/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * Copyright (C) 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] The AIGER And-Inverter Graph (AIG) Format Version 20071012 // Armin Biere. The AIGER And-Inverter Graph (AIG) Format Version 20071012. Technical Report 07/1, October 2011, FMV Reports Series, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria. // http://fmv.jku.at/papers/Biere-FMV-TR-07-1.pdf #ifdef _WIN32 #include #include #endif #include #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/consteval.h" #include "aigerparse.h" YOSYS_NAMESPACE_BEGIN //#define log_debug log #define log_debug(...) ; AigerReader::AigerReader(RTLIL::Design *design, std::istream &f, RTLIL::IdString module_name, RTLIL::IdString clk_name, std::string map_filename, bool wideports) : design(design), f(f), clk_name(clk_name), map_filename(map_filename), wideports(wideports) { module = new RTLIL::Module; module->name = module_name; if (design->module(module->name)) log_error("Duplicate definition of module %s!\n", log_id(module->name)); } void AigerReader::parse_aiger() { std::string header; f >> header; if (header != "aag" && header != "aig") log_error("Unsupported AIGER file!\n"); // Parse rest of header if (!(f >> M >> I >> L >> O >> A)) log_error("Invalid AIGER header\n"); // Optional values B = C = J = F = 0; for (auto &i : std::array,4>{B, C, J, F}) { if (f.peek() != ' ') break; if (!(f >> i)) log_error("Invalid AIGER header\n"); } std::string line; std::getline(f, line); // Ignore up to start of next line, as standard // says anything that follows could be used for // optional sections log_debug("M=%u I=%u L=%u O=%u A=%u B=%u C=%u J=%u F=%u\n", M, I, L, O, A, B, C, J, F); line_count = 1; if (header == "aag") parse_aiger_ascii(); else if (header == "aig") parse_aiger_binary(); else log_abort(); // Parse footer (symbol table, comments, etc.) unsigned l1; std::string s; for (int c = f.peek(); c != EOF; c = f.peek(), ++line_count) { if (c == 'i' || c == 'l' || c == 'o') { f.ignore(1); if (!(f >> l1 >> s)) log_error("Line %u cannot be interpreted as a symbol entry!\n", line_count); if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size())) log_error("Line %u has invalid symbol position!\n", line_count); RTLIL::Wire* wire; if (c == 'i') wire = inputs[l1]; else if (c == 'l') wire = latches[l1]; else if (c == 'o') wire = outputs[l1]; else log_abort(); module->rename(wire, stringf("\\%s", s.c_str())); } else if (c == 'b' || c == 'j' || c == 'f') { // TODO } else if (c == 'c') { f.ignore(1); if (f.peek() == '\n') break; // Else constraint (TODO) } else log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c); std::getline(f, line); // Ignore up to start of next line } dict wideports_cache; if (!map_filename.empty()) { std::ifstream mf(map_filename); std::string type, symbol; int variable, index; while (mf >> type >> variable >> index >> symbol) { RTLIL::IdString escaped_symbol = RTLIL::escape_id(symbol); if (type == "input") { log_assert(static_cast(variable) < inputs.size()); RTLIL::Wire* wire = inputs[variable]; log_assert(wire); log_assert(wire->port_input); if (index == 0) module->rename(wire, RTLIL::escape_id(symbol)); else if (index > 0) { module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", symbol.c_str(), index))); if (wideports) wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index); } } else if (type == "output") { log_assert(static_cast(variable) < outputs.size()); RTLIL::Wire* wire = outputs[variable]; log_assert(wire); // Ignore direct output -> input connections if (!wire->port_output) continue; log_assert(wire->port_output); if (index == 0) module->rename(wire, RTLIL::escape_id(symbol)); else if (index > 0) { module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", symbol.c_str(), index))); if (wideports) wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index); } } else log_error("Symbol type '%s' not recognised.