/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2017 Robert Ou * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct ExtractReducePass : public Pass { enum GateType { And, Or, Xor }; ExtractReducePass() : Pass("extract_reduce", "converts gate chains into $reduce_* cells") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" extract_reduce [options] [selection]\n"); log("\n"); log("converts gate chains into $reduce_* cells\n"); log("\n"); log("This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them\n"); log("with their corresponding $reduce_* cells. Because this command only operates on\n"); log("these cell types, it is recommended to map the design to only these cell types\n"); log("using the `abc -g` command. Note that, in some cases, it may be more effective\n"); log("to map the design to only $_AND_ cells, run extract_reduce, map the remaining\n"); log("parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.\n"); log("\n"); log(" -allow-off-chain\n"); log(" Allows matching of cells that have loads outside the chain. These cells\n"); log(" will be replicated and folded into the $reduce_* cell, but the original\n"); log(" cell will remain, driving its original loads.\n"); log("\n"); } inline bool IsRightType(Cell* cell, GateType gt) { return (cell->type == ID($_AND_) && gt == GateType::And) || (cell->type == ID($_OR_) && gt == GateType::Or) || (cell->type == ID($_XOR_) && gt == GateType::Xor); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing EXTRACT_REDUCE pass.\n"); log_push(); size_t argidx; bool allow_off_chain = false; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-allow-off-chain") { allow_off_chain = true; continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { SigMap sigmap(module); // Index all of the nets in the module dict sig_to_driver; dict> sig_to_sink; for (auto cell : module->selected_cells()) { for (auto &conn : cell->connections()) { if (cell->output(conn.first)) for (auto bit : sigmap(conn.second)) sig_to_driver[bit] = cell; if (cell->input(conn.first)) { for (auto bit : sigmap(conn.second)) { if (sig_to_sink.count(bit) == 0) sig_to_sink[bit] = pool(); sig_to_sink[bit].insert(cell); } } } } // Need to check if any wires connect to module ports pool port_sigs; for (auto wire : module->selected_wires()) if (wire->port_input || wire->port_output) for (auto bit : sigmap(wire)) port_sigs.insert(bit); // Actual logic starts here pool consumed_cells; for (auto cell : module->selected_cells()) { if (consumed_cells.count(cell)) continue; GateType gt; if (cell->type == ID($_AND_)) gt = GateType::And; else if (cell->type == ID($_OR_)) gt = GateType::Or; else if (cell->type == ID($_XOR_)) gt = GateType::Xor; else continue; log("Working on cell %s...\n", cell->name.c_str()); // If looking for a single chain, follow linearly to the sink pool sinks; if(!allow_off_chain) { Cell* head_cell = cell; Cell* x = cell; while (true) { if(!IsRightType(x, gt)) break; head_cell = x; auto y = sigmap(x->getPort(ID::Y)); log_assert(y.size() == 1); // Should only continue if there is one fanout back into a cell (not to a port) if (sig_to_sink[y].size() != 1 || port_sigs.count(y)) break; x = *sig_to_sink[y].begin(); } sinks.insert(head_cell); } //If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is else { //BFS, following all chains until they hit a cell of a different type //Pick the longest one auto y = sigmap(cell->getPort(ID::Y)); pool current_loads = sig_to_sink[y]; pool next_loads; while(!current_loads.empty()) { //Find each sink and see what they are for(auto x : current_loads) { //Not one of our gates? Don't follow any further //(but add the originating cell to the list of sinks) if(!IsRightType(x, gt)) { sinks.insert(cell); continue; } auto xy = sigmap(x->getPort(ID::Y)); //If this signal drives a port, add it to the sinks //(even though it may not be the end of a chain) if(port_sigs.count(xy) && !consumed_cells.count(x)) sinks.insert(x); //It's a match, search everything out from it auto& next = sig_to_sink[xy]; for(auto z : next) next_loads.insert(z); } //If we couldn't find any downstream loads, stop. //Create a reduction for each of the max-length chains we found if(next_loads.empty()) { for(auto s : current_loads) { //Not one of our gates? Don't follow any further if(!IsRightType(s, gt)) continue; sinks.insert(s); } break; } //Otherwise, continue down the chain current_loads = next_loads; next_loads.clear(); } } //We have our list, go act on it for(auto head_cell : sinks) { log(" Head cell is %s\n", head_cell->name.c_str()); //Avoid duplication if we already were covered if(consumed_cells.count(head_cell)) continue; dict sources; int inner_cells = 0; std::deque bfs_queue = {head_cell}; while (bfs_queue.size()) { Cell* x = bfs_queue.front(); bfs_queue.pop_front(); for (auto port: {ID::A, ID::B}) { auto bit = sigmap(x->getPort(port)[0]); bool sink_single = sig_to_sink[bit].size() == 1 && !port_sigs.count(bit); Cell* drv = sig_to_driver[bit]; bool drv_ok = drv && drv->type == head_cell->type; if (drv_ok && (allow_off_chain || sink_single)) { inner_cells++; bfs_queue.push_back(drv); } else { sources[bit]++; } } } if (inner_cells) { // Worth it to create reduce cell log(" Creating $reduce_* cell!\n"); SigBit output = sigmap(head_cell->getPort(ID::Y)[0]); SigSpec input; for (auto it : sources) { bool cond; if (head_cell->type == ID($_XOR_)) cond = it.second & 1; else cond = it.second != 0; if (cond) input.append(it.first); } if (head_cell->type == ID($_AND_)) { module->addReduceAnd(NEW_ID, input, output); } else if (head_cell->type == ID($_OR_)) { module->addReduceOr(NEW_ID, input, output); } else if (head_cell->type == ID($_XOR_)) { module->addReduceXor(NEW_ID, input, output); } else { log_assert(false); } consumed_cells.insert(head_cell); } } } // Remove all of the head cells, since we supplant them. // Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones) for (auto cell : consumed_cells) module->remove(cell); } log_pop(); } } ExtractReducePass; PRIVATE_NAMESPACE_END