/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "passes/techmap/simplemap.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct Dff2dffeWorker { const dict &direct_dict; RTLIL::Module *module; SigMap sigmap; CellTypes ct; typedef std::pair cell_int_t; std::map bit2mux; std::vector dff_cells; std::map bitusers; typedef std::map pattern_t; typedef std::set patterns_t; Dff2dffeWorker(RTLIL::Module *module, const dict &direct_dict) : direct_dict(direct_dict), module(module), sigmap(module), ct(module->design) { for (auto wire : module->wires()) { if (wire->port_output) for (auto bit : sigmap(wire)) bitusers[bit]++; } for (auto cell : module->cells()) { if (cell->type.in(ID($mux), ID($pmux), ID($_MUX_))) { RTLIL::SigSpec sig_y = sigmap(cell->getPort(ID::Y)); for (int i = 0; i < GetSize(sig_y); i++) bit2mux[sig_y[i]] = cell_int_t(cell, i); } if (direct_dict.empty()) { if (cell->type.in(ID($dff), ID($_DFF_N_), ID($_DFF_P_))) dff_cells.push_back(cell); } else { if (direct_dict.count(cell->type)) dff_cells.push_back(cell); } for (auto conn : cell->connections()) { if (ct.cell_output(cell->type, conn.first)) continue; for (auto bit : sigmap(conn.second)) bitusers[bit]++; } } } patterns_t find_muxtree_feedback_patterns(RTLIL::SigBit d, RTLIL::SigBit q, pattern_t path) { patterns_t ret; if (d == q) { ret.insert(path); return ret; } if (bit2mux.count(d) == 0 || bitusers[d] > 1) return ret; cell_int_t mux_cell_int = bit2mux.at(d); RTLIL::SigSpec sig_a = sigmap(mux_cell_int.first->getPort(ID::A)); RTLIL::SigSpec sig_b = sigmap(mux_cell_int.first->getPort(ID::B)); RTLIL::SigSpec sig_s = sigmap(mux_cell_int.first->getPort(ID::S)); int width = GetSize(sig_a), index = mux_cell_int.second; for (int i = 0; i < GetSize(sig_s); i++) if (path.count(sig_s[i]) && path.at(sig_s[i])) { ret = find_muxtree_feedback_patterns(sig_b[i*width + index], q, path); if (sig_b[i*width + index] == q) { RTLIL::SigSpec s = mux_cell_int.first->getPort(ID::B); s[i*width + index] = RTLIL::Sx; mux_cell_int.first->setPort(ID::B, s); } return ret; } pattern_t path_else = path; for (int i = 0; i < GetSize(sig_s); i++) { if (path.count(sig_s[i])) continue; pattern_t path_this = path; path_else[sig_s[i]] = false; path_this[sig_s[i]] = true; for (auto &pat : find_muxtree_feedback_patterns(sig_b[i*width + index], q, path_this)) ret.insert(pat); if (sig_b[i*width + index] == q) { RTLIL::SigSpec s = mux_cell_int.first->getPort(ID::B); s[i*width + index] = RTLIL::Sx; mux_cell_int.first->setPort(ID::B, s); } } for (auto &pat : find_muxtree_feedback_patterns(sig_a[index], q, path_else)) ret.insert(pat); if (sig_a[index] == q) { RTLIL::SigSpec s = mux_cell_int.first->getPort(ID::A); s[index] = RTLIL::Sx; mux_cell_int.first->setPort(ID::A, s); } return ret; } void simplify_patterns(patterns_t&) { // TBD } RTLIL::SigSpec make_patterns_logic(patterns_t patterns, bool make_gates) { RTLIL::SigSpec or_input; for (auto pat : patterns) { RTLIL::SigSpec s1, s2; for (auto it : pat) { s1.append(it.first); s2.append(it.second); } RTLIL::SigSpec y = module->addWire(NEW_ID); RTLIL::Cell *c = module->addNe(NEW_ID, s1, s2, y); if (make_gates) { simplemap(module, c); module->remove(c); } or_input.append(y); } if (GetSize(or_input) == 0) return State::S1; if (GetSize(or_input) == 1) return or_input; RTLIL::SigSpec y = module->addWire(NEW_ID); RTLIL::Cell *c = module->addReduceAnd(NEW_ID, or_input, y); if (make_gates) { simplemap(module, c); module->remove(c); } return y; } void handle_dff_cell(RTLIL::Cell *dff_cell) { RTLIL::SigSpec sig_d = sigmap(dff_cell->getPort(ID::D)); RTLIL::SigSpec sig_q = sigmap(dff_cell->getPort(ID::Q)); std::map> grouped_patterns; std::set remaining_indices; for (int i = 0 ; i < GetSize(sig_d); i++) { patterns_t patterns = find_muxtree_feedback_patterns(sig_d[i], sig_q[i], pattern_t()); if (!patterns.empty()) { simplify_patterns(patterns); grouped_patterns[patterns].insert(i); } else remaining_indices.insert(i); } for (auto &it : grouped_patterns) { RTLIL::SigSpec new_sig_d, new_sig_q; for (int i : it.second) { new_sig_d.append(sig_d[i]); new_sig_q.append(sig_q[i]); } if (!direct_dict.empty()) { log(" converting %s cell %s to %s for %s -> %s.\n", log_id(dff_cell->type), log_id(dff_cell), log_id(direct_dict.at(dff_cell->type)), log_signal(new_sig_d), log_signal(new_sig_q)); dff_cell->setPort(ID::E, make_patterns_logic(it.first, true)); dff_cell->type = direct_dict.at(dff_cell->type); } else if (dff_cell->type == ID($dff)) { RTLIL::Cell *new_cell = module->addDffe(NEW_ID, dff_cell->getPort(ID::CLK), make_patterns_logic(it.first, false), new_sig_d, new_sig_q, dff_cell->getParam(ID::CLK_POLARITY).as_bool(), true); log(" created $dffe cell %s for %s -> %s.\n", log_id(new_cell), log_signal(new_sig_d), log_signal(new_sig_q)); } else { RTLIL::Cell *new_cell = module->addDffeGate(NEW_ID, dff_cell->getPort(ID::C), make_patterns_logic(it.first, true), new_sig_d, new_sig_q, dff_cell->type == ID($_DFF_P_), true); log(" created %s cell %s for %s -> %s.\n", log_id(new_cell->type), log_id(new_cell), log_signal(new_sig_d), log_signal(new_sig_q)); } } if (!direct_dict.empty()) return; if (remaining_indices.empty()) { log(" removing now obsolete cell %s.\n", log_id(dff_cell)); module->remove(dff_cell); } else if (GetSize(remaining_indices) != GetSize(sig_d)) { log(" removing %d now obsolete bits from cell %s.\n", GetSize(sig_d) - GetSize(remaining_indices), log_id(dff_cell)); RTLIL::SigSpec new_sig_d, new_sig_q; for (int i : remaining_indices) { new_sig_d.append(sig_d[i]); new_sig_q.append(sig_q[i]); } dff_cell->setPort(ID::D, new_sig_d); dff_cell->setPort(ID::Q, new_sig_q); dff_cell->setParam(ID::WIDTH, GetSize(remaining_indices)); } } void run() { log("Transforming FF to FF+Enable cells in module %s:\n", log_id(module)); for (auto dff_cell : dff_cells) { // log("Handling candidate %s:\n", log_id(dff_cell)); handle_dff_cell(dff_cell); } } }; struct Dff2dffePass : public Pass { Dff2dffePass() : Pass("dff2dffe", "transform $dff cells to $dffe cells") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" dff2dffe [options] [selection]\n"); log("\n"); log("This pass transforms $dff cells driven by a tree of multiplexers with one or\n"); log("more feedback paths to $dffe cells. It also works on gate-level cells such as\n"); log("$_DFF_P_, $_DFF_N_ and $_MUX_.