/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // The following techmapping rules are intended to be run (with -max_iter 1) // before invoking the `abc9` pass in order to transform the design into // a format that it understands. `ifdef DFF_MODE // For example, (complex) flip-flops are expected to be described as an // combinatorial box (containing all control logic such as clock enable // or synchronous resets) followed by a basic D-Q flop. // Yosys will automatically analyse the simulation model (described in // cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in // order to extract the combinatorial control logic left behind. // Specifically, a simulation model similar to the one below: // // ++===================================++ // || Sim model || // || /\/\/\/\ || // D -->>-----< > +------+ || // R -->>-----< Comb. > |$_DFF_| || // CE -->>-----< logic >-----| [NP]_|---+---->>-- Q // || +--< > +------+ | || // || | \/\/\/\/ | || // || | | || // || +----------------------------+ || // || || // ++===================================++ // // is transformed into: // // ++==================++ // || Comb box || // || || // || /\/\/\/\ || // D -->>-----< > || // R -->>-----< Comb. > || +-----------+ // CE -->>-----< logic >--->>-- $Q --|$__ABC9_FF_|--+-->> Q // abc9_ff.Q +-->>-----< > || +-----------+ | // | || \/\/\/\/ || | // | || || | // | ++==================++ | // | | // +-----------------------------------------------+ // // The purpose of the following FD* rules are to wrap the flop with: // (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9 // the connectivity of its basic D-Q flop // (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to // capture asynchronous behaviour // (c) a special abc9_ff.clock wire to capture its clock domain and polarity // (indicated to `abc9' so that it only performs sequential synthesis // (with reachability analysis) correctly on one domain at a time) // (d) an (* abc9_init *) attribute on the $__ABC9_FF_ cell capturing its // initial state // NOTE: in order to perform sequential synthesis, `abc9' requires that // the initial value of all flops be zero // (e) a special _TECHMAP_REPLACE_.abc9_ff.Q wire that will be used for feedback // into the (combinatorial) FD* cell to facilitate clock-enable behaviour module FDRE (output Q, (* techmap_autopurge *) input C, CE, D, R); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; wire QQ, $Q; generate if (INIT == 1'b1) begin assign Q = ~QQ; FDSE #( .INIT(1'b0), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_S_INVERTED(IS_R_INVERTED) ) _TECHMAP_REPLACE_ ( .D(~D), .Q($Q), .C(C), .CE(CE), .S(R) ); end else begin assign Q = QQ; FDRE #( .INIT(1'b0), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_R_INVERTED(IS_R_INVERTED) ) _TECHMAP_REPLACE_ ( .D(D), .Q($Q), .C(C), .CE(CE), .R(R) ); end endgenerate (* abc9_init = 1'b0 *) $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ)); // Special signals wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED}; wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ; endmodule module FDRE_1 (output Q, (* techmap_autopurge *) input C, CE, D, R); parameter [0:0] INIT = 1'b0; wire QQ, $Q; generate if (INIT == 1'b1) begin assign Q = ~QQ; FDSE_1 #( .INIT(1'b0) ) _TECHMAP_REPLACE_ ( .D(~D), .Q($Q), .C(C), .CE(CE), .S(R) ); end else begin assign Q = QQ; FDRE_1 #( .INIT(1'b0) ) _TECHMAP_REPLACE_ ( .D(D), .Q($Q), .C(C), .CE(CE), .R(R) ); end endgenerate (* abc9_init = 1'b0 *) $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ)); // Special