/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * --- * * The internal logic cell simulation library. * * This verilog library contains simple simulation models for the internal * logic cells ($_NOT_ , $_AND_ , ...) that are generated by the default technology * mapper (see "techmap.v" in this directory) and expected by the "abc" pass. * */ module \$_BUF_ (A, Y); input A; output Y; assign Y = A; endmodule module \$_NOT_ (A, Y); input A; output Y; assign Y = ~A; endmodule module \$_AND_ (A, B, Y); input A, B; output Y; assign Y = A & B; endmodule module \$_NAND_ (A, B, Y); input A, B; output Y; assign Y = ~(A & B); endmodule module \$_OR_ (A, B, Y); input A, B; output Y; assign Y = A | B; endmodule module \$_NOR_ (A, B, Y); input A, B; output Y; assign Y = ~(A | B); endmodule module \$_XOR_ (A, B, Y); input A, B; output Y; assign Y = A ^ B; endmodule module \$_XNOR_ (A, B, Y); input A, B; output Y; assign Y = ~(A ^ B); endmodule module \$_MUX_ (A, B, S, Y); input A, B, S; output Y; assign Y = S ? B : A; endmodule module \$_MUX4_ (A, B, C, D, S, T, Y); input A, B, C, D, S, T; output Y; assign Y = T ? (S ? D : C) : (S ? B : A); endmodule module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y); input A, B, C, D, E, F, G, H, S, T, U; output Y; assign Y = U ? T ? (S ? H : G) : (S ? F : E) : T ? (S ? D : C) : (S ? B : A); endmodule module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y); input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V; output Y; assign Y = V ? U ? T ? (S ? P : O) : (S ? N : M) : T ? (S ? L : K) : (S ? J : I) : U ? T ? (S ? H : G) : (S ? F : E) : T ? (S ? D : C) : (S ? B : A); endmodule module \$_AOI3_ (A, B, C, Y); input A, B, C; output Y; assign Y = ~((A & B) | C); endmodule module \$_OAI3_ (A, B, C, Y); input A, B, C; output Y; assign Y = ~((A | B) & C); endmodule module \$_AOI4_ (A, B, C, D, Y); input A, B, C, D; output Y; assign Y = ~((A & B) | (C & D)); endmodule module \$_OAI4_ (A, B, C, D, Y); input A, B, C, D; output Y; assign Y = ~((A | B) & (C | D)); endmodule module \$_SR_NN_ (S, R, Q); input S, R; output reg Q; always @(negedge S, negedge R) begin if (R == 0) Q <= 0; else if (S == 0) Q <= 1; end endmodule module \$_SR_NP_ (S, R, Q); input S, R; output reg Q; always @(negedge S, posedge R) begin if (R == 1) Q <= 0; else if (S == 0) Q <= 1; end endmodule module \$_SR_PN_ (S, R, Q); input S, R; output reg Q; always @(posedge S, negedge R) begin if (R == 0) Q <= 0; else if (S == 1) Q <= 1; end endmodule module \$_SR_PP_ (S, R, Q); input S, R; output reg Q; always @(posedge S, posedge R) begin if (R == 1) Q <= 0; else if (S == 1) Q <= 1; end endmodule module \$_DFF_N_ (D, Q, C); input D, C; output reg Q; always @(negedge C) begin Q <= D; end endmodule module \$_DFF_P_ (D, Q, C); input D, C; output reg Q; always @(posedge C) begin Q <= D; end endmodule module \$_DFFE_NN_ (D, Q, C, E); input D, C, E; output reg Q; always @(negedge C) begin if (!E) Q <= D; end endmodule module \$_DFFE_NP_ (D, Q, C, E); input D, C, E; output reg Q; always @(negedge C) begin if (E) Q <= D; end endmodule module \$_DFFE_PN_ (D, Q, C, E); input D, C, E; output reg Q; always @(posedge C) begin if (!E) Q <= D; end endmodule module \$_DFFE_PP_ (D, Q, C, E); input D, C, E; output reg Q; always @(posedge C) begin if (E) Q <= D; end endmodule module \$_DFF_NN0_ (D, Q, C, R); input D, C, R; output reg Q; always @(negedge C or negedge R) begin if (R == 0) Q <= 0; else Q <= D; end endmodule module \$_DFF_NN1_ (D, Q, C, R); input D, C, R; output reg Q; always @(negedge C or negedge R) begin if (R == 0) Q <= 1; else Q <= D; end endmodule module \$_DFF_NP0_ (D, Q, C, R); input D, C, R; output reg Q; always @(negedge C or posedge R) begin if (R == 1) Q <= 0; else Q <= D; end endmodule module \$_DFF_NP1_ (D, Q, C, R); input D, C, R; output reg Q; always @(negedge C or