\n", type.c_str()); } } for (auto &wp : wideports_cache) { auto name = wp.first; int width = wp.second + 1; RTLIL::Wire *wire = module->wire(name); if (wire) module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", name.c_str(), 0))); // Do not make ports with a mix of input/output into // wide ports bool port_input = false, port_output = false; for (int i = 0; i < width; i++) { RTLIL::IdString other_name = name.str() + stringf("[%d]", i); RTLIL::Wire *other_wire = module->wire(other_name); if (other_wire) { port_input = port_input || other_wire->port_input; port_output = port_output || other_wire->port_output; } } if ((port_input && port_output) || (!port_input && !port_output)) continue; wire = module->addWire(name, width); wire->port_input = port_input; wire->port_output = port_output; for (int i = 0; i < width; i++) { RTLIL::IdString other_name = name.str() + stringf("[%d]", i); RTLIL::Wire *other_wire = module->wire(other_name); if (other_wire) { other_wire->port_input = false; other_wire->port_output = false; if (wire->port_input) module->connect(other_wire, SigSpec(wire, i)); else module->connect(SigSpec(wire, i), other_wire); } } } module->fixup_ports(); design->add(module); Pass::call(design, "clean"); for (auto cell : module->cells().to_vector()) { if (cell->type != "$lut") continue; auto y_port = cell->getPort("\\Y").as_bit(); if (y_port.wire->width == 1) module->rename(cell, stringf("%s$lut", y_port.wire->name.c_str())); else module->rename(cell, stringf("%s[%d]$lut", y_port.wire->name.c_str(), y_port.offset)); } } static uint32_t parse_xaiger_literal(std::istream &f) { uint32_t l; f.read(reinterpret_cast(&l), sizeof(l)); if (f.gcount() != sizeof(l)) log_error("Offset %ld: unable to read literal!\n", static_cast(f.tellg())); // TODO: Don't assume we're on little endian #ifdef _WIN32 return _byteswap_ulong(l); #else return __builtin_bswap32(l); #endif } static RTLIL::Wire* createWireIfNotExists(RTLIL::Module *module, unsigned literal) { const unsigned variable = literal >> 1; const bool invert = literal & 1; RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix? RTLIL::Wire *wire = module->wire(wire_name); if (wire) return wire; log_debug("Creating %s\n", wire_name.c_str()); wire = module->addWire(wire_name); wire->port_input = wire->port_output = false; if (!invert) return wire; RTLIL::IdString wire_inv_name(stringf("\\__%d__", variable)); RTLIL::Wire *wire_inv = module->wire(wire_inv_name); if (wire_inv) { if (module->cell(wire_inv_name)) return wire; } else { log_debug("Creating %s\n", wire_inv_name.c_str()); wire_inv = module->addWire(wire_inv_name); wire_inv->port_input = wire_inv->port_output = false; } log_debug("Creating %s = ~%s\n", wire_name.c_str(), wire_inv_name.c_str()); module->addNotGate(stringf("\\__%d__$not", variable), wire_inv, wire); // FIXME: is "$not" the right suffix? return wire; } static std::pair wideports_split(std::string name) { int pos = -1; if (name.empty() || name.back() != ']') goto failed; for (int i = 0; i+1 < GetSize(name); i++) { if (name[i] == '[') pos = i; else if (name[i] < '0' || name[i] > '9') pos = -1; else if (i == pos+1 && name[i] == '0' && name[i+1] != ']') pos = -1; } if (pos >= 0) return std::pair(RTLIL::escape_id(name.substr(0, pos)), atoi(name.c_str() + pos+1)); failed: return std::pair(name, 0); } void AigerReader::parse_xaiger() { std::string header; f >> header; if (header != "aag" && header != "aig") log_error("Unsupported AIGER file!\n"); // Parse rest of header if (!