/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/log.h" #include #include #define NUM_ITER 1000 static std::string id(std::string internal_id) { const char *str = internal_id.c_str(); bool do_escape = false; if (*str == '\\') str++; if ('0' <= *str && *str <= '9') do_escape = true; for (int i = 0; str[i]; i++) { if ('0' <= str[i] && str[i] <= '9') continue; if ('a' <= str[i] && str[i] <= 'z') continue; if ('A' <= str[i] && str[i] <= 'Z') continue; if (str[i] == '_') continue; do_escape = true; break; } if (do_escape) return "\\" + std::string(str) + " "; return std::string(str); } static std::string idx(std::string str) { if (str[0] == '\\') return str.substr(1); return str; } static std::string idy(std::string str1, std::string str2 = std::string(), std::string str3 = std::string()) { str1 = idx(str1); if (!str2.empty()) str1 += "_" + idx(str2); if (!str3.empty()) str1 += "_" + idx(str3); return id(str1); } static void autotest(FILE *f, RTLIL::Design *design) { fprintf(f, "module testbench;\n\n"); fprintf(f, "integer i;\n\n"); fprintf(f, "reg [31:0] xorshift128_x = 123456789;\n"); fprintf(f, "reg [31:0] xorshift128_y = 362436069;\n"); fprintf(f, "reg [31:0] xorshift128_z = 521288629;\n"); fprintf(f, "reg [31:0] xorshift128_w = 88675123;\n"); fprintf(f, "reg [31:0] xorshift128_t;\n\n"); fprintf(f, "task xorshift128;\n"); fprintf(f, "begin\n"); fprintf(f, "\txorshift128_t = xorshift128_x ^ (xorshift128_x << 11);\n"); fprintf(f, "\txorshift128_x = xorshift128_y;\n"); fprintf(f, "\txorshift128_y = xorshift128_z;\n"); fprintf(f, "\txorshift128_z = xorshift128_w;\n"); fprintf(f, "\txorshift128_w = xorshift128_w ^ (xorshift128_w >> 19) ^ xorshift128_t ^ (xorshift128_t >> 8);\n"); fprintf(f, "end\n"); fprintf(f, "endtask\n\n"); for (auto it = design->modules_.begin(); it != design->modules_.end(); it++) { std::map signal_in; std::map signal_const; std::map signal_clk; std::map signal_out; RTLIL::Module *mod = it->second; if (mod->get_bool_attribute("\\gentb_skip")) continue; int count_ports = 0; log("Generating test bench for module `%s'.\n", it->first.c_str()); for (auto it2 = mod->wires_.begin(); it2 != mod->wires_.end(); it2++) { RTLIL::Wire *wire = it2->second; if (wire->port_output) { count_ports++; signal_out[idy("sig", mod->name, wire->name)] = wire->width; fprintf(f, "wire [%d:0] %s;\n", wire->width-1, idy("sig", mod->name, wire->name).c_str()); } else if (wire->port_input) { count_ports++; bool is_clksignal = wire->get_bool_attribute("\\gentb_clock"); for (auto it3 = mod->processes.begin(); it3 != mod->processes.end(); it3++) for (auto it4 = it3->second->syncs.begin(); it4 != it3->second->syncs.end(); it4++) { if ((*it4)->type == RTLIL::ST0 || (*it4)->type == RTLIL::ST1) continue; RTLIL::SigSpec &signal = (*it4)->signal; for (auto &c : signal.chunks()) if (c.wire == wire) is_clksignal = true; } if (is_clksignal && wire->attributes.count("\\gentb_constant") == 0) { signal_clk[idy("sig", mod->name, wire->name)] = wire->width; } else { signal_in[idy("sig", mod->name, wire->name)] = wire->width; if (wire->attributes.count("\\gentb_constant") != 0) signal_const[idy("sig", mod->name, wire->name)] = wire->attributes["\\gentb_constant"].as_string(); } fprintf(f, "reg [%d:0] %s;\n", wire->width-1, idy("sig", mod->name, wire->name).c_str()); } } fprintf(f, "%s %s(\n", id(mod->name).c_str(), idy("uut", mod->name).c_str()); for (auto it2 = mod->wires_.begin(); it2 != mod->wires_.end(); it2++) { RTLIL::Wire *wire = it2->second; if (wire->port_output || wire->port_input) fprintf(f, "\t.