/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] The AIGER And-Inverter Graph (AIG) Format Version 20071012 // Armin Biere. The AIGER And-Inverter Graph (AIG) Format Version 20071012. Technical Report 07/1, October 2011, FMV Reports Series, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria. // http://fmv.jku.at/papers/Biere-FMV-TR-07-1.pdf #ifdef _WIN32 #include #include #endif #include #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/consteval.h" #include "aigerparse.h" YOSYS_NAMESPACE_BEGIN struct ConstEvalAig { RTLIL::Module *module; dict values_map; SigSet sig2driver; dict> sig2deps; ConstEvalAig(RTLIL::Module *module) : module(module) { CellTypes ct; ct.setup_internals(); ct.setup_stdcells(); for (auto &it : module->cells_) { if (!ct.cell_known(it.second->type)) continue; for (auto &it2 : it.second->connections()) if (ct.cell_output(it.second->type, it2.first)) sig2driver.insert(it2.second, it.second); } } void clear() { values_map.clear(); sig2deps.clear(); } void set(RTLIL::SigSpec sig, RTLIL::Const value) { #ifndef NDEBUG auto it = values_map.find(sig); RTLIL::SigSpec current_val; if (it != values_map.end()) current_val = it->second; for (int i = 0; i < GetSize(current_val); i++) log_assert(current_val[i].wire != NULL || current_val[i] == value.bits[i]); #endif for (int i = 0; i < GetSize(sig); i++) values_map[sig[i]] = value[i]; } void set_incremental(RTLIL::SigSpec sig, RTLIL::Const value) { log_assert(GetSize(sig) == GetSize(value)); for (int i = 0; i < GetSize(sig); i++) { auto it = values_map.find(sig[i]); if (it != values_map.end()) { RTLIL::SigSpec current_val = it->second; if (current_val != value[i]) for (auto dep : sig2deps[sig[i]]) values_map.erase(dep); it->second = value[i]; } else values_map[sig[i]] = value[i]; } } void compute_deps(RTLIL::SigBit output, const pool &inputs) { sig2deps[output].insert(output); std::set driver_cells; sig2driver.find(output, driver_cells); for (auto cell : driver_cells) { RTLIL::SigBit sig_a = cell->getPort("\\A"); sig2deps[sig_a].insert(sig2deps[output].begin(), sig2deps[output].end()); if (!inputs.count(sig_a)) compute_deps(sig_a, inputs); if (cell->type == "$_AND_") { RTLIL::SigSpec sig_b = cell->getPort("\\B"); sig2deps[sig_b].insert(sig2deps[output].begin(), sig2deps[output].end()); if (!inputs.count(sig_b)) compute_deps(sig_b, inputs); } else if (cell->type == "$_NOT_") { } else log_abort(); } } bool eval(RTLIL::Cell *cell) { RTLIL::SigSpec sig_y = cell->getPort("\\Y"); auto it = values_map.find(sig_y); if (it != values_map.end()) sig_y = it->second; if (sig_y.is_fully_const()) return true; RTLIL::SigSpec sig_a = cell->getPort("\\A"); if (sig_a.size() > 0 && !eval(sig_a)) return false; RTLIL::Const eval_ret; if (cell->type == "$_NOT_") { if (sig_a == RTLIL::S0) eval_ret = RTLIL::S1; else if (sig_a == RTLIL::S1) eval_ret = RTLIL::S0; } else if (cell->type == "$_AND_") { if (sig_a == RTLIL::S0) { eval_ret = RTLIL::S0; goto eval_end; } { RTLIL::SigSpec sig_b = cell->getPort("\\B"); if (sig_b.size() > 0 && !eval(sig_b)) return false; if (sig_b == RTLIL::S0) { eval_ret = RTLIL::S0; goto eval_end; } if (sig_a != RTLIL::State::S1 || sig_b != RTLIL::State::S1) { eval_ret = RTLIL::State::Sx; goto eval_end; } eval_ret = RTLIL::State::S1; } } else log_abort(); eval_end: set(sig_y, eval_ret); return true; } bool eval(RTLIL::SigSpec &sig) { auto it = values_map.find(sig); if (it != values_map.end()) sig = it->second; if (sig.is_fully_const()) return true; std::set