From 849369d6c66d3054688672f97d31fceb8e8230fb Mon Sep 17 00:00:00 2001 From: root Date: Fri, 25 Dec 2015 04:40:36 +0000 Subject: initial_commit --- Documentation/vm/page_migration | 149 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 149 insertions(+) create mode 100644 Documentation/vm/page_migration (limited to 'Documentation/vm/page_migration') diff --git a/Documentation/vm/page_migration b/Documentation/vm/page_migration new file mode 100644 index 00000000..6513fe2d --- /dev/null +++ b/Documentation/vm/page_migration @@ -0,0 +1,149 @@ +Page migration +-------------- + +Page migration allows the moving of the physical location of pages between +nodes in a numa system while the process is running. This means that the +virtual addresses that the process sees do not change. However, the +system rearranges the physical location of those pages. + +The main intend of page migration is to reduce the latency of memory access +by moving pages near to the processor where the process accessing that memory +is running. + +Page migration allows a process to manually relocate the node on which its +pages are located through the MF_MOVE and MF_MOVE_ALL options while setting +a new memory policy via mbind(). The pages of process can also be relocated +from another process using the sys_migrate_pages() function call. The +migrate_pages function call takes two sets of nodes and moves pages of a +process that are located on the from nodes to the destination nodes. +Page migration functions are provided by the numactl package by Andi Kleen +(a version later than 0.9.3 is required. Get it from +ftp://oss.sgi.com/www/projects/libnuma/download/). numactl provides libnuma +which provides an interface similar to other numa functionality for page +migration. cat /proc//numa_maps allows an easy review of where the +pages of a process are located. See also the numa_maps documentation in the +proc(5) man page. + +Manual migration is useful if for example the scheduler has relocated +a process to a processor on a distant node. A batch scheduler or an +administrator may detect the situation and move the pages of the process +nearer to the new processor. The kernel itself does only provide +manual page migration support. Automatic page migration may be implemented +through user space processes that move pages. A special function call +"move_pages" allows the moving of individual pages within a process. +A NUMA profiler may f.e. obtain a log showing frequent off node +accesses and may use the result to move pages to more advantageous +locations. + +Larger installations usually partition the system using cpusets into +sections of nodes. Paul Jackson has equipped cpusets with the ability to +move pages when a task is moved to another cpuset (See +Documentation/cgroups/cpusets.txt). +Cpusets allows the automation of process locality. If a task is moved to +a new cpuset then also all its pages are moved with it so that the +performance of the process does not sink dramatically. Also the pages +of processes in a cpuset are moved if the allowed memory nodes of a +cpuset are changed. + +Page migration allows the preservation of the relative location of pages +within a group of nodes for all migration techniques which will preserve a +particular memory allocation pattern generated even after migrating a +process. This is necessary in order to preserve the memory latencies. +Processes will run with similar performance after migration. + +Page migration occurs in several steps. First a high level +description for those trying to use migrate_pages() from the kernel +(for userspace usage see the Andi Kleen's numactl package mentioned above) +and then a low level description of how the low level details work. + +A. In kernel use of migrate_pages() +----------------------------------- + +1. Remove pages from the LRU. + + Lists of pages to be migrated are generated by scanning over + pages and moving them into lists. This is done by + calling isolate_lru_page(). + Calling isolate_lru_page increases the references to the page + so that it cannot vanish while the page migration occurs. + It also prevents the swapper or other scans to encounter + the page. + +2. We need to have a function of type new_page_t that can be + passed to migrate_pages(). This function should figure out + how to allocate the correct new page given the old page. + +3. The migrate_pages() function is called which attempts + to do the migration. It will call the function to allocate + the new page for each page that is considered for + moving. + +B. How migrate_pages() works +---------------------------- + +migrate_pages() does several passes over its list of pages. A page is moved +if all references to a page are removable at the time. The page has +already been removed from the LRU via isolate_lru_page() and the refcount +is increased so that the page cannot be freed while page migration occurs. + +Steps: + +1. Lock the page to be migrated + +2. Insure that writeback is complete. + +3. Prep the new page that we want to move to. It is locked + and set to not being uptodate so that all accesses to the new + page immediately lock while the move is in progress. + +4. The new page is prepped with some settings from the old page so that + accesses to the new page will discover a page with the correct settings. + +5. All the page table references to the page are converted + to migration entries or dropped (nonlinear vmas). + This decrease the mapcount of a page. If the resulting + mapcount is not zero then we do not migrate the page. + All user space processes that attempt to access the page + will now wait on the page lock. + +6. The radix tree lock is taken. This will cause all processes trying + to access the page via the mapping to block on the radix tree spinlock. + +7. The refcount of the page is examined and we back out if references remain + otherwise we know that we are the only one referencing this page. + +8. The radix tree is checked and if it does not contain the pointer to this + page then we back out because someone else modified the radix tree. + +9. The radix tree is changed to point to the new page. + +10. The reference count of the old page is dropped because the radix tree + reference is gone. A reference to the new page is established because + the new page is referenced to by the radix tree. + +11. The radix tree lock is dropped. With that lookups in the mapping + become possible again. Processes will move from spinning on the tree_lock + to sleeping on the locked new page. + +12. The page contents are copied to the new page. + +13. The remaining page flags are copied to the new page. + +14. The old page flags are cleared to indicate that the page does + not provide any information anymore. + +15. Queued up writeback on the new page is triggered. + +16. If migration entries were page then replace them with real ptes. Doing + so will enable access for user space processes not already waiting for + the page lock. + +19. The page locks are dropped from the old and new page. + Processes waiting on the page lock will redo their page faults + and will reach the new page. + +20. The new page is moved to the LRU and can be scanned by the swapper + etc again. + +Christoph Lameter, May 8, 2006. + -- cgit v1.2.3