/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/log.h" #include #include #include #ifndef _WIN32 # include # include #endif USING_YOSYS_NAMESPACE #ifdef YOSYS_ENABLE_VERIFIC #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Woverloaded-virtual" #endif #include "veri_file.h" #include "vhdl_file.h" #include "VeriModule.h" #include "VeriWrite.h" #include "VhdlUnits.h" #include "DataBase.h" #include "Message.h" #ifdef __clang__ #pragma clang diagnostic pop #endif #ifdef VERIFIC_NAMESPACE using namespace Verific ; #endif #endif PRIVATE_NAMESPACE_BEGIN #ifdef YOSYS_ENABLE_VERIFIC void msg_func(msg_type_t msg_type, const char *message_id, linefile_type linefile, const char *msg, va_list args) { string message = stringf("VERIFIC-%s [%s] ", msg_type == VERIFIC_NONE ? "NONE" : msg_type == VERIFIC_ERROR ? "ERROR" : msg_type == VERIFIC_WARNING ? "WARNING" : msg_type == VERIFIC_IGNORE ? "IGNORE" : msg_type == VERIFIC_INFO ? "INFO" : msg_type == VERIFIC_COMMENT ? "COMMENT" : msg_type == VERIFIC_PROGRAM_ERROR ? "PROGRAM_ERROR" : "UNKNOWN", message_id); if (linefile) message += stringf("%s:%d: ", LineFile::GetFileName(linefile), LineFile::GetLineNo(linefile)); message += vstringf(msg, args); if (msg_type == VERIFIC_ERROR || msg_type == VERIFIC_WARNING || msg_type == VERIFIC_PROGRAM_ERROR) log_warning_noprefix("%s\n", message.c_str()); else log("%s\n", message.c_str()); } string get_full_netlist_name(Netlist *nl) { if (nl->NumOfRefs() == 1) { Instance *inst = (Instance*)nl->GetReferences()->GetLast(); return get_full_netlist_name(inst->Owner()) + "." + inst->Name(); } return nl->CellBaseName(); } struct VerificImporter; void import_sva_assert(VerificImporter *importer, Instance *inst); void import_sva_assume(VerificImporter *importer, Instance *inst); void import_sva_cover(VerificImporter *importer, Instance *inst); struct VerificClockEdge { Net *clock_net; SigBit clock_sig; bool posedge; VerificClockEdge(VerificImporter *importer, Instance *inst); }; struct VerificImporter { RTLIL::Module *module; Netlist *netlist; std::map net_map; std::map sva_posedge_map; bool mode_gates, mode_keep, mode_nosva, mode_names, verbose; pool verific_sva_prims; pool verific_psl_prims; VerificImporter(bool mode_gates, bool mode_keep, bool mode_nosva, bool mode_names, bool verbose) : mode_gates(mode_gates), mode_keep(mode_keep), mode_nosva(mode_nosva), mode_names(mode_names), verbose(verbose) { // Copy&paste from Verific 3.16_484_32_170630 Netlist.h vector sva_prims { PRIM_SVA_IMMEDIATE_ASSERT, PRIM_SVA_ASSERT, PRIM_SVA_COVER, PRIM_SVA_ASSUME, PRIM_SVA_EXPECT, PRIM_SVA_POSEDGE, PRIM_SVA_NOT, PRIM_SVA_FIRST_MATCH, PRIM_SVA_ENDED, PRIM_SVA_MATCHED, PRIM_SVA_CONSECUTIVE_REPEAT, PRIM_SVA_NON_CONSECUTIVE_REPEAT, PRIM_SVA_GOTO_REPEAT, PRIM_SVA_MATCH_ITEM_TRIGGER, PRIM_SVA_AND, PRIM_SVA_OR, PRIM_SVA_SEQ_AND, PRIM_SVA_SEQ_OR, PRIM_SVA_EVENT_OR, PRIM_SVA_OVERLAPPED_IMPLICATION, PRIM_SVA_NON_OVERLAPPED_IMPLICATION, PRIM_SVA_OVERLAPPED_FOLLOWED_BY, PRIM_SVA_NON_OVERLAPPED_FOLLOWED_BY, PRIM_SVA_INTERSECT, PRIM_SVA_THROUGHOUT, PRIM_SVA_WITHIN, PRIM_SVA_AT, PRIM_SVA_DISABLE_IFF, PRIM_SVA_SAMPLED, PRIM_SVA_ROSE, PRIM_SVA_FELL, PRIM_SVA_STABLE, PRIM_SVA_PAST, PRIM_SVA_MATCH_ITEM_ASSIGN, PRIM_SVA_SEQ_CONCAT, PRIM_SVA_IF, PRIM_SVA_RESTRICT, PRIM_SVA_TRIGGERED, PRIM_SVA_STRONG, PRIM_SVA_WEAK, PRIM_SVA_NEXTTIME, PRIM_SVA_S_NEXTTIME, PRIM_SVA_ALWAYS, PRIM_SVA_S_ALWAYS, PRIM_SVA_S_EVENTUALLY, PRIM_SVA_EVENTUALLY, PRIM_SVA_UNTIL, PRIM_SVA_S_UNTIL, PRIM_SVA_UNTIL_WITH, PRIM_SVA_S_UNTIL_WITH, PRIM_SVA_IMPLIES, PRIM_SVA_IFF, PRIM_SVA_ACCEPT_ON, PRIM_SVA_REJECT_ON, PRIM_SVA_SYNC_ACCEPT_ON, PRIM_SVA_SYNC_REJECT_ON, PRIM_SVA_GLOBAL_CLOCKING_DEF, PRIM_SVA_GLOBAL_CLOCKING_REF, PRIM_SVA_IMMEDIATE_ASSUME, PRIM_SVA_IMMEDIATE_COVER, OPER_SVA_SAMPLED, OPER_SVA_STABLE }; for (int p : sva_prims) verific_sva_prims.insert(p); // Copy&paste from Verific 3.16_484_32_170630 Netlist.h vector psl_prims { OPER_PSLPREV, OPER_PSLNEXTFUNC, PRIM_PSL_ASSERT, PRIM_PSL_ASSUME, PRIM_PSL_ASSUME_GUARANTEE, PRIM_PSL_RESTRICT, PRIM_PSL_RESTRICT_GUARANTEE, PRIM_PSL_COVER, PRIM_ENDPOINT, PRIM_ROSE, PRIM_FELL, PRIM_AT, PRIM_ATSTRONG, PRIM_ABORT, PRIM_PSL_NOT, PRIM_PSL_AND, PRIM_PSL_OR, PRIM_IMPL, PRIM_EQUIV, PRIM_PSL_X, PRIM_PSL_XSTRONG, PRIM_PSL_G, PRIM_PSL_F, PRIM_PSL_U, PRIM_PSL_W, PRIM_NEXT, PRIM_NEXTSTRONG, PRIM_ALWAYS, PRIM_NEVER, PRIM_EVENTUALLY, PRIM_UNTIL, PRIM_UNTIL_, PRIM_UNTILSTRONG, PRIM_UNTILSTRONG_, PRIM_BEFORE, PRIM_BEFORE_, PRIM_BEFORESTRONG, PRIM_BEFORESTRONG_, PRIM_NEXT_A, PRIM_NEXT_ASTRONG, PRIM_NEXT_E, PRIM_NEXT_ESTRONG, PRIM_NEXT_EVENT, PRIM_NEXT_EVENTSTRONG, PRIM_NEXT_EVENT_A, PRIM_NEXT_EVENT_ASTRONG, PRIM_NEXT_EVENT_E, PRIM_NEXT_EVENT_ESTRONG, PRIM_SEQ_IMPL, PRIM_OSUFFIX_IMPL, PRIM_SUFFIX_IMPL, PRIM_OSUFFIX_IMPLSTRONG, PRIM_SUFFIX_IMPLSTRONG, PRIM_WITHIN, PRIM_WITHIN_, PRIM_WITHINSTRONG, PRIM_WITHINSTRONG_, PRIM_WHILENOT, PRIM_WHILENOT_, PRIM_WHILENOTSTRONG, PRIM_WHILENOTSTRONG_, PRIM_CONCAT, PRIM_FUSION, PRIM_SEQ_AND_LEN, PRIM_SEQ_AND, PRIM_SEQ_OR, PRIM_CONS_REP, PRIM_NONCONS_REP, PRIM_GOTO_REP }; for (int p : psl_prims) verific_psl_prims.insert(p); } RTLIL::SigBit net_map_at(Net *net) { if (net->IsExternalTo(netlist)) log_error("Found external reference to '%s.%s' in netlist '%s', please use -flatten or -extnets.\n", get_full_netlist_name(net->Owner()).c_str(), net->Name(), get_full_netlist_name(netlist).c_str()); return net_map.at(net); } void import_attributes(dict &attributes, DesignObj *obj) { MapIter mi; Att *attr; if (obj->Linefile()) attributes["\\src"] = stringf("%s:%d", LineFile::GetFileName(obj->Linefile()), LineFile::GetLineNo(obj->Linefile())); // FIXME: Parse numeric attributes FOREACH_ATTRIBUTE(obj, mi, attr) attributes[RTLIL::escape_id(attr->Key())] = RTLIL::Const(std::string(attr->Value())); } RTLIL::SigSpec operatorInput(Instance *inst) { RTLIL::SigSpec sig; for (int i = int(inst->InputSize())-1; i >= 0; i--) if (inst->GetInputBit(i)) sig.append(net_map_at(inst->GetInputBit(i))); else sig.append(RTLIL::State::Sz); return sig; } RTLIL::SigSpec operatorInput1(Instance *inst) { RTLIL::SigSpec sig; for (int i = int(inst->Input1Size())-1; i >= 0; i--) if (inst->GetInput1Bit(i)) sig.append(net_map_at(inst->GetInput1Bit(i))); else sig.append(RTLIL::State::Sz); return sig; } RTLIL::SigSpec operatorInput2(Instance *inst) { RTLIL::SigSpec sig; for (int i = int(inst->Input2Size())-1; i >= 0; i--) if (inst->GetInput2Bit(i)) sig.append(net_map_at(inst->GetInput2Bit(i))); else sig.append(RTLIL::State::Sz); return sig; } RTLIL::SigSpec operatorInport(Instance *inst, const char *portname) { PortBus *portbus = inst->View()->GetPortBus(portname); if (portbus) { RTLIL::SigSpec sig; for (unsigned i = 0; i < portbus->Size(); i++) { Net *net = inst->GetNet(portbus->ElementAtIndex(i)); if (net) { if (net->IsGnd()) sig.append(RTLIL::State::S0); else if (net->IsPwr()) sig.append(RTLIL::State::S1); else sig.append(net_map_at(net)); } else sig.append(RTLIL::State::Sz); } return sig; } else { Port *port = inst->View()->GetPort(portname); log_assert(port != NULL); Net *net = inst->GetNet(port); return net_map_at(net); } } RTLIL::SigSpec operatorOutput(Instance *inst) { RTLIL::SigSpec sig; RTLIL::Wire *dummy_wire = NULL; for (int i = int(inst->OutputSize())-1; i >= 0; i--) if (inst->GetOutputBit(i)) { sig.append(net_map_at(inst->GetOutputBit(i))); dummy_wire = NULL; } else { if (dummy_wire == NULL) dummy_wire = module->addWire(NEW_ID); else dummy_wire->width++; sig.append(RTLIL::SigSpec(dummy_wire, dummy_wire->width - 1)); } return sig; } bool import_netlist_instance_gates(Instance *inst, RTLIL::IdString inst_name) { if (inst->Type() == PRIM_AND) { module->addAndGate(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_NAND) { RTLIL::SigSpec tmp = module->addWire(NEW_ID); module->addAndGate(NEW_ID, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), tmp); module->addNotGate(inst_name, tmp, net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_OR) { module->addOrGate(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_NOR) { RTLIL::SigSpec tmp = module->addWire(NEW_ID); module->addOrGate(NEW_ID, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), tmp); module->addNotGate(inst_name, tmp, net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_XOR) { module->addXorGate(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_XNOR) { module->addXnorGate(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_BUF) { module->addBufGate(inst_name, net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_INV) { module->addNotGate(inst_name, net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_MUX) { module->addMuxGate(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetControl()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_TRI) { module->addMuxGate(inst_name, RTLIL::State::Sz, net_map_at(inst->GetInput()), net_map_at(inst->GetControl()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_FADD) { RTLIL::SigSpec a = net_map_at(inst->GetInput1()), b = net_map_at(inst->GetInput2()), c = net_map_at(inst->GetCin()); RTLIL::SigSpec x = inst->GetCout() ? net_map_at(inst->GetCout()) : module->addWire(NEW_ID); RTLIL::SigSpec y = inst->GetOutput() ? net_map_at(inst->GetOutput()) : module->addWire(NEW_ID); RTLIL::SigSpec tmp1 = module->addWire(NEW_ID); RTLIL::SigSpec tmp2 = module->addWire(NEW_ID); RTLIL::SigSpec tmp3 = module->addWire(NEW_ID); module->addXorGate(NEW_ID, a, b, tmp1); module->addXorGate(inst_name, tmp1, c, y); module->addAndGate(NEW_ID, tmp1, c, tmp2); module->addAndGate(NEW_ID, a, b, tmp3); module->addOrGate(NEW_ID, tmp2, tmp3, x); return true; } if (inst->Type() == PRIM_DFFRS) { if (inst->GetSet()->IsGnd() && inst->GetReset()->IsGnd()) module->addDffGate(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); else if (inst->GetSet()->IsGnd()) module->addAdffGate(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetReset()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), false); else if (inst->GetReset()->IsGnd()) module->addAdffGate(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetSet()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), true); else module->addDffsrGate(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetSet()), net_map_at(inst->GetReset()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); return true; } return false; } bool import_netlist_instance_cells(Instance *inst, RTLIL::IdString inst_name) { if (inst->Type() == PRIM_AND) { module->addAnd(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_NAND) { RTLIL::SigSpec tmp = module->addWire(NEW_ID); module->addAnd(NEW_ID, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), tmp); module->addNot(inst_name, tmp, net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_OR) { module->addOr(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_NOR) { RTLIL::SigSpec tmp = module->addWire(NEW_ID); module->addOr(NEW_ID, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), tmp); module->addNot(inst_name, tmp, net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_XOR) { module->addXor(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_XNOR) { module->addXnor(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_INV) { module->addNot(inst_name, net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_MUX) { module->addMux(inst_name, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), net_map_at(inst->GetControl()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_TRI) { module->addMux(inst_name, RTLIL::State::Sz, net_map_at(inst->GetInput()), net_map_at(inst->GetControl()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_FADD) { RTLIL::SigSpec a_plus_b = module->addWire(NEW_ID, 2); RTLIL::SigSpec y = inst->GetOutput() ? net_map_at(inst->GetOutput()) : module->addWire(NEW_ID); if (inst->GetCout()) y.append(net_map_at(inst->GetCout())); module->addAdd(NEW_ID, net_map_at(inst->GetInput1()), net_map_at(inst->GetInput2()), a_plus_b); module->addAdd(inst_name, a_plus_b, net_map_at(inst->GetCin()), y); return true; } if (inst->Type() == PRIM_DFFRS) { if (inst->GetSet()->IsGnd() && inst->GetReset()->IsGnd()) module->addDff(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); else if (inst->GetSet()->IsGnd()) module->addAdff(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetReset()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), RTLIL::State::S0); else if (inst->GetReset()->IsGnd()) module->addAdff(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetSet()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput()), RTLIL::State::S1); else module->addDffsr(inst_name, net_map_at(inst->GetClock()), net_map_at(inst->GetSet()), net_map_at(inst->GetReset()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); return true; } if (inst->Type() == PRIM_DLATCHRS) { if (inst->GetSet()->IsGnd() && inst->GetReset()->IsGnd()) module->addDlatch(inst_name, net_map_at(inst->GetControl()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); else module->addDlatchsr(inst_name, net_map_at(inst->GetControl()), net_map_at(inst->GetSet()), net_map_at(inst->GetReset()), net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); return true; } #define IN operatorInput(inst) #define IN1 operatorInput1(inst) #define IN2 operatorInput2(inst) #define OUT operatorOutput(inst) #define SIGNED inst->View()->IsSigned() if (inst->Type() == OPER_ADDER) { RTLIL::SigSpec out = OUT; if (inst->GetCout() != NULL) out.append(net_map_at(inst->GetCout())); if (inst->GetCin()->IsGnd()) { module->addAdd(inst_name, IN1, IN2, out, SIGNED); } else { RTLIL::SigSpec tmp = module->addWire(NEW_ID, GetSize(out)); module->addAdd(NEW_ID, IN1, IN2, tmp, SIGNED); module->addAdd(inst_name, tmp, net_map_at(inst->GetCin()), out, false); } return true; } if (inst->Type() == OPER_MULTIPLIER) { module->addMul(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_DIVIDER) { module->addDiv(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_MODULO) { module->addMod(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_REMAINDER) { module->addMod(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_SHIFT_LEFT) { module->addShl(inst_name, IN1, IN2, OUT, false); return true; } if (inst->Type() == OPER_ENABLED_DECODER) { RTLIL::SigSpec vec; vec.append(net_map_at(inst->GetControl())); for (unsigned i = 1; i < inst->OutputSize(); i++) { vec.append(RTLIL::State::S0); } module->addShl(inst_name, vec, IN, OUT, false); return true; } if (inst->Type() == OPER_DECODER) { RTLIL::SigSpec vec; vec.append(RTLIL::State::S1); for (unsigned i = 1; i < inst->OutputSize(); i++) { vec.append(RTLIL::State::S0); } module->addShl(inst_name, vec, IN, OUT, false); return true; } if (inst->Type() == OPER_SHIFT_RIGHT) { Net *net_cin = inst->GetCin(); Net *net_a_msb = inst->GetInput1Bit(0); if (net_cin->IsGnd()) module->addShr(inst_name, IN1, IN2, OUT, false); else if (net_cin == net_a_msb) module->addSshr(inst_name, IN1, IN2, OUT, true); else log_error("Can't import Verific OPER_SHIFT_RIGHT instance %s: carry_in is neither 0 nor msb of left input\n", inst->Name()); return true; } if (inst->Type() == OPER_REDUCE_AND) { module->addReduceAnd(inst_name, IN, net_map_at(inst->GetOutput()), SIGNED); return true; } if (inst->Type() == OPER_REDUCE_OR) { module->addReduceOr(inst_name, IN, net_map_at(inst->GetOutput()), SIGNED); return true; } if (inst->Type() == OPER_REDUCE_XOR) { module->addReduceXor(inst_name, IN, net_map_at(inst->GetOutput()), SIGNED); return true; } if (inst->Type() == OPER_REDUCE_XNOR) { module->addReduceXnor(inst_name, IN, net_map_at(inst->GetOutput()), SIGNED); return true; } if (inst->Type() == OPER_LESSTHAN) { Net *net_cin = inst->GetCin(); if (net_cin->IsGnd()) module->addLt(inst_name, IN1, IN2, net_map_at(inst->GetOutput()), SIGNED); else if (net_cin->IsPwr()) module->addLe(inst_name, IN1, IN2, net_map_at(inst->GetOutput()), SIGNED); else log_error("Can't import Verific OPER_LESSTHAN instance %s: carry_in is neither 0 nor 1\n", inst->Name()); return true; } if (inst->Type() == OPER_WIDE_AND) { module->addAnd(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_WIDE_OR) { module->addOr(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_WIDE_XOR) { module->addXor(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_WIDE_XNOR) { module->addXnor(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_WIDE_BUF) { module->addPos(inst_name, IN, OUT, SIGNED); return true; } if (inst->Type() == OPER_WIDE_INV) { module->addNot(inst_name, IN, OUT, SIGNED); return true; } if (inst->Type() == OPER_MINUS) { module->addSub(inst_name, IN1, IN2, OUT, SIGNED); return true; } if (inst->Type() == OPER_UMINUS) { module->addNeg(inst_name, IN, OUT, SIGNED); return true; } if (inst->Type() == OPER_EQUAL) { module->addEq(inst_name, IN1, IN2, net_map_at(inst->GetOutput()), SIGNED); return true; } if (inst->Type() == OPER_NEQUAL) { module->addNe(inst_name, IN1, IN2, net_map_at(inst->GetOutput()), SIGNED); return true; } if (inst->Type() == OPER_WIDE_MUX) { module->addMux(inst_name, IN1, IN2, net_map_at(inst->GetControl()), OUT); return true; } if (inst->Type() == OPER_WIDE_TRI) { module->addMux(inst_name, RTLIL::SigSpec(RTLIL::State::Sz, inst->OutputSize()), IN, net_map_at(inst->GetControl()), OUT); return true; } if (inst->Type() == OPER_WIDE_DFFRS) { RTLIL::SigSpec sig_set = operatorInport(inst, "set"); RTLIL::SigSpec sig_reset = operatorInport(inst, "reset"); if (sig_set.is_fully_const() && !sig_set.as_bool() && sig_reset.is_fully_const() && !sig_reset.as_bool()) module->addDff(inst_name, net_map_at(inst->GetClock()), IN, OUT); else module->addDffsr(inst_name, net_map_at(inst->GetClock()), sig_set, sig_reset, IN, OUT); return true; } #undef IN #undef IN1 #undef IN2 #undef OUT #undef SIGNED return false; } void merge_past_ffs_clock(pool &candidates, SigBit clock, bool clock_pol) { bool keep_running = true; SigMap sigmap; while (keep_running) { keep_running = false; dict> dbits_db; SigSpec dbits; for (auto cell : candidates) { SigBit bit = sigmap(cell->getPort("\\D")); dbits_db[bit].insert(cell); dbits.append(bit); } dbits.sort_and_unify(); for (auto chunk : dbits.chunks()) { SigSpec sig_d = chunk; if (chunk.wire == nullptr || GetSize(sig_d) == 1) continue; SigSpec sig_q = module->addWire(NEW_ID, GetSize(sig_d)); RTLIL::Cell *new_ff = module->addDff(NEW_ID, clock, sig_d, sig_q, clock_pol); if (verbose) log(" merging single-bit past_ffs into new %d-bit ff %s.\n", GetSize(sig_d), log_id(new_ff)); for (int i = 0; i < GetSize(sig_d); i++) for (auto old_ff : dbits_db[sig_d[i]]) { if (verbose) log(" replacing old ff %s on bit %d.\n", log_id(old_ff), i); SigBit old_q = old_ff->getPort("\\Q"); SigBit new_q = sig_q[i]; sigmap.add(old_q, new_q); module->connect(old_q, new_q); candidates.erase(old_ff); module->remove(old_ff); keep_running = true; } } } } void merge_past_ffs(pool &candidates) { dict, pool> database; for (auto cell : candidates) { SigBit clock = cell->getPort("\\CLK"); bool clock_pol = cell->getParam("\\CLK_POLARITY").as_bool(); database[make_pair(clock, int(clock_pol))].insert(cell); } for (auto it : database) merge_past_ffs_clock(it.second, it.first.first, it.first.second); } void import_netlist(RTLIL::Design *design, Netlist *nl, std::set &nl_todo) { std::string module_name = nl->IsOperator() ? std::string("$verific$") + nl->Owner()->Name() : RTLIL::escape_id(nl->Owner()->Name()); netlist = nl; if (design->has(module_name)) { if (!nl->IsOperator()) log_cmd_error("Re-definition of module `%s'.\n", nl->Owner()->Name()); return; } module = new RTLIL::Module; module->name = module_name; design->add(module); if (nl->IsBlackBox()) { log("Importing blackbox module %s.\n", RTLIL::id2cstr(module->name)); module->set_bool_attribute("\\blackbox"); } else { log("Importing module %s.\n", RTLIL::id2cstr(module->name)); } SetIter si; MapIter mi, mi2; Port *port; PortBus *portbus; Net *net; NetBus *netbus; Instance *inst; PortRef *pr; FOREACH_PORT_OF_NETLIST(nl, mi, port) { if (port->Bus()) continue; if (verbose) log(" importing port %s.