diff options
Diffstat (limited to 'techlibs/xilinx')
-rw-r--r-- | techlibs/xilinx/abc9_map.v | 199 | ||||
-rw-r--r-- | techlibs/xilinx/abc9_model.v | 5 | ||||
-rw-r--r-- | techlibs/xilinx/abc9_xc7.box | 2 | ||||
-rw-r--r-- | techlibs/xilinx/cells_sim.v | 224 |
4 files changed, 200 insertions, 230 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v index 05063f86d..ef7a1a09f 100644 --- a/techlibs/xilinx/abc9_map.v +++ b/techlibs/xilinx/abc9_map.v @@ -49,8 +49,57 @@ module FDRE (output reg Q, input C, CE, D, R); ) _TECHMAP_REPLACE_ ( .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R) ); - wire _TECHMAP_REPLACE_.$currQ = Q; + // `abc9' requires that complex flops be split into a combinatorial box + // feeding a simple flop ($_ABC9_FF_). + // Yosys will automatically analyse the simulation model (described in + // cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in + // order to extract the combinatorial control logic left behind. + // Specifically, a simulation model similar to the one below: + // + // ++===================================++ + // || Sim model || + // || /\/\/\/\ || + // D -->>-----< > +------+ || + // R -->>-----< Comb. > |$_DFF_| || + // CE -->>-----< logic >-----| [NP]_|---+---->>-- Q + // || +--< > +------+ | || + // || | \/\/\/\/ | || + // || | | || + // || +----------------------------+ || + // || || + // ++===================================++ + // + // is transformed into: + // + // ++==================++ + // || Comb box || + // || || + // || /\/\/\/\ || + // D -->>-----< > || +------+ + // R -->>-----< Comb. > || |$_ABC_| + // CE -->>-----< logic >--->>-- $nextQ --| FF_ |--+-->> Q + // $currQ +-->>-----< > || +------+ | + // | || \/\/\/\/ || | + // | || || | + // | ++==================++ | + // | | + // +----------------------------------------------+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this cell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = Q; endmodule module FDRE_1 (output reg Q, input C, CE, D, R); parameter [0:0] INIT = 1'b0; @@ -60,8 +109,22 @@ module FDRE_1 (output reg Q, input C, CE, D, R); ) _TECHMAP_REPLACE_ ( .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R) ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = Q; endmodule module FDCE (output reg Q, input C, CE, D, CLR); @@ -69,18 +132,38 @@ module FDCE (output reg Q, input C, CE, D, CLR); parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; - wire $currQ, $nextQ; + wire $nextQ, $currQ; FDCE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_CLR_INVERTED(IS_CLR_INVERTED) ) _TECHMAP_REPLACE_ ( - .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR) + .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(IS_CLR_INVERTED) + // ^^^ Note that async + // control is disabled + // and captured by + // $__ABC9_ASYNC below ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ)); - \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q)); + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC9_ASYNC box by abc9_map.v + \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = $currQ; endmodule module FDCE_1 (output reg Q, input C, CE, D, CLR); parameter [0:0] INIT = 1'b0; @@ -88,11 +171,29 @@ module FDCE_1 (output reg Q, input C, CE, D, CLR); FDCE_1 #( .INIT(INIT) ) _TECHMAP_REPLACE_ ( - .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR) + .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(1'b0) + // ^^^ Note that async + // control is disabled + // and captured by + // $__ABC9_ASYNC below ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ)); - \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q)); + \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = $currQ; endmodule module FDPE (output reg Q, input C, CE, D, PRE); @@ -107,11 +208,29 @@ module FDPE (output reg Q, input C, CE, D, PRE); .IS_D_INVERTED(IS_D_INVERTED), .IS_PRE_INVERTED(IS_PRE_INVERTED), ) _TECHMAP_REPLACE_ ( - .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE) + .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(IS_PRE_INVERTED) + // ^^^ Note that async + // control is disabled + // and captured by + // $__ABC9_ASYNC below ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ)); - \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q)); + \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = $currQ; endmodule module FDPE_1 (output reg Q, input C, CE, D, PRE); parameter [0:0] INIT = 1'b0; @@ -119,11 +238,29 @@ module FDPE_1 (output reg Q, input C, CE, D, PRE); FDPE_1 #( .INIT(INIT) ) _TECHMAP_REPLACE_ ( - .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE) + .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(1'b0) + // ^^^ Note that async + // control is disabled + // and captured by + // $__ABC9_ASYNC below ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ)); - \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q)); + \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = $currQ; endmodule module FDSE (output reg Q, input C, CE, D, S); @@ -140,8 +277,22 @@ module FDSE (output reg Q, input C, CE, D, S); ) _TECHMAP_REPLACE_ ( .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S) ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = Q; endmodule module FDSE_1 (output reg Q, input C, CE, D, S); parameter [0:0] INIT = 1'b0; @@ -151,8 +302,22 @@ module FDSE_1 (output reg Q, input C, CE, D, S); ) _TECHMAP_REPLACE_ ( .