\n"); log("\n"); log(" -unmap\n"); log(" operate in the opposite direction: replace $dffe cells with combinations\n"); log(" of $dff and $mux cells. the options below are ignored in unmap mode.\n"); log("\n"); log(" -unmap-mince N\n"); log(" Same as -unmap but only unmap $dffe where the clock enable port\n"); log(" signal is used by less $dffe than the specified number\n"); log("\n"); log(" -direct \n"); log(" map directly to external gate type. can\n"); log(" be any internal gate-level FF cell (except $_DFFE_??_). the\n"); log(" is the cell type name for a cell with an\n"); log(" identical interface to the , except it\n"); log(" also has an high-active enable port 'E'.\n"); log(" Usually is an intermediate cell type\n"); log(" that is then translated to the final type using 'techmap'.\n"); log("\n"); log(" -direct-match \n"); log(" like -direct for all DFF cell types matching the expression.\n"); log(" this will use $__DFFE_* as matching the\n"); log(" internal gate type $_DFF_*_, and $__DFFSE_* for those matching\n"); log(" $_DFFS_*_, except for $_DFF_[NP]_, which is converted to \n"); log(" $_DFFE_[NP]_.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing DFF2DFFE pass (transform $dff to $dffe where applicable).\n"); bool unmap_mode = false; int min_ce_use = -1; dict direct_dict; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-unmap") { unmap_mode = true; continue; } if (args[argidx] == "-unmap-mince" && argidx + 1 < args.size()) { unmap_mode = true; min_ce_use = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-direct" && argidx + 2 < args.size()) { string direct_from = RTLIL::escape_id(args[++argidx]); string direct_to = RTLIL::escape_id(args[++argidx]); direct_dict[direct_from] = direct_to; continue; } if (args[argidx] == "-direct-match" && argidx + 1 < args.size()) { bool found_match = false; const char *pattern = args[++argidx].c_str(); if (patmatch(pattern, "$_DFF_P_" )) found_match = true, direct_dict[ID($_DFF_P_) ] = ID($_DFFE_PP_); if (patmatch(pattern, "$_DFF_N_" )) found_match = true, direct_dict[ID($_DFF_N_) ] = ID($_DFFE_NP_); if (patmatch(pattern, "$_DFF_NN0_")) found_match = true, direct_dict[ID($_DFF_NN0_)] = ID($__DFFE_NN0); if (patmatch(pattern, "$_DFF_NN1_")) found_match = true, direct_dict[ID($_DFF_NN1_)] = ID($__DFFE_NN1); if (patmatch(pattern, "$_DFF_NP0_")) found_match = true, direct_dict[ID($_DFF_NP0_)] = ID($__DFFE_NP0); if (patmatch(pattern, "$_DFF_NP1_")) found_match = true, direct_dict[ID($_DFF_NP1_)] = ID($__DFFE_NP1); if (patmatch(pattern, "$_DFF_PN0_")) found_match = true, direct_dict[ID($_DFF_PN0_)] = ID($__DFFE_PN0); if (patmatch(pattern, "$_DFF_PN1_")) found_match = true, direct_dict[ID($_DFF_PN1_)] = ID($__DFFE_PN1); if (patmatch(pattern, "$_DFF_PP0_")) found_match = true, direct_dict[ID($_DFF_PP0_)] = ID($__DFFE_PP0); if (patmatch(pattern, "$_DFF_PP1_")) found_match = true, direct_dict[ID($_DFF_PP1_)] = ID($__DFFE_PP1); if (patmatch(pattern, "$__DFFS_NN0_")) found_match = true, direct_dict[ID($__DFFS_NN0_)] = ID($__DFFSE_NN0); if (patmatch(pattern, "$__DFFS_NN1_")) found_match = true, direct_dict[ID($__DFFS_NN1_)] = ID($__DFFSE_NN1); if (patmatch(pattern, "$__DFFS_NP0_")) found_match = true, direct_dict[ID($__DFFS_NP0_)] = ID($__DFFSE_NP0); if (patmatch(pattern, "$__DFFS_NP1_")) found_match = true, direct_dict[ID($__DFFS_NP1_)] = ID($__DFFSE_NP1); if (patmatch(pattern, "$__DFFS_PN0_")) found_match = true, direct_dict[ID($__DFFS_PN0_)] = ID($__DFFSE_PN0); if (patmatch(pattern, "$__DFFS_PN1_")) found_match = true, direct_dict[ID($__DFFS_PN1_)] = ID($__DFFSE_PN1); if (patmatch(pattern, "$__DFFS_PP0_")) found_match = true, direct_dict[ID($__DFFS_PP0_)] = ID($__DFFSE_PP0); if (patmatch(pattern, "$__DFFS_PP1_")) found_match = true, direct_dict[ID($__DFFS_PP1_)] = ID($__DFFSE_PP1); if (!found_match) log_cmd_error("No cell types matched pattern '%s'.\n", pattern); continue; } break; } extra_args(args, argidx, design); if (!direct_dict.empty()) { log("Selected cell types for direct conversion:\n"); for (auto &it : direct_dict) log(" %s -> %s\n", log_id(it.first), log_id(it.second)); } for (auto mod : design->selected_modules()) if (!mod->has_processes_warn()) { if (unmap_mode) { SigMap sigmap(mod); for (auto cell : mod->selected_cells()) { if (cell->type == ID($dffe)) { if (min_ce_use >= 0) { int ce_use = 0; for (auto cell_other : mod->selected_cells()) { if (cell_other->type != cell->type) continue; if (sigmap(cell->getPort(ID::EN)) == sigmap(cell_other->getPort(ID::EN))) ce_use++; } if (ce_use >= min_ce_use) continue; } RTLIL::SigSpec tmp = mod->addWire(NEW_ID, GetSize(cell->getPort(ID::D))); mod->addDff(NEW_ID, cell->getPort(ID::CLK), tmp, cell->getPort(ID::Q), cell->getParam(ID::CLK_POLARITY).as_bool()); if (cell->getParam(ID::EN_POLARITY).as_bool()) mod->addMux(NEW_ID, cell->getPort(ID::Q), cell->getPort(ID::D), cell->getPort(ID::EN), tmp); else mod->addMux(NEW_ID, cell->getPort(ID::D), cell->getPort(ID::Q), cell->getPort(ID::EN), tmp); mod->remove(cell); continue; } if (cell->type.begins_with("$_DFFE_")) { if (min_ce_use >= 0) { int ce_use = 0; for (auto cell_other : mod->selected_cells()) { if (cell_other->type != cell->type) continue; if (sigmap(cell->getPort(ID::E)) == sigmap(cell_other->getPort(ID::E))) ce_use++; } if (ce_use >= min_ce_use) continue; } bool clk_pol = cell->type.compare(7, 1, "P") == 0; bool en_pol = cell->type.compare(8, 1, "P") == 0; RTLIL::SigSpec tmp = mod->addWire(NEW_ID); mod->addDff(NEW_ID, cell->getPort(ID::C), tmp, cell->getPort(ID::Q), clk_pol); if (en_pol) mod->addMux(NEW_ID, cell->getPort(ID::Q), cell->getPort(ID::D), cell->getPort(ID::E), tmp); else mod->addMux(NEW_ID, cell->getPort(ID::D), cell->getPort(ID::Q), cell->getPort(ID::E), tmp); mod->remove(cell); continue; } } continue; } Dff2dffeWorker worker(mod, direct_dict); worker.run(); } } } Dff2dffePass; PRIVATE_NAMESPACE_END