(f >> M >> I >> L >> O >> A)) log_error("Invalid AIGER header\n"); // Optional values B = C = J = F = 0; std::string line; std::getline(f, line); // Ignore up to start of next line, as standard // says anything that follows could be used for // optional sections log_debug("M=%u I=%u L=%u O=%u A=%u\n", M, I, L, O, A); line_count = 1; if (header == "aag") parse_aiger_ascii(); else if (header == "aig") parse_aiger_binary(); else log_abort(); // Parse footer (symbol table, comments, etc.) unsigned l1; std::string s; bool comment_seen = false; std::vector> deferred_renames; std::vector> deferred_inouts; deferred_renames.reserve(inputs.size() + latches.size() + outputs.size()); for (int c = f.peek(); c != EOF; c = f.peek()) { if (comment_seen || c == 'c') { if (!comment_seen) { f.ignore(1); c = f.peek(); comment_seen = true; } if (c == '\n') break; f.ignore(1); // XAIGER extensions if (c == 'm') { uint32_t dataSize = parse_xaiger_literal(f); uint32_t lutNum = parse_xaiger_literal(f); uint32_t lutSize = parse_xaiger_literal(f); log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize); ConstEval ce(module); for (unsigned i = 0; i < lutNum; ++i) { uint32_t rootNodeID = parse_xaiger_literal(f); uint32_t cutLeavesM = parse_xaiger_literal(f); log_debug("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM); RTLIL::Wire *output_sig = module->wire(stringf("\\__%d__", rootNodeID)); uint32_t nodeID; RTLIL::SigSpec input_sig; for (unsigned j = 0; j < cutLeavesM; ++j) { nodeID = parse_xaiger_literal(f); log_debug("\t%u\n", nodeID); RTLIL::Wire *wire = module->wire(stringf("\\__%d__", nodeID)); log_assert(wire); input_sig.append(wire); } RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << input_sig.size()); for (int j = 0; j < (1 << cutLeavesM); ++j) { ce.push(); ce.set(input_sig, RTLIL::Const{j, static_cast(cutLeavesM)}); RTLIL::SigSpec o(output_sig); ce.eval(o); lut_mask[j] = o.as_const()[0]; ce.pop(); } RTLIL::Cell *output_cell = module->cell(stringf("\\__%d__$and", rootNodeID)); log_assert(output_cell); module->remove(output_cell); module->addLut(stringf("\\__%d__$lut", rootNodeID), input_sig, output_sig, std::move(lut_mask)); } } else if (c == 'n') { parse_xaiger_literal(f); f >> s; log_debug("n: '%s'\n", s.c_str()); } } else if (c == 'i' || c == 'l' || c == 'o') { f.ignore(1); if (!(f >> l1 >> s)) log_error("Line %u cannot be interpreted as a symbol entry!\n", line_count); if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size())) log_error("Line %u has invalid symbol position!\n", line_count); RTLIL::Wire* wire; if (c == 'i') wire = inputs[l1]; else if (c == 'l') wire = latches[l1]; else if (c == 'o') wire = outputs[l1]; else log_abort(); RTLIL::IdString escaped_s = RTLIL::escape_id(s); if (escaped_s.ends_with("$inout.out")) { deferred_inouts.emplace_back(wire, escaped_s.substr(0, escaped_s.size()-10)); goto next_line; } else if (wideports && (wire->port_input || wire->port_output)) { RTLIL::IdString wide_symbol; int index; std::tie(wide_symbol,index) = wideports_split(escaped_s.str()); if (wide_symbol.ends_with("$inout.out")) { deferred_inouts.emplace_back(wire, stringf("%s[%d]", wide_symbol.substr(0, wide_symbol.size()-10).c_str(), index)); goto next_line; } } deferred_renames.emplace_back(wire, escaped_s); next_line: std::getline(f, line); // Ignore up to start of next line ++line_count; } else log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c); } dict wideports_cache; for (const auto &i : deferred_renames) { RTLIL::Wire *wire = i.first; module->rename(wire, i.second); if (wideports && (wire->port_input || wire->port_output)) { RTLIL::IdString escaped_symbol; int index; std::tie(escaped_symbol,index) = wideports_split(wire->name.str()); if (index > 0) wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index); } } for (const auto &i : deferred_inouts) { RTLIL::Wire *out_wire = i.first; log_assert(out_wire->port_output); out_wire->port_output = false; RTLIL::Wire *wire = module->wire(i.second); log_assert(wire); log_assert(wire->port_input && !wire->port_output); wire->port_output = true; module->connect(wire, out_wire); } if (!map_filename.empty()) { std::ifstream mf(map_filename); std::string type, symbol; int variable, index; while (mf >> type >> variable >> index >> symbol) { RTLIL::IdString escaped_symbol = RTLIL::escape_id(symbol); if (type == "input") { log_assert(static_cast(variable) < inputs.size()); RTLIL::Wire* wire = inputs[variable]; log_assert(wire); log_assert(wire->port_input); if (index == 0) module->rename(wire, escaped_symbol); else if (index > 0) { module->rename(wire, stringf("%s[%d]", escaped_symbol.c_str(), index)); if (wideports) wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index); } } else if (type == "output") { log_assert(static_cast(variable) < outputs.size()); RTLIL::Wire* wire = outputs[variable]; log_assert(wire); log_assert(wire->port_output); if (index == 0) { // Cope with the fact that a CO might be identical // to a PO (necessary due to ABC); in those cases // simply connect the latter to the former RTLIL::Wire* existing = module->wire(escaped_symbol); if (!existing) module->rename(wire, escaped_symbol); else { wire->port_output = false; module->connect(wire, existing); } } else if (index > 0) { std::string indexed_name = stringf("%s[%d]", escaped_symbol.c_str(), index); RTLIL::Wire* existing = module->wire(indexed_name); if (!existing) { module->rename(wire, indexed_name); if (wideports) wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index); } else { module->connect(wire, existing); wire->port_output = false; } } } else log_error("Symbol type '%s' not recognised.\n", type.c_str()); } } for (auto &wp : wideports_cache) { auto name = wp.first; int width = wp.second + 1; RTLIL::Wire *wire = module->wire(name); if (wire) module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", name.c_str(), 0))); // Do not make ports with a mix of input/output into // wide ports bool port_input = false, port_output = false; for (int i = 0; i < width; i++) { RTLIL::IdString other_name = name.str() + stringf("[%d]", i); RTLIL::Wire *other_wire = module->wire(other_name); if (other_wire) { port_input = port_input || other_wire->port_input; port_output = port_output || other_wire->port_output; } } if ((port_input && port_output) || (!port_input && !port_output)) continue; wire = module->addWire(name, width); wire->port_input = port_input; wire->port_output = port_output; for (int i = 0; i < width; i++) { RTLIL::IdString other_name = name.str() + stringf("[%d]", i); RTLIL::Wire *other_wire = module->wire(other_name); if (other_wire) { other_wire->port_input = false; other_wire->port_output = false; if (wire->port_input) module->connect(other_wire, SigSpec(wire, i)); else module->connect(SigSpec(wire, i), other_wire); } } } module->fixup_ports(); design->add(module); Pass::call(design, "clean"); for (auto cell : module->cells().to_vector()) { if (cell->type != "$lut") continue; auto y_port = cell->getPort("\\Y").as_bit(); if (y_port.wire->width == 1) module->rename(cell, stringf("%s$lut", y_port.wire->name.c_str())); else module->rename(cell, stringf("%s[%d]$lut", y_port.wire->name.c_str(), y_port.offset)); } } void AigerReader::parse_aiger_ascii() { std::string line; std::stringstream ss; unsigned l1, l2, l3; // Parse inputs for (unsigned i = 0; i < I; ++i, ++line_count) { if (!(f >> l1)) log_error("Line %u cannot be interpreted as an input!\n", line_count); log_debug("%d is an input\n", l1); log_assert(!(l1 & 1)); // Inputs can't be inverted RTLIL::Wire *wire = createWireIfNotExists(module, l1); wire->port_input = true; inputs.push_back(wire); } // Parse latches RTLIL::Wire *clk_wire = nullptr; if (L > 0) { log_assert(clk_name != ""); clk_wire = module->wire(clk_name); log_assert(!clk_wire); log_debug("Creating %s\n", clk_name.c_str()); clk_wire = module->addWire(clk_name); clk_wire->port_input = true; clk_wire->port_output = false; } for (unsigned i = 0; i < L; ++i, ++line_count) { if (!(f >> l1 >> l2)) log_error("Line %u cannot be interpreted as a latch!\n", line_count); log_debug("%d %d is a latch\n", l1, l2); log_assert(!(l1 & 1)); // TODO: Latch outputs can't be inverted? RTLIL::Wire *q_wire = createWireIfNotExists(module, l1); RTLIL::Wire *d_wire = createWireIfNotExists(module, l2); module->addDffGate(NEW_ID, clk_wire, d_wire, q_wire); // Reset logic is optional in AIGER 1.9 if (f.peek() == ' ') { if (!