\n", port->Name()); RTLIL::Wire *wire = module->addWire(RTLIL::escape_id(port->Name())); import_attributes(wire->attributes, port); wire->port_id = nl->IndexOf(port) + 1; if (port->GetDir() == DIR_INOUT || port->GetDir() == DIR_IN) wire->port_input = true; if (port->GetDir() == DIR_INOUT || port->GetDir() == DIR_OUT) wire->port_output = true; if (port->GetNet()) { net = port->GetNet(); if (net_map.count(net) == 0) net_map[net] = wire; else if (wire->port_input) module->connect(net_map_at(net), wire); else module->connect(wire, net_map_at(net)); } } FOREACH_PORTBUS_OF_NETLIST(nl, mi, portbus) { if (verbose) log(" importing portbus %s.\n", portbus->Name()); RTLIL::Wire *wire = module->addWire(RTLIL::escape_id(portbus->Name()), portbus->Size()); wire->start_offset = min(portbus->LeftIndex(), portbus->RightIndex()); import_attributes(wire->attributes, portbus); if (portbus->GetDir() == DIR_INOUT || portbus->GetDir() == DIR_IN) wire->port_input = true; if (portbus->GetDir() == DIR_INOUT || portbus->GetDir() == DIR_OUT) wire->port_output = true; for (int i = portbus->LeftIndex();; i += portbus->IsUp() ? +1 : -1) { if (portbus->ElementAtIndex(i) && portbus->ElementAtIndex(i)->GetNet()) { net = portbus->ElementAtIndex(i)->GetNet(); RTLIL::SigBit bit(wire, i - wire->start_offset); if (net_map.count(net) == 0) net_map[net] = bit; else if (wire->port_input) module->connect(net_map_at(net), bit); else module->connect(bit, net_map_at(net)); } if (i == portbus->RightIndex()) break; } } module->fixup_ports(); dict init_nets; pool anyconst_nets; pool anyseq_nets; FOREACH_NET_OF_NETLIST(nl, mi, net) { if (net->IsRamNet()) { RTLIL::Memory *memory = new RTLIL::Memory; memory->name = RTLIL::escape_id(net->Name()); log_assert(module->count_id(memory->name) == 0); module->memories[memory->name] = memory; int number_of_bits = net->Size(); int bits_in_word = number_of_bits; FOREACH_PORTREF_OF_NET(net, si, pr) { if (pr->GetInst()->Type() == OPER_READ_PORT) { bits_in_word = min(bits_in_word, pr->GetInst()->OutputSize()); continue; } if (pr->GetInst()->Type() == OPER_WRITE_PORT || pr->GetInst()->Type() == OPER_CLOCKED_WRITE_PORT) { bits_in_word = min(bits_in_word, pr->GetInst()->Input2Size()); continue; } log_error("Verific RamNet %s is connected to unsupported instance type %s (%s).\n", net->Name(), pr->GetInst()->View()->Owner()->Name(), pr->GetInst()->Name()); } memory->width = bits_in_word; memory->size = number_of_bits / bits_in_word; const char *ascii_initdata = net->GetWideInitialValue(); if (ascii_initdata) { while (*ascii_initdata != 0 && *ascii_initdata != '\'') ascii_initdata++; if (*ascii_initdata == '\'') ascii_initdata++; if (*ascii_initdata != 0) { log_assert(*ascii_initdata == 'b'); ascii_initdata++; } for (int word_idx = 0; word_idx < memory->size; word_idx++) { Const initval = Const(State::Sx, memory->width); bool initval_valid = false; for (int bit_idx = memory->width-1; bit_idx >= 0; bit_idx--) { if (*ascii_initdata == 0) break; if (*ascii_initdata == '0' || *ascii_initdata == '1') { initval[bit_idx] = (*ascii_initdata == '0') ? State::S0 : State::S1; initval_valid = true; } ascii_initdata++; } if (initval_valid) { RTLIL::Cell *cell = module->addCell(NEW_ID, "$meminit"); cell->parameters["\\WORDS"] = 1; if (net->GetOrigTypeRange()->LeftRangeBound() < net->GetOrigTypeRange()->RightRangeBound()) cell->setPort("\\ADDR", word_idx); else cell->setPort("\\ADDR", memory->size - word_idx - 1); cell->setPort("\\DATA", initval); cell->parameters["\\MEMID"] = RTLIL::Const(memory->name.str()); cell->parameters["\\ABITS"] = 32; cell->parameters["\\WIDTH"] = memory->width; cell->parameters["\\PRIORITY"] = RTLIL::Const(autoidx-1); } } } continue; } if (net->GetInitialValue()) init_nets[net] = net->GetInitialValue(); const char *rand_const_attr = net->GetAttValue(" rand_const"); const char *rand_attr = net->GetAttValue(" rand"); if (rand_const_attr != nullptr && !strcmp(rand_const_attr, "1")) anyconst_nets.insert(net); else if (rand_attr != nullptr && !strcmp(rand_attr, "1")) anyseq_nets.insert(net); if (net_map.count(net)) { if (verbose) log(" skipping net %s.\n", net->Name()); continue; } if (net->Bus()) continue; RTLIL::IdString wire_name = module->uniquify(mode_names || net->IsUserDeclared() ? RTLIL::escape_id(net->Name()) : NEW_ID); if (verbose) log(" importing net %s as %s.\n", net->Name(), log_id(wire_name)); RTLIL::Wire *wire = module->addWire(wire_name); import_attributes(wire->attributes, net); net_map[net] = wire; } FOREACH_NETBUS_OF_NETLIST(nl, mi, netbus) { bool found_new_net = false; for (int i = netbus->LeftIndex();; i += netbus->IsUp() ? +1 : -1) { net = netbus->ElementAtIndex(i); if (net_map.count(net) == 0) found_new_net = true; if (i == netbus->RightIndex()) break; } if (found_new_net) { RTLIL::IdString wire_name = module->uniquify(mode_names || netbus->IsUserDeclared() ? RTLIL::escape_id(net->Name()) : NEW_ID); if (verbose) log(" importing netbus %s as %s.\n", netbus->Name(), log_id(wire_name)); RTLIL::Wire *wire = module->addWire(wire_name, netbus->Size()); wire->start_offset = min(netbus->LeftIndex(), netbus->RightIndex()); import_attributes(wire->attributes, netbus); RTLIL::Const initval = Const(State::Sx, GetSize(wire)); bool initval_valid = false; for (int i = netbus->LeftIndex();; i += netbus->IsUp() ? +1 : -1) { if (netbus->ElementAtIndex(i)) { int bitidx = i - wire->start_offset; net = netbus->ElementAtIndex(i); RTLIL::SigBit bit(wire, bitidx); if (init_nets.count(net)) { if (init_nets.at(net) == '0') initval.bits.at(bitidx) = State::S0; if (init_nets.at(net) == '1') initval.bits.at(bitidx) = State::S1; initval_valid = true; init_nets.erase(net); } if (net_map.count(net) == 0) net_map[net] = bit; else module->connect(bit, net_map_at(net)); } if (i == netbus->RightIndex()) break; } if (initval_valid) wire->attributes["\\init"] = initval; } else { if (verbose) log(" skipping netbus %s.