summaryrefslogtreecommitdiffstats
path: root/target/linux/ramips/files/drivers/usb/host/mtk-phy-7621.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/ramips/files/drivers/usb/host/mtk-phy-7621.c')
-rw-r--r--target/linux/ramips/files/drivers/usb/host/mtk-phy-7621.c445
1 files changed, 445 insertions, 0 deletions
diff --git a/target/linux/ramips/files/drivers/usb/host/mtk-phy-7621.c b/target/linux/ramips/files/drivers/usb/host/mtk-phy-7621.c
new file mode 100644
index 0000000000..4e9c0d7a8d
--- /dev/null
+++ b/target/linux/ramips/files/drivers/usb/host/mtk-phy-7621.c
@@ -0,0 +1,445 @@
+#include "mtk-phy.h"
+
+#ifdef CONFIG_PROJECT_7621
+#include "mtk-phy-7621.h"
+
+//not used on SoC
+PHY_INT32 phy_init(struct u3phy_info *info){
+ return PHY_TRUE;
+}
+
+//not used on SoC
+PHY_INT32 phy_change_pipe_phase(struct u3phy_info *info, PHY_INT32 phy_drv, PHY_INT32 pipe_phase){
+ return PHY_TRUE;
+}
+
+//--------------------------------------------------------
+// Function : fgEyeScanHelper_CheckPtInRegion()
+// Description : Check if the test point is in a rectangle region.
+// If it is in the rectangle, also check if this point
+// is on the multiple of deltaX and deltaY.
+// Parameter : strucScanRegion * prEye - the region
+// BYTE bX
+// BYTE bY
+// Return : BYTE - TRUE : This point needs to be tested
+// FALSE: This point will be omitted
+// Note : First check within the rectangle.
+// Secondly, use modulous to check if the point will be tested.
+//--------------------------------------------------------
+static PHY_INT8 fgEyeScanHelper_CheckPtInRegion(struct strucScanRegion * prEye, PHY_INT8 bX, PHY_INT8 bY)
+{
+ PHY_INT8 fgValid = true;
+
+
+ /// Be careful, the axis origin is on the TOP-LEFT corner.
+ /// Therefore the top-left point has the minimum X and Y
+ /// Botton-right point is the maximum X and Y
+ if ( (prEye->bX_tl <= bX) && (bX <= prEye->bX_br)
+ && (prEye->bY_tl <= bY) && (bY <= prEye->bX_br))
+ {
+ // With the region, now check whether or not the input test point is
+ // on the multiples of X and Y
+ // Do not have to worry about negative value, because we have already
+ // check the input bX, and bY is within the region.
+ if ( ((bX - prEye->bX_tl) % (prEye->bDeltaX))
+ || ((bY - prEye->bY_tl) % (prEye->bDeltaY)) )
+ {
+ // if the division will have remainder, that means
+ // the input test point is on the multiples of X and Y
+ fgValid = false;
+ }
+ else
+ {
+ }
+ }
+ else
+ {
+
+ fgValid = false;
+ }
+ return fgValid;
+}
+
+//--------------------------------------------------------
+// Function : EyeScanHelper_RunTest()
+// Description : Enable the test, and wait til it is completed
+// Parameter : None
+// Return : None
+// Note : None
+//--------------------------------------------------------
+static void EyeScanHelper_RunTest(struct u3phy_info *info)
+{
+ DRV_UDELAY(100);
+ // Disable the test
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE_CNT_EN_OFST, RG_SSUSB_EQ_EYE_CNT_EN, 0); //RG_SSUSB_RX_EYE_CNT_EN = 0
+ DRV_UDELAY(100);
+ // Run the test
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE_CNT_EN_OFST, RG_SSUSB_EQ_EYE_CNT_EN, 1); //RG_SSUSB_RX_EYE_CNT_EN = 1
+ DRV_UDELAY(100);
+ // Wait til it's done
+ //RGS_SSUSB_RX_EYE_CNT_RDY
+ while(!U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->phya_rx_mon5)
+ , RGS_SSUSB_EQ_EYE_CNT_RDY_OFST, RGS_SSUSB_EQ_EYE_CNT_RDY));
+}
+
+//--------------------------------------------------------
+// Function : fgEyeScanHelper_CalNextPoint()
+// Description : Calcualte the test point for the measurement
+// Parameter : None
+// Return : BOOL - TRUE : the next point is within the
+// boundaryof HW limit
+// FALSE: the next point is out of the HW limit
+// Note : The next point is obtained by calculating
+// from the bottom left of the region rectangle
+// and then scanning up until it reaches the upper
+// limit. At this time, the x will increment, and
+// start scanning downwards until the y hits the
+// zero.
