/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN typedef std::pair> LutData; // Compute a LUT implementing (select ^ select_inv) ? alt_data : data. Returns true if successful. bool merge_lut(LutData &result, const LutData &data, const LutData select, bool select_inv, SigBit alt_data, int max_lut_size) { // First, gather input signals -- insert new signals at the beginning // of the vector, so they don't disturb the likely-critical D LUT input // timings. result.second = data.second; // D lut inputs initially start at 0. int idx_data = 0; // Now add the control input LUT inputs. std::vector idx_sel; for (auto bit : select.second) { int idx = -1; for (int i = 0; i < GetSize(result.second); i++) if (result.second[i] == bit) idx = i; if (idx == -1) { idx = 0; // Insert new signal at the beginning and bump all indices. result.second.insert(result.second.begin(), bit); idx_data++; for (int &sidx : idx_sel) sidx++; } idx_sel.push_back(idx); } // Insert the Q signal, if any, to the slowest input -- it will have // no problem meeting timing. int idx_alt = -1; if (alt_data.wire) { // Check if we already have it. for (int i = 0; i < GetSize(result.second); i++) if (result.second[i] == alt_data) idx_alt = i; // If not, add it. if (idx_alt == -1) { idx_alt = 0; result.second.insert(result.second.begin(), alt_data); idx_data++; for (int &sidx : idx_sel) sidx++; } } // If LUT would be too large, bail. if (GetSize(result.second) > max_lut_size) return false; // Okay, we're doing it — compute the LUT mask. result.first = Const(0, 1 << GetSize(result.second)); for (int i = 0; i < GetSize(result.first); i++) { int sel_lut_idx = 0; for (int j = 0; j < GetSize(select.second); j++) if (i & 1 << idx_sel[j]) sel_lut_idx |= 1 << j; bool select_val = (select.first.bits[sel_lut_idx] == State::S1); bool new_bit; if (select_val ^ select_inv) { // Use alt_data. if (alt_data.wire) new_bit = (i & 1 << idx_alt) != 0; else new_bit = alt_data.data == State::S1; } else { // Use original LUT. int lut_idx = i >> idx_data & ((1 << GetSize(data.second)) - 1); new_bit = data.first.bits[lut_idx] == State::S1; } result.first.bits[i] = new_bit ? State::S1 : State::S0; } return true; } struct XilinxDffOptPass : public Pass { XilinxDffOptPass() : Pass("xilinx_dffopt", "Xilinx: optimize FF control signal usage") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" xilinx_dffopt [options] [selection]\n"); log("\n"); log("Converts hardware clock enable and set/reset signals on FFs to emulation\n"); log("using LUTs, if doing so would improve area. Operates on post-techmap Xilinx\n"); log("cells (LUT*, FD*).\n"); log("\n"); log(" -lut4\n"); log(" Assume a LUT4-based device (instead of a LUT6-based device).\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing XILINX_DFFOPT pass (optimize FF control signal usage).\n"); size_t argidx; int max_lut_size = 6; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-lut4") { max_lut_size = 4; continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { log("Optimizing FFs in %s.