/** @defgroup rcc_file RCC * * @ingroup STM32F3xx * * @brief libopencm3 STM32F3xx Reset and Clock Control * * @version 1.0.0 * * @date 11 July 2013 * * LGPL License Terms @ref lgpl_license */ /* * This file is part of the libopencm3 project. * * Copyright (C) 2009 Federico Ruiz-Ugalde * Copyright (C) 2009 Uwe Hermann * Copyright (C) 2010 Thomas Otto * Modified by 2013 Fernando Cortes (stm32f3) * Modified by 2013 Guillermo Rivera (stm32f3) * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ /**@{*/ #include #include #include #include /* Set the default ppre1 and ppre2 peripheral clock frequencies after reset. */ uint32_t rcc_ppre1_frequency = 8000000; uint32_t rcc_ppre2_frequency = 8000000; const clock_scale_t hsi_8mhz[CLOCK_END] = { { /* 44MHz */ .pll = RCC_CFGR_PLLMUL_PLL_IN_CLK_X11, .pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2, .hpre = RCC_CFGR_HPRE_DIV_NONE, .ppre1 = RCC_CFGR_PPRE1_DIV_2, .ppre2 = RCC_CFGR_PPRE2_DIV_NONE, .power_save = 1, .flash_config = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY_1WS, .apb1_frequency = 22000000, .apb2_frequency = 44000000, }, { /* 48MHz */ .pll = RCC_CFGR_PLLMUL_PLL_IN_CLK_X12, .pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2, .hpre = RCC_CFGR_HPRE_DIV_NONE, .ppre1 = RCC_CFGR_PPRE1_DIV_2, .ppre2 = RCC_CFGR_PPRE2_DIV_NONE, .power_save = 1, .flash_config = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY_1WS, .apb1_frequency = 24000000, .apb2_frequency = 48000000, }, { /* 64MHz */ .pll = RCC_CFGR_PLLMUL_PLL_IN_CLK_X16, .pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2, .hpre = RCC_CFGR_HPRE_DIV_NONE, .ppre1 = RCC_CFGR_PPRE1_DIV_2, .ppre2 = RCC_CFGR_PPRE2_DIV_NONE, .power_save = 1, .flash_config = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY_2WS, .apb1_frequency = 32000000, .apb2_frequency = 64000000, } }; void rcc_osc_ready_int_clear(enum osc osc) { switch (osc) { case PLL: RCC_CIR |= RCC_CIR_PLLRDYC; break; case HSE: RCC_CIR |= RCC_CIR_HSERDYC; break; case HSI: RCC_CIR |= RCC_CIR_HSIRDYC; break; case LSE: RCC_CIR |= RCC_CIR_LSERDYC; break; case LSI: RCC_CIR |= RCC_CIR_LSIRDYC; break; } } void rcc_osc_ready_int_enable(enum osc osc) { switch (osc) { case PLL: RCC_CIR |= RCC_CIR_PLLRDYIE; break; case HSE: RCC_CIR |= RCC_CIR_HSERDYIE; break; case HSI: RCC_CIR |= RCC_CIR_HSIRDYIE; break; case LSE: RCC_CIR |= RCC_CIR_LSERDYIE; break; case LSI: RCC_CIR |= RCC_CIR_LSIRDYIE; break; } } void rcc_osc_ready_int_disable(enum osc osc) { switch (osc) { case PLL: RCC_CIR &= ~RCC_CIR_PLLRDYIE; break; case HSE: RCC_CIR &= ~RCC_CIR_HSERDYIE; break; case HSI: RCC_CIR &= ~RCC_CIR_HSIRDYIE; break; case LSE: RCC_CIR &= ~RCC_CIR_LSERDYIE; break; case LSI: RCC_CIR &= ~RCC_CIR_LSIRDYIE; break; } } int rcc_osc_ready_int_flag(enum osc osc) { switch (osc) { case PLL: return ((RCC_CIR & RCC_CIR_PLLRDYF) != 0); break; case HSE: return ((RCC_CIR & RCC_CIR_HSERDYF) != 0); break; case HSI: return ((RCC_CIR & RCC_CIR_HSIRDYF) != 0); break; case LSE: return ((RCC_CIR & RCC_CIR_LSERDYF) != 0); break; case LSI: return ((RCC_CIR & RCC_CIR_LSIRDYF) != 0); break; } cm3_assert_not_reached(); } void rcc_css_int_clear(void) { RCC_CIR |= RCC_CIR_CSSC; } int rcc_css_int_flag(void) { return ((RCC_CIR & RCC_CIR_CSSF) != 0); } void rcc_wait_for_osc_ready(enum osc osc) { switch (osc) { case PLL: while ((RCC_CR & RCC_CR_PLLRDY) == 0); break; case HSE: while ((RCC_CR & RCC_CR_HSERDY) == 0); break; case HSI: while ((RCC_CR & RCC_CR_HSIRDY) == 0); break; case LSE: while ((RCC_BDCR & RCC_BDCR_LSERDY) == 0); break; case LSI: while ((RCC_CSR & RCC_CSR_LSIRDY) == 0); break; } } void rcc_wait_for_osc_not_ready(enum osc osc) { switch (osc) { case PLL: while ((RCC_CR & RCC_CR_PLLRDY) != 0); break; case HSE: while ((RCC_CR & RCC_CR_HSERDY) != 0); break; case HSI: while ((RCC_CR & RCC_CR_HSIRDY) != 0); break; case LSE: while ((RCC_BDCR & RCC_BDCR_LSERDY) != 0); break; case LSI: while ((RCC_CSR & RCC_CSR_LSIRDY) != 0); break; } } void rcc_wait_for_sysclk_status(enum osc osc) { switch (osc) { case PLL: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_PLL); break; case