summaryrefslogtreecommitdiffstats
path: root/target/linux/octeon/files-3.10/drivers/staging/octeon-usb/cvmx-usb.h
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/octeon/files-3.10/drivers/staging/octeon-usb/cvmx-usb.h')
-rw-r--r--target/linux/octeon/files-3.10/drivers/staging/octeon-usb/cvmx-usb.h1085
1 files changed, 0 insertions, 1085 deletions
diff --git a/target/linux/octeon/files-3.10/drivers/staging/octeon-usb/cvmx-usb.h b/target/linux/octeon/files-3.10/drivers/staging/octeon-usb/cvmx-usb.h
deleted file mode 100644
index db9cc05e5d..0000000000
--- a/target/linux/octeon/files-3.10/drivers/staging/octeon-usb/cvmx-usb.h
+++ /dev/null
@@ -1,1085 +0,0 @@
-/***********************license start***************
- * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
- * reserved.
- *
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials provided
- * with the distribution.
-
- * * Neither the name of Cavium Networks nor the names of
- * its contributors may be used to endorse or promote products
- * derived from this software without specific prior written
- * permission.
-
- * This Software, including technical data, may be subject to U.S. export control
- * laws, including the U.S. Export Administration Act and its associated
- * regulations, and may be subject to export or import regulations in other
- * countries.
-
- * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
- * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
- * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
- * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
- * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
- * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
- * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
- * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
- * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
- * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
- ***********************license end**************************************/
-
-
-/**
- * @file
- *
- * "cvmx-usb.h" defines a set of low level USB functions to help
- * developers create Octeon USB drivers for various operating
- * systems. These functions provide a generic API to the Octeon
- * USB blocks, hiding the internal hardware specific
- * operations.
- *
- * At a high level the device driver needs to:
- *
- * -# Call cvmx_usb_get_num_ports() to get the number of
- * supported ports.
- * -# Call cvmx_usb_initialize() for each Octeon USB port.
- * -# Enable the port using cvmx_usb_enable().
- * -# Either periodically, or in an interrupt handler, call
- * cvmx_usb_poll() to service USB events.
- * -# Manage pipes using cvmx_usb_open_pipe() and
- * cvmx_usb_close_pipe().
- * -# Manage transfers using cvmx_usb_submit_*() and
- * cvmx_usb_cancel*().
- * -# Shutdown USB on unload using cvmx_usb_shutdown().
- *
- * To monitor USB status changes, the device driver must use
- * cvmx_usb_register_callback() to register for events that it
- * is interested in. Below are a few hints on successfully
- * implementing a driver on top of this API.
- *
- * <h2>Initialization</h2>
- *
- * When a driver is first loaded, it is normally not necessary
- * to bring up the USB port completely. Most operating systems
- * expect to initialize and enable the port in two independent
- * steps. Normally an operating system will probe hardware,
- * initialize anything found, and then enable the hardware.
- *
- * In the probe phase you should:
- * -# Use cvmx_usb_get_num_ports() to determine the number of
- * USB port to be supported.
- * -# Allocate space for a cvmx_usb_state_t structure for each
- * port.
- * -# Tell the operating system about each port
- *
- * In the initialization phase you should:
- * -# Use cvmx_usb_initialize() on each port.
- * -# Do not call cvmx_usb_enable(). This leaves the USB port in
- * the disabled state until the operating system is ready.
- *
- * Finally, in the enable phase you should:
- * -# Call cvmx_usb_enable() on the appropriate port.
- * -# Note that some operating system use a RESET instead of an
- * enable call. To implement RESET, you should call
- * cvmx_usb_disable() followed by cvmx_usb_enable().
- *
- * <h2>Locking</h2>
- *
- * All of the functions in the cvmx-usb API assume exclusive
- * access to the USB hardware and internal data structures. This
- * means that the driver must provide locking as necessary.
- *
- * In the single CPU state it is normally enough to disable
- * interrupts before every call to cvmx_usb*() and enable them
- * again after the call is complete. Keep in mind that it is
- * very common for the callback handlers to make additional
- * calls into cvmx-usb, so the disable/enable must be protected
- * against recursion. As an example, the Linux kernel
- * local_irq_save() and local_irq_restore() are perfect for this
- * in the non SMP case.
- *
- * In the SMP case, locking is more complicated. For SMP you not
- * only need to disable interrupts on the local core, but also
- * take a lock to make sure that another core cannot call
- * cvmx-usb.
- *
- * <h2>Port callback</h2>
- *
- * The port callback prototype needs to look as follows:
- *
- * void port_callback(cvmx_usb_state_t *usb,
- * cvmx_usb_callback_t reason,
- * cvmx_usb_complete_t status,
- * int pipe_handle,
- * int submit_handle,
- * int bytes_transferred,
- * void *user_data);
- * - @b usb is the cvmx_usb_state_t for the port.
- * - @b reason will always be
- * CVMX_USB_CALLBACK_PORT_CHANGED.
- * - @b status will always be CVMX_USB_COMPLETE_SUCCESS.
- * - @b pipe_handle will always be -1.