%s(%s)%s\n", id(wire->name).c_str(), idy("sig", mod->name, wire->name).c_str(), --count_ports ? "," : ""); } fprintf(f, ");\n\n"); fprintf(f, "task %s;\n", idy(mod->name, "reset").c_str()); fprintf(f, "begin\n"); int delay_counter = 0; for (auto it = signal_in.begin(); it != signal_in.end(); it++) fprintf(f, "\t%s <= #%d 0;\n", it->first.c_str(), ++delay_counter*2); for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) fprintf(f, "\t%s <= #%d 0;\n", it->first.c_str(), ++delay_counter*2); for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) { fprintf(f, "\t#100; %s <= 1;\n", it->first.c_str()); fprintf(f, "\t#100; %s <= 0;\n", it->first.c_str()); } delay_counter = 0; for (auto it = signal_in.begin(); it != signal_in.end(); it++) fprintf(f, "\t%s <= #%d ~0;\n", it->first.c_str(), ++delay_counter*2); for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) { fprintf(f, "\t#100; %s <= 1;\n", it->first.c_str()); fprintf(f, "\t#100; %s <= 0;\n", it->first.c_str()); } delay_counter = 0; for (auto it = signal_in.begin(); it != signal_in.end(); it++) { if (signal_const.count(it->first) == 0) continue; fprintf(f, "\t%s <= #%d 'b%s;\n", it->first.c_str(), ++delay_counter*2, signal_const[it->first].c_str()); } fprintf(f, "end\n"); fprintf(f, "endtask\n\n"); fprintf(f, "task %s;\n", idy(mod->name, "update_data").c_str()); fprintf(f, "begin\n"); delay_counter = 0; for (auto it = signal_in.begin(); it != signal_in.end(); it++) { if (signal_const.count(it->first) > 0) continue; fprintf(f, "\txorshift128;\n"); fprintf(f, "\t%s <= #%d { xorshift128_x, xorshift128_y, xorshift128_z, xorshift128_w };\n", it->first.c_str(), ++delay_counter*2); } fprintf(f, "end\n"); fprintf(f, "endtask\n\n"); fprintf(f, "task %s;\n", idy(mod->name, "update_clock").c_str()); fprintf(f, "begin\n"); if (signal_clk.size()) { fprintf(f, "\txorshift128;\n"); fprintf(f, "\t{"); int total_clock_bits = 0; for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) { fprintf(f, "%s %s", it == signal_clk.begin() ? "" : ",", it->first.c_str()); total_clock_bits += it->second; } fprintf(f, " } = {"); for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) fprintf(f, "%s %s", it == signal_clk.begin() ? "" : ",", it->first.c_str()); fprintf(f, " } ^ (%d'b1 << (xorshift128_w %% %d));\n", total_clock_bits, total_clock_bits); } fprintf(f, "end\n"); fprintf(f, "endtask\n\n"); char shorthand = 'A'; std::vector header1; std::string header2 = ""; fprintf(f, "task %s;\n", idy(mod->name, "print_status").c_str()); fprintf(f, "begin\n"); fprintf(f, "\t$display(\"#OUT# %%b %%b %%b %%t %%d\", {"); if (signal_in.size()) for (auto it = signal_in.begin(); it != signal_in.end(); it++) { fprintf(f, "%s %s", it == signal_in.begin() ? "" : ",", it->first.c_str()); int len = it->second; if (len > 1) header2 += "/", len--; while (len > 1) header2 += "-", len--; if (len > 0) header2 += shorthand, len--; header1.push_back(" " + it->first); header1.back()[0] = shorthand++; } else { fprintf(f, " 1'bx"); header2 += "#"; } fprintf(f, " }, {"); header2 += " "; if (signal_clk.size()) { for (auto it = signal_clk.begin(); it != signal_clk.end(); it++) { fprintf(f, "%s %s", it == signal_clk.begin() ? "" : ",", it->first.c_str()); int len = it->second; if (len > 1) header2 += "/", len--; while (len > 1) header2 += "-", len--; if (len > 0) header2 += shorthand, len--; header1.push_back(" " + it->first); header1.back()[0] = shorthand++; } } else { fprintf(f, " 1'bx"); header2 += "#"; } fprintf(f, " }, {"); header2 += " "; if (signal_out.size()) { for (auto it = signal_out.begin(); it != signal_out.end(); it++) { fprintf(f, "%s %s", it == signal_out.begin() ? "" : ",", it->first.c_str()); int len = it->second; if (len > 1) header2 += "/", len--; while (len > 1) header2 += "-", len--; if (len > 0) header2 += shorthand, len--; header1.push_back(" " + it->first); header1.back()[0] = shorthand++; } } else { fprintf(f, " 1'bx"); header2 += "#"; } fprintf(f, " }, $time, i);\n"); fprintf(f, "end\n"); fprintf(f, "endtask\n\n"); fprintf(f, "task %s;\n", idy(mod->name, "print_header").c_str()); fprintf(f, "begin\n"); fprintf(f, "\t$display(\"#OUT#\");\n"); for (auto &hdr : header1) fprintf(f, "\t$display(\"#OUT# %s\");\n", hdr.c_str()); fprintf(f, "\t$display(\"#OUT#\");\n"); fprintf(f, "\t$display(\"#OUT# %s\");\n", header2.c_str()); fprintf(f, "end\n"); fprintf(f, "endtask\n\n"); fprintf(f, "task %s;\n", idy(mod->name, "test").c_str()); fprintf(f, "begin\n"); fprintf(f, "\t$display(\"#OUT#\\n#OUT# ==== %s ====\");\n", idy(mod->name).c_str()); fprintf(f, "\t%s;\n", idy(mod->name, "reset").c_str()); fprintf(f, "\tfor (i=0; i<%d; i=i+1) begin\n", NUM_ITER); fprintf(f, "\t\tif (i %% 20 == 0) %s;\n", idy(mod->name, "print_header").c_str()); fprintf(f, "\t\t#100; %s;\n", idy(mod->name, "update_data").c_str()); fprintf(f, "\t\t#100; %s;\n", idy(mod->name, "update_clock").c_str()); fprintf(f, "\t\t#100; %s;\n", idy(mod->name, "print_status").c_str()); fprintf(f, "\tend\n"); fprintf(f, "end\n"); fprintf(f, "endtask\n\n"); } fprintf(f, "initial begin\n"); fprintf(f, "\t// $dumpfile(\"testbench.vcd\");\n"); fprintf(f, "\t// $dumpvars(0, testbench);\n"); for (auto it = design->modules_.begin(); it != design->modules_.end(); it++) if (!it->second->get_bool_attribute("\\gentb_skip")) fprintf(f, "\t%s;\n", idy(it->first, "test").c_str()); fprintf(f, "\t$finish;\n"); fprintf(f, "end\n\n"); fprintf(f, "endmodule\n"); } struct TestAutotbBackend : public Backend { TestAutotbBackend() : Backend("=test_autotb", "generate simple test benches") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" test_autotb [filename]\n"); log("\n"); log("Automatically create primitive verilog test benches for all modules in the\n"); log("design. The generated testbenches toggle the input pins of the module in\n"); log("a semi-random manner and dumps the resulting output signals.\n"); log("\n"); log("This can be used to check the synthesis results for simple circuits by\n"); log("comparing the testbench output for the input files and the synthesis results.\n"); log("\n"); log("The backend automatically detects clock signals. Additionally a signal can\n"); log("be forced to be interpreted as clock signal by setting the attribute\n"); log("'gentb_clock' on the signal.\n"); log("\n"); log("The attribute 'gentb_constant' can be used to force a signal to a constant\n"); log("value after initialization. This can e.g. be used to force a reset signal\n"); log("low in order to explore more inner states in a state machine.\n"); log("\n"); } virtual void execute(FILE *&f, std::string filename, std::vector args, RTLIL::Design *design) { log_header("Executing TEST_AUTOTB backend (auto-generate pseudo-random test benches).\n"); extra_args(f, filename, args, 1); autotest(f, design); } } TestAutotbBackend;