}} to load config files. The function
first checks for \textit{<name>} as absolute filename and falls back to loading
it from \texttt{/etc/config} (which is the most common way of using it).

If you want to use special callbacks for sections and/or options, you
need to define the following shell functions before running \texttt{config\_load}
(after including \texttt{/etc/functions.sh}):

\begin{Verbatim}
config_cb() {
    local type="$1"
    local name="$2"
    # commands to be run for every section
}

option_cb() {
    # commands to be run for every option
}
\end{Verbatim}

You can also alter \texttt{option\_cb} from \texttt{config\_cb} based on the section type.
This allows you to process every single config section based on its type
individually.

\texttt{config\_cb} is run every time a new section starts (before options are being
processed). You can access the last section through the \texttt{CONFIG\_SECTION}
variable. Also an extra call to \texttt{config\_cb} (without a new section) is generated
after \texttt{config\_load} is done.
That allows you to process sections both before and after all options were
processed.

Another way of iterating on config sections is using the \texttt{config\_foreach} command.

Syntax:
\begin{Verbatim}
config_foreach <function name> [<sectiontype>] [<arguments...>]
\end{Verbatim}

This command will run the supplied function for every single config section in the currently
loaded config. The section name will be passed to the function as argument 1.
If the section type is added to the command line, the function will only be called for
sections of the given type.


You can access already processed options with the \texttt{config\_get} command
Syntax:

\begin{Verbatim}
# print the value of the option
config_get <section> <option>

# store the value inside the variable
config_get <variable> <section> <option>
\end{Verbatim}

In busybox ash the three-option \texttt{config\_get} is faster, because it does not
result in an extra fork, so it is the preferred way.

Additionally you can also modify or add options to sections by using the
\texttt{config\_set} command.

Syntax:

\begin{Verbatim}
config_set <section> <option> <value>
\end{Verbatim}

If a config section is unnamed, an automatically generated name will
be assigned internally, e.g. \texttt{cfg1}, \texttt{cfg2}, ...

While it is possible, using unnamed sections through these autogenerated names is
strongly discouraged. Use callbacks or \texttt{config\_foreach} instead.
'n473' href='#n473'>473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/**CFile***********************************************************************

  FileName    [cuddZddUtil.c]

  PackageName [cudd]

  Synopsis    [Utility functions for ZDDs.]

  Description [External procedures included in this module:
                    <ul>
                    <li> Cudd_zddPrintMinterm()
                    <li> Cudd_zddPrintCover()
                    <li> Cudd_zddPrintDebug()
                    <li> Cudd_zddFirstPath()
                    <li> Cudd_zddNextPath()
                    <li> Cudd_zddCoverPathToString()
                    <li> Cudd_zddDumpDot()
                    </ul>
               Internal procedures included in this module:
                    <ul>
                    <li> cuddZddP()
                    </ul>
               Static procedures included in this module:
                    <ul>
                    <li> zp2()
                    <li> zdd_print_minterm_aux()
                    <li> zddPrintCoverAux()
                    </ul>
              ]

  SeeAlso     []

  Author      [Hyong-Kyoon Shin, In-Ho Moon, Fabio Somenzi]

  Copyright   [Copyright (c) 1995-2004, Regents of the University of Colorado

  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  Redistributions of source code must retain the above copyright
  notice, this list of conditions and the following disclaimer.

  Redistributions in binary form must reproduce the above copyright
  notice, this list of conditions and the following disclaimer in the
  documentation and/or other materials provided with the distribution.

  Neither the name of the University of Colorado nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.]

******************************************************************************/

#include "misc/util/util_hack.h"
#include "cuddInt.h"

ABC_NAMESPACE_IMPL_START



/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddZddUtil.c,v 1.27 2009/03/08 02:49:02 fabio Exp $";
#endif

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/


/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

static int zp2 (DdManager *zdd, DdNode *f, st__table *t);
static void zdd_print_minterm_aux (DdManager *zdd, DdNode *node, int level, int *list);
static void zddPrintCoverAux (DdManager *zdd, DdNode *node, int level, int *list);

/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Prints a disjoint sum of product form for a ZDD.]

