/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/ffinit.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct MemoryDffWorker { Module *module; SigMap sigmap; vector dff_cells; dict invbits; dict sigbit_users_count; dict mux_cells_a, mux_cells_b; pool forward_merged_dffs, candidate_dffs; FfInitVals initvals; MemoryDffWorker(Module *module) : module(module), sigmap(module) { initvals.set(&sigmap, module); } bool find_sig_before_dff(RTLIL::SigSpec &sig, RTLIL::SigSpec &clk, bool &clk_polarity) { sigmap.apply(sig); dict cache; for (auto &bit : sig) { if (cache.count(bit)) { bit = cache[bit]; continue; } if (bit.wire == NULL) continue; if (initvals(bit) != State::Sx) return false; for (auto cell : dff_cells) { SigSpec this_clk = cell->getPort(ID::CLK); bool this_clk_polarity = cell->parameters[ID::CLK_POLARITY].as_bool(); if (invbits.count(this_clk)) { this_clk = invbits.at(this_clk); this_clk_polarity = !this_clk_polarity; } if (clk != RTLIL::SigSpec(RTLIL::State::Sx)) { if (this_clk != clk) continue; if (this_clk_polarity != clk_polarity) continue; } RTLIL::SigSpec q_norm = cell->getPort(ID::Q); sigmap.apply(q_norm); RTLIL::SigSpec d = q_norm.extract(bit, &cell->getPort(ID::D)); if (d.size() != 1) continue; if (cell->type == ID($sdffce)) { SigSpec rval = cell->parameters[ID::SRST_VALUE]; SigSpec rbit = q_norm.extract(bit, &rval); if (cell->parameters[ID::SRST_POLARITY].as_bool()) d = module->Mux(NEW_ID, d, rbit, cell->getPort(ID::SRST)); else d = module->Mux(NEW_ID, rbit, d, cell->getPort(ID::SRST)); } if (cell->type.in(ID($dffe), ID($sdffe), ID($sdffce))) { if (cell->parameters[ID::EN_POLARITY].as_bool()) d = module->Mux(NEW_ID, bit, d, cell->getPort(ID::EN)); else d = module->Mux(NEW_ID, d, bit, cell->getPort(ID::EN)); } if (cell->type.in(ID($sdff), ID($sdffe))) { SigSpec rval = cell->parameters[ID::SRST_VALUE]; SigSpec rbit = q_norm.extract(bit, &rval); if (cell->parameters[ID::SRST_POLARITY].as_bool()) d = module->Mux(NEW_ID, d, rbit, cell->getPort(ID::SRST)); else d = module->Mux(NEW_ID, rbit, d, cell->getPort(ID::SRST)); } cache[bit] = d; bit = d; clk = this_clk; clk_polarity = this_clk_polarity; candidate_dffs.insert(cell); goto replaced_this_bit; } return false; replaced_this_bit:; } return true; } bool find_sig_after_dffe(RTLIL::SigSpec &sig, RTLIL::SigSpec &clk, bool &clk_polarity, RTLIL::SigSpec &en, bool &en_polarity) { sigmap.apply(sig); for (auto &bit : sig) { if (bit.wire == NULL) continue; for (auto cell : dff_cells) { if (forward_merged_dffs.count(cell)) continue; if (!cell->type.in(ID($dff), ID($dffe))) continue; SigSpec this_clk = cell->getPort(ID::CLK); bool this_clk_polarity = cell->parameters[ID::CLK_POLARITY].as_bool(); SigSpec this_en = State::S1; bool this_en_polarity = true; if (cell->type == ID($dffe)) { this_en = cell->getPort(ID::EN); this_en_polarity = cell->parameters[ID::EN_POLARITY].as_bool(); } if (invbits.count(this_clk)) { this_clk = invbits.at(this_clk); this_clk_polarity = !this_clk_polarity; } if (invbits.count(this_en)) { this_en = invbits.at(this_en); this_en_polarity = !this_en_polarity; } if (clk != RTLIL::SigSpec(RTLIL::State::Sx)) { if (this_clk != clk) continue; if (this_clk_polarity != clk_polarity) continue; if (this_en != en) continue; if (this_en_polarity != en_polarity) continue; } RTLIL::SigSpec q_norm = cell->getPort(ID::D); sigmap.apply(q_norm); RTLIL::SigSpec d = q_norm.extract(bit, &cell->getPort(ID::Q)); if (d.size() != 1) continue; if (initvals(d) != State::Sx) return