- * - @b submit_handle will always be -1.
- * - @b bytes_transferred will always be 0.
- * - @b user_data is the void pointer originally passed along
- * with the callback. Use this for any state information you
- * need.
- *
- * The port callback will be called whenever the user plugs /
- * unplugs a device from the port. It will not be called when a
- * device is plugged / unplugged from a hub connected to the
- * root port. Normally all the callback needs to do is tell the
- * operating system to poll the root hub for status. Under
- * Linux, this is performed by calling usb_hcd_poll_rh_status().
- * In the Linux driver we use @b user_data. to pass around the
- * Linux "hcd" structure. Once the port callback completes,
- * Linux automatically calls octeon_usb_hub_status_data() which
- * uses cvmx_usb_get_status() to determine the root port status.
- *
- * <h2>Complete callback</h2>
- *
- * The completion callback prototype needs to look as follows:
- *
- * void complete_callback(cvmx_usb_state_t *usb,
- * cvmx_usb_callback_t reason,
- * cvmx_usb_complete_t status,
- * int pipe_handle,
- * int submit_handle,
- * int bytes_transferred,
- * void *user_data);
- * - @b usb is the cvmx_usb_state_t for the port.
- * - @b reason will always be
- * CVMX_USB_CALLBACK_TRANSFER_COMPLETE.
- * - @b status will be one of the cvmx_usb_complete_t
- * enumerations.
- * - @b pipe_handle is the handle to the pipe the transaction
- * was originally submitted on.
- * - @b submit_handle is the handle returned by the original
- * cvmx_usb_submit_* call.
- * - @b bytes_transferred is the number of bytes successfully
- * transferred in the transaction. This will be zero on most
- * error conditions.
- * - @b user_data is the void pointer originally passed along
- * with the callback. Use this for any state information you
- * need. For example, the Linux "urb" is stored in here in the
- * Linux driver.
- *
- * In general your callback handler should use @b status and @b
- * bytes_transferred to tell the operating system the how the
- * transaction completed. Normally the pipe is not changed in
- * this callback.
- *
- * <h2>Canceling transactions</h2>
- *
- * When a transaction is cancelled using cvmx_usb_cancel*(), the
- * actual length of time until the complete callback is called
- * can vary greatly. It may be called before cvmx_usb_cancel*()
- * returns, or it may be called a number of usb frames in the
- * future once the hardware frees the transaction. In either of
- * these cases, the complete handler will receive
- * CVMX_USB_COMPLETE_CANCEL.
- *
- * <h2>Handling pipes</h2>
- *
- * USB "pipes" is a software construct created by this API to
- * enable the ordering of usb transactions to a device endpoint.
- * Octeon's underlying hardware doesn't have any concept
- * equivalent to "pipes". The hardware instead has eight
- * channels that can be used simultaneously to have up to eight
- * transaction in process at the same time. In order to maintain
- * ordering in a pipe, the transactions for a pipe will only be
- * active in one hardware channel at a time. From an API user's
- * perspective, this doesn't matter but it can be helpful to
- * keep this in mind when you are probing hardware while
- * debugging.
- *
- * Also keep in mind that usb transactions contain state
- * information about the previous transaction to the same
- * endpoint. Each transaction has a PID toggle that changes 0/1
- * between each sub packet. This is maintained in the pipe data
- * structures. For this reason, you generally cannot create and
- * destroy a pipe for every transaction. A sequence of
- * transaction to the same endpoint must use the same pipe.
- *
- * <h2>Root Hub</h2>
- *
- * Some operating systems view the usb root port as a normal usb
- * hub. These systems attempt to control the root hub with
- * messages similar to the usb 2.0 spec for hub control and
- * status. For these systems it may be necessary to write
- * function to decode standard usb control messages into
- * equivalent cvmx-usb API calls. As an example, the following
- * code is used under Linux for some of the basic hub control
- * messages.
