aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx
diff options
context:
space:
mode:
Diffstat (limited to 'techlibs/xilinx')
-rw-r--r--techlibs/xilinx/abc9_map.v199
-rw-r--r--techlibs/xilinx/abc9_model.v5
-rw-r--r--techlibs/xilinx/abc9_xc7.box2
-rw-r--r--techlibs/xilinx/cells_sim.v224
4 files changed, 200 insertions, 230 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v
index 05063f86d..ef7a1a09f 100644
--- a/techlibs/xilinx/abc9_map.v
+++ b/techlibs/xilinx/abc9_map.v
@@ -49,8 +49,57 @@ module FDRE (output reg Q, input C, CE, D, R);
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
+ // `abc9' requires that complex flops be split into a combinatorial box
+ // feeding a simple flop ($_ABC9_FF_).
+ // Yosys will automatically analyse the simulation model (described in
+ // cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
+ // order to extract the combinatorial control logic left behind.
+ // Specifically, a simulation model similar to the one below:
+ //
+ // ++===================================++
+ // || Sim model ||
+ // || /\/\/\/\ ||
+ // D -->>-----< > +------+ ||
+ // R -->>-----< Comb. > |$_DFF_| ||
+ // CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
+ // || +--< > +------+ | ||
+ // || | \/\/\/\/ | ||
+ // || | | ||
+ // || +----------------------------+ ||
+ // || ||
+ // ++===================================++
+ //
+ // is transformed into:
+ //
+ // ++==================++
+ // || Comb box ||
+ // || ||
+ // || /\/\/\/\ ||
+ // D -->>-----< > || +------+
+ // R -->>-----< Comb. > || |$_ABC_|
+ // CE -->>-----< logic >--->>-- $nextQ --| FF_ |--+-->> Q
+ // $currQ +-->>-----< > || +------+ |
+ // | || \/\/\/\/ || |
+ // | || || |
+ // | ++==================++ |
+ // | |
+ // +----------------------------------------------+
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this cell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = Q;
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
@@ -60,8 +109,22 @@ module FDRE_1 (output reg Q, input C, CE, D, R);
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = Q;
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
@@ -69,18 +132,38 @@ module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
- wire $currQ, $nextQ;
+ wire $nextQ, $currQ;
FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
- .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(IS_CLR_INVERTED)
+ // ^^^ Note that async
+ // control is disabled
+ // and captured by
+ // $__ABC9_ASYNC below
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC9_ASYNC box by abc9_map.v
+ \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = $currQ;
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
@@ -88,11 +171,29 @@ module FDCE_1 (output reg Q, input C, CE, D, CLR);
FDCE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
- .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(1'b0)
+ // ^^^ Note that async
+ // control is disabled
+ // and captured by
+ // $__ABC9_ASYNC below
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
+ \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = $currQ;
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
@@ -107,11 +208,29 @@ module FDPE (output reg Q, input C, CE, D, PRE);
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
- .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(IS_PRE_INVERTED)
+ // ^^^ Note that async
+ // control is disabled
+ // and captured by
+ // $__ABC9_ASYNC below
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+ \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = $currQ;
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
@@ -119,11 +238,29 @@ module FDPE_1 (output reg Q, input C, CE, D, PRE);
FDPE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
- .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(1'b0)
+ // ^^^ Note that async
+ // control is disabled
+ // and captured by
+ // $__ABC9_ASYNC below
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
+ \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = $currQ;
endmodule
module FDSE (output reg Q, input C, CE, D, S);
@@ -140,8 +277,22 @@ module FDSE (output reg Q, input C, CE, D, S);
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = Q;
endmodule
module FDSE_1 (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b0;
@@ -151,8 +302,22 @@ module FDSE_1 (output reg Q, input C, CE, D, S);
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = Q;
endmodule
module RAM32X1D (
diff --git a/techlibs/xilinx/abc9_model.v b/techlibs/xilinx/abc9_model.v
index 74b5cf66a..c17d6744a 100644
--- a/techlibs/xilinx/abc9_model.v
+++ b/techlibs/xilinx/abc9_model.v
@@ -30,11 +30,8 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