signals wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */}; wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ; endmodule module FDSE (output Q, (* techmap_autopurge *) input C, CE, D, S); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; wire QQ, $Q; generate if (INIT == 1'b1) begin assign Q = ~QQ; FDRE #( .INIT(1'b0), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_R_INVERTED(IS_S_INVERTED) ) _TECHMAP_REPLACE_ ( .D(~D), .Q($Q), .C(C), .CE(CE), .R(S) ); end else begin assign Q = QQ; FDSE #( .INIT(1'b0), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_S_INVERTED(IS_S_INVERTED) ) _TECHMAP_REPLACE_ ( .D(D), .Q($Q), .C(C), .CE(CE), .S(S) ); end endgenerate (* abc9_init = 1'b0 *) $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ)); // Special signals wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED}; wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ; endmodule module FDSE_1 (output Q, (* techmap_autopurge *) input C, CE, D, S); parameter [0:0] INIT = 1'b1; wire QQ, $Q; generate if (INIT == 1'b1) begin assign Q = ~QQ; FDRE_1 #( .INIT(1'b0) ) _TECHMAP_REPLACE_ ( .D(~D), .Q($Q), .C(C), .CE(CE), .R(S) ); end else begin assign Q = QQ; FDSE_1 #( .INIT(1'b0) ) _TECHMAP_REPLACE_ ( .D(D), .Q($Q), .C(C), .CE(CE), .S(S) ); end endgenerate (* abc9_init = 1'b0 *) $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ)); // Special signals wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */}; wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ; endmodule module FDCE (output Q, (* techmap_autopurge *) input C, CE, D, CLR); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; wire QQ, $Q, $QQ; generate if (INIT == 1'b1) begin assign Q = ~QQ; FDPE #( .INIT(1'b0), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_PRE_INVERTED(IS_CLR_INVERTED) ) _TECHMAP_REPLACE_ ( .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR) // ^^^ Note that async // control is not directly // supported by abc9 but its // behaviour is captured by // $__ABC9_ASYNC1 below ); // Since this is an async flop, async behaviour is dealt with here $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ)); end else begin assign Q = QQ; FDCE #( .INIT(1'b0), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_CLR_INVERTED(IS_CLR_INVERTED) ) _TECHMAP_REPLACE_ ( .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR) // ^^^ Note that async // control is not directly // supported by abc9 but its // behaviour is captured by // $__ABC9_ASYNC0 below ); // Since this is an async flop, async behaviour is dealt with here $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ)); end endgenerate (* abc9_init = 1'b0 *) $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ)); // Special signals wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED}; wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ; endmodule module FDCE_1 (output Q, (* techmap_autopurge *) input C, CE, D, CLR); parameter [0:0] INIT = 1'b0; wire QQ, $Q, $QQ; generate if (INIT == 1'b1) begin assign Q = ~QQ; FDPE_1 #( .INIT(1'b0) ) _TECHMAP_REPLACE_ ( .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR) // ^^^ Note that async // control is not directly // supported by abc9 but its // behaviour is captured by // $__ABC9_ASYNC1 below ); $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR), .Y(QQ)); end else begin assign Q = QQ; FDCE_1 #( .INIT(1'b0) ) _TECHMAP_REPLACE_ ( .