  Description [Prints a disjoint sum of product form for a ZDD. Returns 1
  if successful; 0 otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_zddPrintDebug Cudd_zddPrintCover]

******************************************************************************/
int
Cudd_zddPrintMinterm(
  DdManager * zdd,
  DdNode * node)
{
    int         i, size;
    int         *list;

    size = (int)zdd->sizeZ;
    list = ABC_ALLOC(int, size);
    if (list == NULL) {
        zdd->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }
    for (i = 0; i < size; i++) list[i] = 3; /* bogus value should disappear */
    zdd_print_minterm_aux(zdd, node, 0, list);
    ABC_FREE(list);
    return(1);

} /* end of Cudd_zddPrintMinterm */


/**Function********************************************************************

  Synopsis    [Prints a sum of products from a ZDD representing a cover.]

  Description [Prints a sum of products from a ZDD representing a cover.
  Returns 1 if successful; 0 otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_zddPrintMinterm]

******************************************************************************/
int
Cudd_zddPrintCover(
  DdManager * zdd,
  DdNode * node)
{
    int         i, size;
    int         *list;

    size = (int)zdd->sizeZ;
    if (size % 2 != 0) return(0); /* number of variables should be even */
    list = ABC_ALLOC(int, size);
    if (list == NULL) {
        zdd->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }
    for (i = 0; i < size; i++) list[i] = 3; /* bogus value should disappear */
    zddPrintCoverAux(zdd, node, 0, list);
    ABC_FREE(list);
    return(1);

} /* end of Cudd_zddPrintCover */


/**Function********************************************************************

  Synopsis [Prints to the standard output a ZDD and its statistics.]

  Description [Prints to the standard output a DD and its statistics.
  The statistics include the number of nodes and the number of minterms.
  (The number of minterms is also the number of combinations in the set.)
  The statistics are printed if pr &gt; 0.  Specifically:
  <ul>
  <li> pr = 0 : prints nothing
  <li> pr = 1 : prints counts of nodes and minterms
  <li> pr = 2 : prints counts + disjoint sum of products
  <li> pr = 3 : prints counts + list of nodes
  <li> pr &gt; 3 : prints counts + disjoint sum of products + list of nodes
  </ul>
  Returns 1 if successful; 0 otherwise.
  ]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
int
Cudd_zddPrintDebug(
  DdManager * zdd,
  DdNode * f,
  int  n,
  int  pr)
{
    DdNode      *empty = DD_ZERO(zdd);
    int         nodes;
    double      minterms;
    int         retval = 1;

    if (f == empty && pr > 0) {
        (void) fprintf(zdd->out,": is the empty ZDD\n");
        (void) fflush(zdd->out);
        return(1);
    }

    if (pr > 0) {
        nodes = Cudd_zddDagSize(f);
        if (nodes == CUDD_OUT_OF_MEM) retval = 0;
        minterms = Cudd_zddCountMinterm(zdd, f, n);
        if (minterms == (double)CUDD_OUT_OF_MEM) retval = 0;
        (void) fprintf(zdd->out,": %d nodes %g minterms\n",
                       nodes, minterms);
        if (pr > 2)
            if (!cuddZddP(zdd, f)) retval = 0;
        if (pr == 2 || pr > 3) {
            if (!Cudd_zddPrintMinterm(zdd, f)) retval = 0;
            (void) fprintf(zdd->out,"\n");
        }
        (void) fflush(zdd->out);
    }
    return(retval);

} /* end of Cudd_zddPrintDebug */



/**Function********************************************************************

  Synopsis    [Finds the first path of a ZDD.]

  Description [Defines an iterator on the paths of a ZDD
  and finds its first path. Returns a generator that contains the
  information necessary to continue the enumeration if successful; NULL
  otherwise.<p>
  A path is represented as an array of literals, which are integers in
  {0, 1, 2}; 0 represents an else arc out of a node, 1 represents a then arc
  out of a node, and 2 stands for the absence of a node.
  The size of the array equals the number of variables in the manager at
  the time Cudd_zddFirstCube is called.<p>
  The paths that end in the empty terminal are not enumerated.]

  SideEffects [The first path is returned as a side effect.]

