/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/satgen.h" #include "kernel/sigtools.h" #include "kernel/modtools.h" #include "kernel/utils.h" #include "kernel/macc.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct ShareWorkerConfig { int limit; bool opt_force; bool opt_aggressive; bool opt_fast; std::set generic_uni_ops, generic_bin_ops, generic_cbin_ops, generic_other_ops; }; struct ShareWorker { ShareWorkerConfig config; std::set generic_ops; RTLIL::Design *design; RTLIL::Module *module; CellTypes fwd_ct, cone_ct; ModWalker modwalker; ModIndex mi; std::set cells_to_remove; std::set recursion_state; SigMap topo_sigmap; std::map> topo_cell_drivers; std::map> topo_bit_drivers; // ------------------------------------------------------------------------------ // Find terminal bits -- i.e. bits that do not (exclusively) feed into a mux tree // ------------------------------------------------------------------------------ std::set terminal_bits; void find_terminal_bits() { std::set queue_bits; std::set visited_cells; queue_bits.insert(modwalker.signal_outputs.begin(), modwalker.signal_outputs.end()); for (auto &it : module->cells_) if (!fwd_ct.cell_known(it.second->type)) { std::set &bits = modwalker.cell_inputs[it.second]; queue_bits.insert(bits.begin(), bits.end()); } terminal_bits.insert(queue_bits.begin(), queue_bits.end()); while (!queue_bits.empty()) { std::set portbits; modwalker.get_drivers(portbits, queue_bits); queue_bits.clear(); for (auto &pbit : portbits) { if (pbit.cell->type == "$mux" || pbit.cell->type == "$pmux") { std::set bits = modwalker.sigmap(pbit.cell->getPort("\\S")).to_sigbit_set(); terminal_bits.insert(bits.begin(), bits.end()); queue_bits.insert(bits.begin(), bits.end()); visited_cells.insert(pbit.cell); } if (fwd_ct.cell_known(pbit.cell->type) && visited_cells.count(pbit.cell) == 0) { std::set &bits = modwalker.cell_inputs[pbit.cell]; terminal_bits.insert(bits.begin(), bits.end()); queue_bits.insert(bits.begin(), bits.end()); visited_cells.insert(pbit.cell); } } } } // --------------------------------------------------- // Code for sharing and comparing MACC cells // --------------------------------------------------- static int bits_macc_port(const Macc::port_t &p, int width) { if (SIZE(p.in_a) == 0 || SIZE(p.in_b) == 0) return std::min(std::max(SIZE(p.in_a), SIZE(p.in_b)), width); return std::min(SIZE(p.in_a), width) * std::min(SIZE(p.in_b), width) / 2; } static int bits_macc(const Macc &m, int width) { int bits = SIZE(m.bit_ports); for (auto &p : m.ports) bits += bits_macc_port(p, width); return bits; } static int bits_macc(RTLIL::Cell *c) { Macc m(c); int width = SIZE(c->getPort("\\Y")); return bits_macc(m, width); } static bool cmp_macc_ports(const Macc::port_t &p1, const Macc::port_t &p2) { bool mul1 = SIZE(p1.in_a) && SIZE(p1.in_b); bool mul2 = SIZE(p2.in_a) && SIZE(p2.in_b); int w1 = mul1 ? SIZE(p1.in_a) * SIZE(p1.in_b) : SIZE(p1.in_a) + SIZE(p1.in_b); int w2 = mul2 ? SIZE(p2.in_a) * SIZE(p2.in_b) : SIZE(p2.in_a) + SIZE(p2.in_b); if (mul1 != mul2) return mul1; if (w1 != w2) return w1 > w2; if (p1.is_signed != p2.is_signed) return p1.is_signed < p2.is_signed; if (p1.do_subtract != p2.do_subtract) return p1.do_subtract < p2.do_subtract; if (p1.in_a != p2.in_a) return p1.in_a < p2.in_a; if (p1.in_b != p2.in_b) return p1.in_b < p2.in_b; return false; } int share_macc_ports(Macc::port_t &p1, Macc::port_t &p2, int w1, int w2, RTLIL::SigSpec act = RTLIL::SigSpec(), Macc *supermacc = nullptr, std::set *supercell_aux = nullptr) { if (p1.do_subtract != p2.do_subtract) return -1; bool mul1 = SIZE(p1.in_a) && SIZE(p1.in_b); bool mul2 = SIZE(p2.in_a) && SIZE(p2.in_b); if (mul1 != mul2) return -1; bool force_signed = false, force_not_signed = false; if ((SIZE(p1.in_a) && SIZE(p1.in_a) < w1) || (SIZE(p1.in_b) && SIZE(p1.in_b) < w1)) { if (p1.is_signed) force_signed = true; else force_not_signed = true; } if ((SIZE(p2.in_a) && SIZE(p2.in_a) < w2) || (SIZE(p2.in_b) && SIZE(p2.in_b) < w2)) { if (p2.is_signed) force_signed = true; else force_not_signed = true; } if (force_signed && force_not_signed) return -1; if (supermacc) { RTLIL::SigSpec sig_a1 = p1.in_a, sig_b1 = p1.in_b; RTLIL::SigSpec sig_a2 = p2.in_a, sig_b2 = p2.in_b; RTLIL::SigSpec sig_a = SIZE(sig_a1) > SIZE(sig_a2) ? sig_a1 : sig_a2; RTLIL::SigSpec sig_b = SIZE(sig_b1) > SIZE(sig_b2) ? sig_b1 : sig_b2; sig_a1.extend_u0(SIZE(sig_a), p1.is_signed); sig_b1.extend_u0(SIZE(sig_b), p1.is_signed); sig_a2.extend_u0(SIZE(sig_a), p2.is_signed); sig_b2.extend_u0(SIZE(sig_b), p2.is_signed); if (supercell_aux && SIZE(sig_a)) { sig_a = module->addWire(NEW_ID, SIZE(sig_a)); supercell_aux->insert(module->addMux(NEW_ID, sig_a2, sig_a1, act, sig_a)); } if (supercell_aux && SIZE(sig_b)) { sig_b = module->addWire(NEW_ID, SIZE(sig_b)); supercell_aux->insert(module->addMux(NEW_ID, sig_b2, sig_b1, act, sig_b)); } Macc::port_t p; p.in_a = sig_a; p.in_b = sig_b; p.is_signed = force_signed; p.do_subtract = p1.do_subtract; supermacc->ports.push_back(p); } int score = 1000 + abs(SIZE(p1.in_a) - SIZE(p2.in_a)) * std::max(abs(SIZE(p1.in_b) - SIZE(p2.in_b)), 1); for (int i = 0; i < std::min(SIZE(p1.in_a), SIZE(p2.in_a)); i++) if (p1.in_a[i] == p2.in_a[i] && score > 0) score--; for (int i = 0; i < std::min(SIZE(p1.in_b), SIZE(p2.in_b)); i++) if (p1.in_b[i] == p2.in_b[i] && score > 0) score--; return score; } int share_macc(RTLIL::Cell *c1, RTLIL::Cell *c2, RTLIL::SigSpec act = RTLIL::SigSpec(), RTLIL::Cell *supercell = nullptr, std::set *supercell_aux = nullptr) { Macc m1(c1), m2(c2), supermacc; int w1 = SIZE(c1->getPort("\\Y")), w2 = SIZE(c2->getPort("\\Y")); int width = std::max(w1, w2); m1.optimize(w1); m2.optimize(w2); std::sort(m1.ports.begin(), m1.ports.end(), cmp_macc_ports); std::sort(m2.ports.begin(), m2.ports.end(), cmp_macc_ports); std::set m1_unmapped, m2_unmapped; for (int i = 0; i < SIZE(m1.ports); i++) m1_unmapped.insert(i); for (int i = 0; i < SIZE(m2.ports); i++) m2_unmapped.insert(i); while (1) { int best_i = -1, best_j = -1, best_score = 0; for (int i : m1_unmapped) for (int j : m2_unmapped) { int score = share_macc_ports(m1.ports[i], m2.ports[j], w1, w2); log("[%s, %s] vs [%s, %s] -> %d\n", log_signal(m1.ports[i].in_a), log_signal(m1.ports[i].in_b), log_signal(m2.ports[j].in_a), log_signal(m2.ports[j].in_b), score); if (score >= 0 && (best_i < 0 || best_score > score)) best_i = i, best_j = j, best_score = score; } if (best_i >= 0) { m1_unmapped.erase(best_i); m2_unmapped.erase(best_j); share_macc_ports(m1.ports[best_i], m2.ports[best_j], w1, w2, act, &supermacc, supercell_aux); } else break; } for (int i : m1_unmapped) { RTLIL::SigSpec sig_a = m1.ports[i].in_a; RTLIL::SigSpec sig_b = m1.ports[i].in_b; if (supercell_aux && SIZE(sig_a)) { sig_a = module->addWire(NEW_ID, SIZE(sig_a)); supercell_aux->insert(module->addMux(NEW_ID, RTLIL::SigSpec(0, SIZE(sig_a)), m1.ports[i].in_a, act, sig_a)); } if (supercell_aux && SIZE(sig_b)) { sig_b = module->addWire(NEW_ID, SIZE(sig_b)); supercell_aux->insert(module->addMux(NEW_ID, RTLIL::SigSpec(0, SIZE(sig_b)), m1.ports[i].in_b, act, sig_b)); } Macc::port_t p; p.in_a = sig_a; p.in_b = sig_b; p.is_signed = m1.ports[i].is_signed; p.do_subtract = m1.ports[i].do_subtract; supermacc.ports.push_back(p); } for (int i : m2_unmapped) { RTLIL::SigSpec sig_a = m2.ports[i].in_a; RTLIL::SigSpec sig_b = m2.ports[i].in_b; if (supercell_aux && SIZE(sig_a)) { sig_a = module->addWire(NEW_ID, SIZE(sig_a)); supercell_aux->insert(module->addMux(NEW_ID, m2.ports[i].in_a, RTLIL::SigSpec(0, SIZE(sig_a)), act, sig_a)); } if (supercell_aux && SIZE(sig_b)) { sig_b = module->addWire(NEW_ID, SIZE(sig_b)); supercell_aux->insert(module->addMux(NEW_ID, m2.ports[i].in_b, RTLIL::SigSpec(0, SIZE(sig_b)), act, sig_b)); } Macc::port_t p; p.in_a = sig_a; p.in_b = sig_b; p.is_signed = m2.ports[i].is_signed; p.do_subtract = m2.ports[i].do_subtract; supermacc.ports.push_back(p); } if (supercell) { RTLIL::SigSpec sig_y = module->addWire(NEW_ID, width); supercell_aux->insert(module->addPos(NEW_ID, sig_y, c1->getPort("\\Y"))); supercell_aux->insert(module->addPos(NEW_ID, sig_y, c2->getPort("\\Y"))); supercell->setParam("\\Y_WIDTH", width); supercell->setPort("\\Y", sig_y); supermacc.optimize(width); supermacc.to_cell(supercell); } return bits_macc(supermacc, width); } // --------------------------------------------------- // Find shareable cells and compatible groups of cells // --------------------------------------------------- std::set> shareable_cells; void find_shareable_cells() { for (auto &it : module->cells_) { RTLIL::Cell *cell = it.second; if (!design->selected(module, cell) || !modwalker.ct.cell_known(cell->type)) continue; for (auto &bit : modwalker.cell_outputs[cell]) if (terminal_bits.count(bit)) goto not_a_muxed_cell; if (0) not_a_muxed_cell: continue; if (config.opt_force) { shareable_cells.insert(cell); continue; } if (cell->type == "$memrd") { if (!cell->parameters.at("\\CLK_ENABLE").as_bool()) shareable_cells.insert(cell); continue; } if (cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod") { if (config.opt_aggressive || cell->parameters.at("\\Y_WIDTH").as_int() >= 4) shareable_cells.insert(cell); continue; } if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr") { if (config.opt_aggressive || cell->parameters.at("\\Y_WIDTH").as_int() >= 8) shareable_cells.insert(cell); continue; } if (generic_ops.count(cell->type)) { if (config.opt_aggressive || cell->parameters.at("\\Y_WIDTH").as_int() >= 10) shareable_cells.insert(cell); continue; } } } bool is_shareable_pair(RTLIL::Cell *c1, RTLIL::Cell *c2) { if (c1->type != c2->type) return false; if (c1->type == "$memrd") { if (c1->parameters.at("\\MEMID").decode_string() != c2->parameters.at("\\MEMID").decode_string()) return false; return true; } if (config.generic_uni_ops.count(c1->type)) { if (!config.opt_aggressive) { int a1_width = c1->parameters.at("\\A_WIDTH").as_int(); int y1_width = c1->parameters.at("\\Y_WIDTH").as_int(); int a2_width = c2->parameters.at("\\A_WIDTH").as_int(); int y2_width = c2->parameters.at("\\Y_WIDTH").as_int(); if (std::max(a1_width, a2_width) > 2 * std::min(a1_width, a2_width)) return false; if (std::max(y1_width, y2_width) > 2 * std::min(y1_width, y2_width)) return false; } return true; } if (config.generic_bin_ops.count(c1->type) || c1->type == "$alu") { if (!config.opt_aggressive) { int a1_width = c1->parameters.at("\\A_WIDTH").as_int(); int b1_width = c1->parameters.at("\\B_WIDTH").as_int(); int y1_width = c1->parameters.at("\\Y_WIDTH").as_int(); int a2_width = c2->parameters.at("\\A_WIDTH").as_int(); int b2_width = c2->parameters.at("\\B_WIDTH").as_int(); int y2_width = c2->parameters.at("\\Y_WIDTH").as_int(); if (std::max(a1_width, a2_width) > 2 * std::min(a1_width, a2_width)) return false; if (std::max(b1_width, b2_width) > 2 * std::min(b1_width, b2_width)) return false; if (std::max(y1_width, y2_width) > 2 * std::min(y1_width, y2_width)) return false; } return true; } if (config.generic_cbin_ops.count(c1->type)) { if (!config.opt_aggressive) { int a1_width = c1->parameters.at("\\A_WIDTH").as_int(); int b1_width = c1->parameters.at("\\B_WIDTH").as_int(); int y1_width = c1->parameters.at("\\Y_WIDTH").as_int(); int a2_width = c2->parameters.at("\\A_WIDTH").as_int(); int b2_width = c2->parameters.at("\\B_WIDTH").as_int(); int y2_width = c2->parameters.at("\\Y_WIDTH").as_int(); int min1_width = std::min(a1_width, b1_width); int max1_width = std::max(a1_width, b1_width); int min2_width = std::min(a2_width, b2_width); int max2_width = std::max(a2_width, b2_width); if (std::max(min1_width, min2_width) > 2 * std::min(min1_width, min2_width)) return false; if (std::max(max1_width, max2_width) > 2 * std::min(max1_width, max2_width)) return false; if (std::max(y1_width, y2_width) > 2 * std::min(y1_width, y2_width)) return false; } return true; } if (c1->type == "$macc") { if (!config.opt_aggressive) if (share_macc(c1, c2) > 2 * std::min(bits_macc(c1), bits_macc(c2))) return false; return true; } for (auto &it : c1->parameters) if (c2->parameters.count(it.first) == 0 || c2->parameters.at(it.first) != it.second) return false; for (auto &it : c2->parameters) if (c1->parameters.count(it.first) == 0 || c1->parameters.at(it.first) != it.second) return false; return true; } void find_shareable_partners(std::vector &results, RTLIL::Cell *cell) { results.clear(); for (auto c : shareable_cells) if (c != cell && is_shareable_pair(c, cell)) results.push_back(c); } // ----------------------- // Create replacement cell // ----------------------- RTLIL::Cell *make_supercell(RTLIL::Cell *c1, RTLIL::Cell *c2, RTLIL::SigSpec act, std::set &supercell_aux) { log_assert(c1->type == c2->type); if (config.generic_uni_ops.count(c1->type)) { if (c1->parameters.at("\\A_SIGNED").as_bool() != c2->parameters.at("\\A_SIGNED").as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at("\\A_SIGNED").as_bool() ? c2 : c1; if (unsigned_cell->getPort("\\A").to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at("\\A_WIDTH") = unsigned_cell->parameters.at("\\A_WIDTH").as_int() + 1; RTLIL::SigSpec new_a = unsigned_cell->getPort("\\A"); new_a.append_bit(RTLIL::State::S0); unsigned_cell->setPort("\\A", new_a); } unsigned_cell->parameters.at("\\A_SIGNED") = true; unsigned_cell->check(); } bool a_signed = c1->parameters.at("\\A_SIGNED").as_bool(); log_assert(a_signed == c2->parameters.at("\\A_SIGNED").as_bool()); RTLIL::SigSpec a1 = c1->getPort("\\A"); RTLIL::SigSpec y1 = c1->getPort("\\Y"); RTLIL::SigSpec a2 = c2->getPort("\\A"); RTLIL::SigSpec y2 = c2->getPort("\\Y"); int a_width = std::max(a1.size(), a2.size()); int y_width = std::max(y1.size(), y2.size()); a1.extend_u0(a_width, a_signed); a2.extend_u0(a_width, a_signed); RTLIL::SigSpec a = module->addWire(NEW_ID, a_width); supercell_aux.insert(module->addMux(NEW_ID, a2, a1, act, a)); RTLIL::Wire *y = module->addWire(NEW_ID, y_width); RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type); supercell->parameters["\\A_SIGNED"] = a_signed; supercell->parameters["\\A_WIDTH"] = a_width; supercell->parameters["\\Y_WIDTH"] = y_width; supercell->setPort("\\A", a); supercell->setPort("\\Y", y); supercell_aux.insert(module->addPos(NEW_ID, y, y1)); supercell_aux.insert(module->addPos(NEW_ID, y, y2)); supercell_aux.insert(supercell); return supercell; } if (config.generic_bin_ops.count(c1->type) || config.generic_cbin_ops.count(c1->type) || c1->type == "$alu") { bool modified_src_cells = false; if (config.generic_cbin_ops.count(c1->type)) { int score_unflipped = std::max(c1->parameters.at("\\A_WIDTH").as_int(), c2->parameters.at("\\A_WIDTH").as_int()) + std::max(c1->parameters.at("\\B_WIDTH").as_int(), c2->parameters.at("\\B_WIDTH").as_int()); int score_flipped = std::max(c1->parameters.at("\\A_WIDTH").as_int(), c2->parameters.at("\\B_WIDTH").as_int()) + std::max(c1->parameters.at("\\B_WIDTH").as_int(), c2->parameters.at("\\A_WIDTH").as_int()); if (score_flipped < score_unflipped) { RTLIL::SigSpec tmp = c2->getPort("\\A"); c2->setPort("\\A", c2->getPort("\\B")); c2->setPort("\\B", tmp); std::swap(c2->parameters.at("\\A_WIDTH"), c2->parameters.at("\\B_WIDTH")); std::swap(c2->parameters.at("\\A_SIGNED"), c2->parameters.at("\\B_SIGNED")); modified_src_cells = true; } } if (c1->parameters.at("\\A_SIGNED").as_bool() != c2->parameters.at("\\A_SIGNED").as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at("\\A_SIGNED").as_bool() ? c2 : c1; if (unsigned_cell->getPort("\\A").to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at("\\A_WIDTH") = unsigned_cell->parameters.at("\\A_WIDTH").as_int() + 1; RTLIL::SigSpec new_a = unsigned_cell->getPort("\\A"); new_a.append_bit(RTLIL::State::S0); unsigned_cell->setPort("\\A", new_a); } unsigned_cell->parameters.at("\\A_SIGNED") = true; modified_src_cells = true; } if (c1->parameters.at("\\B_SIGNED").as_bool() != c2->parameters.at("\\B_SIGNED").as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at("\\B_SIGNED").as_bool() ? c2 : c1; if (unsigned_cell->getPort("\\B").to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at("\\B_WIDTH") = unsigned_cell->parameters.at("\\B_WIDTH").as_int() + 1; RTLIL::SigSpec new_b = unsigned_cell->getPort("\\B"); new_b.append_bit(RTLIL::State::S0); unsigned_cell->setPort("\\B", new_b); } unsigned_cell->parameters.at("\\B_SIGNED") = true; modified_src_cells = true; } if (modified_src_cells) { c1->check(); c2->check(); } bool a_signed = c1->parameters.at("\\A_SIGNED").as_bool(); bool b_signed = c1->parameters.at("\\B_SIGNED").as_bool(); log_assert(a_signed == c2->parameters.at("\\A_SIGNED").as_bool()); log_assert(b_signed == c2->parameters.at("\\B_SIGNED").as_bool()); if (c1->type == "$shl" || c1->type == "$shr" || c1->type == "$sshl" || c1->type == "$sshr") b_signed = false; RTLIL::SigSpec a1 = c1->getPort("\\A"); RTLIL::SigSpec b1 = c1->getPort("\\B"); RTLIL::SigSpec y1 = c1->getPort("\\Y"); RTLIL::SigSpec a2 = c2->getPort("\\A"); RTLIL::SigSpec b2 = c2->getPort("\\B"); RTLIL::SigSpec y2 = c2->getPort("\\Y"); int a_width = std::max(a1.size(), a2.size()); int b_width = std::max(b1.size(), b2.size()); int y_width = std::max(y1.size(), y2.size()); if (c1->type == "$shr" && a_signed) { a_width = std::max(y_width, a_width); if (a1.size() < y1.size()) a1.extend_u0(y1.size(), true); if (a2.size() < y2.size()) a2.extend_u0(y2.size(), true); a1.extend_u0(a_width, false); a2.extend_u0(a_width, false); } else { a1.extend_u0(a_width, a_signed); a2.extend_u0(a_width, a_signed); } b1.extend_u0(b_width, b_signed); b2.extend_u0(b_width, b_signed); RTLIL::SigSpec a = module->addWire(NEW_ID, a_width); RTLIL::SigSpec b = module->addWire(NEW_ID, b_width); supercell_aux.insert(module->addMux(NEW_ID, a2, a1, act, a)); supercell_aux.insert(module->addMux(NEW_ID, b2, b1, act, b)); RTLIL::Wire *y = module->addWire(NEW_ID, y_width); RTLIL::Wire *x = c1->type == "$alu" ? module->addWire(NEW_ID, y_width) : nullptr; RTLIL::Wire *co = c1->type == "$alu" ? module->addWire(NEW_ID, y_width) : nullptr; RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type); supercell->parameters["\\A_SIGNED"] = a_signed; supercell->parameters["\\B_SIGNED"] = b_signed; supercell->parameters["\\A_WIDTH"] = a_width; supercell->parameters["\\B_WIDTH"] = b_width; supercell->parameters["\\Y_WIDTH"] = y_width; supercell->setPort("\\A", a); supercell->setPort("\\B", b); supercell->setPort("\\Y", y); if (c1->type == "$alu") { RTLIL::Wire *ci = module->addWire(NEW_ID), *bi = module->addWire(NEW_ID); supercell_aux.insert(module->addMux(NEW_ID, c2->getPort("\\CI"), c1->getPort("\\CI"), act, ci)); supercell_aux.insert(module->addMux(NEW_ID, c2->getPort("\\BI"), c1->getPort("\\BI"), act, bi)); supercell->setPort("\\CI", ci); supercell->setPort("\\BI", bi); supercell->setPort("\\CO", co); supercell->setPort("\\X", x); } supercell->check(); supercell_aux.insert(module->addPos(NEW_ID, y, y1)); supercell_aux.insert(module->addPos(NEW_ID, y, y2)); if (c1->type == "$alu") { supercell_aux.insert(module->addPos(NEW_ID, co, c1->getPort("\\CO"))); supercell_aux.insert(module->addPos(NEW_ID, co, c2->getPort("\\CO"))); supercell_aux.insert(module->addPos(NEW_ID, x, c1->getPort("\\X"))); supercell_aux.insert(module->addPos(NEW_ID, x, c2->getPort("\\X"))); } supercell_aux.insert(supercell); return supercell; } if (c1->type == "$macc") { RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type); supercell_aux.insert(supercell); share_macc(c1, c2, act, supercell, &supercell_aux); supercell->check(); return supercell; } if (c1->type == "$memrd") { RTLIL::Cell *supercell = module->addCell(NEW_ID, c1); supercell_aux.insert(module->addPos(NEW_ID, supercell->getPort("\\DATA"), c2->getPort("\\DATA"))); supercell_aux.insert(supercell); return supercell; } log_abort(); } // ------------------------------------------- // Finding forbidden control inputs for a cell // ------------------------------------------- std::map> forbidden_controls_cache; const std::set &find_forbidden_controls(RTLIL::Cell *cell) { if (recursion_state.count(cell)) { static std::set empty_controls_set; return empty_controls_set; } if (forbidden_controls_cache.count(cell)) return forbidden_controls_cache.at(cell); std::set pbits; std::set consumer_cells; modwalker.get_consumers(pbits, modwalker.cell_outputs[cell]); for (auto &bit : pbits) { if ((bit.cell->type == "$mux" || bit.cell->type == "$pmux") && bit.port == "\\S") forbidden_controls_cache[cell].insert(bit.cell->getPort("\\S").extract(bit.offset, 1)); consumer_cells.insert(bit.cell); } recursion_state.insert(cell); for (auto c : consumer_cells) if (fwd_ct.cell_known(c->type)) { const std::set &bits = find_forbidden_controls(c); forbidden_controls_cache[cell].insert(bits.begin(), bits.end()); } log_assert(recursion_state.count(cell)); recursion_state.erase(cell); return forbidden_controls_cache[cell]; } // -------------------------------------------------------- // Finding control inputs and activation pattern for a cell // -------------------------------------------------------- std::map>> activation_patterns_cache; bool sort_check_activation_pattern(std::pair &p) { std::map p_bits; std::vector p_first_bits = p.first; for (int i = 0; i < SIZE(p_first_bits); i++) { RTLIL::SigBit b = p_first_bits[i]; RTLIL::State v = p.second.bits[i]; if (p_bits.count(b) && p_bits.at(b) != v) return false; p_bits[b] = v; } p.first = RTLIL::SigSpec(); p.second.bits.clear(); for (auto &it : p_bits) { p.first.append_bit(it.first); p.second.bits.push_back(it.second); } return true; } void optimize_activation_patterns(std::set> & /* patterns */) { // TODO: Remove patterns that are contained in other patterns // TODO: Consolidate pairs of patterns that only differ in the value for one signal bit } const std::set> &find_cell_activation_patterns(RTLIL::Cell *cell, const char *indent) { if (recursion_state.count(cell)) { static std::set> empty_patterns_set; return empty_patterns_set; } if (activation_patterns_cache.count(cell)) return activation_patterns_cache.at(cell); const std::set &cell_out_bits = modwalker.cell_outputs[cell]; std::set driven_cells, driven_data_muxes; for (auto &bit : cell_out_bits) { if (terminal_bits.count(bit)) { // Terminal cells are always active: unconditional activation pattern activation_patterns_cache[cell].insert(std::pair()); return activation_patterns_cache.at(cell); } for (auto &pbit : modwalker.signal_consumers[bit]) { log_assert(fwd_ct.cell_known(pbit.cell->type)); if ((pbit.cell->type == "$mux" || pbit.cell->type == "$pmux") && (pbit.port == "\\A" || pbit.port == "\\B")) driven_data_muxes.insert(pbit.cell); else driven_cells.insert(pbit.cell); } } recursion_state.insert(cell); for (auto c : driven_data_muxes) { const std::set> &c_patterns = find_cell_activation_patterns(c, indent); bool used_in_a = false; std::set used_in_b_parts; int width = c->parameters.at("\\WIDTH").as_int(); std::vector sig_a = modwalker.sigmap(c->getPort("\\A")); std::vector sig_b = modwalker.sigmap(c->getPort("\\B")); std::vector sig_s = modwalker.sigmap(c->getPort("\\S")); for (auto &bit : sig_a) if (cell_out_bits.count(bit)) used_in_a = true; for (int i = 0; i < SIZE(sig_b); i++) if (cell_out_bits.count(sig_b[i])) used_in_b_parts.insert(i / width); if (used_in_a) for (auto p : c_patterns) { for (int i = 0; i < SIZE(sig_s); i++) p.first.append_bit(sig_s[i]), p.second.bits.push_back(RTLIL::State::S0); if (sort_check_activation_pattern(p)) activation_patterns_cache[cell].insert(p); } for (int idx : used_in_b_parts) for (auto p : c_patterns) { p.first.append_bit(sig_s[idx]), p.second.bits.push_back(RTLIL::State::S1); if (sort_check_activation_pattern(p)) activation_patterns_cache[cell].insert(p); } } for (auto c : driven_cells) { const std::set> &c_patterns = find_cell_activation_patterns(c, indent); activation_patterns_cache[cell].insert(c_patterns.begin(), c_patterns.end()); } log_assert(recursion_state.count(cell)); recursion_state.erase(cell); optimize_activation_patterns(activation_patterns_cache[cell]); if (activation_patterns_cache[cell].empty()) { log("%sFound cell that is never activated: %s\n", indent, log_id(cell)); RTLIL::SigSpec cell_outputs = modwalker.cell_outputs[cell]; module->connect(RTLIL::SigSig(cell_outputs, RTLIL::SigSpec(RTLIL::State::Sx, cell_outputs.size()))); cells_to_remove.insert(cell); } return activation_patterns_cache[cell]; } RTLIL::SigSpec bits_from_activation_patterns(const std::set> &activation_patterns) { std::set all_bits; for (auto &it : activation_patterns) { std::vector bits = it.first; all_bits.insert(bits.begin(), bits.end()); } RTLIL::SigSpec signal; for (auto &bit : all_bits) signal.append_bit(bit); return signal; } void filter_activation_patterns(std::set> &out, const std::set> &in, const std::set &filter_bits) { for (auto &p : in) { std::vector p_first = p.first; std::pair new_p; for (int i = 0; i < SIZE(p_first); i++) if (filter_bits.count(p_first[i]) == 0) { new_p.first.append_bit(p_first[i]); new_p.second.bits.push_back(p.second.bits.at(i)); } out.insert(new_p); } } RTLIL::SigSpec make_cell_activation_logic(const std::set> &activation_patterns, std::set &supercell_aux) { RTLIL::Wire *all_cases_wire = module->addWire(NEW_ID, 0); for (auto &p : activation_patterns) { all_cases_wire->width++; supercell_aux.insert(module->addEq(NEW_ID, p.first, p.second, RTLIL::SigSpec(all_cases_wire, all_cases_wire->width - 1))); } if (all_cases_wire->width == 1) return all_cases_wire; RTLIL::Wire *result_wire = module->addWire(NEW_ID); supercell_aux.insert(module->addReduceOr(NEW_ID, all_cases_wire, result_wire)); return result_wire; } // ------------------------------------------------------------------------------------- // Helper functions used to make sure that this pass does