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR) // ^^^ Note that async // control is not directly // supported by abc9 but its // behaviour is captured by // $__ABC9_ASYNC0 below ); $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR), .Y(QQ)); end endgenerate (* abc9_init = 1'b0 *) $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ)); // Special signals wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */}; wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ; endmodule module FDPE (output Q, (* techmap_autopurge *) input C, CE, D, PRE); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; wire QQ, $Q, $QQ; generate if (INIT == 1'b1) begin assign Q = ~QQ; FDCE #( .INIT(1'b0), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_CLR_INVERTED(IS_PRE_INVERTED), ) _TECHMAP_REPLACE_ ( .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE) // ^^^ Note that async // control is not directly // supported by abc9 but its // behaviour is captured by // $__ABC9_ASYNC0 below ); $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ)); end else begin assign Q = QQ; FDPE #( .INIT(1'b0), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_PRE_INVERTED(IS_PRE_INVERTED), ) _TECHMAP_REPLACE_ ( .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE) // ^^^ Note that async // control is not directly // supported by abc9 but its // behaviour is captured by // $__ABC9_ASYNC1 below ); $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ)); end endgenerate (* abc9_init = 1'b0 *) $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ)); // Special signals wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED}; wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ; endmodule module FDPE_1 (output Q, (* techmap_autopurge *) input C, CE, D, PRE); parameter [0:0] INIT = 1'b1; wire QQ, $Q, $QQ; generate if (INIT == 1'b1) begin assign Q = ~QQ; FDCE_1 #( .INIT(1'b0) ) _TECHMAP_REPLACE_ ( .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE) // ^^^ Note that async // control is not directly // supported by abc9 but its // behaviour is captured by // $__ABC9_ASYNC0 below ); $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE), .Y(QQ)); end else begin assign Q = QQ; FDPE_1 #( .INIT(1'b0) ) _TECHMAP_REPLACE_ ( .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE) // ^^^ Note that async // control is not directly // supported by abc9 but its // behaviour is captured by // $__ABC9_ASYNC1 below ); $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE), .Y(QQ)); end endgenerate (* abc9_init = 1'b0 *) $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ)); // Special signals wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */}; wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ; endmodule `endif // Attach a (combinatorial) black-box onto the output // of thes LUTRAM primitives to capture their // asynchronous read behaviour module RAM32X1D ( output DPO, SPO, (* techmap_autopurge *) input D, (* techmap_autopurge *) input WCLK, (* techmap_autopurge *) input WE, (* techmap_autopurge *) input A0, A1, A2, A3, A4, (* techmap_autopurge *) input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4 ); parameter INIT = 32'h0; parameter IS_WCLK_INVERTED = 1'b0; wire $DPO, $SPO; RAM32X1D #( .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( .DPO($DPO), .SPO($SPO), .D(D), .WCLK(WCLK), .WE(WE), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4) ); $__ABC9_RAM6 spo (.A($SPO), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO)); $__ABC9_RAM6 dpo (.A($DPO), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO)); endmodule module RAM64X1D ( output DPO, SPO, (* techmap_autopurge *) input D, (* techmap_autopurge *) input WCLK, (* techmap_autopurge *) input WE, (* techmap_autopurge *) input A0, A1, A2, A3, A4, A5, (* techmap_autopurge *) input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 ); parameter INIT = 64'h0; parameter IS_WCLK_INVERTED = 1'b0; wire $DPO, $SPO; RAM64X1D #( .