  SeeAlso     [Cudd_zddForeachPath Cudd_zddNextPath Cudd_GenFree
  Cudd_IsGenEmpty]

******************************************************************************/
DdGen *
Cudd_zddFirstPath(
  DdManager * zdd,
  DdNode * f,
  int ** path)
{
    DdGen *gen;
    DdNode *top, *next, *prev;
    int i;
    int nvars;

    /* Sanity Check. */
    if (zdd == NULL || f == NULL) return(NULL);

    /* Allocate generator an initialize it. */
    gen = ABC_ALLOC(DdGen,1);
    if (gen == NULL) {
        zdd->errorCode = CUDD_MEMORY_OUT;
        return(NULL);
    }

    gen->manager = zdd;
    gen->type = CUDD_GEN_ZDD_PATHS;
    gen->status = CUDD_GEN_EMPTY;
    gen->gen.cubes.cube = NULL;
    gen->gen.cubes.value = DD_ZERO_VAL;
    gen->stack.sp = 0;
    gen->stack.stack = NULL;
    gen->node = NULL;

    nvars = zdd->sizeZ;
    gen->gen.cubes.cube = ABC_ALLOC(int,nvars);
    if (gen->gen.cubes.cube == NULL) {
        zdd->errorCode = CUDD_MEMORY_OUT;
        ABC_FREE(gen);
        return(NULL);
    }
    for (i = 0; i < nvars; i++) gen->gen.cubes.cube[i] = 2;

    /* The maximum stack depth is one plus the number of variables.
    ** because a path may have nodes at all levels, including the
    ** constant level.
    */
    gen->stack.stack = ABC_ALLOC(DdNodePtr, nvars+1);
    if (gen->stack.stack == NULL) {
        zdd->errorCode = CUDD_MEMORY_OUT;
        ABC_FREE(gen->gen.cubes.cube);
        ABC_FREE(gen);
        return(NULL);
    }
    for (i = 0; i <= nvars; i++) gen->stack.stack[i] = NULL;

    /* Find the first path of the ZDD. */
    gen->stack.stack[gen->stack.sp] = f; gen->stack.sp++;

    while (1) {
        top = gen->stack.stack[gen->stack.sp-1];
        if (!cuddIsConstant(Cudd_Regular(top))) {
            /* Take the else branch first. */
            gen->gen.cubes.cube[Cudd_Regular(top)->index] = 0;
            next = cuddE(Cudd_Regular(top));
            gen->stack.stack[gen->stack.sp] = Cudd_Not(next); gen->stack.sp++;
        } else if (Cudd_Regular(top) == DD_ZERO(zdd)) {
            /* Backtrack. */
            while (1) {
                if (gen->stack.sp == 1) {
                    /* The current node has no predecessor. */
                    gen->status = CUDD_GEN_EMPTY;
                    gen->stack.sp--;
                    goto done;
                }
                prev = Cudd_Regular(gen->stack.stack[gen->stack.sp-2]);
                next = cuddT(prev);
                if (next != top) { /* follow the then branch next */
                    gen->gen.cubes.cube[prev->index] = 1;
                    gen->stack.stack[gen->stack.sp-1] = next;
                    break;
                }
                /* Pop the stack and try again. */
                gen->gen.cubes.cube[prev->index] = 2;
                gen->stack.sp--;
                top = gen->stack.stack[gen->stack.sp-1];
            }
        } else {
            gen->status = CUDD_GEN_NONEMPTY;
            gen->gen.cubes.value = cuddV(Cudd_Regular(top));
            goto done;
        }
    }

done:
    *path = gen->gen.cubes.cube;
    return(gen);

} /* end of Cudd_zddFirstPath */


/**Function********************************************************************

  Synopsis    [Generates the next path of a ZDD.]

  Description [Generates the next path of a ZDD onset,
  using generator gen. Returns 0 if the enumeration is completed; 1
  otherwise.]

  SideEffects [The path is returned as a side effect. The
  generator is modified.]