driver_cells; sig2driver.find(sig, driver_cells); for (auto cell : driver_cells) if (!eval(cell)) return false; it = values_map.find(sig); if (it != values_map.end()) sig = it->second; if (sig.is_fully_const()) return true; return false; } }; AigerReader::AigerReader(RTLIL::Design *design, std::istream &f, RTLIL::IdString module_name, RTLIL::IdString clk_name, std::string map_filename, bool wideports) : design(design), f(f), clk_name(clk_name), map_filename(map_filename), wideports(wideports) { module = new RTLIL::Module; module->name = module_name; if (design->module(module->name)) log_error("Duplicate definition of module %s!\n", log_id(module->name)); } void AigerReader::parse_aiger() { std::string header; f >> header; if (header != "aag" && header != "aig") log_error("Unsupported AIGER file!\n"); // Parse rest of header if (!(f >> M >> I >> L >> O >> A)) log_error("Invalid AIGER header\n"); // Optional values B = C = J = F = 0; if (f.peek() != ' ') goto end_of_header; if (!(f >> B)) log_error("Invalid AIGER header\n"); if (f.peek() != ' ') goto end_of_header; if (!(f >> C)) log_error("Invalid AIGER header\n"); if (f.peek() != ' ') goto end_of_header; if (!(f >> J)) log_error("Invalid AIGER header\n"); if (f.peek() != ' ') goto end_of_header; if (!(f >> F)) log_error("Invalid AIGER header\n"); end_of_header: std::string line; std::getline(f, line); // Ignore up to start of next line, as standard // says anything that follows could be used for // optional sections log_debug("M=%u I=%u L=%u O=%u A=%u B=%u C=%u J=%u F=%u\n", M, I, L, O, A, B, C, J, F); line_count = 1; piNum = 0; flopNum = 0; if (header == "aag") parse_aiger_ascii(); else if (header == "aig") parse_aiger_binary(); else log_abort(); RTLIL::Wire* n0 = module->wire("\\__0__"); if (n0) module->connect(n0, RTLIL::S0); // Parse footer (symbol table, comments, etc.) unsigned l1; std::string s; for (int c = f.peek(); c != EOF; c = f.peek(), ++line_count) { if (c == 'i' || c == 'l' || c == 'o' || c == 'b') { f.ignore(1); if (!(f >> l1 >> s)) log_error("Line %u cannot be interpreted as a symbol entry!\n", line_count); if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size())) log_error("Line %u has invalid symbol position!\n", line_count); RTLIL::Wire* wire; if (c == 'i') wire = inputs[l1]; else if (c == 'l') wire = latches[l1]; else if (c == 'o') wire = outputs[l1]; else if (c == 'b') wire = bad_properties[l1]; else log_abort(); module->rename(wire, stringf("\\%s", s.c_str())); } else if (c == 'j' || c == 'f') { // TODO } else if (c == 'c') { f.ignore(1); if (f.peek() == '\n') break; // Else constraint (TODO) } else log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c); std::getline(f, line); // Ignore up to start of next line } post_process(); } static uint32_t parse_xaiger_literal(std::istream &f) { uint32_t l; f.read(reinterpret_cast(&l), sizeof(l)); if (f.gcount() != sizeof(l)) log_error("Offset %ld: unable to read literal!\n", static_cast(f.tellg())); // TODO: Don't assume we're on little endian #ifdef _WIN32 return _byteswap_ulong(l); #else return __builtin_bswap32(l); #endif } static RTLIL::Wire* createWireIfNotExists(RTLIL::Module *module, unsigned literal) { const unsigned variable = literal >> 1; const bool invert = literal & 1; RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix? RTLIL::Wire *wire = module->wire(wire_name); if (wire) return wire; log_debug("Creating %s\n", wire_name.c_str()); wire = module->addWire(wire_name); wire->port_input = wire->port_output = false; if (!invert) return wire; RTLIL::IdString wire_inv_name(stringf("\\__%d__", variable)); RTLIL::Wire *wire_inv = module->wire(wire_inv_name); if (wire_inv) { if (module->cell(wire_inv_name)) return wire; } else { log_debug("Creating %s\n", wire_inv_name.c_str()); wire_inv = module->addWire(wire_inv_name); wire_inv->port_input = wire_inv->port_output = false; } log_debug("Creating %s = ~%s\n", wire_name.c_str(), wire_inv_name.c_str()); module->addNotGate(stringf("\\__%d__$not", variable), wire_inv, wire); // FIXME: is "$not" the right suffix? return wire; } void AigerReader::parse_xaiger() { std::string header; f >> header; if (header != "aag" && header != "aig") log_error("Unsupported AIGER file!\n"); // Parse rest of header if (!(f >> M >> I >> L >> O >> A)) log_error("Invalid AIGER header\n"); // Optional values B = C = J = F = 0; std::string line; std::getline(f, line); // Ignore up to start of next line, as standard // says anything that follows could be used for // optional sections log_debug("M=%u I=%u L=%u O=%u A=%u\n", M, I, L, O, A); line_count = 1; piNum = 0; flopNum = 0; if (header == "aag") parse_aiger_ascii(); else if (header == "aig") parse_aiger_binary(); else log_abort(); RTLIL::Wire* n0 = module->wire("\\__0__"); if (n0) module->connect(n0, RTLIL::S0); dict box_lookup; for (auto m : design->modules()) { auto it = m->attributes.find("\\abc_box_id"); if (it == m->attributes.end()) continue; if (m->name[0] == '$') continue; auto r = box_lookup.insert(std::make_pair(it->second.as_int(), m->name)); log_assert(r.second); } // Parse footer (symbol table, comments, etc.) std::string s; bool comment_seen = false; for (int c = f.peek(); c != EOF; c = f.peek()) { if (comment_seen || c == 'c') { if (!comment_seen) { f.ignore(1); c = f.peek(); comment_seen = true; } if (c == '\n') break; f.ignore(1); // XAIGER extensions if (c == 'm') { uint32_t dataSize = parse_xaiger_literal(f); uint32_t lutNum = parse_xaiger_literal(f); uint32_t lutSize = parse_xaiger_literal(f); log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize); ConstEvalAig ce(module); for (unsigned i = 0; i < lutNum; ++i) { uint32_t rootNodeID = parse_xaiger_literal(f); uint32_t cutLeavesM = parse_xaiger_literal(f); log_debug("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM); RTLIL::Wire *output_sig = module->wire(stringf("\\__%d__", rootNodeID)); uint32_t nodeID; RTLIL::SigSpec input_sig; for (unsigned j = 0; j < cutLeavesM; ++j) { nodeID = parse_xaiger_literal(f); log_debug("\t%u\n", nodeID); RTLIL::Wire *wire = module->wire(stringf("\\__%d__", nodeID)); log_assert(wire); input_sig.append(wire); } ce.clear(); ce.compute_deps(output_sig, input_sig.to_sigbit_pool()); RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << input_sig.size()); for (int j = 0; j < (1 << cutLeavesM); ++j) { int gray = j ^ (j >> 1); ce.set_incremental(input_sig, RTLIL::Const{gray, static_cast(cutLeavesM)}); RTLIL::SigSpec o(output_sig); ce.eval(o); lut_mask[gray] = o.as_const()[0]; } RTLIL::Cell *output_cell = module->cell(stringf("\\__%d__$and", rootNodeID)); log_assert(output_cell); module->remove(output_cell); module->addLut(stringf("\\__%d__$lut", rootNodeID), input_sig, output_sig, std::move(lut_mask)); } } else if (c == 'r') { uint32_t dataSize = parse_xaiger_literal(f); flopNum = parse_xaiger_literal(f); log_assert(dataSize == (flopNum+1) * sizeof(uint32_t)); f.ignore(flopNum * sizeof(uint32_t)); } else if (c == 'n') { parse_xaiger_literal(f); f >> s; log_debug("n: '%s'\n", s.c_str()); } else if (c == 'h') { f.ignore(sizeof(uint32_t)); uint32_t version = parse_xaiger_literal(f); log_assert(version == 1); uint32_t ciNum = parse_xaiger_literal(f); log_debug("ciNum = %u\n", ciNum); uint32_t coNum = parse_xaiger_literal(f); log_debug("coNum = %u\n", coNum); piNum = parse_xaiger_literal(f); log_debug("piNum = %u\n", piNum); uint32_t poNum = parse_xaiger_literal(f); log_debug("poNum = %u\n", poNum); uint32_t boxNum = parse_xaiger_literal(f); log_debug("boxNum = %u\n", poNum); for (unsigned i = 0; i < boxNum; i++) { f.ignore(2*sizeof(uint32_t)); uint32_t boxUniqueId = parse_xaiger_literal(f); log_assert(boxUniqueId > 0); uint32_t oldBoxNum = parse_xaiger_literal(f); RTLIL::Cell* cell = module->addCell(stringf("$__box%u__", oldBoxNum), box_lookup.at(boxUniqueId)); boxes.emplace_back(cell); } } else if (c == 'a' || c == 'i' || c == 'o') { uint32_t dataSize = parse_xaiger_literal(f); f.ignore(dataSize); } else { break; } } else log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c); } post_process(); } void AigerReader::parse_aiger_ascii() { std::string line; std::stringstream ss; unsigned l1, l2, l3; // Parse inputs for (unsigned i = 1; i <= I; ++i, ++line_count) { if (!(f >> l1)) log_error("Line %u cannot be interpreted as an input!\n", line_count); log_debug("%d is an input\n", l1); log_assert(!(l1 & 1)); // Inputs can't be inverted RTLIL::Wire *wire = createWireIfNotExists(module, l1); wire->port_input = true; inputs.push_back(wire); } // Parse latches RTLIL::Wire *clk_wire = nullptr; if (L > 0) { log_assert(clk_name != ""); clk_wire = module->wire(clk_name); log_assert(!clk_wire); log_debug("Creating %s\n", clk_name.c_str()); clk_wire = module->addWire(clk_name); clk_wire->port_input = true; clk_wire->port_output = false; } for (unsigned i = 0; i < L; ++i, ++line_count) { if (!(f >> l1 >> l2)) log_error("Line %u cannot be interpreted as a latch!\n", line_count); log_debug("%d %d is a latch\n", l1, l2); log_assert(!(l1 & 1)); // TODO: Latch outputs can't be inverted? RTLIL::Wire *q_wire = createWireIfNotExists(module, l1); RTLIL::Wire *d_wire = createWireIfNotExists(module, l2); module->addDffGate(NEW_ID, clk_wire, d_wire, q_wire); // Reset logic is optional in AIGER 1.9 if (f.peek() == ' ') { if (!(f >> l3)) log_error("Line %u cannot be interpreted as a latch!\n", line_count); if (l3 == 0) q_wire->attributes["\\init"] = RTLIL::S0; else if (l3 == 1) q_wire->attributes["\\init"] = RTLIL::S1; else if (l3 == l1) { //q_wire->attributes["\\init"] = RTLIL::Sx; } else log_error("Line %u has invalid reset literal for latch!\n", line_count); } else { // AIGER latches are assumed to be initialized to zero q_wire->attributes["\\init"] = RTLIL::S0; } latches.push_back(q_wire); } // Parse outputs for (unsigned i = 0; i < O; ++i, ++line_count) { if (!(f >> l1)) log_error("Line %u cannot be interpreted as an output!\n", line_count); log_debug("%d is an output\n", l1); const unsigned variable = l1 >> 1; const bool invert = l1 & 1; RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix? RTLIL::Wire *wire = module->wire(wire_name); if (!wire) wire = createWireIfNotExists(module, l1); else if (wire->port_input || wire->port_output) { RTLIL::Wire *new_wire = module->addWire(NEW_ID); module->connect(new_wire, wire); wire = new_wire; } wire->port_output = true; outputs.push_back(wire); } // Parse bad properties for (unsigned i = 0; i < B; ++i, ++line_count) { if (!(f >> l1)) log_error("Line %u cannot be interpreted as a bad state property!