- *
- * @code
- * static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength)
- * {
- * cvmx_usb_state_t *usb = (cvmx_usb_state_t *)hcd->hcd_priv;
- * cvmx_usb_port_status_t usb_port_status;
- * int port_status;
- * struct usb_hub_descriptor *desc;
- * unsigned long flags;
- *
- * switch (typeReq)
- * {
- * case ClearHubFeature:
- * DEBUG_ROOT_HUB("OcteonUSB: ClearHubFeature\n");
- * switch (wValue)
- * {
- * case C_HUB_LOCAL_POWER:
- * case C_HUB_OVER_CURRENT:
- * // Nothing required here
- * break;
- * default:
- * return -EINVAL;
- * }
- * break;
- * case ClearPortFeature:
- * DEBUG_ROOT_HUB("OcteonUSB: ClearPortFeature");
- * if (wIndex != 1)
- * {
- * DEBUG_ROOT_HUB(" INVALID\n");
- * return -EINVAL;
- * }
- *
- * switch (wValue)
- * {
- * case USB_PORT_FEAT_ENABLE:
- * DEBUG_ROOT_HUB(" ENABLE");
- * local_irq_save(flags);
- * cvmx_usb_disable(usb);
- * local_irq_restore(flags);
- * break;
- * case USB_PORT_FEAT_SUSPEND:
- * DEBUG_ROOT_HUB(" SUSPEND");
- * // Not supported on Octeon
- * break;
- * case USB_PORT_FEAT_POWER:
- * DEBUG_ROOT_HUB(" POWER");
- * // Not supported on Octeon
- * break;
- * case USB_PORT_FEAT_INDICATOR:
- * DEBUG_ROOT_HUB(" INDICATOR");
- * // Port inidicator not supported
- * break;
- * case USB_PORT_FEAT_C_CONNECTION:
- * DEBUG_ROOT_HUB(" C_CONNECTION");
- * // Clears drivers internal connect status change flag
- * cvmx_usb_set_status(usb, cvmx_usb_get_status(usb));
- * break;
- * case USB_PORT_FEAT_C_RESET:
- * DEBUG_ROOT_HUB(" C_RESET");
- * // Clears the driver's internal Port Reset Change flag
- * cvmx_usb_set_status(usb, cvmx_usb_get_status(usb));
- * break;
- * case USB_PORT_FEAT_C_ENABLE:
- * DEBUG_ROOT_HUB(" C_ENABLE");
- * // Clears the driver's internal Port Enable/Disable Change flag
- * cvmx_usb_set_status(usb, cvmx_usb_get_status(usb));
- * break;
- * case USB_PORT_FEAT_C_SUSPEND:
- * DEBUG_ROOT_HUB(" C_SUSPEND");
- * // Clears the driver's internal Port Suspend Change flag,
- * which is set when resume signaling on the host port is
- * complete
- * break;
- * case USB_PORT_FEAT_C_OVER_CURRENT:
- * DEBUG_ROOT_HUB(" C_OVER_CURRENT");
- * // Clears the driver's overcurrent Change flag
- * cvmx_usb_set_status(usb, cvmx_usb_get_status(usb));
- * break;
- * default:
- * DEBUG_ROOT_HUB(" UNKNOWN\n");
- * return -EINVAL;
- * }
- * DEBUG_ROOT_HUB("\n");
- * break;
- * case GetHubDescriptor:
- * DEBUG_ROOT_HUB("OcteonUSB: GetHubDescriptor\n");
- * desc = (struct usb_hub_descriptor *)buf;
- * desc->bDescLength = 9;
- * desc->bDescriptorType = 0x29;
- * desc->bNbrPorts = 1;
- * desc->wHubCharacteristics = 0x08;
- * desc->bPwrOn2PwrGood = 1;
- * desc->bHubContrCurrent = 0;
- * desc->bitmap[0] = 0;
- * desc->bitmap[1] = 0xff;
- * break;
- * case GetHubStatus:
- * DEBUG_ROOT_HUB("OcteonUSB: GetHubStatus\n");
- * *(__le32 *)buf = 0;
- * break;
- * case GetPortStatus:
- * DEBUG_ROOT_HUB("OcteonUSB: GetPortStatus");
- * if (wIndex != 1)
- * {
- * DEBUG_ROOT_HUB(" INVALID\n");
- * return -EINVAL;
- * }
- *
- * usb_port_status = cvmx_usb_get_status(usb);
- * port_status = 0;
- *
- * if (usb_port_status.connect_change)
- * {
- * port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
- * DEBUG_ROOT_HUB(" C_CONNECTION");
- * }
- *
- * if (usb_port_status.port_enabled)
- * {
- * port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
- * DEBUG_ROOT_HUB(" C_ENABLE");
- * }
- *
- * if (usb_port_status.connected)
- * {
- * port_status |= (1 << USB_PORT_FEAT_CONNECTION);
- * DEBUG_ROOT_HUB(" CONNECTION");
- * }
- *
- * if (usb_port_status.port_enabled)
- * {
- * port_status |= (1 << USB_PORT_FEAT_ENABLE);
- * DEBUG_ROOT_HUB(" ENABLE");
- * }
- *
- * if (usb_port_status.port_over_current)
- * {
- * port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
- * DEBUG_ROOT_HUB(" OVER_CURRENT");
- * }
- *
- * if (usb_port_status.port_powered)
- * {
- * port_status |= (1 << USB_PORT_FEAT_POWER);
- * DEBUG_ROOT_HUB(" POWER");
- * }
- *
- * if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH)
- * {
- * port_status |= (1 << USB_PORT_FEAT_HIGHSPEED);