posedge R) begin if (R == 1) Q <= 1; else Q <= D; end endmodule module \$_DFF_PN0_ (D, Q, C, R); input D, C, R; output reg Q; always @(posedge C or negedge R) begin if (R == 0) Q <= 0; else Q <= D; end endmodule module \$_DFF_PN1_ (D, Q, C, R); input D, C, R; output reg Q; always @(posedge C or negedge R) begin if (R == 0) Q <= 1; else Q <= D; end endmodule module \$_DFF_PP0_ (D, Q, C, R); input D, C, R; output reg Q; always @(posedge C or posedge R) begin if (R == 1) Q <= 0; else Q <= D; end endmodule module \$_DFF_PP1_ (D, Q, C, R); input D, C, R; output reg Q; always @(posedge C or posedge R) begin if (R == 1) Q <= 1; else Q <= D; end endmodule module \$_DFFSR_NNN_ (C, S, R, D, Q); input C, S, R, D; output reg Q; always @(negedge C, negedge S, negedge R) begin if (R == 0) Q <= 0; else if (S == 0) Q <= 1; else Q <= D; end endmodule module \$_DFFSR_NNP_ (C, S, R, D, Q); input C, S, R, D; output reg Q; always @(negedge C, negedge S, posedge R) begin if (R == 1) Q <= 0; else if (S == 0) Q <= 1; else Q <= D; end endmodule module \$_DFFSR_NPN_ (C, S, R, D, Q); input C, S, R, D; output reg Q; always @(negedge C, posedge S, negedge R) begin if (R == 0) Q <= 0; else if (S == 1) Q <= 1; else Q <= D; end endmodule module \$_DFFSR_NPP_ (C, S, R, D, Q); input C, S, R, D; output reg Q; always @(negedge C, posedge S, posedge R) begin if (R == 1) Q <= 0; else if (S == 1) Q <= 1; else Q <= D; end endmodule module \$_DFFSR_PNN_ (C, S, R, D, Q); input C, S, R, D; output reg Q; always @(posedge C, negedge S, negedge R) begin if (R == 0) Q <= 0; else if (S == 0) Q <= 1; else Q <= D; end endmodule module \$_DFFSR_PNP_ (C, S, R, D, Q); input C, S, R, D; output reg Q; always @(posedge C, negedge S, posedge R) begin if (R == 1) Q <= 0; else if (S == 0) Q <= 1; else Q <= D; end endmodule module \$_DFFSR_PPN_ (C, S, R, D, Q); input C, S, R, D; output reg Q; always @(posedge C, posedge S, negedge R) begin if (R == 0) Q <= 0; else if (S == 1) Q <= 1; else Q <= D; end endmodule module \$_DFFSR_PPP_ (C, S, R, D, Q); input C, S, R, D; output reg Q; always @(posedge C, posedge S, posedge R) begin if (R == 1) Q <= 0; else if (S == 1) Q <= 1; else Q <= D; end endmodule module \$_DLATCH_N_ (E, D, Q); input E, D; output reg Q; always @* begin if (E == 0) Q <= D; end endmodule module \$_DLATCH_P_ (E, D, Q); input E, D; output reg Q; always @* begin if (E == 1) Q <= D; end endmodule module \$_DLATCHSR_NNN_ (E, S, R, D, Q); input E, S, R, D; output reg Q; always @* begin if (R == 0) Q <= 0; else if (S == 0) Q <= 1; else if (E == 0) Q <= D; end endmodule module \$_DLATCHSR_NNP_ (E, S, R, D, Q); input E, S, R, D; output reg Q; always @* begin if (R == 1) Q <= 0; else if (S == 0) Q <= 1; else if (E == 0) Q <= D; end endmodule module \$_DLATCHSR_NPN_ (E, S, R, D, Q); input E, S, R, D; output reg Q; always @* begin if (R == 0) Q <= 0; else if (S == 1) Q <= 1; else if (E == 0) Q <= D; end endmodule module \$_DLATCHSR_NPP_ (E, S, R, D, Q); input E, S, R, D; output reg Q; always @* begin if (R == 1) Q <= 0; else if (S == 1) Q <= 1; else if (E == 0) Q <= D; end endmodule module \$_DLATCHSR_PNN_ (E, S, R, D, Q); input E, S, R, D; output reg Q; always @* begin if (R == 0) Q <= 0; else if (S == 0) Q <= 1; else if (E == 1) Q <= D; end endmodule module \$_DLATCHSR_PNP_ (E, S, R, D, Q); input E, S, R, D; output reg Q; always @* begin if (R == 1) Q <= 0; else if (S == 0) Q <= 1; else if (E == 1) Q <= D; end endmodule module \$_DLATCHSR_PPN_ (E, S, R, D, Q); input E, S, R, D; output reg Q; always @* begin if (R == 0) Q <= 0; else if (S == 1) Q <= 1; else if (E == 1) Q <= D; end endmodule module \$_DLATCHSR_PPP_ (E, S, R, D, Q); input E, S, R, D; output reg Q; always @* begin if (R == 1) Q <= 0; else if (S == 1) Q <= 1; else if (E == 1) Q <= D; end endmodule 178' href='#n178'>178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251