/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef SATGEN_H #define SATGEN_H #include "kernel/rtlil.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "kernel/macc.h" #include "libs/ezsat/ezminisat.h" YOSYS_NAMESPACE_BEGIN // defined in kernel/register.cc extern struct SatSolver *yosys_satsolver_list; extern struct SatSolver *yosys_satsolver; struct SatSolver { string name; SatSolver *next; virtual ezSAT *create() = 0; SatSolver(string name) : name(name) { next = yosys_satsolver_list; yosys_satsolver_list = this; } virtual ~SatSolver() { auto p = &yosys_satsolver_list; while (*p) { if (*p == this) *p = next; else p = &(*p)->next; } if (yosys_satsolver == this) yosys_satsolver = yosys_satsolver_list; } }; struct ezSatPtr : public std::unique_ptr<ezSAT> { ezSatPtr() : unique_ptr<ezSAT>(yosys_satsolver->create()) { } }; struct SatGen { ezSAT *ez; SigMap *sigmap; std::string prefix; SigPool initial_state; std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en; std::map<std::string, RTLIL::SigSpec> assumes_a, assumes_en; std::map<std::string, std::map<RTLIL::SigBit, int>> imported_signals; std::map<std::pair<std::string, int>, bool> initstates; bool ignore_div_by_zero; bool model_undef; SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) : ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false) { } void setContext(SigMap *sigmap, std::string prefix = std::string()) { this->sigmap = sigmap; this->prefix = prefix; } std::vector<int> importSigSpecWorker(RTLIL::SigSpec sig, std::string &pf, bool undef_mode, bool dup_undef) { log_assert(!undef_mode || model_undef); sigmap->apply(sig); std::vector<int> vec; vec.reserve(GetSize(sig)); for (auto &bit : sig) if (bit.wire == NULL) { if (model_undef && dup_undef && bit == RTLIL::State::Sx) vec.push_back(ez->frozen_literal()); else vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->CONST_TRUE : ez->CONST_FALSE); } else { std::string name = pf + (bit.wire->width == 1 ? stringf("%s", log_id(bit.wire)) : stringf("%s [%d]", log_id(bit.wire->name), bit.offset)); vec.push_back(ez->frozen_literal(name)); imported_signals[pf][bit] = vec.back(); } return vec; } std::vector<int> importSigSpec(RTLIL::SigSpec sig, int timestep = -1) { log_assert(timestep != 0); std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(sig, pf, false, false); } std::vector<int> importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1) { log_assert(timestep != 0); std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(sig, pf, false, true); } std::vector<int> importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1) { log_assert(timestep != 0); std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(sig, pf, true, false); } int importSigBit(RTLIL::SigBit bit, int timestep = -1) { log_assert(timestep != 0); std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(bit, pf, false, false).front(); } int importDefSigBit(RTLIL::SigBit bit, int timestep = -1) { log_assert(timestep != 0); std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(bit, pf, false, true).front(); } int importUndefSigBit(RTLIL::SigBit bit, int timestep = -1) { log_assert(timestep != 0); std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(bit, pf, true, false).front(); } bool importedSigBit(RTLIL::SigBit bit, int timestep = -1) { log_assert(timestep != 0); std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return imported_signals[pf].count(bit) != 0; } void getAsserts(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1) { std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); sig_a = asserts_a[pf]; sig_en = asserts_en[pf]; } void getAssumes(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1) { std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); sig_a = assumes_a[pf]; sig_en = assumes_en[pf]; } int importAsserts(int timestep = -1) { std::vector<int> check_bits, enable_bits; std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); if (model_undef) { check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_a[pf], timestep)), importDefSigSpec(asserts_a[pf], timestep)); enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_en[pf], timestep)), importDefSigSpec(asserts_en[pf], timestep)); } else { check_bits = importDefSigSpec(asserts_a[pf], timestep); enable_bits = importDefSigSpec(asserts_en[pf], timestep); } return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits))); } int importAssumes(int timestep = -1) { std::vector<int> check_bits, enable_bits; std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); if (model_undef) { check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(assumes_a[pf], timestep)), importDefSigSpec(assumes_a[pf], timestep)); enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(assumes_en[pf], timestep)), importDefSigSpec(assumes_en[pf], timestep)); } else { check_bits = importDefSigSpec(assumes_a[pf], timestep); enable_bits = importDefSigSpec(assumes_en[pf], timestep); } return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits))); } int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep_lhs = -1, int timestep_rhs = -1) { if (timestep_rhs < 0) timestep_rhs = timestep_lhs; log_assert(lhs.size() == rhs.size()); std::vector<int> vec_lhs = importSigSpec(lhs, timestep_lhs); std::vector<int> vec_rhs = importSigSpec(rhs, timestep_rhs); if (!model_undef) return ez->vec_eq(vec_lhs, vec_rhs); std::vector<int> undef_lhs = importUndefSigSpec(lhs, timestep_lhs); std::vector<int> undef_rhs = importUndefSigSpec(rhs, timestep_rhs); std::vector<int> eq_bits; for (int i = 0; i < lhs.size(); i++) eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)), ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i))))); return ez->expression(ezSAT::OpAnd, eq_bits); } void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool forced_signed = false) { bool is_signed = forced_signed; if (!forced_signed && cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters.count("\\B_SIGNED") > 0) is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool(); while (vec_a.size() < vec_b.size() || vec_a.size() < y_width) vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->CONST_FALSE); while (vec_b.size() < vec_a.size() || vec_b.size() < y_width) vec_b.push_back(is_signed && vec_b.size() > 0 ? vec_b.back() : ez->CONST_FALSE); } void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false) { extendSignalWidth(vec_a, vec_b, cell, vec_y.size(), forced_signed); while (vec_y.size() < vec_a.size()) vec_y.push_back(ez->literal()); } void extendSignalWidthUnary(std::vector<int> &vec_a, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false) { bool is_signed = forced_signed || (cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters["\\A_SIGNED"].as_bool()); while (vec_a.size() < vec_y.size()) vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->CONST_FALSE); while (vec_y.size() < vec_a.size()) vec_y.push_back(ez->literal()); } void undefGating(std::vector<int> &vec_y, std::vector<int> &vec_yy, std::vector<int> &vec_undef) { log_assert(model_undef); log_assert(vec_y.size() == vec_yy.size()); if (vec_y.size() > vec_undef.size()) { std::vector<int> trunc_y(vec_y.begin(), vec_y.begin() + vec_undef.size()); std::vector<int> trunc_yy(vec_yy.begin(), vec_yy.begin() + vec_undef.size()); ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(trunc_y, trunc_yy)))); } else { log_assert(vec_y.size() == vec_undef.size()); ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy)))); } } void undefGating(int y, int yy, int undef) { ez->assume(ez->OR(undef, ez->IFF(y, yy))); } void setInitState(int timestep) { auto key = make_pair(prefix, timestep); log_assert(initstates.count(key) == 0 || initstates.at(key) == true); initstates[key] = true; } bool importCell(RTLIL::Cell *cell, int timestep = -1) { bool arith_undef_handled = false; bool is_arith_compare = cell->type.in("$lt", "$le", "$ge", "$gt"); if (model_undef && (cell->type.in("$add", "$sub", "$mul", "$div", "$mod") || is_arith_compare)) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); if (is_arith_compare) extendSignalWidth(undef_a, undef_b, cell, true); else extendSignalWidth(undef_a, undef_b, undef_y, cell, true); int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); int undef_y_bit = ez->OR(undef_any_a, undef_any_b); if (cell->type == "$div" || cell->type == "$mod") { std::vector<int> b = importSigSpec(cell->getPort("\\B"), timestep); undef_y_bit = ez->OR(undef_y_bit, ez->NOT(ez->expression(ezSAT::OpOr, b))); } if (is_arith_compare) { for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); ez->SET(undef_y_bit, undef_y.at(0)); } else { std::vector<int> undef_y_bits(undef_y.size(), undef_y_bit); ez->assume(ez->vec_eq(undef_y_bits, undef_y)); } arith_undef_handled = true; } if (cell->type.in("$_AND_", "$_NAND_", "$_OR_", "$_NOR_", "$_XOR_", "$_XNOR_", "$and", "$or", "$xor", "$xnor", "$add", "$sub")) { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidth(a, b, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == "$and" || cell->type == "$_AND_") ez->assume(ez->vec_eq(ez->vec_and(a, b), yy)); if (cell->type == "$_NAND_") ez->assume(ez->vec_eq(ez->vec_not(ez->vec_and(a, b)), yy)); if (cell->type == "$or" || cell->type == "$_OR_") ez->assume(ez->vec_eq(ez->vec_or(a, b), yy)); if (cell->type == "$_NOR_") ez->assume(ez->vec_eq(ez->vec_not(ez->vec_or(a, b)), yy)); if (cell->type == "$xor" || cell->type == "$_XOR_") ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy)); if (cell->type == "$xnor" || cell->type == "$_XNOR_") ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy)); if (cell->type == "$add") ez->assume(ez->vec_eq(ez->vec_add(a, b), yy)); if (cell->type == "$sub") ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy)); if (model_undef && !arith_undef_handled) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidth(undef_a, undef_b, undef_y, cell, false); if (cell->type.in("$and", "$_AND_", "$_NAND_")) { std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)); std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b)); std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0))); ez->assume(ez->vec_eq(yX, undef_y)); } else if (cell->type.in("$or", "$_OR_", "$_NOR_")) { std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a)); std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b)); std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b1))); ez->assume(ez->vec_eq(yX, undef_y)); } else if (cell->type.in("$xor", "$xnor", "$_XOR_", "$_XNOR_")) { std::vector<int> yX = ez->vec_or(undef_a, undef_b); ez->assume(ez->vec_eq(yX, undef_y)); } else log_abort(); undefGating(y, yy, undef_y); } else if (model_undef) { std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type.in("$_AOI3_", "$_OAI3_", "$_AOI4_", "$_OAI4_")) { bool aoi_mode = cell->type.in("$_AOI3_", "$_AOI4_"); bool three_mode = cell->type.in("$_AOI3_", "$_OAI3_"); int a = importDefSigSpec(cell->getPort("\\A"), timestep).at(0); int b = importDefSigSpec(cell->getPort("\\B"), timestep).at(0); int c = importDefSigSpec(cell->getPort("\\C"), timestep).at(0); int d = three_mode ? (aoi_mode ? ez->CONST_TRUE : ez->CONST_FALSE) : importDefSigSpec(cell->getPort("\\D"), timestep).at(0); int y = importDefSigSpec(cell->getPort("\\Y"), timestep).at(0); int yy = model_undef ? ez->literal() : y; if (cell->type.in("$_AOI3_", "$_AOI4_")) ez->assume(ez->IFF(ez->NOT(ez->OR(ez->AND(a, b), ez->AND(c, d))), yy)); else ez->assume(ez->IFF(ez->NOT(ez->AND(ez->OR(a, b), ez->OR(c, d))), yy)); if (model_undef) { int undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep).at(0); int undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep).at(0); int undef_c = importUndefSigSpec(cell->getPort("\\C"), timestep).at(0); int undef_d = three_mode ? ez->CONST_FALSE : importUndefSigSpec(cell->getPort("\\D"), timestep).at(0); int undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep).at(0); if (aoi_mode) { int a0 = ez->AND(ez->NOT(a), ez->NOT(undef_a)); int b0 = ez->AND(ez->NOT(b), ez->NOT(undef_b)); int c0 = ez->AND(ez->NOT(c), ez->NOT(undef_c)); int d0 = ez->AND(ez->NOT(d), ez->NOT(undef_d)); int ab = ez->AND(a, b), cd = ez->AND(c, d); int undef_ab = ez->AND(ez->OR(undef_a, undef_b), ez->NOT(ez->OR(a0, b0))); int undef_cd = ez->AND(ez->OR(undef_c, undef_d), ez->NOT(ez->OR(c0, d0))); int ab1 = ez->AND(ab, ez->NOT(undef_ab)); int cd1 = ez->AND(cd, ez->NOT(undef_cd)); int yX = ez->AND(ez->OR(undef_ab, undef_cd), ez->NOT(ez->OR(ab1, cd1))); ez->assume(ez->IFF(yX, undef_y)); } else { int a1 = ez->AND(a, ez->NOT(undef_a)); int b1 = ez->AND(b, ez->NOT(undef_b)); int c1 = ez->AND(c, ez->NOT(undef_c)); int d1 = ez->AND(d, ez->NOT(undef_d)); int ab = ez->OR(a, b), cd = ez->OR(c, d); int undef_ab = ez->AND(ez->OR(undef_a, undef_b), ez->NOT(ez->OR(a1, b1))); int undef_cd = ez->AND(ez->OR(undef_c, undef_d), ez->NOT(ez->OR(c1, d1))); int ab0 = ez->AND(ez->NOT(ab), ez->NOT(undef_ab)); int cd0 = ez->AND(ez->NOT(cd), ez->NOT(undef_cd)); int yX = ez->AND(ez->OR(undef_ab, undef_cd), ez->NOT(ez->OR(ab0, cd0))); ez->assume(ez->IFF(yX, undef_y)); } undefGating(y, yy, undef_y); } return true; } if (cell->type == "$_NOT_" || cell->type == "$not") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidthUnary(a, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; ez->assume(ez->vec_eq(ez->vec_not(a), yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidthUnary(undef_a, undef_y, cell, false); ez->assume(ez->vec_eq(undef_a, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$_MUX_" || cell->type == "$mux") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> s = importDefSigSpec(cell->getPort("\\S"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_s = importUndefSigSpec(cell->getPort("\\S"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a, b)); std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b)); std::vector<int> yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a)); ez->assume(ez->vec_eq(yX, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$pmux") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> s = importDefSigSpec(cell->getPort("\\S"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> tmp = a; for (size_t i = 0; i < s.size(); i++) { std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size()); tmp = ez->vec_ite(s.at(i), part_of_b, tmp); } ez->assume(ez->vec_eq(tmp, yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_s = importUndefSigSpec(cell->getPort("\\S"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); int maybe_one_hot = ez->CONST_FALSE; int maybe_many_hot = ez->CONST_FALSE; int sure_one_hot = ez->CONST_FALSE; int sure_many_hot = ez->CONST_FALSE; std::vector<int> bits_set = std::vector<int>(undef_y.size(), ez->CONST_FALSE); std::vector<int> bits_clr = std::vector<int>(undef_y.size(), ez->CONST_FALSE); for (size_t i = 0; i < s.size(); i++) { std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size()); std::vector<int> part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size()); int maybe_s = ez->OR(s.at(i), undef_s.at(i)); int sure_s = ez->AND(s.at(i), ez->NOT(undef_s.at(i))); maybe_one_hot = ez->OR(maybe_one_hot, maybe_s); maybe_many_hot = ez->OR(maybe_many_hot, ez->AND(maybe_one_hot, maybe_s)); sure_one_hot = ez->OR(sure_one_hot, sure_s); sure_many_hot = ez->OR(sure_many_hot, ez->AND(sure_one_hot, sure_s)); bits_set = ez->vec_ite(maybe_s, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(part_of_b, part_of_undef_b))), bits_set); bits_clr = ez->vec_ite(maybe_s, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(part_of_b), part_of_undef_b))), bits_clr); } int maybe_a = ez->NOT(maybe_one_hot); bits_set = ez->vec_ite(maybe_a, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(a, undef_a))), bits_set); bits_clr = ez->vec_ite(maybe_a, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(a), undef_a))), bits_clr); ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(bits_set, bits_clr)), undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$pos" || cell->type == "$neg") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidthUnary(a, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == "$pos") { ez->assume(ez->vec_eq(a, yy)); } else { std::vector<int> zero(a.size(), ez->CONST_FALSE); ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy)); } if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidthUnary(undef_a, undef_y, cell); if (cell->type == "$pos") { ez->assume(ez->vec_eq(undef_a, undef_y)); } else { int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); std::vector<int> undef_y_bits(undef_y.size(), undef_any_a); ez->assume(ez->vec_eq(undef_y_bits, undef_y)); } undefGating(y, yy, undef_y); } return true; } if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" || cell->type == "$reduce_xnor" || cell->type == "$reduce_bool" || cell->type == "$logic_not") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == "$reduce_and") ez->SET(ez->expression(ez->OpAnd, a), yy.at(0)); if (cell->type == "$reduce_or" || cell->type == "$reduce_bool") ez->SET(ez->expression(ez->OpOr, a), yy.at(0)); if (cell->type == "$reduce_xor") ez->SET(ez->expression(ez->OpXor, a), yy.at(0)); if (cell->type == "$reduce_xnor") ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0)); if (cell->type == "$logic_not") ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->CONST_FALSE, yy.at(i)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); int aX = ez->expression(ezSAT::OpOr, undef_a); if (cell->type == "$reduce_and") { int a0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a))); ez->assume(ez->IFF(ez->AND(ez->NOT(a0), aX), undef_y.at(0))); } else if (cell->type == "$reduce_or" || cell->type == "$reduce_bool" || cell->type == "$logic_not") { int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(a, ez->vec_not(undef_a))); ez->assume(ez->IFF(ez->AND(ez->NOT(a1), aX), undef_y.at(0))); } else if (cell->type == "$reduce_xor" || cell->type == "$reduce_xnor") { ez->assume(ez->IFF(aX, undef_y.at(0))); } else log_abort(); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$logic_and" || cell->type == "$logic_or") { std::vector<int> vec_a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> vec_b = importDefSigSpec(cell->getPort("\\B"), timestep); int a = ez->expression(ez->OpOr, vec_a); int b = ez->expression(ez->OpOr, vec_b); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == "$logic_and") ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0)); else ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->CONST_FALSE, yy.at(i)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); int a0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_a), ez->expression(ezSAT::OpOr, undef_a))); int b0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_b), ez->expression(ezSAT::OpOr, undef_b))); int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_a, ez->vec_not(undef_a))); int b1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_b, ez->vec_not(undef_b))); int aX = ez->expression(ezSAT::OpOr, undef_a); int bX = ez->expression(ezSAT::OpOr, undef_b); if (cell->type == "$logic_and") ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a1, b1)), ez->NOT(a0), ez->NOT(b0)), undef_y.at(0)); else if (cell->type == "$logic_or") ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a0, b0)), ez->NOT(a1), ez->NOT(b1)), undef_y.at(0)); else log_abort(); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt") { bool is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool(); std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidth(a, b, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (model_undef && (cell->type == "$eqx" || cell->type == "$nex")) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); extendSignalWidth(undef_a, undef_b, cell, true); a = ez->vec_or(a, undef_a); b = ez->vec_or(b, undef_b); } if (cell->type == "$lt") ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0)); if (cell->type == "$le") ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0)); if (cell->type == "$eq" || cell->type == "$eqx") ez->SET(ez->vec_eq(a, b), yy.at(0)); if (cell->type == "$ne" || cell->type == "$nex") ez->SET(ez->vec_ne(a, b), yy.at(0)); if (cell->type == "$ge") ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0)); if (cell->type == "$gt") ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->CONST_FALSE, yy.at(i)); if (model_undef && (cell->type == "$eqx" || cell->type == "$nex")) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidth(undef_a, undef_b, cell, true); if (cell->type == "$eqx") yy.at(0) = ez->AND(yy.at(0), ez->vec_eq(undef_a, undef_b)); else yy.at(0) = ez->OR(yy.at(0), ez->vec_ne(undef_a, undef_b)); for (size_t i = 0; i < y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); ez->assume(ez->vec_eq(y, yy)); } else if (model_undef && (cell->type == "$eq" || cell->type == "$ne")) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidth(undef_a, undef_b, cell, true); int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); int undef_any = ez->OR(undef_any_a, undef_any_b); std::vector<int> masked_a_bits = ez->vec_or(a, ez->vec_or(undef_a, undef_b)); std::vector<int> masked_b_bits = ez->vec_or(b, ez->vec_or(undef_a, undef_b)); int masked_ne = ez->vec_ne(masked_a_bits, masked_b_bits); int undef_y_bit = ez->AND(undef_any, ez->NOT(masked_ne)); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); ez->SET(undef_y_bit, undef_y.at(0)); undefGating(y, yy, undef_y); } else { if (model_undef) { std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); undefGating(y, yy, undef_y); } log_assert(!model_undef || arith_undef_handled); } return true; } if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr" || cell->type == "$shift" || cell->type == "$shiftx") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); int extend_bit = ez->CONST_FALSE; if (!cell->type.in("$shift", "$shiftx") && cell->parameters["\\A_SIGNED"].as_bool()) extend_bit = a.back(); while (y.size() < a.size()) y.push_back(ez->literal()); while (y.size() > a.size()) a.push_back(extend_bit); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> shifted_a; if (cell->type == "$shl" || cell->type == "$sshl") shifted_a = ez->vec_shift_left(a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == "$shr") shifted_a = ez->vec_shift_right(a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == "$sshr") shifted_a = ez->vec_shift_right(a, b, false, cell->parameters["\\A_SIGNED"].as_bool() ? a.back() : ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == "$shift" || cell->type == "$shiftx") shifted_a = ez->vec_shift_right(a, b, cell->parameters["\\B_SIGNED"].as_bool(), ez->CONST_FALSE, ez->CONST_FALSE); ez->assume(ez->vec_eq(shifted_a, yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> undef_a_shifted; extend_bit = cell->type == "$shiftx" ? ez->CONST_TRUE : ez->CONST_FALSE; if (!cell->type.in("$shift", "$shiftx") && cell->parameters["\\A_SIGNED"].as_bool()) extend_bit = undef_a.back(); while (undef_y.size() < undef_a.size()) undef_y.push_back(ez->literal()); while (undef_y.size() > undef_a.size()) undef_a.push_back(extend_bit); if (cell->type == "$shl" || cell->type == "$sshl") undef_a_shifted = ez->vec_shift_left(undef_a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == "$shr") undef_a_shifted = ez->vec_shift_right(undef_a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == "$sshr") undef_a_shifted = ez->vec_shift_right(undef_a, b, false, cell->parameters["\\A_SIGNED"].as_bool() ? undef_a.back() : ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == "$shift") undef_a_shifted = ez->vec_shift_right(undef_a, b, cell->parameters["\\B_SIGNED"].as_bool(), ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == "$shiftx") undef_a_shifted = ez->vec_shift_right(undef_a, b, cell->parameters["\\B_SIGNED"].as_bool(), ez->CONST_TRUE, ez->CONST_TRUE); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); std::vector<int> undef_all_y_bits(undef_y.size(), undef_any_b); ez->assume(ez->vec_eq(ez->vec_or(undef_a_shifted, undef_all_y_bits), undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$mul") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidth(a, b, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> tmp(a.size(), ez->CONST_FALSE); for (int i = 0; i < int(a.size()); i++) { std::vector<int> shifted_a(a.size(), ez->CONST_FALSE); for (int j = i; j < int(a.size()); j++) shifted_a.at(j) = a.at(j-i); tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp); } ez->assume(ez->vec_eq(tmp, yy)); if (model_undef) { log_assert(arith_undef_handled); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$macc") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); Macc macc; macc.from_cell(cell); std::vector<int> tmp(GetSize(y), ez->CONST_FALSE); for (auto &port : macc.ports) { std::vector<int> in_a = importDefSigSpec(port.in_a, timestep); std::vector<int> in_b = importDefSigSpec(port.in_b, timestep); while (GetSize(in_a) < GetSize(y)) in_a.push_back(port.is_signed && !in_a.empty() ? in_a.back() : ez->CONST_FALSE); in_a.resize(GetSize(y)); if (GetSize(in_b)) { while (GetSize(in_b) < GetSize(y)) in_b.push_back(port.is_signed && !in_b.empty() ? in_b.back() : ez->CONST_FALSE); in_b.resize(GetSize(y)); for (int i = 0; i < GetSize(in_b); i++) { std::vector<int> shifted_a(in_a.size(), ez->CONST_FALSE); for (int j = i; j < int(in_a.size()); j++) shifted_a.at(j) = in_a.at(j-i); if (port.do_subtract) tmp = ez->vec_ite(in_b.at(i), ez->vec_sub(tmp, shifted_a), tmp); else tmp = ez->vec_ite(in_b.at(i), ez->vec_add(tmp, shifted_a), tmp); } } else { if (port.do_subtract) tmp = ez->vec_sub(tmp, in_a); else tmp = ez->vec_add(tmp, in_a); } } for (int i = 0; i < GetSize(b); i++) { std::vector<int> val(GetSize(y), ez->CONST_FALSE); val.at(0) = b.at(i); tmp = ez->vec_add(tmp, val); } if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); ez->assume(ez->vec_eq(undef_y, std::vector<int>(GetSize(y), ez->OR(undef_any_a, undef_any_b)))); undefGating(y, tmp, undef_y); } else ez->assume(ez->vec_eq(y, tmp)); return true; } if (cell->type == "$div" || cell->type == "$mod") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidth(a, b, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> a_u, b_u; if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) { a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a); b_u = ez->vec_ite(b.back(), ez->vec_neg(b), b); } else { a_u = a; b_u = b; } std::vector<int> chain_buf = a_u; std::vector<int> y_u(a_u.size(), ez->CONST_FALSE); for (int i = int(a.size())-1; i >= 0; i--) { chain_buf.insert(chain_buf.end(), chain_buf.size(), ez->CONST_FALSE); std::vector<int> b_shl(i, ez->CONST_FALSE); b_shl.insert(b_shl.end(), b_u.begin(), b_u.end()); b_shl.insert(b_shl.end(), chain_buf.size()-b_shl.size(), ez->CONST_FALSE); y_u.at(i) = ez->vec_ge_unsigned(chain_buf, b_shl); chain_buf = ez->vec_ite(y_u.at(i), ez->vec_sub(chain_buf, b_shl), chain_buf); chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end()); } std::vector<int> y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size()); if (cell->type == "$div") { if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u))); else ez->assume(ez->vec_eq(y_tmp, y_u)); } else { if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(a.back(), ez->vec_neg(chain_buf), chain_buf))); else ez->assume(ez->vec_eq(y_tmp, chain_buf)); } if (ignore_div_by_zero) { ez->assume(ez->expression(ezSAT::OpOr, b)); } else { std::vector<int> div_zero_result; if (cell->type == "$div") { if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) { std::vector<int> all_ones(y.size(), ez->CONST_TRUE); std::vector<int> only_first_one(y.size(), ez->CONST_FALSE); only_first_one.at(0) = ez->CONST_TRUE; div_zero_result = ez->vec_ite(a.back(), only_first_one, all_ones); } else { div_zero_result.insert(div_zero_result.end(), cell->getPort("\\A").size(), ez->CONST_TRUE); div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->CONST_FALSE); } } else { int copy_a_bits = min(cell->getPort("\\A").size(), cell->getPort("\\B").size()); div_zero_result.insert(div_zero_result.end(), a.begin(), a.begin() + copy_a_bits); if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), div_zero_result.back()); else div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->CONST_FALSE); } ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result))); } if (model_undef) { log_assert(arith_undef_handled); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$lut") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> lut; for (auto bit : cell->getParam("\\LUT").bits) lut.push_back(bit == RTLIL::S1 ? ez->CONST_TRUE : ez->CONST_FALSE); while (GetSize(lut) < (1 << GetSize(a))) lut.push_back(ez->CONST_FALSE); lut.resize(1 << GetSize(a)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> t(lut), u(GetSize(t), ez->CONST_FALSE); for (int i = GetSize(a)-1; i >= 0; i--) { std::vector<int> t0(t.begin(), t.begin() + GetSize(t)/2); std::vector<int> t1(t.begin() + GetSize(t)/2, t.end()); std::vector<int> u0(u.begin(), u.begin() + GetSize(u)/2); std::vector<int> u1(u.begin() + GetSize(u)/2, u.end()); t = ez->vec_ite(a[i], t1, t0); u = ez->vec_ite(undef_a[i], ez->vec_or(ez->vec_xor(t0, t1), ez->vec_or(u0, u1)), ez->vec_ite(a[i], u1, u0)); } log_assert(GetSize(t) == 1); log_assert(GetSize(u) == 1); undefGating(y, t, u); ez->assume(ez->vec_eq(importUndefSigSpec(cell->getPort("\\Y"), timestep), u)); } else { std::vector<int> t = lut; for (int i = GetSize(a)-1; i >= 0; i--) { std::vector<int> t0(t.begin(), t.begin() + GetSize(t)/2); std::vector<int> t1(t.begin() + GetSize(t)/2, t.end()); t = ez->vec_ite(a[i], t1, t0); } log_assert(GetSize(t) == 1); ez->assume(ez->vec_eq(y, t)); } return