\n", netbus->Name()); } SigSpec anyconst_sig; SigSpec anyseq_sig; for (int i = netbus->RightIndex();; i += netbus->IsUp() ? -1 : +1) { net = netbus->ElementAtIndex(i); if (net != nullptr && anyconst_nets.count(net)) { anyconst_sig.append(net_map_at(net)); anyconst_nets.erase(net); } if (net != nullptr && anyseq_nets.count(net)) { anyseq_sig.append(net_map_at(net)); anyseq_nets.erase(net); } if (i == netbus->LeftIndex()) break; } if (GetSize(anyconst_sig)) module->connect(anyconst_sig, module->Anyconst(NEW_ID, GetSize(anyconst_sig))); if (GetSize(anyseq_sig)) module->connect(anyseq_sig, module->Anyseq(NEW_ID, GetSize(anyseq_sig))); } for (auto it : init_nets) { Const initval; SigBit bit = net_map_at(it.first); log_assert(bit.wire); if (bit.wire->attributes.count("\\init")) initval = bit.wire->attributes.at("\\init"); while (GetSize(initval) < GetSize(bit.wire)) initval.bits.push_back(State::Sx); if (it.second == '0') initval.bits.at(bit.offset) = State::S0; if (it.second == '1') initval.bits.at(bit.offset) = State::S1; bit.wire->attributes["\\init"] = initval; } for (auto net : anyconst_nets) module->connect(net_map_at(net), module->Anyconst(NEW_ID)); for (auto net : anyseq_nets) module->connect(net_map_at(net), module->Anyseq(NEW_ID)); pool sva_asserts; pool sva_assumes; pool sva_covers; pool past_ffs; FOREACH_INSTANCE_OF_NETLIST(nl, mi, inst) { RTLIL::IdString inst_name = module->uniquify(mode_names || inst->IsUserDeclared() ? RTLIL::escape_id(inst->Name()) : NEW_ID); if (verbose) log(" importing cell %s (%s) as %s.\n", inst->Name(), inst->View()->Owner()->Name(), log_id(inst_name)); if (inst->Type() == PRIM_SVA_IMMEDIATE_ASSERT) { Net *in = inst->GetInput(); module->addAssert(NEW_ID, net_map_at(in), State::S1); continue; } if (inst->Type() == PRIM_SVA_IMMEDIATE_ASSUME) { Net *in = inst->GetInput(); module->addAssume(NEW_ID, net_map_at(in), State::S1); continue; } if (inst->Type() == PRIM_SVA_IMMEDIATE_COVER) { Net *in = inst->GetInput(); module->addCover(NEW_ID, net_map_at(in), State::S1); continue; } if (inst->Type() == PRIM_PWR) { module->connect(net_map_at(inst->GetOutput()), RTLIL::State::S1); continue; } if (inst->Type() == PRIM_GND) { module->connect(net_map_at(inst->GetOutput()), RTLIL::State::S0); continue; } if (inst->Type() == PRIM_BUF) { module->addBufGate(inst_name, net_map_at(inst->GetInput()), net_map_at(inst->GetOutput())); continue; } if (inst->Type() == PRIM_X) { module->connect(net_map_at(inst->GetOutput()), RTLIL::State::Sx); continue; } if (inst->Type() == PRIM_Z) { module->connect(net_map_at(inst->GetOutput()), RTLIL::State::Sz); continue; } if (inst->Type() == OPER_READ_PORT) { RTLIL::Memory *memory = module->memories.at(RTLIL::escape_id(inst->GetInput()->Name())); if (memory->width != int(inst->OutputSize())) log_error("Import of asymetric memories from Verific is not supported yet: %s %s\n", inst->Name(), inst->GetInput()->Name()); RTLIL::SigSpec addr = operatorInput1(inst); RTLIL::SigSpec data = operatorOutput(inst); RTLIL::Cell *cell = module->addCell(inst_name, "$memrd"); cell->parameters["\\MEMID"] = memory->name.str(); cell->parameters["\\CLK_ENABLE"] = false; cell->parameters["\\CLK_POLARITY"] = true; cell->parameters["\\TRANSPARENT"] = false; cell->parameters["\\ABITS"] = GetSize(addr); cell->parameters["\\WIDTH"] = GetSize(data); cell->setPort("\\CLK", RTLIL::State::Sx); cell->setPort("\\EN", RTLIL::State::Sx); cell->setPort("\\ADDR", addr); cell->setPort("\\DATA", data); continue; } if (inst->Type() == OPER_WRITE_PORT || inst->Type() == OPER_CLOCKED_WRITE_PORT) { RTLIL::Memory *memory = module->memories.at(RTLIL::escape_id(inst->GetOutput()->Name())); if (memory->width != int(inst->Input2Size())) log_error("Import of asymetric memories from Verific is not supported yet: %s %s\n", inst->Name(), inst->GetInput()->Name()); RTLIL::SigSpec addr = operatorInput1(inst); RTLIL::SigSpec data = operatorInput2(inst); RTLIL::Cell *cell = module->addCell(inst_name, "$memwr"); cell->parameters["\\MEMID"] = memory->name.str(); cell->parameters["\\CLK_ENABLE"] = false; cell->parameters["\\CLK_POLARITY"] = true; cell->parameters["\\PRIORITY"] = 0; cell->parameters["\\ABITS"] = GetSize(addr); cell->parameters["\\WIDTH"] = GetSize(data); cell->setPort("\\EN", RTLIL::SigSpec(net_map_at(inst->GetControl())).repeat(GetSize(data))); cell->setPort("\\CLK", RTLIL::State::S0); cell->setPort("\\ADDR", addr); cell->setPort("\\DATA", data); if (inst->Type() == OPER_CLOCKED_WRITE_PORT) { cell->parameters["\\CLK_ENABLE"] = true; cell->setPort("\\CLK", net_map_at(inst->GetClock())); } continue; } if (!mode_gates) { if (import_netlist_instance_cells(inst, inst_name)) continue; if (inst->IsOperator() && !verific_sva_prims.count(inst->Type()) && !verific_psl_prims.count(inst->Type())) log_warning("Unsupported Verific operator: %s (fallback to gate level implementation provided by verific)\n", inst->View()->Owner()->Name()); } else { if (import_netlist_instance_gates(inst, inst_name)) continue; } if (inst->Type() == PRIM_SVA_ASSERT || inst->Type() == PRIM_PSL_ASSERT) sva_asserts.insert(inst); if (inst->Type() == PRIM_SVA_ASSUME || inst->Type() == PRIM_PSL_ASSUME) sva_assumes.insert(inst); if (inst->Type() == PRIM_SVA_COVER || inst->Type() == PRIM_PSL_COVER) sva_covers.insert(inst); if (inst->Type() == PRIM_SVA_PAST && !mode_nosva) { VerificClockEdge clock_edge(this, inst->GetInput2()->Driver()); SigBit sig_d = net_map_at(inst->GetInput1()); SigBit sig_q = net_map_at(inst->GetOutput()); if (verbose) log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clock_edge.posedge ? "pos" : "neg", log_signal(sig_d), log_signal(sig_q), log_signal(clock_edge.clock_sig)); past_ffs.insert(module->addDff(NEW_ID, clock_edge.clock_sig, sig_d, sig_q, clock_edge.posedge)); if (!mode_keep) continue; } if (inst->Type() == OPER_PSLPREV && !mode_nosva) { Net *clock = inst->GetClock(); if (!clock->IsConstant()) { VerificClockEdge clock_edge(this, clock->Driver()); SigSpec sig_d, sig_q; for (int i = 0; i < int(inst->InputSize()); i++) { sig_d.append(net_map_at(inst->GetInputBit(i))); sig_q.append(net_map_at(inst->GetOutputBit(i))); } if (verbose) log(" %sedge FF with D=%s, Q=%s, C=%s.\n", clock_edge.posedge ? "pos" : "neg", log_signal(sig_d), log_signal(sig_q), log_signal(clock_edge.clock_sig)); RTLIL::Cell *ff = module->addDff(NEW_ID, clock_edge.clock_sig, sig_d, sig_q, clock_edge.posedge); if (inst->InputSize() == 1) past_ffs.insert(ff); if (!mode_keep) continue; } } if (!mode_keep && (verific_sva_prims.count(inst->Type()) || verific_psl_prims.count(inst->Type()))) { if (verbose) log(" skipping SVA/PSL cell in non k-mode\n"); continue; } if (inst->IsPrimitive()) { if (!mode_keep) log_error("Unsupported Verific primitive %s of type %s\n", inst->Name(), inst->View()->Owner()->Name()); if (!verific_sva_prims.count(inst->Type()) && !verific_psl_prims.count(inst->Type())) log_warning("Unsupported Verific primitive %s of type %s\n", inst->Name(), inst->View()->Owner()->Name()); } nl_todo.insert(inst->View()); RTLIL::Cell *cell = module->addCell(inst_name, inst->IsOperator() ? std::string("$verific$") + inst->View()->Owner()->Name() : RTLIL::escape_id(inst->View()->Owner()->Name())); if (inst->IsPrimitive() && mode_keep) cell->attributes["\\keep"] = 1; dict> cell_port_conns; if (verbose) log(" ports in verific db:\n"); FOREACH_PORTREF_OF_INST(inst, mi2, pr) { if (verbose) log(" .