+//--------------------------------------------------------
+static PHY_INT8 fgEyeScanHelper_CalNextPoint(void)
+{
+ if ( ((_bYcurr == MAX_Y) && (_eScanDir == SCAN_DN))
+ || ((_bYcurr == MIN_Y) && (_eScanDir == SCAN_UP))
+ )
+ {
+ /// Reaches the limit of Y axis
+ /// Increment X
+ _bXcurr++;
+ _fgXChged = true;
+ _eScanDir = (_eScanDir == SCAN_UP) ? SCAN_DN : SCAN_UP;
+
+ if (_bXcurr > MAX_X)
+ {
+ return false;
+ }
+ }
+ else
+ {
+ _bYcurr = (_eScanDir == SCAN_DN) ? _bYcurr + 1 : _bYcurr - 1;
+ _fgXChged = false;
+ }
+ return PHY_TRUE;
+}
+
+PHY_INT32 eyescan_init(struct u3phy_info *info){
+ //initial PHY setting
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phya_regs->rega)
+ , RG_SSUSB_CDR_EPEN_OFST, RG_SSUSB_CDR_EPEN, 1);
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->phyd_mix3)
+ , RG_SSUSB_FORCE_CDR_PI_PWD_OFST, RG_SSUSB_FORCE_CDR_PI_PWD, 1);
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
+ , RG_SSUSB_RX_PI_CAL_EN_SEL_OFST, RG_SSUSB_RX_PI_CAL_EN_SEL, 1); //RG_SSUSB_RX_PI_CAL_MANUAL_SEL = 1
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
+ , RG_SSUSB_RX_PI_CAL_EN_OFST, RG_SSUSB_RX_PI_CAL_EN, 1); //RG_SSUSB_RX_PI_CAL_MANUAL_EN = 1
+ return PHY_TRUE;
+}
+
+PHY_INT32 phy_eyescan(struct u3phy_info *info, PHY_INT32 x_t1, PHY_INT32 y_t1, PHY_INT32 x_br, PHY_INT32 y_br, PHY_INT32 delta_x, PHY_INT32 delta_y
+ , PHY_INT32 eye_cnt, PHY_INT32 num_cnt, PHY_INT32 PI_cal_en, PHY_INT32 num_ignore_cnt){
+ PHY_INT32 cOfst = 0;
+ PHY_UINT8 bIdxX = 0;
+ PHY_UINT8 bIdxY = 0;
+ //PHY_INT8 bCnt = 0;
+ PHY_UINT8 bIdxCycCnt = 0;
+ PHY_INT8 fgValid;
+ PHY_INT8 cX;
+ PHY_INT8 cY;
+ PHY_UINT8 bExtendCnt;
+ PHY_INT8 isContinue;
+ //PHY_INT8 isBreak;
+ PHY_UINT32 wErr0 = 0, wErr1 = 0;
+ //PHY_UINT32 temp;
+
+ PHY_UINT32 pwErrCnt0[CYCLE_COUNT_MAX][ERRCNT_MAX][ERRCNT_MAX];
+ PHY_UINT32 pwErrCnt1[CYCLE_COUNT_MAX][ERRCNT_MAX][ERRCNT_MAX];
+
+ _rEye1.bX_tl = x_t1;
+ _rEye1.bY_tl = y_t1;
+ _rEye1.bX_br = x_br;
+ _rEye1.bY_br = y_br;
+ _rEye1.bDeltaX = delta_x;
+ _rEye1.bDeltaY = delta_y;
+
+ _rEye2.bX_tl = x_t1;
+ _rEye2.bY_tl = y_t1;
+ _rEye2.bX_br = x_br;
+ _rEye2.bY_br = y_br;
+ _rEye2.bDeltaX = delta_x;
+ _rEye2.bDeltaY = delta_y;
+
+ _rTestCycle.wEyeCnt = eye_cnt;
+ _rTestCycle.bNumOfEyeCnt = num_cnt;
+ _rTestCycle.bNumOfIgnoreCnt = num_ignore_cnt;
+ _rTestCycle.bPICalEn = PI_cal_en;
+
+ _bXcurr = 0;
+ _bYcurr = 0;
+ _eScanDir = SCAN_DN;
+ _fgXChged = false;
+
+ printk("x_t1: %x, y_t1: %x, x_br: %x, y_br: %x, delta_x: %x, delta_y: %x, \
+ eye_cnt: %x, num_cnt: %x, PI_cal_en: %x, num_ignore_cnt: %x\n", \
+ x_t1, y_t1, x_br, y_br, delta_x, delta_y, eye_cnt, num_cnt, PI_cal_en, num_ignore_cnt);
+
+ //force SIGDET to OFF
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
+ , RG_SSUSB_RX_SIGDET_EN_SEL_OFST, RG_SSUSB_RX_SIGDET_EN_SEL, 1); //RG_SSUSB_RX_SIGDET_SEL = 1
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
+ , RG_SSUSB_RX_SIGDET_EN_OFST, RG_SSUSB_RX_SIGDET_EN, 0); //RG_SSUSB_RX_SIGDET_EN = 0
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye1)