\n", log_id(module)); SigMap sigmap(module); dict> bit_to_lut; dict bit_uses; // Gather LUTs. for (auto cell : module->selected_cells()) { for (auto port : cell->connections()) for (auto bit : port.second) bit_uses[sigmap(bit)]++; if (cell->get_bool_attribute(ID::keep)) continue; if (cell->type == ID(INV)) { SigBit sigout = sigmap(cell->getPort(ID(O))); SigBit sigin = sigmap(cell->getPort(ID(I))); bit_to_lut[sigout] = make_pair(LutData(Const(1, 2), {sigin}), cell); } else if (cell->type.in(ID(LUT1), ID(LUT2), ID(LUT3), ID(LUT4), ID(LUT5), ID(LUT6))) { SigBit sigout = sigmap(cell->getPort(ID(O))); const Const &init = cell->getParam(ID(INIT)); std::vector sigin; sigin.push_back(sigmap(cell->getPort(ID(I0)))); if (cell->type == ID(LUT1)) goto lut_sigin_done; sigin.push_back(sigmap(cell->getPort(ID(I1)))); if (cell->type == ID(LUT2)) goto lut_sigin_done; sigin.push_back(sigmap(cell->getPort(ID(I2)))); if (cell->type == ID(LUT3)) goto lut_sigin_done; sigin.push_back(sigmap(cell->getPort(ID(I3)))); if (cell->type == ID(LUT4)) goto lut_sigin_done; sigin.push_back(sigmap(cell->getPort(ID(I4)))); if (cell->type == ID(LUT5)) goto lut_sigin_done; sigin.push_back(sigmap(cell->getPort(ID(I5)))); lut_sigin_done: bit_to_lut[sigout] = make_pair(LutData(init, sigin), cell); } } for (auto wire : module->wires()) if (wire->port_output || wire->port_input) for (int i = 0; i < GetSize(wire); i++) bit_uses[sigmap(SigBit(wire, i))]++; // Iterate through FFs. for (auto cell : module->selected_cells()) { bool has_s = false, has_r = false; if (cell->type.in(ID(FDCE), ID(FDPE), ID(FDCPE), ID(FDCE_1), ID(FDPE_1), ID(FDCPE_1))) { // Async reset. } else if (cell->type.in(ID(FDRE), ID(FDRE_1))) { has_r = true; } else if (cell->type.in(ID(FDSE), ID(FDSE_1))) { has_s = true; } else if (cell->type.in(ID(FDRSE), ID(FDRSE_1))) { has_r = true; has_s = true; } else { // Not a FF. continue; } if (cell->get_bool_attribute(ID::keep)) continue; // Don't bother if D has more than one use. SigBit sig_D = sigmap(cell->getPort(ID(D))); if (bit_uses[sig_D] > 2) continue; // Find the D LUT. auto it_D = bit_to_lut.find(sig_D); if (it_D == bit_to_lut.end()) continue; LutData lut_d = it_D->second.first; Cell *cell_d = it_D->second.second; if (cell->hasParam(ID(IS_D_INVERTED)) && cell->getParam(ID(IS_D_INVERTED)).as_bool()) { // Flip all bits in the LUT. for (int i = 0; i < GetSize(lut_d.first); i++) lut_d.first.bits[i] = (lut_d.first.bits[i] == State::S1) ? State::S0 : State::S1; } LutData lut_d_post_ce; LutData lut_d_post_s; LutData lut_d_post_r; bool worthy_post_ce = false; bool worthy_post_s = false; bool worthy_post_r = false; // First, unmap CE. SigBit sig_Q = sigmap(cell->getPort(ID(Q))); SigBit sig_CE = sigmap(cell->getPort(ID(CE))); LutData lut_ce = LutData(Const(2, 2), {sig_CE}); auto it_CE = bit_to_lut.find(sig_CE); if (it_CE != bit_to_lut.end()) lut_ce = it_CE->second.first; if (sig_CE.wire) { // Merge CE LUT and D LUT into one. If it cannot be done, nothing to do about this FF. if (!merge_lut(lut_d_post_ce, lut_d, lut_ce, true, sig_Q, max_lut_size)) continue; // If this gets rid of a CE LUT, it's worth it. If not, it still may be worth it, if we can remove set/reset as well. if (it_CE != bit_to_lut.end()) worthy_post_ce = true; } else if (sig_CE.data != State::S1) { // Strange. Should not happen in a reasonable flow, so bail. continue; } else { lut_d_post_ce = lut_d; } // Second, unmap S, if any. lut_d_post_s = lut_d_post_ce; if (has_s) { SigBit sig_S = sigmap(cell->getPort(ID(S))); LutData lut_s = LutData(Const(2, 2), {sig_S}); bool inv_s = cell->hasParam(ID(IS_S_INVERTED)) && cell->getParam(ID(IS_S_INVERTED)).as_bool(); auto it_S = bit_to_lut.find(sig_S); if (it_S != bit_to_lut.end()) lut_s = it_S->second.first; if (sig_S.wire) { // Merge S LUT and