\n", line_count); log_debug("%d is a bad state property\n", l1); RTLIL::Wire *wire = createWireIfNotExists(module, l1); wire->port_output = true; bad_properties.push_back(wire); } // TODO: Parse invariant constraints for (unsigned i = 0; i < C; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse justice properties for (unsigned i = 0; i < J; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse fairness constraints for (unsigned i = 0; i < F; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // Parse AND for (unsigned i = 0; i < A; ++i) { if (!(f >> l1 >> l2 >> l3)) log_error("Line %u cannot be interpreted as an AND!\n", line_count); log_debug("%d %d %d is an AND\n", l1, l2, l3); log_assert(!(l1 & 1)); RTLIL::Wire *o_wire = createWireIfNotExists(module, l1); RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2); RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3); module->addAndGate(o_wire->name.str() + "$and", i1_wire, i2_wire, o_wire); } std::getline(f, line); // Ignore up to start of next line } static unsigned parse_next_delta_literal(std::istream &f, unsigned ref) { unsigned x = 0, i = 0; unsigned char ch; while ((ch = f.get()) & 0x80) x |= (ch & 0x7f) << (7 * i++); return ref - (x | (ch << (7 * i))); } void AigerReader::parse_aiger_binary() { unsigned l1, l2, l3; std::string line; // Parse inputs for (unsigned i = 1; i <= I; ++i) { log_debug("%d is an input\n", i); RTLIL::Wire *wire = createWireIfNotExists(module, i << 1); wire->port_input = true; log_assert(!wire->port_output); inputs.push_back(wire); } // Parse latches RTLIL::Wire *clk_wire = nullptr; if (L > 0) { log_assert(clk_name != ""); clk_wire = module->wire(clk_name); log_assert(!clk_wire); log_debug("Creating %s\n", clk_name.c_str()); clk_wire = module->addWire(clk_name); clk_wire->port_input = true; clk_wire->port_output = false; } l1 = (I+1) * 2; for (unsigned i = 0; i < L; ++i, ++line_count, l1 += 2) { if (!(f >> l2)) log_error("Line %u cannot be interpreted as a latch!\n", line_count); log_debug("%d %d is a latch\n", l1, l2); RTLIL::Wire *q_wire = createWireIfNotExists(module, l1); RTLIL::Wire *d_wire = createWireIfNotExists(module, l2); module->addDff(NEW_ID, clk_wire, d_wire, q_wire); // Reset logic is optional in AIGER 1.9 if (f.peek() == ' ') { if (!(f >> l3)) log_error("Line %u cannot be interpreted as a latch!\n", line_count); if (l3 == 0) q_wire->attributes["\\init"] = RTLIL::S0; else if (l3 == 1) q_wire->attributes["\\init"] = RTLIL::S1; else if (l3 == l1) { //q_wire->attributes["\\init"] = RTLIL::Sx; } else log_error("Line %u has invalid reset literal for latch!\n", line_count); } else { // AIGER latches are assumed to be initialized to zero q_wire->attributes["\\init"] = RTLIL::S0; } latches.push_back(q_wire); } // Parse outputs for (unsigned i = 0; i < O; ++i, ++line_count) { if (!(f >> l1)) log_error("Line %u cannot be interpreted as an output!\n", line_count); log_debug("%d is an output\n", l1); const unsigned variable = l1 >> 1; const bool invert = l1 & 1; RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "_b" the right suffix? RTLIL::Wire *wire = module->wire(wire_name); if (!wire) wire = createWireIfNotExists(module, l1); else if (wire->port_input || wire->port_output) { RTLIL::Wire *new_wire = module->addWire(NEW_ID); module->connect(new_wire, wire); wire = new_wire; } wire->port_output = true; outputs.push_back(wire); } std::getline(f, line); // Ignore up to start of next line // Parse bad properties for (unsigned i = 0; i < B; ++i, ++line_count) { if (!