  SeeAlso     [Cudd_zddForeachPath Cudd_zddFirstPath Cudd_GenFree
  Cudd_IsGenEmpty]

******************************************************************************/
int
Cudd_zddNextPath(
  DdGen * gen,
  int ** path)
{
    DdNode *top, *next, *prev;
    DdManager *zdd = gen->manager;

    /* Backtrack from previously reached terminal node. */
    while (1) {
        if (gen->stack.sp == 1) {
            /* The current node has no predecessor. */
            gen->status = CUDD_GEN_EMPTY;
            gen->stack.sp--;
            goto done;
        }
        top = gen->stack.stack[gen->stack.sp-1];
        prev = Cudd_Regular(gen->stack.stack[gen->stack.sp-2]);
        next = cuddT(prev);
        if (next != top) { /* follow the then branch next */
            gen->gen.cubes.cube[prev->index] = 1;
            gen->stack.stack[gen->stack.sp-1] = next;
            break;
        }
        /* Pop the stack and try again. */
        gen->gen.cubes.cube[prev->index] = 2;
        gen->stack.sp--;
    }

    while (1) {
        top = gen->stack.stack[gen->stack.sp-1];
        if (!cuddIsConstant(Cudd_Regular(top))) {
            /* Take the else branch first. */
            gen->gen.cubes.cube[Cudd_Regular(top)->index] = 0;
            next = cuddE(Cudd_Regular(top));
            gen->stack.stack[gen->stack.sp] = Cudd_Not(next); gen->stack.sp++;
        } else if (Cudd_Regular(top) == DD_ZERO(zdd)) {
            /* Backtrack. */
            while (1) {
                if (gen->stack.sp == 1) {
                    /* The current node has no predecessor. */
                    gen->status = CUDD_GEN_EMPTY;
                    gen->stack.sp--;
                    goto done;
                }
                prev = Cudd_Regular(gen->stack.stack[gen->stack.sp-2]);
                next = cuddT(prev);
                if (next != top) { /* follow the then branch next */
                    gen->gen.cubes.cube[prev->index] = 1;
                    gen->stack.stack[gen->stack.sp-1] = next;
                    break;
                }
                /* Pop the stack and try again. */
                gen->gen.cubes.cube[prev->index] = 2;
                gen->stack.sp--;
                top = gen->stack.stack[gen->stack.sp-1];
            }
        } else {
            gen->status = CUDD_GEN_NONEMPTY;
            gen->gen.cubes.value = cuddV(Cudd_Regular(top));
            goto done;
        }
    }

done:
    if (gen->status == CUDD_GEN_EMPTY) return(0);
    *path = gen->gen.cubes.cube;
    return(1);

} /* end of Cudd_zddNextPath */


/**Function********************************************************************

  Synopsis    [Converts a path of a ZDD representing a cover to a string.]

  Description [Converts a path of a ZDD representing a cover to a
  string.  The string represents an implicant of the cover.  The path
  is typically produced by Cudd_zddForeachPath.  Returns a pointer to
  the string if successful; NULL otherwise.  If the str input is NULL,
  it allocates a new string.  The string passed to this function must
  have enough room for all variables and for the terminator.]

  SideEffects [None]

  SeeAlso     [Cudd_zddForeachPath]

******************************************************************************/
char *
Cudd_zddCoverPathToString(
  DdManager *zdd                /* DD manager */,
  int *path                     /* path of ZDD representing a cover */,
  char *str                     /* pointer to string to use if != NULL */
  )
{
    int nvars = zdd->sizeZ;
    int i;
    char *res;

    if (nvars & 1) return(NULL);
    nvars >>= 1;
    if (str == NULL) {
        res = ABC_ALLOC(char, nvars+1);
        if (res == NULL) return(NULL);
    } else {
        res = str;
    }
    for (i = 0; i < nvars; i++) {
        int v = (path[2*i] << 2) | path[2*i+1];
        switch (v) {
        case 0:
        case 2:
        case 8:
        case 10:
            res[i] = '-';
            break;
        case 1:
        case 9:
            res[i] = '0';
            break;
        case 4:
        case 6:
            res[i] = '1';
            break;
        default:
            res[i] = '?';
        }
    }
    res[nvars] = 0;

    return(res);

} /* end of Cudd_zddCoverPathToString */


/**Function********************************************************************

  Synopsis    [Writes a dot file representing the argument ZDDs.]