false; bit = d; clk = this_clk; clk_polarity = this_clk_polarity; en = this_en; en_polarity = this_en_polarity; candidate_dffs.insert(cell); goto replaced_this_bit; } return false; replaced_this_bit:; } return true; } void handle_wr_cell(RTLIL::Cell *cell) { log("Checking cell `%s' in module `%s': ", cell->name.c_str(), module->name.c_str()); RTLIL::SigSpec clk = RTLIL::SigSpec(RTLIL::State::Sx); bool clk_polarity = 0; candidate_dffs.clear(); RTLIL::SigSpec sig_addr = cell->getPort(ID::ADDR); if (!find_sig_before_dff(sig_addr, clk, clk_polarity)) { log("no (compatible) $dff for address input found.\n"); return; } RTLIL::SigSpec sig_data = cell->getPort(ID::DATA); if (!find_sig_before_dff(sig_data, clk, clk_polarity)) { log("no (compatible) $dff for data input found.\n"); return; } RTLIL::SigSpec sig_en = cell->getPort(ID::EN); if (!find_sig_before_dff(sig_en, clk, clk_polarity)) { log("no (compatible) $dff for enable input found.\n"); return; } if (clk != RTLIL::SigSpec(RTLIL::State::Sx)) { for (auto cell : candidate_dffs) forward_merged_dffs.insert(cell); cell->setPort(ID::CLK, clk); cell->setPort(ID::ADDR, sig_addr); cell->setPort(ID::DATA, sig_data); cell->setPort(ID::EN, sig_en); cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1); cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity); log("merged $dff to cell.\n"); return; } log("no (compatible) $dff found.\n"); } void disconnect_dff(RTLIL::SigSpec sig) { sigmap.apply(sig); sig.sort_and_unify(); std::stringstream sstr; sstr << "$memory_dff_disconnected$" << (autoidx++); RTLIL::SigSpec new_sig = module->addWire(sstr.str(), sig.size()); for (auto cell : module->cells()) if (cell->type.in(ID($dff), ID($dffe))) { RTLIL::SigSpec new_q = cell->getPort(ID::Q); new_q.replace(sig, new_sig); cell->setPort(ID::Q, new_q); } } void handle_rd_cell(RTLIL::Cell *cell) { log("Checking cell `%s' in module `%s': ", cell->name.c_str(), module->name.c_str()); bool clk_polarity = 0; bool en_polarity = 0; RTLIL::SigSpec clk_data = RTLIL::SigSpec(RTLIL::State::Sx); RTLIL::SigSpec en_data; RTLIL::SigSpec sig_data = cell->getPort(ID::DATA); for (auto bit : sigmap(sig_data)) if (sigbit_users_count[bit] > 1) goto skip_ff_after_read_merging; if (mux_cells_a.count(sig_data) || mux_cells_b.count(sig_data)) { RTLIL::SigSpec en; std::vector check_q; do { bool enable_invert = mux_cells_a.count(sig_data) != 0; Cell *mux = enable_invert ? mux_cells_a.at(sig_data) : mux_cells_b.at(sig_data); check_q.push_back(sigmap(mux->getPort(enable_invert ? ID::B : ID::A))); sig_data = sigmap(mux->getPort(ID::Y)); en.append(enable_invert ? module->LogicNot(NEW_ID, mux->getPort(ID::S)) : mux->getPort(ID::S)); } while (mux_cells_a.count(sig_data) || mux_cells_b.count(sig_data)); for (auto bit : sig_data) if (sigbit_users_count[bit] > 1) goto skip_ff_after_read_merging; if (find_sig_after_dffe(sig_data, clk_data, clk_polarity, en_data, en_polarity) && clk_data != RTLIL::SigSpec(RTLIL::State::Sx) && std::all_of(check_q.begin(), check_q.end(), [&](const SigSpec &cq) {return cq == sig_data; })) { if (en_data != State::S1 || !en_polarity) { if (!en_polarity) en_data = module->LogicNot(NEW_ID, en_data); en.append(en_data); } disconnect_dff(sig_data); cell->setPort(ID::CLK, clk_data); cell->setPort(ID::EN, en.size() > 1 ? module->ReduceAnd(NEW_ID, en) : en); cell->setPort(ID::DATA, sig_data); cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1); cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity); cell->parameters[ID::TRANSPARENT] = RTLIL::Const(0); log("merged data $dff with rd enable to cell.