/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011,2012 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * @file adc.c * @brief ADC Driver code. * * @addtogroup ADC * @{ */ #include "ch.h" #include "hal.h" #if HAL_USE_ADC || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief ADC Driver initialization. * @note This function is implicitly invoked by @p halInit(), there is * no need to explicitly initialize the driver. * * @init */ void adcInit(void) { adc_lld_init(); } /** * @brief Initializes the standard part of a @p ADCDriver structure. * * @param[out] adcp pointer to the @p ADCDriver object * * @init */ void adcObjectInit(ADCDriver *adcp) { adcp->state = ADC_STOP; adcp->config = NULL; adcp->samples = NULL; adcp->depth = 0; adcp->grpp = NULL; #if ADC_USE_WAIT adcp->thread = NULL; #endif /* ADC_USE_WAIT */ #if ADC_USE_MUTUAL_EXCLUSION #if CH_USE_MUTEXES chMtxInit(&adcp->mutex); #else chSemInit(&adcp->semaphore, 1); #endif #endif /* ADC_USE_MUTUAL_EXCLUSION */ #if defined(ADC_DRIVER_EXT_INIT_HOOK) ADC_DRIVER_EXT_INIT_HOOK(adcp); #endif } /** * @brief Configures and activates the ADC peripheral. * * @param[in] adcp pointer to the @p ADCDriver object * @param[in] config pointer to the @p ADCConfig object. Depending on * the implementation the value can be @p NULL. * * @api */ void adcStart(ADCDriver *adcp, const ADCConfig *config) { chDbgCheck(adcp != NULL, "adcStart"); chSysLock(); chDbgAssert((adcp->state == ADC_STOP) || (adcp->state == ADC_READY), "adcStart(), #1", "invalid state"); adcp->config = config; adc_lld_start(adcp); adcp->state = ADC_READY; chSysUnlock(); } /** * @brief Deactivates the ADC peripheral. * * @param[in] adcp pointer to the @p ADCDriver object * * @api */ void adcStop(ADCDriver *adcp) { chDbgCheck(adcp != NULL, "adcStop"); chSysLock(); chDbgAssert((adcp->state == ADC_STOP) || (adcp->state == ADC_READY), "adcStop(), #1", "invalid state"); adc_lld_stop(adcp); adcp->state = ADC_STOP; chSysUnlock(); } /** * @brief Starts an ADC conversion. * @details Starts an asynchronous conversion operation. * @note The buffer is organized as a matrix of M*N elements where M is the * channels number configured into the conversion group and N is the * buffer depth. The samples are sequentially written into the buffer * with no gaps. * * @param[in] adcp pointer to the @p ADCDriver object * @param[in] grpp pointer to a @p ADCConversionGroup object * @param[out] samples pointer to the samples buffer * @param[in] depth buffer depth (matrix rows number). The buffer depth * must be one or an even number. * * @api */ void adcStartConversion(ADCDriver *adcp, const ADCConversionGroup *grpp, adcsample_t *samples, size_t depth) { chSysLock(); adcStartConversionI(adcp, grpp, samples, depth); chSysUnlock(); } /** * @brief Starts an ADC conversion. * @details Starts an asynchronous conversion operation. * @post The callbacks associated to the conversion group will be invoked * on buffer fill and error events. * @note The buffer is organized as a matrix of M*N elements where M is the * channels number configured into the conversion group and N is the * buffer depth. The samples are sequentially written into the buffer * with no gaps. * * @param[in] adcp pointer to the @p ADCDriver object * @param[in] grpp pointer to a @p ADCConversionGroup object * @param[out] samples pointer to the samples buffer * @param[in] depth buffer depth (matrix rows number). The buffer depth * must be one or an even number. * * @iclass */ void adcStartConversionI(ADCDriver *adcp, const ADCConversionGroup *
#include <stdio.h>
#include <assert.h>
#include "test00_uut.c"

uint32_t xorshift32()
{
	static uint32_t x32 = 314159265;
	x32 ^= x32 << 13;
	x32 ^= x32 >> 17;
	x32 ^= x32 << 5;
	return x32;
}

int main()
{
	struct test_state_t state;
	uint32_t a, b, c, x, y, z, w;
	bool first_eval = true;

	for (int i = 0; i < 10; i++)
	{
		a = xorshift32();
		b = xorshift32();
		c = xorshift32();

		x = (a & b) | c;
		y = a & (b | c);
		z = a ^ b ^ c;
		w = z;

		state.a.value_7_0   = a;
		state.a.value_15_8  = a >> 8;
		state.a.value_23_16 = a >> 16;
		state.a.value_31_24 = a >> 24;

		state.b.value_7_0   = b;
		state.b.value_15_8  = b >> 8;
		state.b.value_23_16 = b >> 16;
		state.b.value_31_24 = b >> 24;

		state.c.value_7_0   = c;
		state.c.value_15_8  = c >> 8;
		state.c.value_23_16 = c >> 16;
		state.c.value_31_24 = c >> 24;

		if (first_eval) {
			first_eval = false;
			test_init(&state);
		} else {
			test_eval(&state);
		}

		uint32_t uut_x = 0;
		uut_x |= (uint32_t)state.x.value_7_0;
		uut_x |= (uint32_t)state.x.value_15_8  << 8;
		uut_x |= (uint32_t)state.x.value_23_16 << 16;
		uut_x |= (uint32_t)state.x.value_31_24 << 24;

		uint32_t uut_y = 0;
		uut_y |= (uint32_t)state.y.value_7_0;
		uut_y |= (uint32_t)state.y.value_15_8  << 8;
		uut_y |= (uint32_t)state.y.value_23_16 << 16;
		uut_y |= (uint32_t)state.y.value_31_24 << 24;

		uint32_t uut_z = 0;
		uut_z |= (uint32_t)state.z.value_7_0;
		uut_z |= (uint32_t)state.z.value_15_8  << 8;
		uut_z |= (uint32_t)state.z.value_23_16 << 16;
		uut_z |= (uint32_t)state.z.value_31_24 << 24;

		uint32_t uut_w = 0;
		uut_w |= (uint32_t)state.w.value_7_0;
		uut_w |= (uint32_t)state.w.value_15_8  << 8;
		uut_w |= (uint32_t)state.w.value_23_16 << 16;
		uut_w |= (uint32_t)state.w.value_31_24 << 24;

		printf("---\n");
		printf("A: 0x%08x\n", a);
		printf("B: 0x%08x\n", b);
		printf("C: 0x%08x\n", c);
		printf("X: 0x%08x 0x%08x\n", x, uut_x);
		printf("Y: 0x%08x 0x%08x\n", y, uut_y);
		printf("Z: 0x%08x 0x%08x\n", z, uut_z);
		printf("W: 0x%08x 0x%08x\n", w, uut_w);

		assert(x == uut_x);
		assert(y == uut_y);
		assert(z == uut_z);
		assert(w == uut_w);
	}

	return 0;
}