D LUT into one. If it cannot be done, try to at least merge CE. if (!merge_lut(lut_d_post_s, lut_d_post_ce, lut_s, inv_s, SigBit(State::S1), max_lut_size)) goto unmap; // If this gets rid of an S LUT, it's worth it. if (it_S != bit_to_lut.end()) worthy_post_s = true; } else if (sig_S.data != (inv_s ? State::S1 : State::S0)) { // Strange. Should not happen in a reasonable flow, so bail. continue; } } // Third, unmap R, if any. lut_d_post_r = lut_d_post_s; if (has_r) { SigBit sig_R = sigmap(cell->getPort(ID(R))); LutData lut_r = LutData(Const(2, 2), {sig_R}); bool inv_r = cell->hasParam(ID(IS_R_INVERTED)) && cell->getParam(ID(IS_R_INVERTED)).as_bool(); auto it_R = bit_to_lut.find(sig_R); if (it_R != bit_to_lut.end()) lut_r = it_R->second.first; if (sig_R.wire) { // Merge R LUT and D LUT into one. If it cannot be done, try to at least merge CE/S. if (!merge_lut(lut_d_post_r, lut_d_post_s, lut_r, inv_r, SigBit(State::S0), max_lut_size)) goto unmap; // If this gets rid of an S LUT, it's worth it. if (it_R != bit_to_lut.end()) worthy_post_r = true; } else if (sig_R.data != (inv_r ? State::S1 : State::S0)) { // Strange. Should not happen in a reasonable flow, so bail. continue; } } unmap: LutData final_lut; if (worthy_post_r) { final_lut = lut_d_post_r; log(" Merging R LUT for %s/%s (%d -> %d)\n", log_id(cell), log_id(sig_Q.wire), GetSize(lut_d.second), GetSize(final_lut.second)); } else if (worthy_post_s) { final_lut = lut_d_post_s; log(" Merging S LUT for %s/%s (%d -> %d)\n", log_id(cell), log_id(sig_Q.wire), GetSize(lut_d.second), GetSize(final_lut.second)); } else if (worthy_post_ce) { final_lut = lut_d_post_ce; log(" Merging CE LUT for %s/%s (%d -> %d)\n", log_id(cell), log_id(sig_Q.wire), GetSize(lut_d.second), GetSize(final_lut.second)); } else { // Nothing to do here. continue; } // Okay, we're doing it. Unmap ports. if (worthy_post_r) { cell->unsetParam(ID(IS_R_INVERTED)); cell->setPort(ID(R), Const(0, 1)); } if (has_s && (worthy_post_r || worthy_post_s)) { cell->unsetParam(ID(IS_S_INVERTED)); cell->setPort(ID(S), Const(0, 1)); } cell->setPort(ID(CE), Const(1, 1)); cell->unsetParam(ID(IS_D_INVERTED)); // Create the new LUT. Cell *lut_cell = 0; switch (GetSize(final_lut.second)) { case 1: lut_cell = module->addCell(NEW_ID, ID(LUT1)); break; case 2: lut_cell = module->addCell(NEW_ID, ID(LUT2)); break; case 3: lut_cell = module->addCell(NEW_ID, ID(LUT3)); break; case 4: lut_cell = module->addCell(NEW_ID, ID(LUT4)); break; case 5: lut_cell = module->addCell(NEW_ID, ID(LUT5)); break; case 6: lut_cell = module->addCell(NEW_ID, ID(LUT6)); break; default: log_assert(!"unknown lut size"); } lut_cell->attributes = cell_d->attributes; Wire *lut_out = module->addWire(NEW_ID); lut_cell->setParam(ID(INIT), final_lut.first); cell->setPort(ID(D), lut_out); lut_cell->setPort(ID(O), lut_out); lut_cell->setPort(ID(I0), final_lut.second[0]); if (GetSize(final_lut.second) >= 2) lut_cell->setPort(ID(I1), final_lut.second[1]); if (GetSize(final_lut.second) >= 3) lut_cell->setPort(ID(I2), final_lut.second[2]); if (GetSize(final_lut.second) >= 4) lut_cell->setPort(ID(I3), final_lut.second[3]); if (GetSize(final_lut.second) >= 5) lut_cell->setPort(ID(I4), final_lut.second[4]); if (GetSize(final_lut.second) >= 6) lut_cell->setPort(ID(I5), final_lut.second[5]); } } } } XilinxDffOptPass; PRIVATE_NAMESPACE_END n297'>297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427