%s(%s)\n", pr->GetPort()->Name(), pr->GetNet()->Name()); const char *port_name = pr->GetPort()->Name(); int port_offset = 0; if (pr->GetPort()->Bus()) { port_name = pr->GetPort()->Bus()->Name(); port_offset = pr->GetPort()->Bus()->IndexOf(pr->GetPort()) - min(pr->GetPort()->Bus()->LeftIndex(), pr->GetPort()->Bus()->RightIndex()); } IdString port_name_id = RTLIL::escape_id(port_name); auto &sigvec = cell_port_conns[port_name_id]; if (GetSize(sigvec) <= port_offset) { SigSpec zwires = module->addWire(NEW_ID, port_offset+1-GetSize(sigvec)); for (auto bit : zwires) sigvec.push_back(bit); } sigvec[port_offset] = net_map_at(pr->GetNet()); } if (verbose) log(" ports in yosys db:\n"); for (auto &it : cell_port_conns) { if (verbose) log(" .%s(%s)\n", log_id(it.first), log_signal(it.second)); cell->setPort(it.first, it.second); } } if (!mode_nosva) { for (auto inst : sva_asserts) import_sva_assert(this, inst); for (auto inst : sva_assumes) import_sva_assume(this, inst); for (auto inst : sva_covers) import_sva_cover(this, inst); merge_past_ffs(past_ffs); } } }; Net *verific_follow_inv(Net *w) { if (w == nullptr || w->IsMultipleDriven()) return nullptr; Instance *i = w->Driver(); if (i == nullptr || i->Type() != PRIM_INV) return nullptr; return i->GetInput(); } Net *verific_follow_pslprev(Net *w) { if (w == nullptr || w->IsMultipleDriven()) return nullptr; Instance *i = w->Driver(); if (i == nullptr || i->Type() != OPER_PSLPREV || i->InputSize() != 1) return nullptr; return i->GetInputBit(0); } Net *verific_follow_inv_pslprev(Net *w) { w = verific_follow_inv(w); return verific_follow_pslprev(w); } VerificClockEdge::VerificClockEdge(VerificImporter *importer, Instance *inst) { log_assert(importer != nullptr); log_assert(inst != nullptr); // SVA posedge/negedge if (inst->Type() == PRIM_SVA_POSEDGE) { clock_net = inst->GetInput(); posedge = true; Instance *driver = clock_net->Driver(); if (!clock_net->IsMultipleDriven() && driver && driver->Type() == PRIM_INV) { clock_net = driver->GetInput(); posedge = false; } clock_sig = importer->net_map_at(clock_net); return; } // VHDL-flavored PSL clock if (inst->Type() == PRIM_AND) { Net *w1 = inst->GetInput1(); Net *w2 = inst->GetInput2(); clock_net = verific_follow_inv_pslprev(w1); if (clock_net == w2) { clock_sig = importer->net_map_at(clock_net); posedge = true; return; } clock_net = verific_follow_inv_pslprev(w2); if (clock_net == w1) { clock_sig = importer->net_map_at(clock_net); posedge = true; return; } clock_net = verific_follow_pslprev(w1); if (clock_net == verific_follow_inv(w2)) { clock_sig = importer->net_map_at(clock_net); posedge = false; return; } clock_net = verific_follow_pslprev(w2); if (clock_net == verific_follow_inv(w1)) { clock_sig = importer->net_map_at(clock_net); posedge = false; return; } log_abort(); } } struct VerificSvaImporter { VerificImporter *importer; Module *module; Netlist *netlist; Instance *root; SigBit clock = State::Sx; bool clock_posedge = false; SigBit disable_iff = State::S0; bool mode_assert = false; bool mode_assume = false; bool mode_cover = false; Instance *net_to_ast_driver(Net *n) { if (n == nullptr) return nullptr; if (n->IsMultipleDriven()) return nullptr; Instance *inst = n->Driver(); if (inst == nullptr) return nullptr; if (!importer->verific_sva_prims.count(inst->Type()) && !importer->verific_psl_prims.count(inst->Type())) return nullptr; if (inst->Type() == PRIM_SVA_PAST) return nullptr; return inst; } Instance *get_ast_input(Instance *inst) { return net_to_ast_driver(inst->GetInput()); } Instance *get_ast_input1(Instance *inst) { return net_to_ast_driver(inst->GetInput1()); } Instance *get_ast_input2(Instance *inst) { return net_to_ast_driver(inst->GetInput2()); } Instance *get_ast_input3(Instance *inst) { return net_to_ast_driver(inst->GetInput3()); } Instance *get_ast_control(Instance *inst) { return net_to_ast_driver(inst->GetControl()); } struct sequence_t { int length = 0; SigBit sig_a = State::S1; SigBit sig_en = State::S1; }; void sequence_cond(sequence_t &seq, SigBit cond) { seq.sig_a = module->And(NEW_ID, seq.sig_a, cond); } void sequence_ff(sequence_t &seq) { if (disable_iff != State::S0) seq.sig_en = module->Mux(NEW_ID, seq.sig_en, State::S0, disable_iff); Wire *sig_a_q = module->addWire(NEW_ID); sig_a_q->attributes["\\init"] = Const(0, 1); Wire *sig_en_q = module->addWire(NEW_ID); sig_en_q->attributes["\\init"] = Const(0, 1); module->addDff(NEW_ID, clock, seq.sig_a, sig_a_q, clock_posedge); module->addDff(NEW_ID, clock, seq.sig_en, sig_en_q, clock_posedge); seq.length++; seq.sig_a = sig_a_q; seq.sig_en = sig_en_q; } void parse_sequence(sequence_t &seq, Net *n) { Instance *inst = net_to_ast_driver(n); // Regular expression if (inst == nullptr) { sequence_cond(seq, importer->net_map_at(n)); return; } // SVA Primitives if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION) { parse_sequence(seq, inst->GetInput1()); seq.sig_en = module->And(NEW_ID, seq.sig_en, seq.sig_a); parse_sequence(seq, inst->GetInput2()); return; } if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION) { parse_sequence(seq, inst->GetInput1()); seq.sig_en = module->And(NEW_ID, seq.sig_en, seq.sig_a); sequence_ff(seq); parse_sequence(seq, inst->GetInput2()); return; } if (inst->Type() == PRIM_SVA_SEQ_CONCAT) { int sva_low = atoi(inst->GetAttValue("sva:low")); int sva_high = atoi(inst->GetAttValue("sva:low")); if (sva_low != sva_high) log_error("Ranges on SVA sequence concatenation operator are not supported at the moment.\n"); parse_sequence(seq, inst->GetInput1()); for (int i = 0; i < sva_low; i++) sequence_ff(seq); parse_sequence(seq, inst->GetInput2()); return; } if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT) { int sva_low = atoi(inst->GetAttValue("sva:low")); int sva_high = atoi(inst->GetAttValue("sva:low")); if (sva_low != sva_high) log_error("Ranges on SVA consecutive repeat operator are not supported at the moment.\n"); parse_sequence(seq, inst->GetInput()); for (int i = 1; i < sva_low; i++) { sequence_ff(seq); parse_sequence(seq, inst->GetInput()); } return; } // PSL Primitives if (inst->Type() == PRIM_ALWAYS) { parse_sequence(seq, inst->GetInput()); return; } if (inst->Type() == PRIM_IMPL) { parse_sequence(seq, inst->GetInput1()); seq.sig_en = module->And(NEW_ID, seq.sig_en, seq.sig_a); parse_sequence(seq, inst->GetInput2()); return; } if (inst->Type() == PRIM_SUFFIX_IMPL) { parse_sequence(seq, inst->GetInput1()); seq.sig_en = module->And(NEW_ID, seq.sig_en, seq.sig_a); sequence_ff(seq); parse_sequence(seq, inst->GetInput2()); return; } // Handle unsupported primitives if (!importer->mode_keep) log_error("Unsupported Verific SVA primitive %s of type %s.