- * DEBUG_ROOT_HUB(" HIGHSPEED");
- * }
- * else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW)
- * {
- * port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
- * DEBUG_ROOT_HUB(" LOWSPEED");
- * }
- *
- * *((__le32 *)buf) = cpu_to_le32(port_status);
- * DEBUG_ROOT_HUB("\n");
- * break;
- * case SetHubFeature:
- * DEBUG_ROOT_HUB("OcteonUSB: SetHubFeature\n");
- * // No HUB features supported
- * break;
- * case SetPortFeature:
- * DEBUG_ROOT_HUB("OcteonUSB: SetPortFeature");
- * if (wIndex != 1)
- * {
- * DEBUG_ROOT_HUB(" INVALID\n");
- * return -EINVAL;
- * }
- *
- * switch (wValue)
- * {
- * case USB_PORT_FEAT_SUSPEND:
- * DEBUG_ROOT_HUB(" SUSPEND\n");
- * return -EINVAL;
- * case USB_PORT_FEAT_POWER:
- * DEBUG_ROOT_HUB(" POWER\n");
- * return -EINVAL;
- * case USB_PORT_FEAT_RESET:
- * DEBUG_ROOT_HUB(" RESET\n");
- * local_irq_save(flags);
- * cvmx_usb_disable(usb);
- * if (cvmx_usb_enable(usb))
- * DEBUG_ERROR("Failed to enable the port\n");
- * local_irq_restore(flags);
- * return 0;
- * case USB_PORT_FEAT_INDICATOR:
- * DEBUG_ROOT_HUB(" INDICATOR\n");
- * // Not supported
- * break;
- * default:
- * DEBUG_ROOT_HUB(" UNKNOWN\n");
- * return -EINVAL;
- * }
- * break;
- * default:
- * DEBUG_ROOT_HUB("OcteonUSB: Unknown root hub request\n");
- * return -EINVAL;
- * }
- * return 0;
- * }
- * @endcode
- *
- * <h2>Interrupts</h2>
- *
- * If you plan on using usb interrupts, cvmx_usb_poll() must be
- * called on every usb interrupt. It will read the usb state,
- * call any needed callbacks, and schedule transactions as
- * needed. Your device driver needs only to hookup an interrupt
- * handler and call cvmx_usb_poll(). Octeon's usb port 0 causes
- * CIU bit CIU_INT*_SUM0[USB] to be set (bit 56). For port 1,
- * CIU bit CIU_INT_SUM1[USB1] is set (bit 17). How these bits
- * are turned into interrupt numbers is operating system
- * specific. For Linux, there are the convenient defines
- * OCTEON_IRQ_USB0 and OCTEON_IRQ_USB1 for the IRQ numbers.
- *
- * If you aren't using interrupts, simple call cvmx_usb_poll()
- * in your main processing loop.
- *
- * <hr>$Revision: 32636 $<hr>
- */
-
-#ifndef __CVMX_USB_H__
-#define __CVMX_USB_H__
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/**
- * Enumerations representing the status of function calls.
- */
-typedef enum
-{
- CVMX_USB_SUCCESS = 0, /**< There were no errors */
- CVMX_USB_INVALID_PARAM = -1, /**< A parameter to the function was invalid */
- CVMX_USB_NO_MEMORY = -2, /**< Insufficient resources were available for the request */
- CVMX_USB_BUSY = -3, /**< The resource is busy and cannot service the request */
- CVMX_USB_TIMEOUT = -4, /**< Waiting for an action timed out */
- CVMX_USB_INCORRECT_MODE = -5, /**< The function call doesn't work in the current USB
- mode. This happens when host only functions are
- called in device mode or vice versa */
-} cvmx_usb_status_t;
-
-/**
- * Enumerations representing the possible USB device speeds
- */
-typedef enum
-{
- CVMX_USB_SPEED_HIGH = 0, /**< Device is operation at 480Mbps */
- CVMX_USB_SPEED_FULL = 1, /**< Device is operation at 12Mbps */
- CVMX_USB_SPEED_LOW = 2, /**< Device is operation at 1.5Mbps */
-} cvmx_usb_speed_t;
-
-/**
- * Enumeration representing the possible USB transfer types.
- */
-typedef enum
-{
- CVMX_USB_TRANSFER_CONTROL = 0, /**< USB transfer type control for hub and status transfers */
- CVMX_USB_TRANSFER_ISOCHRONOUS = 1, /**< USB transfer type isochronous for low priority periodic transfers */
- CVMX_USB_TRANSFER_BULK = 2, /**< USB transfer type bulk for large low priority transfers */
- CVMX_USB_TRANSFER_INTERRUPT = 3, /**< USB transfer type interrupt for high priority periodic transfers */
-} cvmx_usb_transfer_t;
-
-/**
- * Enumeration of the transfer directions
- */
-typedef enum
-{
- CVMX_USB_DIRECTION_OUT, /**< Data is transferring from Octeon to the device/host */
- CVMX_USB_DIRECTION_IN, /**< Data is transferring from the device/host to Octeon */
-} cvmx_usb_direction_t;
-
-/**
- * Enumeration of all possible status codes passed to callback
- * functions.