+ , RG_SSUSB_EQ_SIGDET_OFST, RG_SSUSB_EQ_SIGDET, 0); //RG_SSUSB_RX_SIGDET = 0
+
+ // RX_TRI_DET_EN to Disable
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq3)
+ , RG_SSUSB_EQ_TRI_DET_EN_OFST, RG_SSUSB_EQ_TRI_DET_EN, 0); //RG_SSUSB_RX_TRI_DET_EN = 0
+
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE_MON_EN_OFST, RG_SSUSB_EQ_EYE_MON_EN, 1); //RG_SSUSB_EYE_MON_EN = 1
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET, 0); //RG_SSUSB_RX_EYE_XOFFSET = 0
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y, 0); //RG_SSUSB_RX_EYE0_Y = 0
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE1_Y_OFST, RG_SSUSB_EQ_EYE1_Y, 0); //RG_SSUSB_RX_EYE1_Y = 0
+
+
+ if (PI_cal_en){
+ // PI Calibration
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
+ , RG_SSUSB_RX_PI_CAL_EN_SEL_OFST, RG_SSUSB_RX_PI_CAL_EN_SEL, 1); //RG_SSUSB_RX_PI_CAL_MANUAL_SEL = 1
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
+ , RG_SSUSB_RX_PI_CAL_EN_OFST, RG_SSUSB_RX_PI_CAL_EN, 0); //RG_SSUSB_RX_PI_CAL_MANUAL_EN = 0
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
+ , RG_SSUSB_RX_PI_CAL_EN_OFST, RG_SSUSB_RX_PI_CAL_EN, 1); //RG_SSUSB_RX_PI_CAL_MANUAL_EN = 1
+
+ DRV_UDELAY(20);
+
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
+ , RG_SSUSB_RX_PI_CAL_EN_OFST, RG_SSUSB_RX_PI_CAL_EN, 0); //RG_SSUSB_RX_PI_CAL_MANUAL_EN = 0
+ _bPIResult = U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->phya_rx_mon5)
+ , RGS_SSUSB_EQ_PILPO_OFST, RGS_SSUSB_EQ_PILPO); //read RGS_SSUSB_RX_PILPO
+
+ printk(KERN_ERR "PI result: %d\n", _bPIResult);
+ }
+ // Read Initial DAC
+ // Set CYCLE
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye3)
+ ,RG_SSUSB_EQ_EYE_CNT_OFST, RG_SSUSB_EQ_EYE_CNT, eye_cnt); //RG_SSUSB_RX_EYE_CNT
+
+ // Eye Monitor Feature
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye1)
+ , RG_SSUSB_EQ_EYE_MASK_OFST, RG_SSUSB_EQ_EYE_MASK, 0x3ff); //RG_SSUSB_RX_EYE_MASK = 0x3ff
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE_MON_EN_OFST, RG_SSUSB_EQ_EYE_MON_EN, 1); //RG_SSUSB_EYE_MON_EN = 1
+
+ // Move X,Y to the top-left corner
+ for (cOfst = 0; cOfst >= -64; cOfst--)
+ {
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ ,RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET, cOfst); //RG_SSUSB_RX_EYE_XOFFSET
+ }
+ for (cOfst = 0; cOfst < 64; cOfst++)
+ {
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y, cOfst); //RG_SSUSB_RX_EYE0_Y
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE1_Y_OFST, RG_SSUSB_EQ_EYE1_Y, cOfst); //RG_SSUSB_RX_EYE1_Y
+ }
+ //ClearErrorResult
+ for(bIdxCycCnt = 0; bIdxCycCnt < CYCLE_COUNT_MAX; bIdxCycCnt++){
+ for(bIdxX = 0; bIdxX < ERRCNT_MAX; bIdxX++)
+ {
+ for(bIdxY = 0; bIdxY < ERRCNT_MAX; bIdxY++){
+ pwErrCnt0[bIdxCycCnt][bIdxX][bIdxY] = 0;
+ pwErrCnt1[bIdxCycCnt][bIdxX][bIdxY] = 0;
+ }
+ }
+ }
+ isContinue = true;
+ while(isContinue){
+ //printk(KERN_ERR "_bXcurr: %d, _bYcurr: %d\n", _bXcurr, _bYcurr);
+ // The point is within the boundary, then let's check if it is within
+ // the testing region.