\n", inst->Name(), inst->View()->Owner()->Name()); log_warning("Unsupported Verific SVA primitive %s of type %s.\n", inst->Name(), inst->View()->Owner()->Name()); } void run() { module = importer->module; netlist = root->Owner(); // parse SVA property clock event Instance *at_node = get_ast_input(root); log_assert(at_node && (at_node->Type() == PRIM_SVA_AT || at_node->Type() == PRIM_AT)); VerificClockEdge clock_edge(importer, at_node->Type() == PRIM_SVA_AT ? get_ast_input1(at_node) : at_node->GetInput2()->Driver()); clock = clock_edge.clock_sig; clock_posedge = clock_edge.posedge; // parse disable_iff expression Net *sequence_net = at_node->Type() == PRIM_SVA_AT ? at_node->GetInput2() : at_node->GetInput1(); Instance *sequence_node = net_to_ast_driver(sequence_net); if (sequence_node && sequence_node->Type() == PRIM_SVA_DISABLE_IFF) { disable_iff = importer->net_map_at(sequence_node->GetInput1()); sequence_net = sequence_node->GetInput2(); } else if (sequence_node && sequence_node->Type() == PRIM_ABORT) { disable_iff = importer->net_map_at(sequence_node->GetInput2()); sequence_net = sequence_node->GetInput1(); } // parse SVA sequence into trigger signal sequence_t seq; parse_sequence(seq, sequence_net); sequence_ff(seq); // generate assert/assume/cover cell RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID); if (mode_assert) module->addAssert(root_name, seq.sig_a, seq.sig_en); if (mode_assume) module->addAssume(root_name, seq.sig_a, seq.sig_en); if (mode_cover) module->addCover(root_name, seq.sig_a, seq.sig_en); } }; void import_sva_assert(VerificImporter *importer, Instance *inst) { VerificSvaImporter worker; worker.importer = importer; worker.root = inst; worker.mode_assert = true; worker.run(); } void import_sva_assume(VerificImporter *importer, Instance *inst) { VerificSvaImporter worker; worker.importer = importer; worker.root = inst; worker.mode_assume = true; worker.run(); } void import_sva_cover(VerificImporter *importer, Instance *inst) { VerificSvaImporter worker; worker.importer = importer; worker.root = inst; worker.mode_cover = true; worker.run(); } struct VerificExtNets { int portname_cnt = 0; bool verbose = false; // a map from Net to the same Net one level up in the design hierarchy std::map net_level_up; Net *get_net_level_up(Net *net) { if (net_level_up.count(net) == 0) { Netlist *nl = net->Owner(); // Simply return if Netlist is not unique if (nl->NumOfRefs() != 1) return net; Instance *up_inst = (Instance*)nl->GetReferences()->GetLast(); Netlist *up_nl = up_inst->Owner(); // create new Port string name = stringf("___extnets_%d", portname_cnt++); Port *new_port = new Port(name.c_str(), DIR_OUT); nl->Add(new_port); net->Connect(new_port); // create new Net in up Netlist Net *new_net = new Net(name.c_str()); up_nl->Add(new_net); up_inst->Connect(new_port, new_net); net_level_up[net] = new_net; } return net_level_up.at(net); } void run(Netlist *nl) { MapIter mi, mi2; Instance *inst; PortRef *pr; vector> todo_connect; FOREACH_INSTANCE_OF_NETLIST(nl, mi, inst) run(inst->View()); FOREACH_INSTANCE_OF_NETLIST(nl, mi, inst) FOREACH_PORTREF_OF_INST(inst, mi2, pr) { Port *port = pr->GetPort(); Net *net = pr->GetNet(); if (!net->IsExternalTo(nl)) continue; if (verbose) log("Fixing external net reference on port %s.%s.%s:\n", get_full_netlist_name(nl).c_str(), inst->Name(), port->Name()); while (net->IsExternalTo(nl)) { Net *newnet = get_net_level_up(net); if (newnet == net) break; if (verbose) log(" external net: %s.%s\n", get_full_netlist_name(net->Owner()).c_str(), net->Name()); net = newnet; } if (verbose) log(" final net: %s.%s%s\n", get_full_netlist_name(net->Owner()).c_str(), net->Name(), net->IsExternalTo(nl) ? " (external)" : ""); todo_connect.push_back(tuple(inst, port, net)); } for (auto it : todo_connect) { get<0>(it)->Disconnect(get<1>(it)); get<0>(it)->Connect(get<1>(it), get<2>(it)); } } }; #endif /* YOSYS_ENABLE_VERIFIC */ struct VerificPass : public Pass { VerificPass() : Pass("verific", "load Verilog and VHDL designs using Verific") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" verific {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv} ..\n"); log("\n"); log("Load the specified Verilog/SystemVerilog files into Verific.\n"); log("\n"); log("\n"); log(" verific {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008|-vhdl|-vhdpsl} ..\n"); log("\n"); log("Load the specified VHDL files into Verific.\n"); log("\n"); log("\n"); log(" verific -import [options] ..\n"); log("\n"); log("Elaborate the design for the specified top modules, import to Yosys and\n"); log("reset the internal state of Verific.\n"); log("\n"); log("Import options:\n"); log("\n"); log(" -all\n"); log(" Elaborate all modules, not just the hierarchy below the given top\n"); log(" modules. With this option the list of modules to import is optional.\n"); log("\n"); log(" -gates\n"); log(" Create a gate-level netlist.\n"); log("\n"); log(" -flatten\n"); log(" Flatten the design in Verific before importing.\n"); log("\n"); log(" -extnets\n"); log(" Resolve references to external nets by adding module ports as needed.\n"); log("\n"); log(" -nosva\n"); log(" Ignore SVA properties, do not infer checker logic. (This also disables\n"); log(" PSL properties in -vhdpsl mode.)\n"); log("\n"); log(" -v\n"); log(" Verbose log messages.\n"); log("\n"); log("The following additional import options are useful for debugging the Verific\n"); log("bindings (for Yosys and/or Verific developers):\n"); log("\n"); log(" -k\n"); log(" Keep going after an unsupported verific primitive is found. The\n"); log(" unsupported primitive is added as blockbox module to the design.\n"); log(" This will also add all SVA related cells to the design parallel to\n"); log(" the checker logic inferred by it.\n"); log("\n"); log(" -n\n"); log(" Keep all Verific names on instances and nets. By default only\n"); log(" user-declared names are preserved.\n"); log("\n"); log(" -d \n"); log(" Dump the Verific netlist as a verilog file.\n"); log("\n"); log("Visit http://verific.com/ for more information on Verific.\n"); log("\n"); } #ifdef YOSYS_ENABLE_VERIFIC virtual void execute(std::vector args, RTLIL::Design *design) { log_header(design, "Executing VERIFIC (loading SystemVerilog and VHDL designs using Verific).\n"); Message::SetConsoleOutput(0); Message::RegisterCallBackMsg(msg_func); RuntimeFlags::SetVar("db_allow_external_nets", 1); const char *release_str = Message::ReleaseString(); time_t release_time = Message::ReleaseDate(); char *release_tmstr = ctime(&release_time); if (release_str == nullptr) release_str = "(no release string)"; for (char *p = release_tmstr; *p; p++) if (*p == '\n') *p = 0; log("Built with Verific %s, released at %s.