- */
-typedef enum
-{
- CVMX_USB_COMPLETE_SUCCESS, /**< The transaction / operation finished without any errors */
- CVMX_USB_COMPLETE_SHORT, /**< FIXME: This is currently not implemented */
- CVMX_USB_COMPLETE_CANCEL, /**< The transaction was canceled while in flight by a user call to cvmx_usb_cancel* */
- CVMX_USB_COMPLETE_ERROR, /**< The transaction aborted with an unexpected error status */
- CVMX_USB_COMPLETE_STALL, /**< The transaction received a USB STALL response from the device */
- CVMX_USB_COMPLETE_XACTERR, /**< The transaction failed with an error from the device even after a number of retries */
- CVMX_USB_COMPLETE_DATATGLERR, /**< The transaction failed with a data toggle error even after a number of retries */
- CVMX_USB_COMPLETE_BABBLEERR, /**< The transaction failed with a babble error */
- CVMX_USB_COMPLETE_FRAMEERR, /**< The transaction failed with a frame error even after a number of retries */
-} cvmx_usb_complete_t;
-
-/**
- * Structure returned containing the USB port status information.
- */
-typedef struct
-{
- uint32_t reserved : 25;
- uint32_t port_enabled : 1; /**< 1 = Usb port is enabled, 0 = disabled */
- uint32_t port_over_current : 1; /**< 1 = Over current detected, 0 = Over current not detected. Octeon doesn't support over current detection */
- uint32_t port_powered : 1; /**< 1 = Port power is being supplied to the device, 0 = power is off. Octeon doesn't support turning port power off */
- cvmx_usb_speed_t port_speed : 2; /**< Current port speed */
- uint32_t connected : 1; /**< 1 = A device is connected to the port, 0 = No device is connected */
- uint32_t connect_change : 1; /**< 1 = Device connected state changed since the last set status call */
-} cvmx_usb_port_status_t;
-
-/**
- * This is the structure of a Control packet header
- */
-typedef union
-{
- uint64_t u64;
- struct
- {
- uint64_t request_type : 8; /**< Bit 7 tells the direction: 1=IN, 0=OUT */
- uint64_t request : 8; /**< The standard usb request to make */
- uint64_t value : 16; /**< Value parameter for the request in little endian format */
- uint64_t index : 16; /**< Index for the request in little endian format */
- uint64_t length : 16; /**< Length of the data associated with this request in little endian format */
- } s;
-} cvmx_usb_control_header_t;
-
-/**
- * Descriptor for Isochronous packets
- */
-typedef struct
-{
- int offset; /**< This is the offset in bytes into the main buffer where this data is stored */
- int length; /**< This is the length in bytes of the data */
- cvmx_usb_complete_t status; /**< This is the status of this individual packet transfer */
-} cvmx_usb_iso_packet_t;
-
-/**
- * Possible callback reasons for the USB API.
- */
-typedef enum
-{
- CVMX_USB_CALLBACK_TRANSFER_COMPLETE,
- /**< A callback of this type is called when a submitted transfer
- completes. The completion callback will be called even if the
- transfer fails or is canceled. The status parameter will
- contain details of why he callback was called. */
- CVMX_USB_CALLBACK_PORT_CHANGED, /**< The status of the port changed. For example, someone may have
- plugged a device in. The status parameter contains
- CVMX_USB_COMPLETE_SUCCESS. Use cvmx_usb_get_status() to get
- the new port status. */
- __CVMX_USB_CALLBACK_END /**< Do not use. Used internally for array bounds */
-} cvmx_usb_callback_t;
-
-/**
- * USB state internal data. The contents of this structure
- * may change in future SDKs. No data in it should be referenced
- * by user's of this API.
- */
-typedef struct
-{
- char data[65536];
-} cvmx_usb_state_t;
-
-/**
- * USB callback functions are always of the following type.
- * The parameters are as follows:
- * - state = USB device state populated by
- * cvmx_usb_initialize().
- * - reason = The cvmx_usb_callback_t used to register
- * the callback.
- * - status = The cvmx_usb_complete_t representing the
- * status code of a transaction.
- * - pipe_handle = The Pipe that caused this callback, or
- * -1 if this callback wasn't associated with a pipe.
- * - submit_handle = Transfer submit handle causing this
- * callback, or -1 if this callback wasn't associated
- * with a transfer.
- * - Actual number of bytes transfer.
- * - user_data = The user pointer supplied to the
- * function cvmx_usb_submit() or
- * cvmx_usb_register_callback() */
-typedef void (*cvmx_usb_callback_func_t)(cvmx_usb_state_t *state,
- cvmx_usb_callback_t reason,
- cvmx_usb_complete_t status,
- int pipe_handle, int submit_handle,
- int bytes_transferred, void *user_data);
-
-/**
- * Flags to pass the initialization function.
- */
-typedef enum
-{
- CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1<<0, /**< The USB port uses a 12MHz crystal as clock source
- at USB_XO and USB_XI. */
- CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1<<1, /**< The USB port uses 12/24/48MHz 2.5V board clock
- source at USB_XO. USB_XI should be tied to GND.*/
- CVMX_USB_INITIALIZE_FLAGS_CLOCK_AUTO = 0, /**< Automatically determine clock type based on function
- in cvmx-helper-board.c. */
- CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3<<3, /**< Mask for clock speed field */
- CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1<<3, /**< Speed of reference clock or crystal */
- CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2<<3, /**< Speed of reference clock */
- CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3<<3, /**< Speed of reference clock */
- /* Bits 3-4 used to encode the clock frequency */
- CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1<<5, /**< Disable DMA and used polled IO for data transfer use for the USB */
- CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS = 1<<16, /**< Enable extra console output for debugging USB transfers */
- CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLBACKS = 1<<17, /**< Enable extra console output for debugging USB callbacks */
- CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO = 1<<18, /**< Enable extra console output for USB informational data */
- CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS = 1<<19, /**< Enable extra console output for every function call */
- CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS = 1<<20, /**< Enable extra console output for every CSR access */
- CVMX_USB_INITIALIZE_FLAGS_DEBUG_ALL = ((CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS<<1)-1) - (CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS-1),
-} cvmx_usb_initialize_flags_t;
-
-/**
- * Flags for passing when a pipe is created. Currently no flags
- * need to be passed.