not introduce new logic loops. // ------------------------------------------------------------------------------------- bool module_has_scc() { CellTypes ct; ct.setup_internals(); ct.setup_stdcells(); TopoSort toposort; toposort.analyze_loops = false; topo_sigmap.set(module); topo_bit_drivers.clear(); std::map> cell_to_bits; std::map> bit_to_cells; for (auto cell : module->cells()) if (ct.cell_known(cell->type)) for (auto &conn : cell->connections()) { if (ct.cell_output(cell->type, conn.first)) for (auto bit : topo_sigmap(conn.second)) { cell_to_bits[cell].insert(bit); topo_bit_drivers[bit].insert(cell); } else for (auto bit : topo_sigmap(conn.second)) bit_to_cells[bit].insert(cell); } for (auto &it : cell_to_bits) { RTLIL::Cell *c1 = it.first; for (auto bit : it.second) for (auto c2 : bit_to_cells[bit]) toposort.edge(c1, c2); } bool found_scc = !toposort.sort(); topo_cell_drivers = std::move(toposort.database); if (found_scc && toposort.analyze_loops) for (auto &loop : toposort.loops) { log("### loop ###\n"); for (auto &c : loop) log("%s (%s)\n", log_id(c), log_id(c->type)); } return found_scc; } bool find_in_input_cone_worker(RTLIL::Cell *root, RTLIL::Cell *needle, std::set &stop) { if (root == needle) return true; if (stop.count(root)) return false; stop.insert(root); for (auto c : topo_cell_drivers[root]) if (find_in_input_cone_worker(c, needle, stop)) return true; return false; } bool find_in_input_cone(RTLIL::Cell *root, RTLIL::Cell *needle) { std::set stop; return find_in_input_cone_worker(root, needle, stop); } bool is_part_of_scc(RTLIL::Cell *cell) { CellTypes ct; ct.setup_internals(); ct.setup_stdcells(); std::set queue, covered; queue.insert(cell); while (!queue.empty()) { std::set new_queue; for (auto c : queue) { if (!ct.cell_known(c->type)) continue; for (auto &conn : c->connections()) if (ct.cell_input(c->type, conn.first)) for (auto bit : conn.second) for (auto &pi : mi.query_ports(bit)) if (ct.cell_known(pi.cell->type) && ct.cell_output(pi.cell->type, pi.port)) new_queue.insert(pi.cell); covered.insert(c); } queue.clear(); for (auto c : new_queue) { if (cells_to_remove.count(c)) continue; if (c == cell) return true; if (!covered.count(c)) queue.insert(c); } } return false; } // ------------- // Setup and run // ------------- ShareWorker(ShareWorkerConfig config, RTLIL::Design *design, RTLIL::Module *module) : config(config), design(design), module(module), mi(module) { bool before_scc = module_has_scc(); generic_ops.insert(config.generic_uni_ops.begin(), config.generic_uni_ops.end()); generic_ops.insert(config.generic_bin_ops.begin(), config.generic_bin_ops.end()); generic_ops.insert(config.generic_cbin_ops.begin(), config.generic_cbin_ops.end()); generic_ops.insert(config.generic_other_ops.begin(), config.generic_other_ops.end()); fwd_ct.setup_internals(); cone_ct.setup_internals(); cone_ct.cell_types.erase("$mul"); cone_ct.cell_types.erase("$mod"); cone_ct.cell_types.erase("$div"); cone_ct.cell_types.erase("$pow"); cone_ct.cell_types.erase("$shl"); cone_ct.cell_types.erase("$shr"); cone_ct.cell_types.erase("$sshl"); cone_ct.cell_types.erase("$sshr"); modwalker.setup(design, module); find_terminal_bits(); find_shareable_cells(); if (shareable_cells.size() < 2) return; log("Found %d cells in module %s that may be considered for resource sharing.\n", SIZE(shareable_cells), log_id(module)); while (!shareable_cells.empty() && config.limit != 0) { RTLIL::Cell *cell = *shareable_cells.begin(); shareable_cells.erase(cell); log(" Analyzing resource sharing options for %s:\n", log_id(cell)); const std::set> &cell_activation_patterns = find_cell_activation_patterns(cell, " "); RTLIL::SigSpec cell_activation_signals = bits_from_activation_patterns(cell_activation_patterns); if (cell_activation_patterns.empty()) { log(" Cell is never active. Sharing is pointless, we simply remove it.\n"); cells_to_remove.insert(cell); continue; } if (cell_activation_patterns.count(std::pair())) { log(" Cell is always active. Therefore no sharing is possible.\n"); continue; } log(" Found %d activation_patterns using ctrl signal %s.\n", SIZE(cell_activation_patterns), log_signal(cell_activation_signals)); std::vector candidates; find_shareable_partners(candidates, cell); if (candidates.empty()) { log(" No candidates found.\n"); continue; } log(" Found %d candidates:", SIZE(candidates)); for (auto c : candidates) log(" %s", log_id(c)); log("\n"); for (auto other_cell : candidates) { log(" Analyzing resource sharing with %s:\n", log_id(other_cell)); const std::set> &other_cell_activation_patterns = find_cell_activation_patterns(other_cell, " "); RTLIL::SigSpec other_cell_activation_signals = bits_from_activation_patterns(other_cell_activation_patterns); if (other_cell_activation_patterns.empty()) { log(" Cell is never active. Sharing is pointless, we simply remove it.\n"); shareable_cells.erase(other_cell); cells_to_remove.insert(other_cell); continue; } if (other_cell_activation_patterns.count(std::pair())) { log(" Cell is always active. Therefore no sharing is possible.\n"); shareable_cells.erase(other_cell); continue; } log(" Found %d activation_patterns using ctrl signal %s.