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( .DPO($DPO), .SPO($SPO), .D(D), .WCLK(WCLK), .WE(WE), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5), .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5) ); $__ABC9_RAM6 spo (.A($SPO), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO)); $__ABC9_RAM6 dpo (.A($DPO), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO)); endmodule module RAM128X1D ( output DPO, SPO, (* techmap_autopurge *) input D, (* techmap_autopurge *) input WCLK, (* techmap_autopurge *) input WE, (* techmap_autopurge *) input [6:0] A, DPRA ); parameter INIT = 128'h0; parameter IS_WCLK_INVERTED = 1'b0; wire $DPO, $SPO; RAM128X1D #( .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( .DPO($DPO), .SPO($SPO), .D(D), .WCLK(WCLK), .WE(WE), .A(A), .DPRA(DPRA) ); $__ABC9_RAM7 spo (.A($SPO), .S(A), .Y(SPO)); $__ABC9_RAM7 dpo (.A($DPO), .S(DPRA), .Y(DPO)); endmodule module RAM32M ( output [1:0] DOA, output [1:0] DOB, output [1:0] DOC, output [1:0] DOD, (* techmap_autopurge *) input [4:0] ADDRA, (* techmap_autopurge *) input [4:0] ADDRB, (* techmap_autopurge *) input [4:0] ADDRC, (* techmap_autopurge *) input [4:0] ADDRD, (* techmap_autopurge *) input [1:0] DIA, (* techmap_autopurge *) input [1:0] DIB, (* techmap_autopurge *) input [1:0] DIC, (* techmap_autopurge *) input [1:0] DID, (* techmap_autopurge *) input WCLK, (* techmap_autopurge *) input WE ); parameter [63:0] INIT_A = 64'h0000000000000000; parameter [63:0] INIT_B = 64'h0000000000000000; parameter [63:0] INIT_C = 64'h0000000000000000; parameter [63:0] INIT_D = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [1:0] $DOA, $DOB, $DOC, $DOD; RAM32M #( .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD), .WCLK(WCLK), .WE(WE), .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD), .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID) ); $__ABC9_RAM6 doa0 (.A($DOA[0]), .S({1'b1, ADDRA}), .Y(DOA[0])); $__ABC9_RAM6 doa1 (.A($DOA[1]), .S({1'b1, ADDRA}), .Y(DOA[1])); $__ABC9_RAM6 dob0 (.A($DOB[0]), .S({1'b1, ADDRB}), .Y(DOB[0])); $__ABC9_RAM6 dob1 (.A($DOB[1]), .S({1'b1, ADDRB}), .Y(DOB[1])); $__ABC9_RAM6 doc0 (.A($DOC[0]), .S({1'b1, ADDRC}), .Y(DOC[0])); $__ABC9_RAM6 doc1 (.A($DOC[1]), .S({1'b1, ADDRC}), .Y(DOC[1])); $__ABC9_RAM6 dod0 (.A($DOD[0]), .S({1'b1, ADDRD}), .Y(DOD[0])); $__ABC9_RAM6 dod1 (.A($DOD[1]), .S({1'b1, ADDRD}), .Y(DOD[1])); endmodule module RAM64M ( output DOA, output DOB, output DOC, output DOD, (* techmap_autopurge *) input [5:0] ADDRA, (* techmap_autopurge *) input [5:0] ADDRB, (* techmap_autopurge *) input [5:0] ADDRC, (* techmap_autopurge *) input [5:0] ADDRD, (* techmap_autopurge *) input DIA, (* techmap_autopurge *) input DIB, (* techmap_autopurge *) input DIC, (* techmap_autopurge *) input DID, (* techmap_autopurge *) input WCLK, (* techmap_autopurge *) input WE ); parameter [63:0] INIT_A = 64'h0000000000000000; parameter [63:0] INIT_B = 64'h0000000000000000; parameter [63:0] INIT_C = 64'h0000000000000000; parameter [63:0] INIT_D = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire $DOA, $DOB, $DOC, $DOD; RAM64M #( .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD), .WCLK(WCLK), .WE(WE), .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD), .