\n"); return; } } else { if (find_sig_after_dffe(sig_data, clk_data, clk_polarity, en_data, en_polarity) && clk_data != RTLIL::SigSpec(RTLIL::State::Sx)) { if (!en_polarity) en_data = module->LogicNot(NEW_ID, en_data); disconnect_dff(sig_data); cell->setPort(ID::CLK, clk_data); cell->setPort(ID::EN, en_data); cell->setPort(ID::DATA, sig_data); cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1); cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity); cell->parameters[ID::TRANSPARENT] = RTLIL::Const(0); log("merged data $dff to cell.\n"); return; } } skip_ff_after_read_merging:; RTLIL::SigSpec clk_addr = RTLIL::SigSpec(RTLIL::State::Sx); RTLIL::SigSpec sig_addr = cell->getPort(ID::ADDR); if (find_sig_before_dff(sig_addr, clk_addr, clk_polarity) && clk_addr != RTLIL::SigSpec(RTLIL::State::Sx)) { cell->setPort(ID::CLK, clk_addr); cell->setPort(ID::EN, State::S1); cell->setPort(ID::ADDR, sig_addr); cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1); cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity); cell->parameters[ID::TRANSPARENT] = RTLIL::Const(1); log("merged address $dff to cell.\n"); return; } log("no (compatible) $dff found.\n"); } void run(bool flag_wr_only) { for (auto wire : module->wires()) { if (wire->port_output) for (auto bit : sigmap(wire)) sigbit_users_count[bit]++; } for (auto cell : module->cells()) { if (cell->type.in(ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce))) dff_cells.push_back(cell); if (cell->type == ID($mux)) { mux_cells_a[sigmap(cell->getPort(ID::A))] = cell; mux_cells_b[sigmap(cell->getPort(ID::B))] = cell; } if (cell->type.in(ID($not), ID($_NOT_)) || (cell->type == ID($logic_not) && GetSize(cell->getPort(ID::A)) == 1)) { SigSpec sig_a = cell->getPort(ID::A); SigSpec sig_y = cell->getPort(ID::Y); if (cell->type == ID($not)) sig_a.extend_u0(GetSize(sig_y), cell->getParam(ID::A_SIGNED).as_bool()); if (cell->type == ID($logic_not)) sig_y.extend_u0(1); for (int i = 0; i < GetSize(sig_y); i++) invbits[sig_y[i]] = sig_a[i]; } for (auto &conn : cell->connections()) if (!cell->known() || cell->input(conn.first)) for (auto bit : sigmap(conn.second)) sigbit_users_count[bit]++; } for (auto cell : module->selected_cells()) if (cell->type == ID($memwr) && !cell->parameters[ID::CLK_ENABLE].as_bool()) handle_wr_cell(cell); if (!flag_wr_only) for (auto cell : module->selected_cells()) if (cell->type == ID($memrd) && !cell->parameters[ID::CLK_ENABLE].as_bool()) handle_rd_cell(cell); } }; struct MemoryDffPass : public Pass { MemoryDffPass() : Pass("memory_dff", "merge input/output DFFs into memories") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" memory_dff [options] [selection]\n"); log("\n"); log("This pass detects DFFs at memory ports and merges them into the memory port.\n"); log("I.e. it consumes an asynchronous memory port and the flip-flops at its\n"); log("interface and yields a synchronous memory port.\n"); log("\n"); log(" -nordfff\n"); log(" do not merge registers on read ports\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { bool flag_wr_only = false; log_header(design, "Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-nordff" || args[argidx] == "-wr_only") { flag_wr_only = true; continue; } break; } extra_args(args, argidx, design); for (auto mod : design->selected_modules()) { MemoryDffWorker worker(mod); worker.run(flag_wr_only); } } } MemoryDffPass; PRIVATE_NAMESPACE_END