\n", SIZE(other_cell_activation_patterns), log_signal(other_cell_activation_signals)); const std::set &cell_forbidden_controls = find_forbidden_controls(cell); const std::set &other_cell_forbidden_controls = find_forbidden_controls(other_cell); std::set union_forbidden_controls; union_forbidden_controls.insert(cell_forbidden_controls.begin(), cell_forbidden_controls.end()); union_forbidden_controls.insert(other_cell_forbidden_controls.begin(), other_cell_forbidden_controls.end()); if (!union_forbidden_controls.empty()) log(" Forbidden control signals for this pair of cells: %s\n", log_signal(union_forbidden_controls)); std::set> filtered_cell_activation_patterns; std::set> filtered_other_cell_activation_patterns; filter_activation_patterns(filtered_cell_activation_patterns, cell_activation_patterns, union_forbidden_controls); filter_activation_patterns(filtered_other_cell_activation_patterns, other_cell_activation_patterns, union_forbidden_controls); optimize_activation_patterns(filtered_cell_activation_patterns); optimize_activation_patterns(filtered_other_cell_activation_patterns); ezDefaultSAT ez; SatGen satgen(&ez, &modwalker.sigmap); std::set sat_cells; std::set bits_queue; std::vector cell_active, other_cell_active; RTLIL::SigSpec all_ctrl_signals; for (auto &p : filtered_cell_activation_patterns) { log(" Activation pattern for cell %s: %s = %s\n", log_id(cell), log_signal(p.first), log_signal(p.second)); cell_active.push_back(ez.vec_eq(satgen.importSigSpec(p.first), satgen.importSigSpec(p.second))); all_ctrl_signals.append(p.first); } for (auto &p : filtered_other_cell_activation_patterns) { log(" Activation pattern for cell %s: %s = %s\n", log_id(other_cell), log_signal(p.first), log_signal(p.second)); other_cell_active.push_back(ez.vec_eq(satgen.importSigSpec(p.first), satgen.importSigSpec(p.second))); all_ctrl_signals.append(p.first); } for (auto &bit : cell_activation_signals.to_sigbit_vector()) bits_queue.insert(bit); for (auto &bit : other_cell_activation_signals.to_sigbit_vector()) bits_queue.insert(bit); while (!bits_queue.empty()) { std::set portbits; modwalker.get_drivers(portbits, bits_queue); bits_queue.clear(); for (auto &pbit : portbits) if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) { if (config.opt_fast && modwalker.cell_outputs[pbit.cell].size() >= 4) continue; // log(" Adding cell %s (%s) to SAT problem.\n", log_id(pbit.cell), log_id(pbit.cell->type)); bits_queue.insert(modwalker.cell_inputs[pbit.cell].begin(), modwalker.cell_inputs[pbit.cell].end()); satgen.importCell(pbit.cell); sat_cells.insert(pbit.cell); } if (config.opt_fast && sat_cells.size() > 100) break; } if (!ez.solve(ez.expression(ez.OpOr, cell_active))) { log(" According to the SAT solver the cell %s is never active. Sharing is pointless, we simply remove it.\n", log_id(cell)); cells_to_remove.insert(cell); break; } if (!ez.solve(ez.expression(ez.OpOr, other_cell_active))) { log(" According to the SAT solver the cell %s is never active. Sharing is pointless, we simply remove it.\n", log_id(other_cell)); cells_to_remove.insert(other_cell); shareable_cells.erase(other_cell); continue; } ez.non_incremental(); all_ctrl_signals.sort_and_unify(); std::vector sat_model = satgen.importSigSpec(all_ctrl_signals); std::vector sat_model_values; ez.assume(ez.AND(ez.expression(ez.OpOr, cell_active), ez.expression(ez.OpOr, other_cell_active))); log(" Size of SAT problem: %d cells, %d variables, %d clauses\n", SIZE(sat_cells), ez.numCnfVariables(), ez.numCnfClauses()); if (ez.solve(sat_model, sat_model_values)) { log(" According to the SAT solver this pair of cells can not be shared.\n"); log(" Model from SAT solver: %s = %d'", log_signal(all_ctrl_signals), SIZE(sat_model_values)); for (int i = SIZE(sat_model_values)-1; i >= 0; i--) log("%c", sat_model_values[i] ? '1' : '0'); log("\n"); continue; } log(" According to the SAT solver this pair of cells can be shared.\n"); if (find_in_input_cone(cell, other_cell)) { log(" Sharing not possible: %s is in input cone of %s.\n", log_id(other_cell), log_id(cell)); continue; } if (find_in_input_cone(other_cell, cell)) { log(" Sharing not possible: %s is in input cone of %s.\n", log_id(cell), log_id(other_cell)); continue; } shareable_cells.erase(other_cell); int cell_select_score = 0; int other_cell_select_score = 0; for (auto &p : filtered_cell_activation_patterns) cell_select_score += p.first.size(); for (auto &p : filtered_other_cell_activation_patterns) other_cell_select_score += p.first.size(); RTLIL::Cell *supercell; std::set supercell_aux; if (cell_select_score <= other_cell_select_score) { RTLIL::SigSpec act = make_cell_activation_logic(filtered_cell_activation_patterns, supercell_aux); supercell = make_supercell(cell, other_cell, act, supercell_aux); log(" Activation signal for %s: %s\n", log_id(cell), log_signal(act)); } else { RTLIL::SigSpec act = make_cell_activation_logic(filtered_other_cell_activation_patterns, supercell_aux); supercell = make_supercell(other_cell, cell, act, supercell_aux); log(" Activation signal for %s: %s\n", log_id(other_cell), log_signal(act)); } log(" New cell: %s (%s)\n", log_id(supercell), log_id(supercell->type)); cells_to_remove.insert(cell); cells_to_remove.insert(other_cell); for (auto c : supercell_aux) if (is_part_of_scc(c)) goto do_rollback; if (0) { do_rollback: log(" New topology contains loops! Rolling back..