- */
-typedef enum
-{
- CVMX_USB_PIPE_FLAGS_DEBUG_TRANSFERS = 1<<15,/**< Used to display CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS for a specific pipe only */
- __CVMX_USB_PIPE_FLAGS_OPEN = 1<<16, /**< Used internally to determine if a pipe is open. Do not use */
- __CVMX_USB_PIPE_FLAGS_SCHEDULED = 1<<17, /**< Used internally to determine if a pipe is actively using hardware. Do not use */
- __CVMX_USB_PIPE_FLAGS_NEED_PING = 1<<18, /**< Used internally to determine if a high speed pipe is in the ping state. Do not use */
-} cvmx_usb_pipe_flags_t;
-
-/**
- * Return the number of USB ports supported by this Octeon
- * chip. If the chip doesn't support USB, or is not supported
- * by this API, a zero will be returned. Most Octeon chips
- * support one usb port, but some support two ports.
- * cvmx_usb_initialize() must be called on independent
- * cvmx_usb_state_t structures.
- *
- * @return Number of port, zero if usb isn't supported
- */
-extern int cvmx_usb_get_num_ports(void);
-
-/**
- * Initialize a USB port for use. This must be called before any
- * other access to the Octeon USB port is made. The port starts
- * off in the disabled state.
- *
- * @param state Pointer to an empty cvmx_usb_state_t structure
- * that will be populated by the initialize call.
- * This structure is then passed to all other USB
- * functions.
- * @param usb_port_number
- * Which Octeon USB port to initialize.
- * @param flags Flags to control hardware initialization. See
- * cvmx_usb_initialize_flags_t for the flag
- * definitions. Some flags are mandatory.
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t.
- */
-extern cvmx_usb_status_t cvmx_usb_initialize(cvmx_usb_state_t *state,
- int usb_port_number,
- cvmx_usb_initialize_flags_t flags);
-
-/**
- * Shutdown a USB port after a call to cvmx_usb_initialize().
- * The port should be disabled with all pipes closed when this
- * function is called.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t.
- */
-extern cvmx_usb_status_t cvmx_usb_shutdown(cvmx_usb_state_t *state);
-
-/**
- * Enable a USB port. After this call succeeds, the USB port is
- * online and servicing requests.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t.
- */
-extern cvmx_usb_status_t cvmx_usb_enable(cvmx_usb_state_t *state);
-
-/**
- * Disable a USB port. After this call the USB port will not
- * generate data transfers and will not generate events.
- * Transactions in process will fail and call their
- * associated callbacks.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t.
- */
-extern cvmx_usb_status_t cvmx_usb_disable(cvmx_usb_state_t *state);
-
-/**
- * Get the current state of the USB port. Use this call to
- * determine if the usb port has anything connected, is enabled,
- * or has some sort of error condition. The return value of this
- * call has "changed" bits to signal of the value of some fields
- * have changed between calls. These "changed" fields are based
- * on the last call to cvmx_usb_set_status(). In order to clear
- * them, you must update the status through cvmx_usb_set_status().
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- *
- * @return Port status information
- */
-extern cvmx_usb_port_status_t cvmx_usb_get_status(cvmx_usb_state_t *state);
-
-/**
- * Set the current state of the USB port. The status is used as
- * a reference for the "changed" bits returned by
- * cvmx_usb_get_status(). Other than serving as a reference, the
- * status passed to this function is not used. No fields can be
- * changed through this call.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param port_status
- * Port status to set, most like returned by cvmx_usb_get_status()
- */
-extern void cvmx_usb_set_status(cvmx_usb_state_t *state, cvmx_usb_port_status_t port_status);
-
-/**
- * Open a virtual pipe between the host and a USB device. A pipe
- * must be opened before data can be transferred between a device
- * and Octeon.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param flags Optional pipe flags defined in
- * cvmx_usb_pipe_flags_t.
- * @param device_addr
- * USB device address to open the pipe to
- * (0-127).
- * @param endpoint_num
- * USB endpoint number to open the pipe to
- * (0-15).
- * @param device_speed
- * The speed of the device the pipe is going
- * to. This must match the device's speed,
- * which may be different than the port speed.
- * @param max_packet The maximum packet length the device can
- * transmit/receive (low speed=0-8, full
- * speed=0-1023, high speed=0-1024). This value
- * comes from the standard endpoint descriptor
- * field wMaxPacketSize bits <10:0>.