\n", release_str, release_tmstr); int argidx = 1; if (GetSize(args) > argidx && args[argidx] == "-vlog95") { for (argidx++; argidx < GetSize(args); argidx++) if (!veri_file::Analyze(args[argidx].c_str(), veri_file::VERILOG_95)) log_cmd_error("Reading `%s' in VERILOG_95 mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && args[argidx] == "-vlog2k") { for (argidx++; argidx < GetSize(args); argidx++) if (!veri_file::Analyze(args[argidx].c_str(), veri_file::VERILOG_2K)) log_cmd_error("Reading `%s' in VERILOG_2K mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && args[argidx] == "-sv2005") { for (argidx++; argidx < GetSize(args); argidx++) if (!veri_file::Analyze(args[argidx].c_str(), veri_file::SYSTEM_VERILOG_2005)) log_cmd_error("Reading `%s' in SYSTEM_VERILOG_2005 mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && args[argidx] == "-sv2009") { for (argidx++; argidx < GetSize(args); argidx++) if (!veri_file::Analyze(args[argidx].c_str(), veri_file::SYSTEM_VERILOG_2009)) log_cmd_error("Reading `%s' in SYSTEM_VERILOG_2009 mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && (args[argidx] == "-sv2012" || args[argidx] == "-sv")) { for (argidx++; argidx < GetSize(args); argidx++) if (!veri_file::Analyze(args[argidx].c_str(), veri_file::SYSTEM_VERILOG)) log_cmd_error("Reading `%s' in SYSTEM_VERILOG mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && args[argidx] == "-vhdl87") { vhdl_file::SetDefaultLibraryPath((proc_share_dirname() + "verific/vhdl_vdbs_1987").c_str()); for (argidx++; argidx < GetSize(args); argidx++) if (!vhdl_file::Analyze(args[argidx].c_str(), "work", vhdl_file::VHDL_87)) log_cmd_error("Reading `%s' in VHDL_87 mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && args[argidx] == "-vhdl93") { vhdl_file::SetDefaultLibraryPath((proc_share_dirname() + "verific/vhdl_vdbs_1993").c_str()); for (argidx++; argidx < GetSize(args); argidx++) if (!vhdl_file::Analyze(args[argidx].c_str(), "work", vhdl_file::VHDL_93)) log_cmd_error("Reading `%s' in VHDL_93 mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && args[argidx] == "-vhdl2k") { vhdl_file::SetDefaultLibraryPath((proc_share_dirname() + "verific/vhdl_vdbs_1993").c_str()); for (argidx++; argidx < GetSize(args); argidx++) if (!vhdl_file::Analyze(args[argidx].c_str(), "work", vhdl_file::VHDL_2K)) log_cmd_error("Reading `%s' in VHDL_2K mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && (args[argidx] == "-vhdl2008" || args[argidx] == "-vhdl")) { vhdl_file::SetDefaultLibraryPath((proc_share_dirname() + "verific/vhdl_vdbs_2008").c_str()); for (argidx++; argidx < GetSize(args); argidx++) if (!vhdl_file::Analyze(args[argidx].c_str(), "work", vhdl_file::VHDL_2008)) log_cmd_error("Reading `%s' in VHDL_2008 mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && args[argidx] == "-vhdpsl") { vhdl_file::SetDefaultLibraryPath((proc_share_dirname() + "verific/vhdl_vdbs_2008").c_str()); for (argidx++; argidx < GetSize(args); argidx++) if (!vhdl_file::Analyze(args[argidx].c_str(), "work", vhdl_file::VHDL_PSL)) log_cmd_error("Reading `%s' in VHDL_PSL mode failed.\n", args[argidx].c_str()); return; } if (GetSize(args) > argidx && args[argidx] == "-import") { std::set nl_todo, nl_done; bool mode_all = false, mode_gates = false, mode_keep = false; bool mode_nosva = false, mode_names = false; bool verbose = false, flatten = false, extnets = false; string dumpfile; for (argidx++; argidx < GetSize(args); argidx++) { if (args[argidx] == "-all") { mode_all = true; continue; } if (args[argidx] == "-gates") { mode_gates = true; continue; } if (args[argidx] == "-flatten") { flatten = true; continue; } if (args[argidx] == "-extnets") { extnets = true; continue; } if (args[argidx] == "-k") { mode_keep = true; continue; } if (args[argidx] == "-nosva") { mode_nosva = true; continue; } if (args[argidx] == "-n") { mode_names = true; continue; } if (args[argidx] == "-v") { verbose = true; continue; } if (args[argidx] == "-d" && argidx+1 < GetSize(args)) { dumpfile = args[++argidx]; continue; } break; } if (argidx > GetSize(args) && args[argidx].substr(0, 1) == "-") cmd_error(args, argidx, "unknown option"); if (mode_all) { log("Running veri_file::ElaborateAll().\n"); if (!veri_file::ElaborateAll()) log_cmd_error("Elaboration of Verilog modules failed.\n"); log("Running vhdl_file::ElaborateAll().\n"); if (!vhdl_file::ElaborateAll()) log_cmd_error("Elaboration of VHDL modules failed.\n"); Library *lib = Netlist::PresentDesign()->Owner()->Owner(); if (argidx == GetSize(args)) { MapIter iter; char *iter_name; Verific::Cell *iter_cell; FOREACH_MAP_ITEM(lib->GetCells(), iter, &iter_name, &iter_cell) { if (*iter_name != '$') nl_todo.insert(iter_cell->GetFirstNetlist()); } } else { for (; argidx < GetSize(args); argidx++) { Verific::Cell *cell = lib->GetCell(args[argidx].c_str()); if (cell == nullptr) log_cmd_error("Module not found: %s\n", args[argidx].c_str()); nl_todo.insert(cell->GetFirstNetlist()); cell->GetFirstNetlist()->SetPresentDesign(); } } } else { if (argidx == GetSize(args)) log_cmd_error("No top module specified.\n"); for (; argidx < GetSize(args); argidx++) { if (veri_file::GetModule(args[argidx].c_str())) { log("Running veri_file::Elaborate(\"%s\").\n", args[argidx].c_str()); if (!veri_file::Elaborate(args[argidx].c_str())) log_cmd_error("Elaboration of top module `%s' failed.\n", args[argidx].c_str()); nl_todo.insert(Netlist::PresentDesign()); } else { log("Running vhdl_file::Elaborate(\"%s\").\n", args[argidx].c_str()); if (!vhdl_file::Elaborate(args[argidx].c_str())) log_cmd_error("Elaboration of top module `%s' failed.\n", args[argidx].c_str()); nl_todo.insert(Netlist::PresentDesign()); } } } if (flatten) { for (auto nl : nl_todo) nl->Flatten(); } if (extnets) { VerificExtNets worker; worker.verbose = verbose; for (auto nl : nl_todo) worker.run(nl); } if (!dumpfile.empty()) { VeriWrite veri_writer; veri_writer.WriteFile(dumpfile.c_str(), Netlist::PresentDesign()); } while (!nl_todo.empty()) { Netlist *nl = *nl_todo.begin(); if (nl_done.count(nl) == 0) { VerificImporter importer(mode_gates, mode_keep, mode_nosva, mode_names, verbose); importer.import_netlist(design, nl, nl_todo); } nl_todo.erase(nl); nl_done.insert(nl); } Libset::Reset(); return; } log_cmd_error("Missing or unsupported mode parameter.\n"); } #else /* YOSYS_ENABLE_VERIFIC */ virtual void execute(std::vector, RTLIL::Design *) { log_cmd_error("This version of Yosys is built without Verific support.\n"); } #endif } VerificPass; PRIVATE_NAMESPACE_END