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID) ); $__ABC9_RAM6 doa (.A($DOA), .S(ADDRA), .Y(DOA)); $__ABC9_RAM6 dob (.A($DOB), .S(ADDRB), .Y(DOB)); $__ABC9_RAM6 doc (.A($DOC), .S(ADDRC), .Y(DOC)); $__ABC9_RAM6 dod (.A($DOD), .S(ADDRD), .Y(DOD)); endmodule module SRL16 ( output Q, (* techmap_autopurge *) input A0, A1, A2, A3, CLK, D ); parameter [15:0] INIT = 16'h0000; wire $Q; SRL16 #( .INIT(INIT), ) _TECHMAP_REPLACE_ ( .Q($Q), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CLK(CLK), .D(D) ); $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); endmodule module SRL16E ( output Q, (* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_CLK_INVERTED = 1'b0; wire $Q; SRL16E #( .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED) ) _TECHMAP_REPLACE_ ( .Q($Q), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D) ); $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); endmodule module SRLC16 ( output Q, Q15, (* techmap_autopurge *) input A0, A1, A2, A3, CLK, D ); parameter [15:0] INIT = 16'h0000; wire $Q; SRLC16 #( .INIT(INIT), ) _TECHMAP_REPLACE_ ( .Q($Q), .Q(Q15), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CLK(CLK), .D(D) ); $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); endmodule module SRLC16E ( output Q, Q15, (* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_CLK_INVERTED = 1'b0; wire $Q; SRLC16E #( .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED) ) _TECHMAP_REPLACE_ ( .Q($Q), .Q(Q15), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D) ); $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); endmodule module SRLC32E ( output Q, output Q31, (* techmap_autopurge *) input [4:0] A, (* techmap_autopurge *) input CE, CLK, D ); parameter [31:0] INIT = 32'h00000000; parameter [0:0] IS_CLK_INVERTED = 1'b0; wire $Q; SRLC32E #( .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED) ) _TECHMAP_REPLACE_ ( .Q($Q), .Q31(Q31), .A(A), .CE(CE), .CLK(CLK), .D(D) ); $__ABC9_RAM6 q (.A($Q), .S({1'b1, A}), .Y(Q)); endmodule module DSP48E1 ( (* techmap_autopurge *) output [29:0] ACOUT, (* techmap_autopurge *) output [17:0] BCOUT, (* techmap_autopurge *) output reg CARRYCASCOUT, (* techmap_autopurge *) output reg [3:0] CARRYOUT, (* techmap_autopurge *) output reg MULTSIGNOUT, (* techmap_autopurge *) output OVERFLOW, (* techmap_autopurge *) output reg signed [47:0] P, (* techmap_autopurge *) output PATTERNBDETECT, (* techmap_autopurge *) output PATTERNDETECT, (* techmap_autopurge *) output [47:0] PCOUT, (* techmap_autopurge *) output UNDERFLOW, (* techmap_autopurge *) input signed [29:0] A, (* techmap_autopurge *) input [29:0] ACIN, (* techmap_autopurge *) input [3:0] ALUMODE, (* techmap_autopurge *) input signed [17:0] B, (* techmap_autopurge *) input [17:0] BCIN, (* techmap_autopurge *) input [47:0] C, (* techmap_autopurge *) input CARRYCASCIN, (* techmap_autopurge *) input CARRYIN, (* techmap_autopurge *) input [2:0] CARRYINSEL, (* techmap_autopurge *) input CEA1, (* techmap_autopurge *) input CEA2, (* techmap_autopurge *) input CEAD, (* techmap_autopurge *) input CEALUMODE, (* techmap_autopurge *) input CEB1, (* techmap_autopurge *) input CEB2, (* techmap_autopurge *) input CEC, (* techmap_autopurge *) input CECARRYIN, (* techmap_autopurge *) input CECTRL, (* techmap_autopurge *) input CED, (* techmap_autopurge *) input CEINMODE, (* techmap_autopurge *) input CEM, (* techmap_autopurge *) input CEP, (* techmap_autopurge *) input CLK, (* techmap_autopurge *) input [24:0] D, (* techmap_autopurge *) input [4:0] INMODE, (* techmap_autopurge *) input MULTSIGNIN, (* techmap_autopurge *) input [6:0] OPMODE, (* techmap_autopurge *) input [47:0] PCIN, (* techmap_autopurge *) input RSTA, (* techmap_autopurge *) input RSTALLCARRYIN, (* techmap_autopurge *) input RSTALUMODE, (* techmap_autopurge *) input RSTB, (* techmap_autopurge *) input RSTC, (* techmap_autopurge *) input RSTCTRL, (* techmap_autopurge *) input RSTD, (* techmap_autopurge *) input RSTINMODE, (* techmap_autopurge *) input RSTM, (* techmap_autopurge *) input RSTP ); parameter integer ACASCREG = 1; parameter integer ADREG = 1; parameter integer ALUMODEREG = 1; parameter integer AREG = 1; parameter AUTORESET_PATDET = "NO_RESET"; parameter A_INPUT = "DIRECT"; parameter integer BCASCREG = 1; parameter integer BREG = 1; parameter B_INPUT = "DIRECT"; parameter integer CARRYINREG = 1; parameter integer CARRYINSELREG = 1; parameter integer CREG = 1; parameter integer DREG = 1; parameter integer INMODEREG = 1; parameter integer MREG = 1; parameter integer OPMODEREG = 1; parameter integer PREG = 1; parameter SEL_MASK = "MASK"; parameter SEL_PATTERN = "PATTERN"; parameter USE_DPORT = "FALSE"; parameter USE_MULT = "MULTIPLY"; parameter USE_PATTERN_DETECT = "NO_PATDET"; parameter USE_SIMD = "ONE48"; parameter [47:0] MASK = 48'h3FFFFFFFFFFF; parameter [47:0] PATTERN = 48'h000000000000; parameter [3:0] IS_ALUMODE_INVERTED = 4'b0; parameter [0:0] IS_CARRYIN_INVERTED = 1'b0; parameter [0:0] IS_CLK_INVERTED = 1'b0; parameter [4:0] IS_INMODE_INVERTED = 5'b0; parameter [6:0] IS_OPMODE_INVERTED = 7'b0; wire [47:0] $P, $PCOUT; DSP48E1 #( .ACASCREG(ACASCREG), .ADREG(ADREG), .ALUMODEREG(ALUMODEREG), .AREG(AREG), .AUTORESET_PATDET(AUTORESET_PATDET), .A_INPUT(A_INPUT), .BCASCREG(BCASCREG), .BREG(BREG), .B_INPUT(B_INPUT), .CARRYINREG(CARRYINREG), .CARRYINSELREG(CARRYINSELREG), .CREG(CREG), .DREG(DREG), .INMODEREG(INMODEREG), .MREG(MREG), .OPMODEREG(OPMODEREG), .PREG(PREG), .SEL_MASK(SEL_MASK), .SEL_PATTERN(SEL_PATTERN), .USE_DPORT(USE_DPORT), .USE_MULT(USE_MULT), .USE_PATTERN_DETECT(USE_PATTERN_DETECT), .USE_SIMD(USE_SIMD), .MASK(MASK), .PATTERN(PATTERN), .IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED), .IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED), .IS_CLK_INVERTED(IS_CLK_INVERTED), .IS_INMODE_INVERTED(IS_INMODE_INVERTED), .IS_OPMODE_INVERTED(IS_OPMODE_INVERTED) ) _TECHMAP_REPLACE_ ( .ACOUT(ACOUT), .BCOUT(BCOUT), .CARRYCASCOUT(CARRYCASCOUT), .CARRYOUT(CARRYOUT), .MULTSIGNOUT(MULTSIGNOUT), .OVERFLOW(OVERFLOW), .P($P), .PATTERNBDETECT(PATTERNBDETECT), .PATTERNDETECT(PATTERNDETECT), .PCOUT($PCOUT), .UNDERFLOW(UNDERFLOW), .A(A), .ACIN(ACIN), .ALUMODE(ALUMODE), .B(B), .BCIN(BCIN), .C(C), .CARRYCASCIN(CARRYCASCIN), .CARRYIN(CARRYIN), .CARRYINSEL(CARRYINSEL), .CEA1(CEA1), .CEA2(CEA2), .CEAD(CEAD), .CEALUMODE(CEALUMODE), .CEB1(CEB1), .CEB2(CEB2), .CEC(CEC), .CECARRYIN(CECARRYIN), .CECTRL(CECTRL), .CED(CED), .CEINMODE(CEINMODE), .CEM(CEM), .CEP(CEP), .CLK(CLK), .D(D), .INMODE(INMODE), .MULTSIGNIN(MULTSIGNIN), .OPMODE(OPMODE), .PCIN(PCIN), .RSTA(RSTA), .RSTALLCARRYIN(RSTALLCARRYIN), .RSTALUMODE(RSTALUMODE), .RSTB(RSTB), .RSTC(RSTC), .RSTCTRL(RSTCTRL), .RSTD(RSTD), .RSTINMODE(RSTINMODE), .RSTM(RSTM), .RSTP(RSTP) ); $__ABC9_DSP48E1 #( .ADREG(ADREG), .AREG(AREG), .BREG(BREG), .CREG(CREG), .DREG(DREG), .MREG(MREG), .PREG(PREG), .USE_DPORT(USE_DPORT), .USE_MULT(USE_MULT) ) dsp_comb ( .$A(A), .$B(B), .$C(C), .$D(D), .$P($P), .$PCIN(PCIN), .$PCOUT($PCOUT), .P(P), .PCOUT(PCOUT)); endmodule 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150