diff options
Diffstat (limited to 'techlibs/xilinx/cells_sim.v')
-rw-r--r-- | techlibs/xilinx/cells_sim.v | 160 |
1 files changed, 80 insertions, 80 deletions
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v index 3aa686e81..7ab28b0aa 100644 --- a/techlibs/xilinx/cells_sim.v +++ b/techlibs/xilinx/cells_sim.v @@ -258,31 +258,31 @@ module FDRE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Special signal indicating clock domain // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; + always @* Q = $nextQ; `else - assign \$currQ = Q; + assign $currQ = Q; generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) Q <= \$nextQ ; - 1'b1: always @(negedge C) Q <= \$nextQ ; + 1'b0: always @(posedge C) Q <= $nextQ; + 1'b1: always @(negedge C) Q <= $nextQ; endcase endgenerate `endif endmodule @@ -297,29 +297,29 @@ module FDRE_1 ( ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Special signal indicating clock domain // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; + always @* Q = $nextQ; `else - assign \$currQ = Q; - always @(negedge C) Q <= \$nextQ ; + assign $currQ = Q; + always @(negedge C) Q <= $nextQ; `endif endmodule @@ -341,15 +341,15 @@ module FDCE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Since this is an async flop, async behaviour is also dealt with // using the $_ABC_ASYNC box by abc_map.v @@ -357,19 +357,19 @@ module FDCE ( // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; + always @* Q = $nextQ; `else - assign \$currQ = Q; + assign $currQ = Q; generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) - 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ; + 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ; + 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ; + 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ; endcase endgenerate `endif endmodule @@ -384,15 +384,15 @@ module FDCE_1 ( ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (CE) Q <= D; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Since this is an async flop, async behaviour is also dealt with // using the $_ABC_ASYNC box by abc_map.v @@ -400,15 +400,15 @@ module FDCE_1 ( // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; + always @* Q = $nextQ; `else - assign \$currQ = Q; - always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ; + assign $currQ = Q; + always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= $nextQ; `endif endmodule @@ -430,15 +430,15 @@ module FDPE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Since this is an async flop, async behaviour is also dealt with // using the $_ABC_ASYNC box by abc_map.v @@ -446,19 +446,19 @@ module FDPE ( // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; + always @* Q = $nextQ; `else - assign \$currQ = Q; + assign $currQ = Q; generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) - 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ; + 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ; + 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ; + 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ; endcase endgenerate `endif endmodule @@ -473,15 +473,15 @@ module FDPE_1 ( ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (CE) Q <= D; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Since this is an async flop, async behaviour is also dealt with // using the $_ABC_ASYNC box by abc_map.v @@ -489,15 +489,15 @@ module FDPE_1 ( // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; + always @* Q = $nextQ; `else - assign \$currQ = Q; - always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ; + assign $currQ = Q; + always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= $nextQ; `endif endmodule @@ -519,31 +519,31 @@ module FDSE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Special signal indicating clock domain // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; + always @* Q = $nextQ; `else - assign \$currQ = Q; + assign $currQ = Q; generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) Q <= \$nextQ ; - 1'b1: always @(negedge C) Q <= \$nextQ ; + 1'b0: always @(posedge C) Q <= $nextQ; + 1'b1: always @(negedge C) Q <= $nextQ; endcase endgenerate `endif endmodule @@ -558,29 +558,29 @@ module FDSE_1 ( ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Special signal indicating clock domain // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; + always @* Q = $nextQ; `else - assign \$currQ = Q; - always @(negedge C) Q <= \$nextQ ; + assign $currQ = Q; + always @(negedge C) Q <= $nextQ; `endif endmodule |