  Description [Writes a file representing the argument ZDDs in a format
  suitable for the graph drawing program dot.
  It returns 1 in case of success; 0 otherwise (e.g., out-of-memory,
  file system full).
  Cudd_zddDumpDot does not close the file: This is the caller
  responsibility. Cudd_zddDumpDot uses a minimal unique subset of the
  hexadecimal address of a node as name for it.
  If the argument inames is non-null, it is assumed to hold the pointers
  to the names of the inputs. Similarly for onames.
  Cudd_zddDumpDot uses the following convention to draw arcs:
    <ul>
    <li> solid line: THEN arcs;
    <li> dashed line: ELSE arcs.
    </ul>
  The dot options are chosen so that the drawing fits on a letter-size
  sheet.
  ]

  SideEffects [None]

  SeeAlso     [Cudd_DumpDot Cudd_zddPrintDebug]

******************************************************************************/
int
Cudd_zddDumpDot(
  DdManager * dd /* manager */,
  int  n /* number of output nodes to be dumped */,
  DdNode ** f /* array of output nodes to be dumped */,
  char ** inames /* array of input names (or NULL) */,
  char ** onames /* array of output names (or NULL) */,
  FILE * fp /* pointer to the dump file */)
{
    DdNode      *support = NULL;
    DdNode      *scan;
    int         *sorted = NULL;
    int         nvars = dd->sizeZ;
    st__table    *visited = NULL;
    st__generator *gen;
    int         retval;
    int         i, j;
    int         slots;
    DdNodePtr   *nodelist;
    long        refAddr, diff, mask;

    /* Build a bit array with the support of f. */
    sorted = ABC_ALLOC(int,nvars);
    if (sorted == NULL) {
        dd->errorCode = CUDD_MEMORY_OUT;
        goto failure;
    }
    for (i = 0; i < nvars; i++) sorted[i] = 0;

    /* Take the union of the supports of each output function. */
    for (i = 0; i < n; i++) {
        support = Cudd_Support(dd,f[i]);
        if (support == NULL) goto failure;
        cuddRef(support);
        scan = support;
        while (!cuddIsConstant(scan)) {
            sorted[scan->index] = 1;
            scan = cuddT(scan);
        }
        Cudd_RecursiveDeref(dd,support);
    }
    support = NULL; /* so that we do not try to free it in case of failure */

    /* Initialize symbol table for visited nodes. */
    visited = st__init_table( st__ptrcmp, st__ptrhash);
    if (visited == NULL) goto failure;

    /* Collect all the nodes of this DD in the symbol table. */
    for (i = 0; i < n; i++) {
        retval = cuddCollectNodes(f[i],visited);
        if (retval == 0) goto failure;
    }

    /* Find how many most significant hex digits are identical
    ** in the addresses of all the nodes. Build a mask based
    ** on this knowledge, so that digits that carry no information
    ** will not be printed. This is done in two steps.
    **  1. We scan the symbol table to find the bits that differ
    **     in at least 2 addresses.
    **  2. We choose one of the possible masks. There are 8 possible
    **     masks for 32-bit integer, and 16 possible masks for 64-bit
    **     integers.
    */

    /* Find the bits that are different. */
    refAddr = (long) f[0];
    diff = 0;
    gen = st__init_gen(visited);
    while ( st__gen(gen, (const char **)&scan, NULL)) {
        diff |= refAddr ^ (long) scan;
    }
    st__free_gen(gen);

    /* Choose the mask. */
    for (i = 0; (unsigned) i < 8 * sizeof(long); i += 4) {
        mask = (1 << i) - 1;
        if (diff <= mask) break;
    }

    /* Write the header and the global attributes. */
    retval = fprintf(fp,"digraph \"ZDD\" {\n");
    if (retval == EOF) return(0);
    retval = fprintf(fp,
        "size = \"7.5,10\"\ncenter = true;\nedge [dir = none];\n");
    if (retval == EOF) return(0);

    /* Write the input name subgraph by scanning the support array. */
    retval = fprintf(fp,"{ node [shape = plaintext];\n");
    if (retval == EOF) goto failure;
    retval = fprintf(fp,"  edge [style = invis];\n");
    if (retval == EOF) goto failure;
    /* We use a name ("CONST NODES") with an embedded blank, because
    ** it is unlikely to appear as an input name.
    */
    retval = fprintf(fp,"  \"CONST NODES\" [style = invis];\n");
    if (retval == EOF) goto failure;
    for (i = 0; i < nvars; i++) {
        if (sorted[dd->invpermZ[i]]) {
            if (inames == NULL) {
                retval = fprintf(fp,"\" %d \" -> ", dd->invpermZ[i]);
            } else {
                retval = fprintf(fp,"\" %s \" -> ", inames[dd->invpermZ[i]]);
            }
            if (retval == EOF) goto failure;
        }
    }
    retval = fprintf(fp,"\"CONST NODES\"; \n}\n");
    if (retval == EOF) goto failure;

