aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/cells_sim.v
diff options
context:
space:
mode:
Diffstat (limited to 'techlibs/xilinx/cells_sim.v')
-rw-r--r--techlibs/xilinx/cells_sim.v160
1 files changed, 80 insertions, 80 deletions
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v
index 3aa686e81..7ab28b0aa 100644
--- a/techlibs/xilinx/cells_sim.v
+++ b/techlibs/xilinx/cells_sim.v
@@ -258,31 +258,31 @@ module FDRE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
+ assign $currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) Q <= \$nextQ ;
- 1'b1: always @(negedge C) Q <= \$nextQ ;
+ 1'b0: always @(posedge C) Q <= $nextQ;
+ 1'b1: always @(negedge C) Q <= $nextQ;
endcase endgenerate
`endif
endmodule
@@ -297,29 +297,29 @@ module FDRE_1 (
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
- always @(negedge C) Q <= \$nextQ ;
+ assign $currQ = Q;
+ always @(negedge C) Q <= $nextQ;
`endif
endmodule
@@ -341,15 +341,15 @@ module FDCE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
@@ -357,19 +357,19 @@ module FDCE (
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
+ assign $currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
- 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
- 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
+ 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
+ 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
+ 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
endcase endgenerate
`endif
endmodule
@@ -384,15 +384,15 @@ module FDCE_1 (
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
@@ -400,15 +400,15 @@ module FDCE_1 (
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
- always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ assign $currQ = Q;
+ always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= $nextQ;
`endif
endmodule
@@ -430,15 +430,15 @@ module FDPE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
@@ -446,19 +446,19 @@ module FDPE (
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
+ assign $currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
- 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
- 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
+ 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
+ 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
+ 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
endcase endgenerate
`endif
endmodule
@@ -473,15 +473,15 @@ module FDPE_1 (
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
@@ -489,15 +489,15 @@ module FDPE_1 (
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
- always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ assign $currQ = Q;
+ always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= $nextQ;
`endif
endmodule
@@ -519,31 +519,31 @@ module FDSE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
+ assign $currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) Q <= \$nextQ ;
- 1'b1: always @(negedge C) Q <= \$nextQ ;
+ 1'b0: always @(posedge C) Q <= $nextQ;
+ 1'b1: always @(negedge C) Q <= $nextQ;
endcase endgenerate
`endif
endmodule
@@ -558,29 +558,29 @@ module FDSE_1 (
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- wire \$currQ ;
- reg \$nextQ ;
- always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
+ wire $currQ;
+ reg $nextQ;
+ always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
- // connect to the special `\$currQ' wire.
+ // connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
- wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
- wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
- always @* Q = \$nextQ ;
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
+ always @* Q = $nextQ;
`else
- assign \$currQ = Q;
- always @(negedge C) Q <= \$nextQ ;
+ assign $currQ = Q;
+ always @(negedge C) Q <= $nextQ;
`endif
endmodule