/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/ffinit.h" #include "kernel/ff.h" #include "kernel/mem.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct Clk2fflogicPass : public Pass { Clk2fflogicPass() : Pass("clk2fflogic", "convert clocked FFs to generic $ff cells") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" clk2fflogic [options] [selection]\n"); log("\n"); log("This command replaces clocked flip-flops with generic $ff cells that use the\n"); log("implicit global clock. This is useful for formal verification of designs with\n"); log("multiple clocks.\n"); log("\n"); } SigSpec wrap_async_control(Module *module, SigSpec sig, bool polarity) { Wire *past_sig = module->addWire(NEW_ID, GetSize(sig)); module->addFf(NEW_ID, sig, past_sig); if (polarity) sig = module->Or(NEW_ID, sig, past_sig); else sig = module->And(NEW_ID, sig, past_sig); if (polarity) return sig; else return module->Not(NEW_ID, sig); } SigSpec wrap_async_control_gate(Module *module, SigSpec sig, bool polarity) { Wire *past_sig = module->addWire(NEW_ID); module->addFfGate(NEW_ID, sig, past_sig); if (polarity) sig = module->OrGate(NEW_ID, sig, past_sig); else sig = module->AndGate(NEW_ID, sig, past_sig); if (polarity) return sig; else return module->NotGate(NEW_ID, sig); } void execute(std::vector args, RTLIL::Design *design) override { // bool flag_noinit = false; log_header(design, "Executing CLK2FFLOGIC pass (convert clocked FFs to generic $ff cells).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { // if (args[argidx] == "-noinit") { // flag_noinit = true; // continue; // } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { SigMap sigmap(module); FfInitVals initvals(&sigmap, module); for (auto &mem : Mem::get_selected_memories(module)) { for (int i = 0; i < GetSize(mem.rd_ports); i++) { auto &port = mem.rd_ports[i]; if (port.clk_enable) log_error("Read port %d of memory %s.%s is clocked. This is not supported by \"clk2fflogic\"! " "Call \"memory\" with -nordff to avoid this error.\n", i, log_id(mem.memid), log_id(module)); } for (int i = 0; i < GetSize(mem.wr_ports); i++) { auto &port = mem.wr_ports[i]; if (!port.clk_enable) continue; log("Modifying write port %d on memory %s.%s: CLK=%s, A=%s, D=%s\n", i, log_id(module), log_id(mem.memid), log_signal(port.clk), log_signal(port.addr), log_signal(port.data)); Wire *past_clk = module->addWire(NEW_ID); past_clk->attributes[ID::init] = port.clk_polarity ? State::S1 : State::S0; module->addFf(NEW_ID, port.clk, past_clk); SigSpec clock_edge_pattern; if (port.clk_polarity) { clock_edge_pattern.append(State::S0); clock_edge_pattern.append(State::S1); } else { clock_edge_pattern.append(State::S1); clock_edge_pattern.append(State::S0); } SigSpec clock_edge = module->Eqx(NEW_ID, {port.clk, SigSpec(past_clk)}, clock_edge_pattern); SigSpec en_q = module->addWire(NEW_ID, GetSize(port.en)); module->addFf(NEW_ID, port.en, en_q); SigSpec addr_q = module->addWire(NEW_ID, GetSize(port.addr)); module->addFf(NEW_ID, port.addr, addr_q); SigSpec data_q = module->addWire(NEW_ID, GetSize(port.data)); module->addFf(NEW_ID, port.data, data_q); port.clk = State::S0; port.en = module->Mux(NEW_ID, Const(0, GetSize(en_q)), en_q, clock_edge); port.addr = addr_q; port.data = data_q; port.clk_enable = false; port.clk_polarity = false; } mem.emit(); } for (auto cell : vector(module->selected_cells())) { SigSpec qval; if (RTLIL::builtin_ff_cell_types().count(cell->type)) { FfData ff(&initvals, cell); if (ff.has_d && !ff.has_clk && !ff.has_en) { // Already a $ff or $_FF_ cell. continue; } Wire *past_q = module->addWire(NEW_ID, ff.width); if (!ff.is_fine) { module->addFf(NEW_ID, ff.sig_q, past_q); } else { module->addFfGate(NEW_ID, ff.sig_q, past_q); } if (!ff.val_init.is_fully_undef()) initvals.set_init(past_q, ff.val_init); if (ff.has_clk) { ff.unmap_ce_srst(module); Wire *past_clk = module->addWire(NEW_ID); initvals.set_init(past_clk, ff.pol_clk ? State::S1 : State::S0); if (!ff.is_fine) module->addFf(NEW_ID, ff.sig_clk, past_clk); else module->addFfGate(NEW_ID, ff.sig_clk, past_clk); log("Replacing %s.%s (%s): CLK=%s, D=%s, Q=%s\n", log_id(module), log_id(cell), log_id(cell->type), log_signal(ff.sig_clk), log_signal(ff.sig_d), log_signal(ff.sig_q)); SigSpec clock_edge_pattern; if (ff.pol_clk) { clock_edge_pattern.append(State::S0); clock_edge_pattern.append(State::S1); } else { clock_edge_pattern.append(State::S1); clock_edge_pattern.append(State::S0); } SigSpec clock_edge = module->Eqx(NEW_ID, {ff.sig_clk, SigSpec(past_clk)}, clock_edge_pattern); Wire *past_d = module->addWire(NEW_ID, ff.width); if (!ff.is_fine) module->addFf(NEW_ID, ff.sig_d, past_d); else module->addFfGate(NEW_ID, ff.sig_d, past_d); if (!ff.val_init.is_fully_undef()) initvals.set_init(past_d, ff.val_init); if (!ff.is_fine) qval = module->Mux(NEW_ID, past_q, past_d, clock_edge); else qval = module->MuxGate(NEW_ID, past_q, past_d, clock_edge); } else if (ff.has_d) { log("Replacing %s.%s (%s): EN=%s, D=%s, Q=%s\n", log_id(module), log_id(cell), log_id(cell->type), log_signal(ff.sig_en), log_signal(ff.sig_d), log_signal(ff.sig_q)); SigSpec sig_en = wrap_async_control(module, ff.sig_en, ff.pol_en); if (!ff.is_fine) qval = module->Mux(NEW_ID, past_q, ff.sig_d, sig_en); else qval = module->MuxGate(NEW_ID, past_q, ff.sig_d, sig_en); } else { log("Replacing %s.%s (%s): SET=%s, CLR=%s, Q=%s\n", log_id(module), log_id(cell), log_id(cell->type), log_signal(ff.sig_set), log_signal(ff.sig_clr), log_signal(ff.sig_q)); qval = past_q; } if (ff.has_sr) { SigSpec setval = wrap_async_control(module, ff.sig_set, ff.pol_set); SigSpec clrval = wrap_async_control(module, ff.sig_clr, ff.pol_clr); if (!ff.is_fine) { clrval = module->Not(NEW_ID, clrval); qval = module->Or(NEW_ID, qval, setval); module->addAnd(NEW_ID, qval, clrval, ff.sig_q); } else { clrval = module->NotGate(NEW_ID, clrval); qval = module->OrGate(NEW_ID, qval, setval); module->addAndGate(NEW_ID, qval, clrval, ff.sig_q); } } else if (ff.has_arst) { SigSpec arst = wrap_async_control(module, ff.sig_arst, ff.pol_arst); if (!ff.is_fine) module->addMux(NEW_ID, qval, ff.val_arst, arst, ff.sig_q); else module->addMuxGate(NEW_ID, qval, ff.val_arst[0], arst, ff.sig_q); } else { module->connect(ff.sig_q, qval); } initvals.remove_init(ff.sig_q); module->remove(cell); continue; } } } } } Clk2fflogicPass; PRIVATE_NAMESPACE_END