: (S0 ? I1 : I0);
endmodule
-module \$__ABC_FF_ (input D, output Q);
-endmodule
-
(* abc_box_id = 1000 *)
-module \$__ABC_ASYNC (input A, S, output Y);
+module \$__ABC9_ASYNC (input A, S, output Y);
endmodule
// Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
diff --git a/techlibs/xilinx/abc9_xc7.box b/techlibs/xilinx/abc9_xc7.box
index 6814b101f..24b1898a4 100644
--- a/techlibs/xilinx/abc9_xc7.box
+++ b/techlibs/xilinx/abc9_xc7.box
@@ -44,7 +44,7 @@ CARRY4 4 1 10 8
# Box to emulate async behaviour of FD[CP]*
# Inputs: A S
# Outputs: Y
-$__ABC_ASYNC 1000 0 2 1
+$__ABC9_ASYNC 1000 0 2 1
0 764
# The following FD*.{CE,R,CLR,PRE) are offset by 46ps to
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v
index 309ee500a..35d9aac96 100644
--- a/techlibs/xilinx/cells_sim.v
+++ b/techlibs/xilinx/cells_sim.v
@@ -258,33 +258,10 @@ module FDRE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
-`ifdef _ABC9
- // `abc9' requires that complex flops be split into a combinatorial
- // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
- // In order to achieve clock-enable behaviour, the current value
- // of the sequential output is required which Yosys will
- // connect to the special `$currQ' wire.
-
- // Special signal indicating clock domain
- // (used to partition the module so that `abc9' only performs
- // sequential synthesis (reachability analysis) correctly on
- // one domain at a time)
- wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
- // Special signal indicating control domain
- // (which, combined with this spell type, encodes to `abc9'
- // which flops may be merged together)
- wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
- always @* Q = \$nextQ ;
-`else
- assign \$currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) Q <= \$nextQ ;
- 1'b1: always @(negedge C) Q <= \$nextQ ;
+ 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
-`endif
endmodule
(* abc9_box_id=1002, lib_whitebox, abc9_flop *)
@@ -297,30 +274,7 @@ module FDRE_1 (
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
-`ifdef _ABC9
- // `abc9' requires that complex flops be split into a combinatorial
- // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
- // In order to achieve clock-enable behaviour, the current value
- // of the sequential output is required which Yosys will
- // connect to the special `$currQ' wire.
-
- // Special signal indicating clock domain
- // (used to partition the module so that `abc9' only performs
- // sequential synthesis (reachability analysis) correctly on
- // one domain at a time)
- wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
- // Special signal indicating control domain
- // (which, combined with this spell type, encodes to `abc9'
- // which flops may be merged together)
- wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
- always @* Q = \$nextQ ;
-`else
- assign \$currQ = Q;
- always @(negedge C) Q <= \$nextQ ;
-`endif
+ always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D;
endmodule
(* abc9_box_id=1003, lib_whitebox, abc9_flop *)
@@ -341,37 +295,12 @@ module FDCE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
-`ifdef _ABC9
- // `abc9' requires that complex flops be split into a combinatorial
- // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
- // In order to achieve clock-enable behaviour, the current value
- // of the sequential output is required which Yosys will
- // connect to the special `$currQ' wire.
- // Since this is an async flop, async behaviour is also dealt with
- // using the $_ABC9_ASYNC box by abc9_map.v
-
- // Special signal indicating clock domain
- // (used to partition the module so that `abc9' only performs
- // sequential synthesis (reachability analysis) correctly on
- // one domain at a time)
- wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
- // Special signal indicating control domain
- // (which, combined with this spell type, encodes to `abc9'
- // which flops may be merged together)
- wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
- always @* Q = \$nextQ ;
-`else
- assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
- 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
-`endif
endmodule
(* abc9_box_id=1004, lib_whitebox, abc9_flop *)
@@ -384,32 +313,7 @@ module FDCE_1 (
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
-`ifdef _ABC9
- // `abc9' requires that complex flops be split into a combinatorial
- // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
- // In order to achieve clock-enable behaviour, the current value
- // of the sequential output is required which Yosys will
- // connect to the special `$currQ' wire.