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S) ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = Q; endmodule module RAM32X1D ( diff --git a/techlibs/xilinx/abc9_model.v b/techlibs/xilinx/abc9_model.v index 74b5cf66a..c17d6744a 100644 --- a/techlibs/xilinx/abc9_model.v +++ b/techlibs/xilinx/abc9_model.v @@ -30,11 +30,8 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1); : (S0 ? I1 : I0); endmodule -module \$__ABC_FF_ (input D, output Q); -endmodule - (* abc_box_id = 1000 *) -module \$__ABC_ASYNC (input A, S, output Y); +module \$__ABC9_ASYNC (input A, S, output Y); endmodule // Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32} diff --git a/techlibs/xilinx/abc9_xc7.box b/techlibs/xilinx/abc9_xc7.box index 6814b101f..24b1898a4 100644 --- a/techlibs/xilinx/abc9_xc7.box +++ b/techlibs/xilinx/abc9_xc7.box @@ -44,7 +44,7 @@ CARRY4 4 1 10 8 # Box to emulate async behaviour of FD[CP]* # Inputs: A S # Outputs: Y -$__ABC_ASYNC 1000 0 2 1 +$__ABC9_ASYNC 1000 0 2 1 0 764 # The following FD*.{CE,R,CLR,PRE) are offset by 46ps to diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v index 309ee500a..35d9aac96 100644 --- a/techlibs/xilinx/cells_sim.v +++ b/techlibs/xilinx/cells_sim.v @@ -258,33 +258,10 @@ module FDRE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; -`ifdef _ABC9 - // `abc9' requires that complex flops be split into a combinatorial - // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v) - // In order to achieve clock-enable behaviour, the current value - // of the sequential output is required which Yosys will - // connect to the special `$currQ' wire. - - // Special signal indicating clock domain - // (used to partition the module so that `abc9' only performs - // sequential synthesis (reachability analysis) correctly on - // one domain at a time) - wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; - // Special signal indicating control domain - // (which, combined with this spell type, encodes to `abc9' - // which flops may be merged together) - wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; - always @* Q = \$nextQ ; -`else - assign \$currQ = Q; generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) Q <= \$nextQ ; - 1'b1: always @(negedge C) Q <= \$nextQ ; + 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; + 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate -`endif endmodule (* abc9_box_id=1002, lib_whitebox, abc9_flop *) @@ -297,30 +274,7 @@ module FDRE_1 ( ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ; -`ifdef _ABC9 - // `abc9' requires that complex flops be split into a combinatorial - // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v) - // In order to achieve clock-enable behaviour, the current value - // of the sequential output is required which Yosys will - // connect to the special `$currQ' wire. - - // Special signal indicating clock domain - // (used to partition the module so that `abc9' only performs - // sequential synthesis (reachability analysis) correctly on - // one domain at a time) - wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; - // Special signal indicating control domain - // (which, combined with this spell type, encodes to `abc9' - // which flops may be merged together) - wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; - always @* Q = \$nextQ ; -`else - assign \$currQ = Q; - always @(negedge C) Q <= \$nextQ ; -`endif + always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D; endmodule (* abc9_box_id=1003, lib_whitebox, abc9_flop *) @@ -341,37 +295,12 @@ module FDCE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; -`ifdef _ABC9 - // `abc9' requires that complex flops be split into a combinatorial - // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v) - // In order to achieve clock-enable behaviour, the current value - // of the sequential output is required which Yosys will - // connect to the special `$currQ' wire. - // Since this is an async flop, async behaviour is also dealt with - // using the $_ABC9_ASYNC box by abc9_map.v - - // Special signal indicating clock domain - // (used to partition the module so that `abc9' only performs - // sequential synthesis (reachability analysis) correctly on - // one domain at a time) - wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; - // Special signal indicating control domain - // (which, combined with this spell type, encodes to `abc9' - // which flops may be merged together) - wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; - always @* Q = \$nextQ ; -`else - assign \$currQ = Q; generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) - 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; + 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; + 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; + 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate -`endif endmodule (* abc9_box_id=1004, lib_whitebox, abc9_flop *) @@ -384,32 +313,7 @@ module FDCE_1 ( ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D; else \$nextQ = \$currQ ; -`ifdef _ABC9 - // `abc9' requires that complex flops be split into a combinatorial - // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v) - // In order to achieve clock-enable behaviour, the current value - // of the sequential output is required which Yosys will - // connect to the special `$currQ' wire. - // Since this is an async flop, async behaviour is also dealt with - // using the $_ABC9_ASYNC box by abc9_map.v - - // Special signal indicating clock domain - // (used to partition the module so that `abc9' only performs - // sequential synthesis (reachability analysis) correctly on - // one