(f >> l3)) log_error("Line %u cannot be interpreted as a latch!\n", line_count); if (l3 == 0 || l3 == 1) q_wire->attributes["\\init"] = RTLIL::Const(l3); else if (l3 == l1) { //q_wire->attributes["\\init"] = RTLIL::Const(RTLIL::State::Sx); } else log_error("Line %u has invalid reset literal for latch!\n", line_count); } else { // AIGER latches are assumed to be initialized to zero q_wire->attributes["\\init"] = RTLIL::Const(0); } latches.push_back(q_wire); } // Parse outputs for (unsigned i = 0; i < O; ++i, ++line_count) { if (!(f >> l1)) log_error("Line %u cannot be interpreted as an output!\n", line_count); RTLIL::Wire *wire; if (l1 == 0 || l1 == 1) { wire = module->addWire(NEW_ID); if (l1 == 0) module->connect(wire, RTLIL::State::S0); else if (l1 == 1) module->connect(wire, RTLIL::State::S1); else log_abort(); } else { log_debug("%d is an output\n", l1); const unsigned variable = l1 >> 1; const bool invert = l1 & 1; RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix? wire = module->wire(wire_name); if (!wire) wire = createWireIfNotExists(module, l1); else { if (wire->port_input || wire->port_output) { RTLIL::Wire *new_wire = module->addWire(NEW_ID); module->connect(new_wire, wire); wire = new_wire; } } } wire->port_output = true; outputs.push_back(wire); } std::getline(f, line); // Ignore up to start of next line // TODO: Parse bad state properties for (unsigned i = 0; i < B; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse invariant constraints for (unsigned i = 0; i < C; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse justice properties for (unsigned i = 0; i < J; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse fairness constraints for (unsigned i = 0; i < F; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // Parse AND for (unsigned i = 0; i < A; ++i) { if (!(f >> l1 >> l2 >> l3)) log_error("Line %u cannot be interpreted as an AND!\n", line_count); log_debug("%d %d %d is an AND\n", l1, l2, l3); log_assert(!(l1 & 1)); RTLIL::Wire *o_wire = createWireIfNotExists(module, l1); RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2); RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3); module->addAndGate(o_wire->name.str() + "$and", i1_wire, i2_wire, o_wire); } std::getline(f, line); // Ignore up to start of next line } static unsigned parse_next_delta_literal(std::istream &f, unsigned ref) { unsigned x = 0, i = 0; unsigned char ch; while ((ch = f.get()) & 0x80) x |= (ch & 0x7f) << (7 * i++); return ref - (x | (ch << (7 * i))); } void AigerReader::parse_aiger_binary() { unsigned l1, l2, l3; std::string line; // Parse inputs for (unsigned i = 1; i <= I; ++i) { log_debug("%d is an input\n", i); RTLIL::Wire *wire = createWireIfNotExists(module, i << 1); wire->port_input = true; log_assert(!wire->port_output); inputs.push_back(wire); } // Parse latches RTLIL::Wire *clk_wire = nullptr; if (L > 0) { log_assert(clk_name != ""); clk_wire = module->wire(clk_name); log_assert(!clk_wire); log_debug("Creating %s\n", clk_name.c_str()); clk_wire = module->addWire(clk_name); clk_wire->port_input = true; clk_wire->port_output = false; } l1 = (I+1) * 2; for (unsigned i = 0; i < L; ++i, ++line_count, l1 += 2) { if (!(f >> l2)) log_error("Line %u cannot be interpreted as a latch!\n", line_count); log_debug("%d %d is a latch\n", l1, l2); RTLIL::Wire *q_wire = createWireIfNotExists(module, l1); RTLIL::Wire *d_wire = createWireIfNotExists(module, l2); module->addDff(NEW_ID, clk_wire, d_wire, q_wire); // Reset logic is optional in AIGER 1.9 if (f.peek() == ' ') { if (!(f >> l3)) log_error("Line %u cannot be interpreted as a latch!\n", line_count); if (l3 == 0 || l3 == 1) q_wire->attributes["\\init"] = RTLIL::Const(l3); else if (l3 == l1) { //q_wire->attributes["\\init"] = RTLIL::Const(RTLIL::State::Sx); } else log_error("Line %u has invalid reset literal for latch!