- * @param transfer_type
- * The type of transfer this pipe is for.
- * @param transfer_dir
- * The direction the pipe is in. This is not
- * used for control pipes.
- * @param interval For ISOCHRONOUS and INTERRUPT transfers,
- * this is how often the transfer is scheduled
- * for. All other transfers should specify
- * zero. The units are in frames (8000/sec at
- * high speed, 1000/sec for full speed).
- * @param multi_count
- * For high speed devices, this is the maximum
- * allowed number of packet per microframe.
- * Specify zero for non high speed devices. This
- * value comes from the standard endpoint descriptor
- * field wMaxPacketSize bits <12:11>.
- * @param hub_device_addr
- * Hub device address this device is connected
- * to. Devices connected directly to Octeon
- * use zero. This is only used when the device
- * is full/low speed behind a high speed hub.
- * The address will be of the high speed hub,
- * not and full speed hubs after it.
- * @param hub_port Which port on the hub the device is
- * connected. Use zero for devices connected
- * directly to Octeon. Like hub_device_addr,
- * this is only used for full/low speed
- * devices behind a high speed hub.
- *
- * @return A non negative value is a pipe handle. Negative
- * values are failure codes from cvmx_usb_status_t.
- */
-extern int cvmx_usb_open_pipe(cvmx_usb_state_t *state,
- cvmx_usb_pipe_flags_t flags,
- int device_addr, int endpoint_num,
- cvmx_usb_speed_t device_speed, int max_packet,
- cvmx_usb_transfer_t transfer_type,
- cvmx_usb_direction_t transfer_dir, int interval,
- int multi_count, int hub_device_addr,
- int hub_port);
-
-/**
- * Call to submit a USB Bulk transfer to a pipe.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param pipe_handle
- * Handle to the pipe for the transfer.
- * @param buffer Physical address of the data buffer in
- * memory. Note that this is NOT A POINTER, but
- * the full 64bit physical address of the
- * buffer. This may be zero if buffer_length is
- * zero.
- * @param buffer_length
- * Length of buffer in bytes.
- * @param callback Function to call when this transaction
- * completes. If the return value of this
- * function isn't an error, then this function
- * is guaranteed to be called when the
- * transaction completes. If this parameter is
- * NULL, then the generic callback registered
- * through cvmx_usb_register_callback is
- * called. If both are NULL, then there is no
- * way to know when a transaction completes.
- * @param user_data User supplied data returned when the
- * callback is called. This is only used if
- * callback in not NULL.
- *
- * @return A submitted transaction handle or negative on
- * failure. Negative values are failure codes from
- * cvmx_usb_status_t.
- */
-extern int cvmx_usb_submit_bulk(cvmx_usb_state_t *state, int pipe_handle,
- uint64_t buffer, int buffer_length,
- cvmx_usb_callback_func_t callback,
- void *user_data);
-
-/**
- * Call to submit a USB Interrupt transfer to a pipe.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param pipe_handle
- * Handle to the pipe for the transfer.
- * @param buffer Physical address of the data buffer in
- * memory. Note that this is NOT A POINTER, but
- * the full 64bit physical address of the
- * buffer. This may be zero if buffer_length is
- * zero.
- * @param buffer_length
- * Length of buffer in bytes.
- * @param callback Function to call when this transaction
- * completes. If the return value of this
- * function isn't an error, then this function
- * is guaranteed to be called when the
- * transaction completes. If this parameter is
- * NULL, then the generic callback registered
- * through cvmx_usb_register_callback is
- * called. If both are NULL, then there is no
- * way to know when a transaction completes.
- * @param user_data User supplied data returned when the
- * callback is called. This is only used if
- * callback in not NULL.
- *
- * @return A submitted transaction handle or negative on
- * failure. Negative values are failure codes from
- * cvmx_usb_status_t.
- */
-extern int cvmx_usb_submit_interrupt(cvmx_usb_state_t *state, int pipe_handle,
- uint64_t buffer, int buffer_length,
- cvmx_usb_callback_func_t callback,
- void *user_data);
-
-/**
- * Call to submit a USB Control transfer to a pipe.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param pipe_handle
- * Handle to the pipe for the transfer.
- * @param control_header
- * USB 8 byte control header physical address.
- * Note that this is NOT A POINTER, but the
- * full 64bit physical address of the buffer.
- * @param buffer Physical address of the data buffer in
- * memory. Note that this is NOT A POINTER, but
- * the full 64bit physical address of the
- * buffer. This may be zero if buffer_length is
- * zero.
- * @param buffer_length
- * Length of buffer in bytes.
- * @param callback Function to call when this transaction
- * completes. If the return value of this
- * function isn't an error, then this function
- * is guaranteed to be called when the
- * transaction completes. If this parameter is
- * NULL, then the generic callback registered
- * through cvmx_usb_register_callback is
- * called. If both are NULL, then there is no
- * way to know when a transaction completes.
- * @param user_data User supplied data returned when the
- * callback is called. This is only used if
- * callback in not NULL.
- *
- * @return A submitted transaction handle or negative on
- * failure. Negative values are failure codes from
- * cvmx_usb_status_t.