- // Since this is an async flop, async behaviour is also dealt with
- // using the $_ABC9_ASYNC box by abc9_map.v
-
- // Special signal indicating clock domain
- // (used to partition the module so that `abc9' only performs
- // sequential synthesis (reachability analysis) correctly on
- // one domain at a time)
- wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
- // Special signal indicating control domain
- // (which, combined with this spell type, encodes to `abc9'
- // which flops may be merged together)
- wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
- always @* Q = \$nextQ ;
-`else
- assign \$currQ = Q;
- always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
-`endif
+ always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
(* abc9_box_id=1005, lib_whitebox, abc9_flop *)
@@ -430,37 +334,12 @@ module FDPE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
-`ifdef _ABC9
- // `abc9' requires that complex flops be split into a combinatorial
- // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
- // In order to achieve clock-enable behaviour, the current value
- // of the sequential output is required which Yosys will
- // connect to the special `$currQ' wire.
- // Since this is an async flop, async behaviour is also dealt with
- // using the $_ABC9_ASYNC box by abc9_map.v
-
- // Special signal indicating clock domain
- // (used to partition the module so that `abc9' only performs
- // sequential synthesis (reachability analysis) correctly on
- // one domain at a time)
- wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
- // Special signal indicating control domain
- // (which, combined with this spell type, encodes to `abc9'
- // which flops may be merged together)
- wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
- always @* Q = \$nextQ ;
-`else
- assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
- 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= Q ;
+ 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= Q ;
+ 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= Q ;
+ 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= Q ;
endcase endgenerate
-`endif
endmodule
(* abc9_box_id=1006, lib_whitebox, abc9_flop *)
@@ -473,32 +352,7 @@ module FDPE_1 (
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
-`ifdef _ABC9
- // `abc9' requires that complex flops be split into a combinatorial
- // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
- // In order to achieve clock-enable behaviour, the current value
- // of the sequential output is required which Yosys will
- // connect to the special `$currQ' wire.
- // Since this is an async flop, async behaviour is also dealt with
- // using the $_ABC9_ASYNC box by abc9_map.v
-
- // Special signal indicating clock domain
- // (used to partition the module so that `abc9' only performs
- // sequential synthesis (reachability analysis) correctly on
- // one domain at a time)
- wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
- // Special signal indicating control domain
- // (which, combined with this spell type, encodes to `abc9'
- // which flops may be merged together)
- wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
- always @* Q = \$nextQ ;
-`else
- assign \$currQ = Q;
- always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
-`endif
+ always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule
(* abc9_box_id=1007, lib_whitebox, abc9_flop *)
@@ -519,33 +373,10 @@ module FDSE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
-`ifdef _ABC9
- // `abc9' requires that complex flops be split into a combinatorial
- // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
- // In order to achieve clock-enable behaviour, the current value
- // of the sequential output is required which Yosys will
- // connect to the special `$currQ' wire.
-
- // Special signal indicating clock domain
- // (used to partition the module so that `abc9' only performs
- // sequential synthesis (reachability analysis) correctly on
- // one domain at a time)
- wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
- // Special signal indicating control domain
- // (which, combined with this spell type, encodes to `abc9'
- // which flops may be merged together)
- wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
- always @* Q = \$nextQ ;
-`else
- assign \$currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) Q <= \$nextQ ;
- 1'b1: always @(negedge C) Q <= \$nextQ ;
+ 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
-`endif
endmodule
(* abc9_box_id=1008, lib_whitebox, abc9_flop *)
@@ -558,30 +389,7 @@ module FDSE_1 (
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
-`ifdef _ABC9
- // `abc9' requires that complex flops be split into a combinatorial
- // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
- // In order to achieve clock-enable behaviour, the current value
- // of the sequential output is required which Yosys will
- // connect to the special `$currQ' wire.
-
- // Special signal indicating clock domain
- // (used to partition the module so that `abc9' only performs
- // sequential synthesis (reachability analysis) correctly on
- // one domain at a time)
- wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
- // Special signal indicating control domain
- // (which, combined with this spell type, encodes to `abc9'
- // which flops may be merged together)
- wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
- always @* Q = \$nextQ ;
-`else
- assign \$currQ = Q;
- always @(negedge C) Q <= \$nextQ ;
-`endif
+ always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D;
endmodule
module LDCE (