(f >> l1)) log_error("Line %u cannot be interpreted as a bad state property!\n", line_count); log_debug("%d is a bad state property\n", l1); RTLIL::Wire *wire = createWireIfNotExists(module, l1); wire->port_output = true; bad_properties.push_back(wire); } if (B > 0) std::getline(f, line); // Ignore up to start of next line // TODO: Parse invariant constraints for (unsigned i = 0; i < C; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse justice properties for (unsigned i = 0; i < J; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse fairness constraints for (unsigned i = 0; i < F; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // Parse AND l1 = (I+L+1) << 1; for (unsigned i = 0; i < A; ++i, ++line_count, l1 += 2) { l2 = parse_next_delta_literal(f, l1); l3 = parse_next_delta_literal(f, l2); log_debug("%d %d %d is an AND\n", l1, l2, l3); log_assert(!(l1 & 1)); RTLIL::Wire *o_wire = createWireIfNotExists(module, l1); RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2); RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3); module->addAndGate(o_wire->name.str() + "$and", i1_wire, i2_wire, o_wire); } } void AigerReader::post_process() { pool abc_carry_modules; unsigned ci_count = 0, co_count = 0, flop_count = 0; for (auto cell : boxes) { RTLIL::Module* box_module = design->module(cell->type); log_assert(box_module); if (box_module->attributes.count("\\abc_carry") && !abc_carry_modules.count(box_module)) { RTLIL::Wire* carry_in = nullptr, *carry_out = nullptr; RTLIL::Wire* last_in = nullptr, *last_out = nullptr; for (const auto &port_name : box_module->ports) { RTLIL::Wire* w = box_module->wire(port_name); log_assert(w); if (w->port_input) { if (w->attributes.count("\\abc_carry_in")) { log_assert(!carry_in); carry_in = w; } log_assert(!last_in || last_in->port_id < w->port_id); last_in = w; } if (w->port_output) { if (w->attributes.count("\\abc_carry_out")) { log_assert(!carry_out); carry_out = w; } log_assert(!last_out || last_out->port_id < w->port_id); last_out = w; } } if (carry_in != last_in) { std::swap(box_module->ports[carry_in->port_id], box_module->ports[last_in->port_id]); std::swap(carry_in->port_id, last_in->port_id); } if (carry_out != last_out) { log_assert(last_out); std::swap(box_module->ports[carry_out->port_id], box_module->ports[last_out->port_id]); std::swap(carry_out->port_id, last_out->port_id); } } bool flop = box_module->attributes.count("\\abc_flop"); log_assert(!flop || flop_count < flopNum); // NB: Assume box_module->ports are sorted alphabetically // (as RTLIL::Module::fixup_ports() would do) for (auto port_name : box_module->ports) { RTLIL::Wire* w = box_module->wire(port_name); log_assert(w); RTLIL::SigSpec rhs; RTLIL::Wire* wire = nullptr; for (int i = 0; i < GetSize(w); i++) { if (w->port_input) { log_assert(co_count < outputs.size()); wire = outputs[co_count++]; log_assert(wire); log_assert(wire->port_output); wire->port_output = false; if (flop && w->attributes.count("\\abc_flop_d")) { RTLIL::Wire* d = outputs[outputs.size() - flopNum + flop_count]; log_assert(d); log_assert(d->port_output); d->port_output = false; } } if (w->port_output) { log_assert((piNum + ci_count) < inputs.size()); wire = inputs[piNum + ci_count++]; log_assert(wire); log_assert(wire->port_input); wire->port_input = false; if (flop && w->attributes.count("\\abc_flop_q")) { wire = inputs[piNum - flopNum + flop_count]; log_assert(wire); log_assert(wire->port_input); wire->port_input = false; } } rhs.append(wire); } cell->setPort(port_name, rhs); } if (flop) flop_count++; } dict wideports_cache; if (!map_filename.empty()) { std::ifstream mf(map_filename); std::string type, symbol; int variable, index; while (mf >> type >> variable >> index >> symbol) { RTLIL::IdString escaped_s = RTLIL::escape_id(symbol); if (type == "input") { log_assert(static_cast(variable) < inputs.size()); RTLIL::Wire* wire = inputs[variable]; log_assert(wire); log_assert(wire->port_input); if (index == 0) { // Cope with the fact that a CI might be identical // to a PI (necessary due to ABC); in those cases // simply connect the latter to the former RTLIL::Wire* existing = module->wire(escaped_s); if (!existing) module->rename(wire, escaped_s); else { wire->port_input = false; module->connect(wire, existing); } } else if (index > 0) { std::string indexed_name = stringf("%s[%d]", escaped_s.c_str(), index); RTLIL::Wire* existing = module->wire(indexed_name); if (!existing) { module->rename(wire, indexed_name); if (wideports) wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index); } else { module->connect(wire, existing); wire->port_input = false; } } } else if (type == "output") { log_assert(static_cast(variable + co_count) < outputs.size()); RTLIL::Wire* wire = outputs[variable + co_count]; log_assert(wire); log_assert(wire->port_output); if (index == 0) { // Cope with the fact that a CO might be identical // to a PO (necessary due to ABC); in those cases // simply connect the latter to the former RTLIL::Wire* existing = module->wire(escaped_s); if (!existing) { if (escaped_s.ends_with("$inout.out")) { wire->port_output = false; RTLIL::Wire *in_wire = module->wire(escaped_s.substr(0, escaped_s.size()-10)); log_assert(in_wire); log_assert(in_wire->port_input && !in_wire->port_output); in_wire->port_output = true; module->connect(in_wire, wire); } else module->rename(wire, escaped_s); } else { wire->port_output = false; module->connect(wire, existing); } } else if (index > 0) { std::string indexed_name = stringf("%s[%d]", escaped_s.c_str(), index); RTLIL::Wire* existing = module->wire(indexed_name); if (!existing) { if (escaped_s.ends_with("$inout.out")) { wire->port_output = false; RTLIL::Wire *in_wire = module->wire(stringf("%s[%d]", escaped_s.substr(0, escaped_s.size()-10).c_str(), index)); log_assert(in_wire); log_assert(in_wire->port_input && !in_wire->port_output); in_wire->port_output = true; module->connect(in_wire, wire); } else { module->rename(wire, indexed_name); if (wideports) wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index); } } else { module->connect(wire, existing); wire->port_output = false; } } } else if (type == "box") { RTLIL::Cell* cell = module->cell(stringf("$__box%d__", variable)); if (cell) { // ABC could have optimised this box away module->rename(cell, escaped_s); RTLIL::Module* box_module = design->module(cell->type); log_assert(box_module); for (const auto &i : cell->connections()) { RTLIL::IdString port_name = i.first; RTLIL::SigSpec rhs = i.second; int index = 0; for (auto bit : rhs.bits()) { RTLIL::Wire* wire = bit.wire; RTLIL::IdString escaped_s = RTLIL::escape_id(stringf("%s.%s", log_id(cell), log_id(port_name))); if (index == 0) module->rename(wire, escaped_s); else if (index > 0) { module->rename(wire, stringf("%s[%d]", escaped_s.c_str(), index)); if (wideports) wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index); } index++; } } } } else log_error("Symbol type '%s' not recognised.