From 849369d6c66d3054688672f97d31fceb8e8230fb Mon Sep 17 00:00:00 2001 From: root Date: Fri, 25 Dec 2015 04:40:36 +0000 Subject: initial_commit --- Documentation/i2c/dev-interface | 214 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 214 insertions(+) create mode 100644 Documentation/i2c/dev-interface (limited to 'Documentation/i2c/dev-interface') diff --git a/Documentation/i2c/dev-interface b/Documentation/i2c/dev-interface new file mode 100644 index 00000000..3e742ba2 --- /dev/null +++ b/Documentation/i2c/dev-interface @@ -0,0 +1,214 @@ +Usually, i2c devices are controlled by a kernel driver. But it is also +possible to access all devices on an adapter from userspace, through +the /dev interface. You need to load module i2c-dev for this. + +Each registered i2c adapter gets a number, counting from 0. You can +examine /sys/class/i2c-dev/ to see what number corresponds to which adapter. +Alternatively, you can run "i2cdetect -l" to obtain a formated list of all +i2c adapters present on your system at a given time. i2cdetect is part of +the i2c-tools package. + +I2C device files are character device files with major device number 89 +and a minor device number corresponding to the number assigned as +explained above. They should be called "i2c-%d" (i2c-0, i2c-1, ..., +i2c-10, ...). All 256 minor device numbers are reserved for i2c. + + +C example +========= + +So let's say you want to access an i2c adapter from a C program. The +first thing to do is "#include ". Please note that +there are two files named "i2c-dev.h" out there, one is distributed +with the Linux kernel and is meant to be included from kernel +driver code, the other one is distributed with i2c-tools and is +meant to be included from user-space programs. You obviously want +the second one here. + +Now, you have to decide which adapter you want to access. You should +inspect /sys/class/i2c-dev/ or run "i2cdetect -l" to decide this. +Adapter numbers are assigned somewhat dynamically, so you can not +assume much about them. They can even change from one boot to the next. + +Next thing, open the device file, as follows: + + int file; + int adapter_nr = 2; /* probably dynamically determined */ + char filename[20]; + + snprintf(filename, 19, "/dev/i2c-%d", adapter_nr); + file = open(filename, O_RDWR); + if (file < 0) { + /* ERROR HANDLING; you can check errno to see what went wrong */ + exit(1); + } + +When you have opened the device, you must specify with what device +address you want to communicate: + + int addr = 0x40; /* The I2C address */ + + if (ioctl(file, I2C_SLAVE, addr) < 0) { + /* ERROR HANDLING; you can check errno to see what went wrong */ + exit(1); + } + +Well, you are all set up now. You can now use SMBus commands or plain +I2C to communicate with your device. SMBus commands are preferred if +the device supports them. Both are illustrated below. + + __u8 register = 0x10; /* Device register to access */ + __s32 res; + char buf[10]; + + /* Using SMBus commands */ + res = i2c_smbus_read_word_data(file, register); + if (res < 0) { + /* ERROR HANDLING: i2c transaction failed */ + } else { + /* res contains the read word */ + } + + /* Using I2C Write, equivalent of + i2c_smbus_write_word_data(file, register, 0x6543) */ + buf[0] = register; + buf[1] = 0x43; + buf[2] = 0x65; + if (write(file, buf, 3) ! =3) { + /* ERROR HANDLING: i2c transaction failed */ + } + + /* Using I2C Read, equivalent of i2c_smbus_read_byte(file) */ + if (read(file, buf, 1) != 1) { + /* ERROR HANDLING: i2c transaction failed */ + } else { + /* buf[0] contains the read byte */ + } + +Note that only a subset of the I2C and SMBus protocols can be achieved by +the means of read() and write() calls. In particular, so-called combined +transactions (mixing read and write messages in the same transaction) +aren't supported. For this reason, this interface is almost never used by +user-space programs. + +IMPORTANT: because of the use of inline functions, you *have* to use +'-O' or some variation when you compile your program! + + +Full interface description +========================== + +The following IOCTLs are defined: + +ioctl(file, I2C_SLAVE, long addr) + Change slave address. The address is passed in the 7 lower bits of the + argument (except for 10 bit addresses, passed in the 10 lower bits in this + case). + +ioctl(file, I2C_TENBIT, long select) + Selects ten bit addresses if select not equals 0, selects normal 7 bit + addresses if select equals 0. Default 0. This request is only valid + if the adapter has I2C_FUNC_10BIT_ADDR. + +ioctl(file, I2C_PEC, long select) + Selects SMBus PEC (packet error checking) generation and verification + if select not equals 0, disables if select equals 0. Default 0. + Used only for SMBus