\n", line_count); } else { // AIGER latches are assumed to be initialized to zero q_wire->attributes["\\init"] = RTLIL::Const(0); } latches.push_back(q_wire); } // Parse outputs for (unsigned i = 0; i < O; ++i, ++line_count) { if (!(f >> l1)) log_error("Line %u cannot be interpreted as an output!\n", line_count); RTLIL::Wire *wire; if (l1 == 0 || l1 == 1) { wire = module->addWire(NEW_ID); if (l1 == 0) module->connect(wire, RTLIL::State::S0); else if (l1 == 1) module->connect(wire, RTLIL::State::S1); else log_abort(); } else { log_debug("%d is an output\n", l1); const unsigned variable = l1 >> 1; const bool invert = l1 & 1; RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "_inv" the right suffix? wire = module->wire(wire_name); if (!wire) wire = createWireIfNotExists(module, l1); else { if (wire->port_input || wire->port_output) { RTLIL::Wire *new_wire = module->addWire(NEW_ID); module->connect(new_wire, wire); wire = new_wire; } } } wire->port_output = true; outputs.push_back(wire); } std::getline(f, line); // Ignore up to start of next line // TODO: Parse bad state properties for (unsigned i = 0; i < B; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse invariant constraints for (unsigned i = 0; i < C; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse justice properties for (unsigned i = 0; i < J; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // TODO: Parse fairness constraints for (unsigned i = 0; i < F; ++i, ++line_count) std::getline(f, line); // Ignore up to start of next line // Parse AND l1 = (I+L+1) << 1; for (unsigned i = 0; i < A; ++i, ++line_count, l1 += 2) { l2 = parse_next_delta_literal(f, l1); l3 = parse_next_delta_literal(f, l2); log_debug("%d %d %d is an AND\n", l1, l2, l3); log_assert(!(l1 & 1)); RTLIL::Wire *o_wire = createWireIfNotExists(module, l1); RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2); RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3); module->addAndGate(o_wire->name.str() + "$and", i1_wire, i2_wire, o_wire); } } struct AigerFrontend : public Frontend { AigerFrontend() : Frontend("aiger", "read AIGER file") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" read_aiger [options] [filename]\n"); log("\n"); log("Load module from an AIGER file into the current design.\n"); log("\n"); log(" -module_name \n"); log(" Name of module to be created (default: )\n"); log("\n"); log(" -clk_name \n"); log(" AIGER latches to be transformed into posedge DFFs clocked by wire of"); log(" this name (default: clk)\n"); log("\n"); log(" -map \n"); log(" read file with port and latch symbols\n"); log("\n"); log(" -wideports\n"); log(" Merge ports that match the pattern 'name[int]' into a single\n"); log(" multi-bit port 'name'.\n"); log("\n"); } void execute(std::istream *&f, std::string filename, std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing AIGER frontend.\n"); RTLIL::IdString clk_name = "\\clk"; RTLIL::IdString module_name; std::string map_filename; bool wideports = false; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-module_name" && argidx+1 < args.size()) { module_name = RTLIL::escape_id(args[++argidx]); continue; } if (arg == "-clk_name" && argidx+1 < args.size()) { clk_name = RTLIL::escape_id(args[++argidx]); continue; } if (map_filename.empty() && arg == "-map" && argidx+1 < args.size()) { map_filename = args[++argidx]; continue; } if (arg == "-wideports") { wideports = true; continue; } break; } extra_args(f, filename, args, argidx); if (module_name.empty()) { #ifdef _WIN32 char fname[_MAX_FNAME]; _splitpath(filename.c_str(), NULL /* drive */, NULL /* dir */, fname, NULL /* ext */) module_name = fname; #else char* bn = strdup(filename.c_str()); module_name = RTLIL::escape_id(bn); free(bn); #endif } AigerReader reader(design, *f, module_name, clk_name, map_filename, wideports); reader.parse_aiger(); } } AigerFrontend; YOSYS_NAMESPACE_END