- */
-extern int cvmx_usb_submit_control(cvmx_usb_state_t *state, int pipe_handle,
- uint64_t control_header,
- uint64_t buffer, int buffer_length,
- cvmx_usb_callback_func_t callback,
- void *user_data);
-
-/**
- * Flags to pass the cvmx_usb_submit_isochronous() function.
- */
-typedef enum
-{
- CVMX_USB_ISOCHRONOUS_FLAGS_ALLOW_SHORT = 1<<0, /**< Do not return an error if a transfer is less than the maximum packet size of the device */
- CVMX_USB_ISOCHRONOUS_FLAGS_ASAP = 1<<1, /**< Schedule the transaction as soon as possible */
-} cvmx_usb_isochronous_flags_t;
-
-/**
- * Call to submit a USB Isochronous transfer to a pipe.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param pipe_handle
- * Handle to the pipe for the transfer.
- * @param start_frame
- * Number of frames into the future to schedule
- * this transaction.
- * @param flags Flags to control the transfer. See
- * cvmx_usb_isochronous_flags_t for the flag
- * definitions.
- * @param number_packets
- * Number of sequential packets to transfer.
- * "packets" is a pointer to an array of this
- * many packet structures.
- * @param packets Description of each transfer packet as
- * defined by cvmx_usb_iso_packet_t. The array
- * pointed to here must stay valid until the
- * complete callback is called.
- * @param buffer Physical address of the data buffer in
- * memory. Note that this is NOT A POINTER, but
- * the full 64bit physical address of the
- * buffer. This may be zero if buffer_length is
- * zero.
- * @param buffer_length
- * Length of buffer in bytes.
- * @param callback Function to call when this transaction
- * completes. If the return value of this
- * function isn't an error, then this function
- * is guaranteed to be called when the
- * transaction completes. If this parameter is
- * NULL, then the generic callback registered
- * through cvmx_usb_register_callback is
- * called. If both are NULL, then there is no
- * way to know when a transaction completes.
- * @param user_data User supplied data returned when the
- * callback is called. This is only used if
- * callback in not NULL.
- *
- * @return A submitted transaction handle or negative on
- * failure. Negative values are failure codes from
- * cvmx_usb_status_t.
- */
-extern int cvmx_usb_submit_isochronous(cvmx_usb_state_t *state, int pipe_handle,
- int start_frame, int flags,
- int number_packets,
- cvmx_usb_iso_packet_t packets[],
- uint64_t buffer, int buffer_length,
- cvmx_usb_callback_func_t callback,
- void *user_data);
-
-/**
- * Cancel one outstanding request in a pipe. Canceling a request
- * can fail if the transaction has already completed before cancel
- * is called. Even after a successful cancel call, it may take
- * a frame or two for the cvmx_usb_poll() function to call the
- * associated callback.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param pipe_handle
- * Pipe handle to cancel requests in.
- * @param submit_handle
- * Handle to transaction to cancel, returned by the submit function.
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t.
- */
-extern cvmx_usb_status_t cvmx_usb_cancel(cvmx_usb_state_t *state,
- int pipe_handle, int submit_handle);
-
-
-/**
- * Cancel all outstanding requests in a pipe. Logically all this
- * does is call cvmx_usb_cancel() in a loop.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param pipe_handle
- * Pipe handle to cancel requests in.
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t.
- */
-extern cvmx_usb_status_t cvmx_usb_cancel_all(cvmx_usb_state_t *state,
- int pipe_handle);
-
-/**
- * Close a pipe created with cvmx_usb_open_pipe().
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param pipe_handle
- * Pipe handle to close.
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t. CVMX_USB_BUSY is returned if the
- * pipe has outstanding transfers.
- */
-extern cvmx_usb_status_t cvmx_usb_close_pipe(cvmx_usb_state_t *state,
- int pipe_handle);
-
-/**
- * Register a function to be called when various USB events occur.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- * @param reason Which event to register for.
- * @param callback Function to call when the event occurs.
- * @param user_data User data parameter to the function.
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t.
- */
-extern cvmx_usb_status_t cvmx_usb_register_callback(cvmx_usb_state_t *state,
- cvmx_usb_callback_t reason,
- cvmx_usb_callback_func_t callback,
- void *user_data);
-
-/**
- * Get the current USB protocol level frame number. The frame
- * number is always in the range of 0-0x7ff.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- *
- * @return USB frame number
- */
-extern int cvmx_usb_get_frame_number(cvmx_usb_state_t *state);
-
-/**
- * Poll the USB block for status and call all needed callback
- * handlers. This function is meant to be called in the interrupt
- * handler for the USB controller. It can also be called
- * periodically in a loop for non-interrupt based operation.
- *
- * @param state USB device state populated by
- * cvmx_usb_initialize().
- *
- * @return CVMX_USB_SUCCESS or a negative error code defined in
- * cvmx_usb_status_t.
- */
-extern cvmx_usb_status_t cvmx_usb_poll(cvmx_usb_state_t *state);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* __CVMX_USB_H__ */