transactions. This request only has an effect if the + the adapter has I2C_FUNC_SMBUS_PEC; it is still safe if not, it just + doesn't have any effect. + +ioctl(file, I2C_FUNCS, unsigned long *funcs) + Gets the adapter functionality and puts it in *funcs. + +ioctl(file, I2C_RDWR, struct i2c_rdwr_ioctl_data *msgset) + Do combined read/write transaction without stop in between. + Only valid if the adapter has I2C_FUNC_I2C. The argument is + a pointer to a + + struct i2c_rdwr_ioctl_data { + struct i2c_msg *msgs; /* ptr to array of simple messages */ + int nmsgs; /* number of messages to exchange */ + } + + The msgs[] themselves contain further pointers into data buffers. + The function will write or read data to or from that buffers depending + on whether the I2C_M_RD flag is set in a particular message or not. + The slave address and whether to use ten bit address mode has to be + set in each message, overriding the values set with the above ioctl's. + +ioctl(file, I2C_SMBUS, struct i2c_smbus_ioctl_data *args) + Not meant to be called directly; instead, use the access functions + below. + +You can do plain i2c transactions by using read(2) and write(2) calls. +You do not need to pass the address byte; instead, set it through +ioctl I2C_SLAVE before you try to access the device. + +You can do SMBus level transactions (see documentation file smbus-protocol +for details) through the following functions: + __s32 i2c_smbus_write_quick(int file, __u8 value); + __s32 i2c_smbus_read_byte(int file); + __s32 i2c_smbus_write_byte(int file, __u8 value); + __s32 i2c_smbus_read_byte_data(int file, __u8 command); + __s32 i2c_smbus_write_byte_data(int file, __u8 command, __u8 value); + __s32 i2c_smbus_read_word_data(int file, __u8 command); + __s32 i2c_smbus_write_word_data(int file, __u8 command, __u16 value); + __s32 i2c_smbus_process_call(int file, __u8 command, __u16 value); + __s32 i2c_smbus_read_block_data(int file, __u8 command, __u8 *values); + __s32 i2c_smbus_write_block_data(int file, __u8 command, __u8 length, + __u8 *values); +All these transactions return -1 on failure; you can read errno to see +what happened. The 'write' transactions return 0 on success; the +'read' transactions return the read value, except for read_block, which +returns the number of values read. The block buffers need not be longer +than 32 bytes. + +The above functions are all inline functions, that resolve to calls to +the i2c_smbus_access function, that on its turn calls a specific ioctl +with the data in a specific format. Read the source code if you +want to know what happens behind the screens. + + +Implementation details +====================== + +For the interested, here's the code flow which happens inside the kernel +when you use the /dev interface to I2C: + +1* Your program opens /dev/i2c-N and calls ioctl() on it, as described in +section "C example" above. + +2* These open() and ioctl() calls are handled by the i2c-dev kernel +driver: see i2c-dev.c:i2cdev_open() and i2c-dev.c:i2cdev_ioctl(), +respectively. You can think of i2c-dev as a generic I2C chip driver +that can be programmed from user-space. + +3* Some ioctl() calls are for administrative tasks and are handled by +i2c-dev directly. Examples include I2C_SLAVE (set the address of the +device you want to access) and I2C_PEC (enable or disable SMBus error +checking on future transactions.) + +4* Other ioctl() calls are converted to in-kernel function calls by +i2c-dev. Examples include I2C_FUNCS, which queries the I2C adapter +functionality using i2c.h:i2c_get_functionality(), and I2C_SMBUS, which +performs an SMBus transaction using i2c-core.c:i2c_smbus_xfer(). + +The i2c-dev driver is responsible for checking all the parameters that +come from user-space for validity. After this point, there is no +difference between these calls that came from user-space through i2c-dev +and calls that would have been performed by kernel I2C chip drivers +directly. This means that I2C bus drivers don't need to implement +anything special to support access from user-space. + +5* These i2c-core.c/i2c.h functions are wrappers to the actual +implementation of your I2C bus driver. Each adapter must declare +callback functions implementing these standard calls. +i2c.h:i2c_get_functionality() calls i2c_adapter.algo->functionality(), +while i2c-core.c:i2c_smbus_xfer() calls either +adapter.algo->smbus_xfer() if it is implemented, or if not, +i2c-core.c:i2c_smbus_xfer_emulated() which in turn calls +i2c_adapter.algo->master_xfer(). + +After your I2C bus driver has processed these requests, execution runs +up the call chain, with almost no processing done, except by i2c-dev to +package the returned data, if any, in suitable format for the ioctl. -- cgit v1.2.3