\n", type.c_str()); } } for (auto &wp : wideports_cache) { auto name = wp.first; int width = wp.second + 1; RTLIL::Wire *wire = module->wire(name); if (wire) module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", name.c_str(), 0))); // Do not make ports with a mix of input/output into // wide ports bool port_input = false, port_output = false; for (int i = 0; i < width; i++) { RTLIL::IdString other_name = name.str() + stringf("[%d]", i); RTLIL::Wire *other_wire = module->wire(other_name); if (other_wire) { port_input = port_input || other_wire->port_input; port_output = port_output || other_wire->port_output; } } wire = module->addWire(name, width); wire->port_input = port_input; wire->port_output = port_output; for (int i = 0; i < width; i++) { RTLIL::IdString other_name = name.str() + stringf("[%d]", i); RTLIL::Wire *other_wire = module->wire(other_name); if (other_wire) { other_wire->port_input = false; other_wire->port_output = false; if (wire->port_input) module->connect(other_wire, SigSpec(wire, i)); else module->connect(SigSpec(wire, i), other_wire); } } } module->fixup_ports(); design->add(module); design->selection_stack.emplace_back(false); RTLIL::Selection& sel = design->selection_stack.back(); sel.select(module); Pass::call(design, "clean"); design->selection_stack.pop_back(); for (auto cell : module->cells().to_vector()) { if (cell->type != "$lut") continue; auto y_port = cell->getPort("\\Y").as_bit(); if (y_port.wire->width == 1) module->rename(cell, stringf("%s$lut", y_port.wire->name.c_str())); else module->rename(cell, stringf("%s[%d]$lut", y_port.wire->name.c_str(), y_port.offset)); } } struct AigerFrontend : public Frontend { AigerFrontend() : Frontend("aiger", "read AIGER file") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" read_aiger [options] [filename]\n"); log("\n"); log("Load module from an AIGER file into the current design.\n"); log("\n"); log(" -module_name \n"); log(" Name of module to be created (default: )\n"); log("\n"); log(" -clk_name \n"); log(" AIGER latches to be transformed into posedge DFFs clocked by wire of"); log(" this name (default: clk)\n"); log("\n"); log(" -map \n"); log(" read file with port and latch symbols\n"); log("\n"); log(" -wideports\n"); log(" Merge ports that match the pattern 'name[int]' into a single\n"); log(" multi-bit port 'name'.\n"); log("\n"); } void execute(std::istream *&f, std::string filename, std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing AIGER frontend.\n"); RTLIL::IdString clk_name = "\\clk"; RTLIL::IdString module_name; std::string map_filename; bool wideports = false; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-module_name" && argidx+1 < args.size()) { module_name = RTLIL::escape_id(args[++argidx]); continue; } if (arg == "-clk_name" && argidx+1 < args.size()) { clk_name = RTLIL::escape_id(args[++argidx]); continue; } if (map_filename.empty() && arg == "-map" && argidx+1 < args.size()) { map_filename = args[++argidx]; continue; } if (arg == "-wideports") { wideports = true; continue; } break; } extra_args(f, filename, args, argidx); if (module_name.empty()) { #ifdef _WIN32 char fname[_MAX_FNAME]; _splitpath(filename.c_str(), NULL /* drive */, NULL /* dir */, fname, NULL /* ext */) module_name = fname; #else char* bn = strdup(filename.c_str()); module_name = RTLIL::escape_id(bn); free(bn); #endif } AigerReader reader(design, *f, module_name, clk_name, map_filename, wideports); reader.parse_aiger(); } } AigerFrontend; YOSYS_NAMESPACE_END