    /* Write the output node subgraph. */
    retval = fprintf(fp,"{ rank = same; node [shape = box]; edge [style = invis];\n");
    if (retval == EOF) goto failure;
    for (i = 0; i < n; i++) {
        if (onames == NULL) {
            retval = fprintf(fp,"\"F%d\"", i);
        } else {
            retval = fprintf(fp,"\"  %s  \"", onames[i]);
        }
        if (retval == EOF) goto failure;
        if (i == n - 1) {
            retval = fprintf(fp,"; }\n");
        } else {
            retval = fprintf(fp," -> ");
        }
        if (retval == EOF) goto failure;
    }

    /* Write rank info: All nodes with the same index have the same rank. */
    for (i = 0; i < nvars; i++) {
        if (sorted[dd->invpermZ[i]]) {
            retval = fprintf(fp,"{ rank = same; ");
            if (retval == EOF) goto failure;
            if (inames == NULL) {
                retval = fprintf(fp,"\" %d \";\n", dd->invpermZ[i]);
            } else {
                retval = fprintf(fp,"\" %s \";\n", inames[dd->invpermZ[i]]);
            }
            if (retval == EOF) goto failure;
            nodelist = dd->subtableZ[i].nodelist;
            slots = dd->subtableZ[i].slots;
            for (j = 0; j < slots; j++) {
                scan = nodelist[j];
                while (scan != NULL) {
                    if ( st__is_member(visited,(char *) scan)) {
                        retval = fprintf(fp,"\"%p\";\n", (void *)
                                         ((mask & (ptrint) scan) /
                                          sizeof(DdNode)));
                        if (retval == EOF) goto failure;
                    }
                    scan = scan->next;
                }
            }
            retval = fprintf(fp,"}\n");
            if (retval == EOF) goto failure;
        }
    }

    /* All constants have the same rank. */
    retval = fprintf(fp,
        "{ rank = same; \"CONST NODES\";\n{ node [shape = box]; ");
    if (retval == EOF) goto failure;
    nodelist = dd->constants.nodelist;
    slots = dd->constants.slots;
    for (j = 0; j < slots; j++) {
        scan = nodelist[j];
        while (scan != NULL) {
            if ( st__is_member(visited,(char *) scan)) {
                retval = fprintf(fp,"\"%p\";\n", (void *)
                                 ((mask & (ptrint) scan) / sizeof(DdNode)));
                if (retval == EOF) goto failure;
            }
            scan = scan->next;
        }
    }
    retval = fprintf(fp,"}\n}\n");
    if (retval == EOF) goto failure;

    /* Write edge info. */
    /* Edges from the output nodes. */
    for (i = 0; i < n; i++) {
        if (onames == NULL) {
            retval = fprintf(fp,"\"F%d\"", i);
        } else {
            retval = fprintf(fp,"\"  %s  \"", onames[i]);
        }
        if (retval == EOF) goto failure;
        retval = fprintf(fp," -> \"%p\" [style = solid];\n",
                         (void *) ((mask & (ptrint) f[i]) /
                                          sizeof(DdNode)));
        if (retval == EOF) goto failure;
    }

    /* Edges from internal nodes. */
    for (i = 0; i < nvars; i++) {
        if (sorted[dd->invpermZ[i]]) {
            nodelist = dd->subtableZ[i].nodelist;
            slots = dd->subtableZ[i].slots;
            for (j = 0; j < slots; j++) {
                scan = nodelist[j];
                while (scan != NULL) {
                    if ( st__is_member(visited,(char *) scan)) {
                        retval = fprintf(fp,
                            "\"%p\" -> \"%p\";\n",
                            (void *) ((mask & (ptrint) scan) / sizeof(DdNode)),
                            (void *) ((mask & (ptrint) cuddT(scan)) /
                                      sizeof(DdNode)));
                        if (retval == EOF) goto failure;
                        retval = fprintf(fp,
                                         "\"%p\" -> \"%p\" [style = dashed];\n",
                                         (void *) ((mask & (ptrint) scan)
                                                   / sizeof(DdNode)),
                                         (void *) ((mask & (ptrint)
                                                    cuddE(scan)) /
                                                   sizeof(DdNode)));
                        if (retval == EOF) goto failure;
                    }
                    scan = scan->next;
                }
            }
        }
    }