HSE: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_HSE); break; case HSI: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_HSI); break; default: /* Shouldn't be reached. */ break; } } void rcc_osc_on(enum osc osc) { switch (osc) { case PLL: RCC_CR |= RCC_CR_PLLON; break; case HSE: RCC_CR |= RCC_CR_HSEON; break; case HSI: RCC_CR |= RCC_CR_HSION; break; case LSE: RCC_BDCR |= RCC_BDCR_LSEON; break; case LSI: RCC_CSR |= RCC_CSR_LSION; break; } } void rcc_osc_off(enum osc osc) { switch (osc) { case PLL: RCC_CR &= ~RCC_CR_PLLON; break; case HSE: RCC_CR &= ~RCC_CR_HSEON; break; case HSI: RCC_CR &= ~RCC_CR_HSION; break; case LSE: RCC_BDCR &= ~RCC_BDCR_LSEON; break; case LSI: RCC_CSR &= ~RCC_CSR_LSION; break; } } void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } void rcc_osc_bypass_enable(enum osc osc) { switch (osc) { case HSE: RCC_CR |= RCC_CR_HSEBYP; break; case LSE: RCC_BDCR |= RCC_BDCR_LSEBYP; break; case PLL: case HSI: case LSI: /* Do nothing, only HSE/LSE allowed here. */ break; } } void rcc_osc_bypass_disable(enum osc osc) { switch (osc) { case HSE: RCC_CR &= ~RCC_CR_HSEBYP; break; case LSE: RCC_BDCR &= ~RCC_BDCR_LSEBYP; break; case PLL: case HSI: case LSI: /* Do nothing, only HSE/LSE allowed here. */ break; } } void rcc_set_sysclk_source(uint32_t clk) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 1) | (1 << 0)); RCC_CFGR = (reg32 | clk); } void rcc_set_pll_source(uint32_t pllsrc) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~RCC_CFGR_PLLSRC; RCC_CFGR = (reg32 | (pllsrc << 16)); } void rcc_set_ppre2(uint32_t ppre2) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 13) | (1 << 14) | (1 << 15)); RCC_CFGR = (reg32 | (ppre2 << 11)); } void rcc_set_ppre1(uint32_t ppre1) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 10) | (1 << 11) | (1 << 12)); RCC_CFGR = (reg32 | (ppre1 << 8)); } void rcc_set_hpre(uint32_t hpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 4) | (1 << 5) | (1 << 6) | (1 << 7)); RCC_CFGR = (reg32 | (hpre << 4)); } void rcc_set_main_pll_hsi(uint32_t pll) { RCC_CFGR = (~RCC_CFGR_PLLMUL_MASK & RCC_CFGR) | (pll << RCC_CFGR_PLLMUL_SHIFT); } uint32_t rcc_get_system_clock_source(void) { /* Return the clock source which is used as system clock. */ return (RCC_CFGR & 0x000c) >> 2; } void rcc_clock_setup_hsi(const clock_scale_t *clock) { /* Enable internal high-speed oscillator. */ rcc_osc_on(HSI); rcc_wait_for_osc_ready(HSI); /* Select HSI as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_HSI); /* XXX: se cayo */ rcc_wait_for_sysclk_status(HSI); rcc_osc_off(PLL); rcc_wait_for_osc_not_ready(PLL); rcc_set_pll_source(clock->pllsrc); rcc_set_main_pll_hsi(clock->pll); /* Enable PLL oscillator and wait for it to stabilize. */ rcc_osc_on(PLL); rcc_wait_for_osc_ready(PLL); /* * Set prescalers for AHB, ADC, ABP1, ABP2. * Do this before touching the PLL (TODO: why?). */ rcc_set_hpre(clock->hpre); rcc_set_ppre2(clock->ppre2); rcc_set_ppre1(clock->ppre1); /* Configure flash settings. */ flash_set_ws(clock->flash_config); /* Select PLL as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* XXX: se cayo */ /* Wait for PLL clock to be selected. */ rcc_wait_for_sysclk_status(PLL); /* Set the peripheral clock frequencies used. */ rcc_ppre1_frequency = clock->apb1_frequency; rcc_ppre2_frequency = clock->apb2_frequency; } void rcc_backupdomain_reset(void) { /* Set the backup domain software reset. */ RCC_BDCR |= RCC_BDCR_BDRST; /* Clear the backup domain software reset. */ RCC_BDCR &= ~RCC_BDCR_BDRST; } void rcc_set_i2c_clock_hsi(uint32_t i2c) { if (i2c == I2C1) { RCC_CFGR3 &= ~RCC_CFGR3_I2C1SW; } if (i2c == I2C2) { RCC_CFGR3 &= ~RCC_CFGR3_I2C2SW; } } void rcc_set_i2c_clock_sysclk(uint32_t i2c) { if (i2c == I2C1) { RCC_CFGR3 |= RCC_CFGR3_I2C1SW; } if (i2c == I2C2) { RCC_CFGR3 |= RCC_CFGR3_I2C2SW; } } uint32_t rcc_get_i2c_clocks(void) { return RCC_CFGR3 & (RCC_CFGR3_I2C1SW | RCC_CFGR3_I2C2SW); } void rcc_usb_prescale_1_5(void) { RCC_CFGR &= ~RCC_CFGR_USBPRES; } void rcc_usb_prescale_1(void) { RCC_CFGR |= RCC_CFGR_USBPRES; } /**@}*/