+ // The point is only test-able if one of the eye region
+ // includes this point.
+ fgValid = fgEyeScanHelper_CheckPtInRegion(&_rEye1, _bXcurr, _bYcurr)
+ || fgEyeScanHelper_CheckPtInRegion(&_rEye2, _bXcurr, _bYcurr);
+ // Translate bX and bY to 2's complement from where the origin was on the
+ // top left corner.
+ // 0x40 and 0x3F needs a bit of thinking!!!! >"<
+ cX = (_bXcurr ^ 0x40);
+ cY = (_bYcurr ^ 0x3F);
+
+ // Set X if necessary
+ if (_fgXChged == true)
+ {
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET, cX); //RG_SSUSB_RX_EYE_XOFFSET
+ }
+ // Set Y
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y, cY); //RG_SSUSB_RX_EYE0_Y
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE1_Y_OFST, RG_SSUSB_EQ_EYE1_Y, cY); //RG_SSUSB_RX_EYE1_Y
+
+ /// Test this point!
+ if (fgValid){
+ for (bExtendCnt = 0; bExtendCnt < num_ignore_cnt; bExtendCnt++)
+ {
+ //run test
+ EyeScanHelper_RunTest(info);
+ }
+ for (bExtendCnt = 0; bExtendCnt < num_cnt; bExtendCnt++)
+ {
+ EyeScanHelper_RunTest(info);
+ wErr0 = U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->phya_rx_mon3)
+ , RGS_SSUSB_EQ_EYE_MONITOR_ERRCNT_0_OFST, RGS_SSUSB_EQ_EYE_MONITOR_ERRCNT_0);
+ wErr1 = U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->phya_rx_mon4)
+ , RGS_SSUSB_EQ_EYE_MONITOR_ERRCNT_1_OFST, RGS_SSUSB_EQ_EYE_MONITOR_ERRCNT_1);
+
+ pwErrCnt0[bExtendCnt][_bXcurr][_bYcurr] = wErr0;
+ pwErrCnt1[bExtendCnt][_bXcurr][_bYcurr] = wErr1;
+
+ //EyeScanHelper_GetResult(&_rRes.pwErrCnt0[bCnt], &_rRes.pwErrCnt1[bCnt]);
+// printk(KERN_ERR "cnt[%d] cur_x,y [0x%x][0x%x], cX,cY [0x%x][0x%x], ErrCnt[%d][%d]\n"
+// , bExtendCnt, _bXcurr, _bYcurr, cX, cY, pwErrCnt0[bExtendCnt][_bXcurr][_bYcurr], pwErrCnt1[bExtendCnt][_bXcurr][_bYcurr]);
+ }
+ //printk(KERN_ERR "cur_x,y [0x%x][0x%x], cX,cY [0x%x][0x%x], ErrCnt[%d][%d]\n", _bXcurr, _bYcurr, cX, cY, pwErrCnt0[0][_bXcurr][_bYcurr], pwErrCnt1[0][_bXcurr][_bYcurr]);
+ }
+ else{
+
+ }
+ if (fgEyeScanHelper_CalNextPoint() == false){
+#if 0
+ printk(KERN_ERR "Xcurr [0x%x] Ycurr [0x%x]\n", _bXcurr, _bYcurr);
+ printk(KERN_ERR "XcurrREG [0x%x] YcurrREG [0x%x]\n", cX, cY);
+#endif
+ printk(KERN_ERR "end of eye scan\n");
+ isContinue = false;
+ }
+ }
+ printk(KERN_ERR "CurX [0x%x] CurY [0x%x]\n"
+ , U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0), RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET)
+ , U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0), RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y));
+
+ // Move X,Y to the top-left corner
+ for (cOfst = 63; cOfst >= 0; cOfst--)
+ {
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET, cOfst); //RG_SSUSB_RX_EYE_XOFFSET
+ }
+ for (cOfst = 63; cOfst >= 0; cOfst--)
+ {
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y, cOfst);
+ U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
+ , RG_SSUSB_EQ_EYE1_Y_OFST, RG_SSUSB_EQ_EYE1_Y, cOfst);
+
+ }
+ printk(KERN_ERR "CurX [0x%x] CurY [0x%x]\n"
+ , U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0), RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET)