    /* Write constant labels. */
    nodelist = dd->constants.nodelist;
    slots = dd->constants.slots;
    for (j = 0; j < slots; j++) {
        scan = nodelist[j];
        while (scan != NULL) {
            if ( st__is_member(visited,(char *) scan)) {
                retval = fprintf(fp,"\"%p\" [label = \"%g\"];\n",
                                 (void *) ((mask & (ptrint) scan) /
                                           sizeof(DdNode)),
                                 cuddV(scan));
                if (retval == EOF) goto failure;
            }
            scan = scan->next;
        }
    }

    /* Write trailer and return. */
    retval = fprintf(fp,"}\n");
    if (retval == EOF) goto failure;

    st__free_table(visited);
    ABC_FREE(sorted);
    return(1);

failure:
    if (sorted != NULL) ABC_FREE(sorted);
    if (visited != NULL) st__free_table(visited);
    return(0);

} /* end of Cudd_zddDumpBlif */


/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis [Prints a ZDD to the standard output. One line per node is
  printed.]

  Description [Prints a ZDD to the standard output. One line per node is
  printed. Returns 1 if successful; 0 otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_zddPrintDebug]

******************************************************************************/
int
cuddZddP(
  DdManager * zdd,
  DdNode * f)
{
    int retval;
    st__table *table = st__init_table( st__ptrcmp, st__ptrhash);

    if (table == NULL) return(0);

    retval = zp2(zdd, f, table);
    st__free_table(table);
    (void) fputc('\n', zdd->out);
    return(retval);

} /* end of cuddZddP */


/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis [Performs the recursive step of cuddZddP.]

  Description [Performs the recursive step of cuddZddP. Returns 1 in
  case of success; 0 otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
zp2(
  DdManager * zdd,
  DdNode * f,
  st__table * t)
{
    DdNode      *n;
    int         T, E;
    DdNode      *base = DD_ONE(zdd);

    if (f == NULL)
        return(0);

    if (Cudd_IsConstant(f)) {
        (void)fprintf(zdd->out, "ID = %d\n", (f == base));
        return(1);
    }
    if ( st__is_member(t, (char *)f) == 1)
        return(1);

    if ( st__insert(t, (char *) f, NULL) == st__OUT_OF_MEM)
        return(0);

#if SIZEOF_VOID_P == 8
    (void) fprintf(zdd->out, "ID = 0x%lx\tindex = %u\tr = %u\t",
        (ptruint)f / (ptruint) sizeof(DdNode), f->index, f->ref);
#else
    (void) fprintf(zdd->out, "ID = 0x%x\tindex = %hu\tr = %hu\t",
        (ptruint)f / (ptruint) sizeof(DdNode), f->index, f->ref);
#endif

    n = cuddT(f);
    if (Cudd_IsConstant(n)) {
        (void) fprintf(zdd->out, "T = %d\t\t", (n == base));
        T = 1;
    } else {
#if SIZEOF_VOID_P == 8
        (void) fprintf(zdd->out, "T = 0x%lx\t", (ptruint) n /
                       (ptruint) sizeof(DdNode));
#else
        (void) fprintf(zdd->out, "T = 0x%x\t", (ptruint) n /
                       (ptruint) sizeof(DdNode));
#endif
        T = 0;
    }

    n = cuddE(f);
    if (Cudd_IsConstant(n)) {
        (void) fprintf(zdd->out, "E = %d\n", (n == base));
        E = 1;
    } else {
#if SIZEOF_VOID_P == 8
        (void) fprintf(zdd->out, "E = 0x%lx\n", (ptruint) n /
                      (ptruint) sizeof(DdNode));
#else
        (void) fprintf(zdd->out, "E = 0x%x\n", (ptruint) n /
                       (ptruint) sizeof(DdNode));
#endif
        E = 0;
    }

    if (E == 0)
        if (zp2(zdd, cuddE(f), t) == 0) return(0);
    if (T == 0)
        if (zp2(zdd, cuddT(f), t) == 0) return(0);
    return(1);