\n"); cells_to_remove.erase(cell); cells_to_remove.erase(other_cell); shareable_cells.insert(other_cell); for (auto cc : supercell_aux) module->remove(cc); continue; } std::set> supercell_activation_patterns; supercell_activation_patterns.insert(filtered_cell_activation_patterns.begin(), filtered_cell_activation_patterns.end()); supercell_activation_patterns.insert(filtered_other_cell_activation_patterns.begin(), filtered_other_cell_activation_patterns.end()); optimize_activation_patterns(supercell_activation_patterns); activation_patterns_cache[supercell] = supercell_activation_patterns; shareable_cells.insert(supercell); for (auto bit : topo_sigmap(all_ctrl_signals)) for (auto c : topo_bit_drivers[bit]) topo_cell_drivers[supercell].insert(c); topo_cell_drivers[supercell].insert(topo_cell_drivers[cell].begin(), topo_cell_drivers[cell].end()); topo_cell_drivers[supercell].insert(topo_cell_drivers[other_cell].begin(), topo_cell_drivers[other_cell].end()); topo_cell_drivers[cell] = { supercell }; topo_cell_drivers[other_cell] = { supercell }; if (config.limit > 0) config.limit--; break; } } if (!cells_to_remove.empty()) { log("Removing %d cells in module %s:\n", SIZE(cells_to_remove), log_id(module)); for (auto c : cells_to_remove) { log(" Removing cell %s (%s).\n", log_id(c), log_id(c->type)); module->remove(c); } } log_assert(recursion_state.empty()); bool after_scc = before_scc || module_has_scc(); log_assert(before_scc == after_scc); } }; struct SharePass : public Pass { SharePass() : Pass("share", "perform sat-based resource sharing") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" share [options] [selection]\n"); log("\n"); log("This pass merges shareable resources into a single resource. A SAT solver\n"); log("is used to determine if two resources are share-able.\n"); log("\n"); log(" -force\n"); log(" Per default the selection of cells that is considered for sharing is\n"); log(" narrowed using a list of cell types. With this option all selected\n"); log(" cells are considered for resource sharing.\n"); log("\n"); log(" IMPORTANT NOTE: If the -all option is used then no cells with internal\n"); log(" state must be selected!\n"); log("\n"); log(" -aggressive\n"); log(" Per default some heuristics are used to reduce the number of cells\n"); log(" considered for resource sharing to only large resources. This options\n"); log(" turns this heuristics off, resulting in much more cells being considered\n"); log(" for resource sharing.\n"); log("\n"); log(" -fast\n"); log(" Only consider the simple part of the control logic in SAT solving, resulting\n"); log(" in much easier SAT problems at the cost of maybe missing some oportunities\n"); log(" for resource sharing.\n"); log("\n"); log(" -limit N\n"); log(" Only perform the first N merges, then stop. This is useful for debugging.\n"); log("\n"); } virtual void execute(std::vector args, RTLIL::Design *design) { ShareWorkerConfig config; config.limit = -1; config.opt_force = false; config.opt_aggressive = false; config.opt_fast = false; config.generic_uni_ops.insert("$not"); // config.generic_uni_ops.insert("$pos"); config.generic_uni_ops.insert("$neg"); config.generic_cbin_ops.insert("$and"); config.generic_cbin_ops.insert("$or"); config.generic_cbin_ops.insert("$xor"); config.generic_cbin_ops.insert("$xnor"); config.generic_bin_ops.insert("$shl"); config.generic_bin_ops.insert("$shr"); config.generic_bin_ops.insert("$sshl"); config.generic_bin_ops.insert("$sshr"); config.generic_bin_ops.insert("$lt"); config.generic_bin_ops.insert("$le"); config.generic_bin_ops.insert("$eq"); config.generic_bin_ops.insert("$ne"); config.generic_bin_ops.insert("$eqx"); config.generic_bin_ops.insert("$nex"); config.generic_bin_ops.insert("$ge"); config.generic_bin_ops.insert("$gt"); config.generic_cbin_ops.insert("$add"); config.generic_cbin_ops.insert("$mul"); config.generic_bin_ops.insert("$sub"); config.generic_bin_ops.insert("$div"); config.generic_bin_ops.insert("$mod"); // config.generic_bin_ops.insert("$pow"); config.generic_uni_ops.insert("$logic_not"); config.generic_cbin_ops.insert("$logic_and"); config.generic_cbin_ops.insert("$logic_or"); config.generic_other_ops.insert("$alu"); config.generic_other_ops.insert("$macc"); log_header("Executing SHARE pass (SAT-based resource sharing).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-force") { config.opt_force = true; continue; } if (args[argidx] == "-aggressive") { config.opt_aggressive = true; continue; } if (args[argidx] == "-fast") { config.opt_fast = true; continue; } if (args[argidx] == "-limit" && argidx+1 < args.size()) { config.limit = atoi(args[++argidx].c_str()); continue; } break; } extra_args(args, argidx, design); for (auto &mod_it : design->modules_) if (design->selected(mod_it.second)) ShareWorker(config, design, mod_it.second); } } SharePass; PRIVATE_NAMESPACE_END