+ , U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0), RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y));
+
+ printk(KERN_ERR "PI result: %d\n", _bPIResult);
+ printk(KERN_ERR "pwErrCnt0 addr: 0x%x\n", (PHY_UINT32)pwErrCnt0);
+ printk(KERN_ERR "pwErrCnt1 addr: 0x%x\n", (PHY_UINT32)pwErrCnt1);
+
+ return PHY_TRUE;
+}
+
+//not used on SoC
+PHY_INT32 u2_save_cur_en(struct u3phy_info *info){
+ return PHY_TRUE;
+}
+
+//not used on SoC
+PHY_INT32 u2_save_cur_re(struct u3phy_info *info){
+ return PHY_TRUE;
+}
+
+PHY_INT32 u2_slew_rate_calibration(struct u3phy_info *info){
+ PHY_INT32 i=0;
+ //PHY_INT32 j=0;
+ //PHY_INT8 u1SrCalVal = 0;
+ //PHY_INT8 u1Reg_addr_HSTX_SRCAL_EN;
+ PHY_INT32 fgRet = 0;
+ PHY_INT32 u4FmOut = 0;
+ PHY_INT32 u4Tmp = 0;
+ //PHY_INT32 temp;
+
+ // => RG_USB20_HSTX_SRCAL_EN = 1
+ // enable HS TX SR calibration
+ U3PhyWriteField32(((PHY_UINT32)&info->u2phy_regs->u2phyacr0)
+ , RG_USB20_HSTX_SRCAL_EN_OFST, RG_USB20_HSTX_SRCAL_EN, 0x1);
+ DRV_MSLEEP(1);
+
+ // => RG_FRCK_EN = 1
+ // Enable free run clock
+ U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmmonr1)
+ , RG_FRCK_EN_OFST, RG_FRCK_EN, 1);
+
+ // MT6290 HS signal quality patch
+ // => RG_CYCLECNT = 400
+ // Setting cyclecnt =400
+ U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmcr0)
+ , RG_CYCLECNT_OFST, RG_CYCLECNT, 0x400);
+
+ // => RG_FREQDET_EN = 1
+ // Enable frequency meter
+ U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmcr0)
+ , RG_FREQDET_EN_OFST, RG_FREQDET_EN, 0x1);
+
+ // wait for FM detection done, set 10ms timeout
+ for(i=0; i<10; i++){
+ // => u4FmOut = USB_FM_OUT
+ // read FM_OUT
+ u4FmOut = U3PhyReadReg32(((PHY_UINT32)&info->sifslv_fm_regs->fmmonr0));
+ printk("FM_OUT value: u4FmOut = %d(0x%08X)\n", u4FmOut, u4FmOut);
+
+ // check if FM detection done
+ if (u4FmOut != 0)
+ {
+ fgRet = 0;
+ printk("FM detection done! loop = %d\n", i);
+
+ break;
+ }
+
+ fgRet = 1;
+ DRV_MSLEEP(1);
+ }
+ // => RG_FREQDET_EN = 0
+ // disable frequency meter
+ U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmcr0)
+ , RG_FREQDET_EN_OFST, RG_FREQDET_EN, 0);
+
+ // => RG_FRCK_EN = 0
+ // disable free run clock
+ U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmmonr1)
+ , RG_FRCK_EN_OFST, RG_FRCK_EN, 0);
+
+ // => RG_USB20_HSTX_SRCAL_EN = 0
+ // disable HS TX SR calibration
+ U3PhyWriteField32(((PHY_UINT32)&info->u2phy_regs->u2phyacr0)
+ , RG_USB20_HSTX_SRCAL_EN_OFST, RG_USB20_HSTX_SRCAL_EN, 0);
+ DRV_MSLEEP(1);
+
+ if(u4FmOut == 0){
+ U3PhyWriteField32(((PHY_UINT32)&info->u2phy_regs->u2phyacr0)
+ , RG_USB20_HSTX_SRCTRL_OFST, RG_USB20_HSTX_SRCTRL, 0x4);
+
+ fgRet = 1;
+ }
+ else{
+ // set reg = (1024/FM_OUT) * 25 * 0.028 (round to the nearest digits)
+ u4Tmp = (((1024 * 25 * U2_SR_COEF_7621) / u4FmOut) + 500) / 1000;
+ printk("SR calibration value u1SrCalVal = %d\n", (PHY_UINT8)u4Tmp);
+ U3PhyWriteField32(((PHY_UINT32)&info->u2phy_regs->u2phyacr0)
+ , RG_USB20_HSTX_SRCTRL_OFST, RG_USB20_HSTX_SRCTRL, u4Tmp);
+ }
+ return fgRet;
+}
+
+#endif