} /* end of zp2 */


/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_zddPrintMinterm.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static void
zdd_print_minterm_aux(
  DdManager * zdd /* manager */,
  DdNode * node /* current node */,
  int  level /* depth in the recursion */,
  int * list /* current recursion path */)
{
    DdNode      *Nv, *Nnv;
    int         i, v;
    DdNode      *base = DD_ONE(zdd);

    if (Cudd_IsConstant(node)) {
        if (node == base) {
            /* Check for missing variable. */
            if (level != zdd->sizeZ) {
                list[zdd->invpermZ[level]] = 0;
                zdd_print_minterm_aux(zdd, node, level + 1, list);
                return;
            }
            /* Terminal case: Print one cube based on the current recursion
            ** path.
            */
            for (i = 0; i < zdd->sizeZ; i++) {
                v = list[i];
                if (v == 0)
                    (void) fprintf(zdd->out,"0");
                else if (v == 1)
                    (void) fprintf(zdd->out,"1");
                else if (v == 3)
                    (void) fprintf(zdd->out,"@");       /* should never happen */
                else
                    (void) fprintf(zdd->out,"-");
            }
            (void) fprintf(zdd->out," 1\n");
        }
    } else {
        /* Check for missing variable. */
        if (level != cuddIZ(zdd,node->index)) {
            list[zdd->invpermZ[level]] = 0;
            zdd_print_minterm_aux(zdd, node, level + 1, list);
            return;
        }

        Nnv = cuddE(node);
        Nv = cuddT(node);
        if (Nv == Nnv) {
            list[node->index] = 2;
            zdd_print_minterm_aux(zdd, Nnv, level + 1, list);
            return;
        }

        list[node->index] = 1;
        zdd_print_minterm_aux(zdd, Nv, level + 1, list);
        list[node->index] = 0;
        zdd_print_minterm_aux(zdd, Nnv, level + 1, list);
    }
    return;

} /* end of zdd_print_minterm_aux */


/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_zddPrintCover.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static void
zddPrintCoverAux(
  DdManager * zdd /* manager */,
  DdNode * node /* current node */,
  int  level /* depth in the recursion */,
  int * list /* current recursion path */)
{
    DdNode      *Nv, *Nnv;
    int         i, v;
    DdNode      *base = DD_ONE(zdd);

    if (Cudd_IsConstant(node)) {
        if (node == base) {
            /* Check for missing variable. */
            if (level != zdd->sizeZ) {
                list[zdd->invpermZ[level]] = 0;
                zddPrintCoverAux(zdd, node, level + 1, list);
                return;
            }
            /* Terminal case: Print one cube based on the current recursion
            ** path.
            */
            for (i = 0; i < zdd->sizeZ; i += 2) {
                v = list[i] * 4 + list[i+1];
                if (v == 0)
                    (void) putc('-',zdd->out);
                else if (v == 4)
                    (void) putc('1',zdd->out);
                else if (v == 1)
                    (void) putc('0',zdd->out);
                else
                    (void) putc('@',zdd->out); /* should never happen */
            }
            (void) fprintf(zdd->out," 1\n");
        }
    } else {
        /* Check for missing variable. */
        if (level != cuddIZ(zdd,node->index)) {
            list[zdd->invpermZ[level]] = 0;
            zddPrintCoverAux(zdd, node, level + 1, list);
            return;
        }

        Nnv = cuddE(node);
        Nv = cuddT(node);
        if (Nv == Nnv) {
            list[node->index] = 2;
            zddPrintCoverAux(zdd, Nnv, level + 1, list);
            return;
        }

        list[node->index] = 1;
        zddPrintCoverAux(zdd, Nv, level + 1, list);
        list[node->index] = 0;
        zddPrintCoverAux(zdd, Nnv, level + 1, list);
    }
    return;

} /* end of zddPrintCoverAux */


ABC_NAMESPACE_IMPL_END