true; } if (cell->type == "$sop") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); int y = importDefSigSpec(cell->getPort("\\Y"), timestep).at(0); int width = cell->getParam("\\WIDTH").as_int(); int depth = cell->getParam("\\DEPTH").as_int(); vector<State> table_raw = cell->getParam("\\TABLE").bits; while (GetSize(table_raw) < 2*width*depth) table_raw.push_back(State::S0); vector<vector<int>> table(depth); for (int i = 0; i < depth; i++) for (int j = 0; j < width; j++) { bool pat0 = (table_raw[2*width*i + 2*j + 0] == State::S1); bool pat1 = (table_raw[2*width*i + 2*j + 1] == State::S1); if (pat0 && !pat1) table.at(i).push_back(0); else if (!pat0 && pat1) table.at(i).push_back(1); else table.at(i).push_back(-1); } if (model_undef) { std::vector<int> products, undef_products; std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); int undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep).at(0); for (int i = 0; i < depth; i++) { std::vector<int> cmp_a, cmp_ua, cmp_b; for (int j = 0; j < width; j++) if (table.at(i).at(j) >= 0) { cmp_a.push_back(a.at(j)); cmp_ua.push_back(undef_a.at(j)); cmp_b.push_back(table.at(i).at(j) ? ez->CONST_TRUE : ez->CONST_FALSE); } std::vector<int> masked_a = ez->vec_or(cmp_a, cmp_ua); std::vector<int> masked_b = ez->vec_or(cmp_b, cmp_ua); int masked_eq = ez->vec_eq(masked_a, masked_b); int any_undef = ez->expression(ezSAT::OpOr, cmp_ua); undef_products.push_back(ez->AND(any_undef, masked_eq)); products.push_back(ez->AND(ez->NOT(any_undef), masked_eq)); } int yy = ez->expression(ezSAT::OpOr, products); ez->SET(undef_y, ez->AND(ez->NOT(yy), ez->expression(ezSAT::OpOr, undef_products))); undefGating(y, yy, undef_y); } else { std::vector<int> products; for (int i = 0; i < depth; i++) { std::vector<int> cmp_a, cmp_b; for (int j = 0; j < width; j++) if (table.at(i).at(j) >= 0) { cmp_a.push_back(a.at(j)); cmp_b.push_back(table.at(i).at(j) ? ez->CONST_TRUE : ez->CONST_FALSE); } products.push_back(ez->vec_eq(cmp_a, cmp_b)); } ez->SET(y, ez->expression(ezSAT::OpOr, products)); } return true; } if (cell->type == "$fa") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> c = importDefSigSpec(cell->getPort("\\C"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> x = importDefSigSpec(cell->getPort("\\X"), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> xx = model_undef ? ez->vec_var(x.size()) : x; std::vector<int> t1 = ez->vec_xor(a, b); ez->assume(ez->vec_eq(yy, ez->vec_xor(t1, c))); std::vector<int> t2 = ez->vec_and(a, b); std::vector<int> t3 = ez->vec_and(c, t1); ez->assume(ez->vec_eq(xx, ez->vec_or(t2, t3))); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_c = importUndefSigSpec(cell->getPort("\\C"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> undef_x = importUndefSigSpec(cell->getPort("\\X"), timestep); ez->assume(ez->vec_eq(undef_y, ez->vec_or(ez->vec_or(undef_a, undef_b), undef_c))); ez->assume(ez->vec_eq(undef_x, undef_y)); undefGating(y, yy, undef_y); undefGating(x, xx, undef_x); } return true; } if (cell->type == "$lcu") { std::vector<int> p = importDefSigSpec(cell->getPort("\\P"), timestep); std::vector<int> g = importDefSigSpec(cell->getPort("\\G"), timestep); std::vector<int> ci = importDefSigSpec(cell->getPort("\\CI"), timestep); std::vector<int> co = importDefSigSpec(cell->getPort("\\CO"), timestep); std::vector<int> yy = model_undef ? ez->vec_var(co.size()) : co; for (int i = 0; i < GetSize(co); i++) ez->SET(yy[i], ez->OR(g[i], ez->AND(p[i], i ? yy[i-1] : ci[0]))); if (model_undef) { std::vector<int> undef_p = importUndefSigSpec(cell->getPort("\\P"), timestep); std::vector<int> undef_g = importUndefSigSpec(cell->getPort("\\G"), timestep); std::vector<int> undef_ci = importUndefSigSpec(cell->getPort("\\CI"), timestep); std::vector<int> undef_co = importUndefSigSpec(cell->getPort("\\CO"), timestep); int undef_any_p = ez->expression(ezSAT::OpOr, undef_p); int undef_any_g = ez->expression(ezSAT::OpOr, undef_g); int undef_any_ci = ez->expression(ezSAT::OpOr, undef_ci); int undef_co_bit = ez->OR(undef_any_p, undef_any_g, undef_any_ci); std::vector<int> undef_co_bits(undef_co.size(), undef_co_bit); ez->assume(ez->vec_eq(undef_co_bits, undef_co)); undefGating(co, yy, undef_co); } return true; } if (cell->type == "$alu") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> b = importDefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> x = importDefSigSpec(cell->getPort("\\X"), timestep); std::vector<int> ci = importDefSigSpec(cell->getPort("\\CI"), timestep); std::vector<int> bi = importDefSigSpec(cell->getPort("\\BI"), timestep); std::vector<int> co = importDefSigSpec(cell->getPort("\\CO"), timestep); extendSignalWidth(a, b, y, cell); extendSignalWidth(a, b, x, cell); extendSignalWidth(a, b, co, cell); std::vector<int> def_y = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> def_x = model_undef ? ez->vec_var(x.size()) : x; std::vector<int> def_co = model_undef ? ez->vec_var(co.size()) : co; log_assert(GetSize(y) == GetSize(x)); log_assert(GetSize(y) == GetSize(co)); log_assert(GetSize(ci) == 1); log_assert(GetSize(bi) == 1); for (int i = 0; i < GetSize(y); i++) { int s1 = a.at(i), s2 = ez->XOR(b.at(i), bi.at(0)), s3 = i ? co.at(i-1) : ci.at(0); ez->SET(def_x.at(i), ez->XOR(s1, s2)); ez->SET(def_y.at(i), ez->XOR(def_x.at(i), s3)); ez->SET(def_co.at(i), ez->OR(ez->AND(s1, s2), ez->AND(s1, s3), ez->AND(s2, s3))); } if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort("\\B"), timestep); std::vector<int> undef_ci = importUndefSigSpec(cell->getPort("\\CI"), timestep); std::vector<int> undef_bi = importUndefSigSpec(cell->getPort("\\BI"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> undef_x = importUndefSigSpec(cell->getPort("\\X"), timestep); std::vector<int> undef_co = importUndefSigSpec(cell->getPort("\\CO"), timestep); extendSignalWidth(undef_a, undef_b, undef_y, cell); extendSignalWidth(undef_a, undef_b, undef_x, cell); extendSignalWidth(undef_a, undef_b, undef_co, cell); std::vector<int> all_inputs_undef; all_inputs_undef.insert(all_inputs_undef.end(), undef_a.begin(), undef_a.end()); all_inputs_undef.insert(all_inputs_undef.end(), undef_b.begin(), undef_b.end()); all_inputs_undef.insert(all_inputs_undef.end(), undef_ci.begin(), undef_ci.end()); all_inputs_undef.insert(all_inputs_undef.end(), undef_bi.begin(), undef_bi.end()); int undef_any = ez->expression(ezSAT::OpOr, all_inputs_undef); for (int i = 0; i < GetSize(undef_y); i++) { ez->SET(undef_y.at(i), undef_any); ez->SET(undef_x.at(i), ez->OR(undef_a.at(i), undef_b.at(i), undef_bi.at(0))); ez->SET(undef_co.at(i), undef_any); } undefGating(y, def_y, undef_y); undefGating(x, def_x, undef_x); undefGating(co, def_co, undef_co); } return true; } if (cell->type == "$slice") { RTLIL::SigSpec a = cell->getPort("\\A"); RTLIL::SigSpec y = cell->getPort("\\Y"); ez->assume(signals_eq(a.extract(cell->parameters.at("\\OFFSET").as_int(), y.size()), y, timestep)); return true; } if (cell->type == "$concat") { RTLIL::SigSpec a = cell->getPort("\\A"); RTLIL::SigSpec b = cell->getPort("\\B"); RTLIL::SigSpec y = cell->getPort("\\Y"); RTLIL::SigSpec ab = a; ab.append(b); ez->assume(signals_eq(ab, y, timestep)); return true; } if (timestep > 0 && (cell->type == "$dff" || cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_")) { if (timestep == 1) { initial_state.add((*sigmap)(cell->getPort("\\Q"))); } else { std::vector<int> d = importDefSigSpec(cell->getPort("\\D"), timestep-1); std::vector<int> q = importDefSigSpec(cell->getPort("\\Q"), timestep); std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q; ez->assume(ez->vec_eq(d, qq)); if (model_undef) { std::vector<int> undef_d = importUndefSigSpec(cell->getPort("\\D"), timestep-1); std::vector<int> undef_q = importUndefSigSpec(cell->getPort("\\Q"), timestep); ez->assume(ez->vec_eq(undef_d, undef_q)); undefGating(q, qq, undef_q); } } return true; } if (cell->type == "$anyconst") { if (timestep < 2) return true; std::vector<int> d = importDefSigSpec(cell->getPort("\\Y"), timestep-1); std::vector<int> q = importDefSigSpec(cell->getPort("\\Y"), timestep); std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q; ez->assume(ez->vec_eq(d, qq)); if (model_undef) { std::vector<int> undef_d = importUndefSigSpec(cell->getPort("\\D"), timestep-1); std::vector<int> undef_q = importUndefSigSpec(cell->getPort("\\Q"), timestep); ez->assume(ez->vec_eq(undef_d, undef_q)); undefGating(q, qq, undef_q); } return true; } if (cell->type == "$_BUF_" || cell->type == "$equiv") { std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidthUnary(a, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; ez->assume(ez->vec_eq(a, yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); extendSignalWidthUnary(undef_a, undef_y, cell, false); ez->assume(ez->vec_eq(undef_a, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$initstate") { auto key = make_pair(prefix, timestep); if (initstates.count(key) == 0) initstates[key] = false; std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep); log_assert(GetSize(y) == 1); ez->SET(y[0], initstates[key] ? ez->CONST_TRUE : ez->CONST_FALSE); if (model_undef) { std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep); log_assert(GetSize(undef_y) == 1); ez->SET(undef_y[0], ez->CONST_FALSE); } return true; } if (cell->type == "$assert") { std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); asserts_a[pf].append((*sigmap)(cell->getPort("\\A"))); asserts_en[pf].append((*sigmap)(cell->getPort("\\EN"))); return true; } if (cell->type == "$assume") { std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); assumes_a[pf].append((*sigmap)(cell->getPort("\\A"))); assumes_en[pf].append((*sigmap)(cell->getPort("\\EN"))); return true; } // Unsupported internal cell types: $pow $lut // .. and all sequential cells except $dff and $_DFF_[NP]_ return false; } }; YOSYS_NAMESPACE_END #endif