domain at a time) - wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; - // Special signal indicating control domain - // (which, combined with this spell type, encodes to `abc9' - // which flops may be merged together) - wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; - always @* Q = \$nextQ ; -`else - assign \$currQ = Q; - always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ; -`endif + always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D; endmodule (* abc9_box_id=1005, lib_whitebox, abc9_flop *) @@ -430,37 +334,12 @@ module FDPE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; -`ifdef _ABC9 - // `abc9' requires that complex flops be split into a combinatorial - // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v) - // In order to achieve clock-enable behaviour, the current value - // of the sequential output is required which Yosys will - // connect to the special `$currQ' wire. - // Since this is an async flop, async behaviour is also dealt with - // using the $_ABC9_ASYNC box by abc9_map.v - - // Special signal indicating clock domain - // (used to partition the module so that `abc9' only performs - // sequential synthesis (reachability analysis) correctly on - // one domain at a time) - wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; - // Special signal indicating control domain - // (which, combined with this spell type, encodes to `abc9' - // which flops may be merged together) - wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; - always @* Q = \$nextQ ; -`else - assign \$currQ = Q; generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) - 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= Q ; + 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= Q ; + 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= Q ; + 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= Q ; endcase endgenerate -`endif endmodule (* abc9_box_id=1006, lib_whitebox, abc9_flop *) @@ -473,32 +352,7 @@ module FDPE_1 ( ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D; else \$nextQ = \$currQ ; -`ifdef _ABC9 - // `abc9' requires that complex flops be split into a combinatorial - // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v) - // In order to achieve clock-enable behaviour, the current value - // of the sequential output is required which Yosys will - // connect to the special `$currQ' wire. - // Since this is an async flop, async behaviour is also dealt with - // using the $_ABC9_ASYNC box by abc9_map.v - - // Special signal indicating clock domain - // (used to partition the module so that `abc9' only performs - // sequential synthesis (reachability analysis) correctly on - // one domain at a time) - wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; - // Special signal indicating control domain - // (which, combined with this spell type, encodes to `abc9' - // which flops may be merged together) - wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; - always @* Q = \$nextQ ; -`else - assign \$currQ = Q; - always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ; -`endif + always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; endmodule (* abc9_box_id=1007, lib_whitebox, abc9_flop *) @@ -519,33 +373,10 @@ module FDSE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; -`ifdef _ABC9 - // `abc9' requires that complex flops be split into a combinatorial - // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v) - // In order to achieve clock-enable behaviour, the current value - // of the sequential output is required which Yosys will - // connect to the special `$currQ' wire. - - // Special signal indicating clock domain - // (used to partition the module so that `abc9' only performs - // sequential synthesis (reachability analysis) correctly on - // one domain at a time) - wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; - // Special signal indicating control domain - // (which, combined with this spell type, encodes to `abc9' - // which flops may be merged together) - wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; - always @* Q = \$nextQ ; -`else - assign \$currQ = Q; generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) Q <= \$nextQ ; - 1'b1: always @(negedge C) Q <= \$nextQ ; + 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; + 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate -`endif endmodule (* abc9_box_id=1008, lib_whitebox, abc9_flop *) @@ -558,30 +389,7 @@ module FDSE_1 ( ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ; -`ifdef _ABC9 - // `abc9' requires that complex flops be split into a combinatorial - // box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v) - // In order to achieve clock-enable behaviour, the current value - // of the sequential output is required which Yosys will - // connect to the special `$currQ' wire. - - // Special signal indicating clock domain - // (used to partition the module so that `abc9' only performs - // sequential synthesis (reachability analysis) correctly on - // one domain at a time) - wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; - // Special signal indicating control domain - // (which, combined with this spell type, encodes to `abc9' - // which flops may be merged together) - wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; - always @* Q = \$nextQ ; -`else - assign \$currQ = Q; - always @(negedge C) Q <= \$nextQ ; -`endif + always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D; endmodule module LDCE ( |