aboutsummaryrefslogtreecommitdiffstats
path: root/passes/sat/formalff.cc
diff options
context:
space:
mode:
Diffstat (limited to 'passes/sat/formalff.cc')
-rw-r--r--passes/sat/formalff.cc766
1 files changed, 766 insertions, 0 deletions
diff --git a/passes/sat/formalff.cc b/passes/sat/formalff.cc
new file mode 100644
index 000000000..264a9fb3b
--- /dev/null
+++ b/passes/sat/formalff.cc
@@ -0,0 +1,766 @@
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2022 Jannis Harder <jix@yosyshq.com> <me@jix.one>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#include "kernel/yosys.h"
+#include "kernel/sigtools.h"
+#include "kernel/ffinit.h"
+#include "kernel/ff.h"
+#include "kernel/modtools.h"
+
+USING_YOSYS_NAMESPACE
+PRIVATE_NAMESPACE_BEGIN
+
+
+// Finds signal values with known constant or known unused values in the initial state
+struct InitValWorker
+{
+ Module *module;
+
+ ModWalker modwalker;
+ SigMap &sigmap;
+ FfInitVals initvals;
+
+ dict<RTLIL::SigBit, RTLIL::State> initconst_bits;
+ dict<RTLIL::SigBit, bool> used_bits;
+
+ InitValWorker(Module *module) : module(module), modwalker(module->design), sigmap(modwalker.sigmap)
+ {
+ modwalker.setup(module);
+ initvals.set(&modwalker.sigmap, module);
+
+ for (auto wire : module->wires())
+ if (wire->name.isPublic() || wire->get_bool_attribute(ID::keep))
+ for (auto bit : SigSpec(wire))
+ used_bits[sigmap(bit)] = true;
+ }
+
+ // Sign/Zero-extended indexing of individual port bits
+ static SigBit bit_in_port(RTLIL::Cell *cell, RTLIL::IdString port, RTLIL::IdString sign, int index)
+ {
+ auto sig_port = cell->getPort(port);
+ if (index < GetSize(sig_port))
+ return sig_port[index];
+ else if (cell->getParam(sign).as_bool())
+ return GetSize(sig_port) > 0 ? sig_port[GetSize(sig_port) - 1] : State::Sx;
+ else
+ return State::S0;
+ }
+
+ // Has the signal a known constant value in the initial state?
+ //
+ // For sync-only FFs outputs, this is their initval. For logic loops,
+ // multiple drivers or unknown cells this is Sx. For a small number of
+ // handled cells we recurse through their inputs. All results are cached.
+ RTLIL::State initconst(SigBit bit)
+ {
+ sigmap.apply(bit);
+
+ if (!bit.is_wire())
+ return bit.data;
+
+ auto it = initconst_bits.find(bit);
+ if (it != initconst_bits.end())
+ return it->second;
+
+ // Setting this temporarily to x takes care of any logic loops
+ initconst_bits[bit] = State::Sx;
+
+ pool<ModWalker::PortBit> portbits;
+ modwalker.get_drivers(portbits, {bit});
+
+ if (portbits.size() != 1)
+ return State::Sx;
+
+ ModWalker::PortBit portbit = *portbits.begin();
+ RTLIL::Cell *cell = portbit.cell;
+
+ if (RTLIL::builtin_ff_cell_types().count(cell->type))
+ {
+ FfData ff(&initvals, cell);
+
+ if (ff.has_aload || ff.has_sr || ff.has_arst || (!ff.has_clk && !ff.has_gclk)) {
+ for (auto bit_q : ff.sig_q) {
+ initconst_bits[sigmap(bit_q)] = State::Sx;
+ }
+ return State::Sx;
+ }
+
+ for (int i = 0; i < ff.width; i++) {
+ initconst_bits[sigmap(ff.sig_q[i])] = ff.val_init[i];
+ }
+
+ return ff.val_init[portbit.offset];
+ }
+
+ if (cell->type.in(ID($mux), ID($and), ID($or), ID($eq), ID($eqx), ID($initstate)))
+ {
+ if (cell->type == ID($mux))
+ {
+ SigBit sig_s = sigmap(cell->getPort(ID::S));
+ State init_s = initconst(sig_s);
+ State init_y;
+
+ if (init_s == State::S0) {
+ init_y = initconst(cell->getPort(ID::A)[portbit.offset]);
+ } else if (init_s == State::S1) {
+ init_y = initconst(cell->getPort(ID::B)[portbit.offset]);
+ } else {
+ State init_a = initconst(cell->getPort(ID::A)[portbit.offset]);
+ State init_b = initconst(cell->getPort(ID::B)[portbit.offset]);
+ init_y = init_a == init_b ? init_a : State::Sx;
+ }
+ initconst_bits[bit] = init_y;
+ return init_y;
+ }
+
+ if (cell->type.in(ID($and), ID($or)))
+ {
+ State init_a = initconst(bit_in_port(cell, ID::A, ID::A_SIGNED, portbit.offset));
+ State init_b = initconst(bit_in_port(cell, ID::B, ID::B_SIGNED, portbit.offset));
+ State init_y;
+ if (init_a == init_b)
+ init_y = init_a;
+ else if (cell->type == ID($and) && (init_a == State::S0 || init_b == State::S0))
+ init_y = State::S0;
+ else if (cell->type == ID($or) && (init_a == State::S1 || init_b == State::S1))
+ init_y = State::S1;
+ else
+ init_y = State::Sx;
+
+ initconst_bits[bit] = init_y;
+ return init_y;
+ }
+
+ if (cell->type.in(ID($eq), ID($eqx))) // Treats $eqx as $eq
+ {
+ if (portbit.offset > 0) {
+ initconst_bits[bit] = State::S0;
+ return State::S0;
+ }
+
+ SigSpec sig_a = cell->getPort(ID::A);
+ SigSpec sig_b = cell->getPort(ID::B);
+
+ State init_y = State::S1;
+
+ for (int i = 0; init_y != State::S0 && i < GetSize(sig_a); i++) {
+ State init_ai = initconst(bit_in_port(cell, ID::A, ID::A_SIGNED, i));
+ if (init_ai == State::Sx) {
+ init_y = State::Sx;
+ continue;
+ }
+ State init_bi = initconst(bit_in_port(cell, ID::B, ID::B_SIGNED, i));
+ if (init_bi == State::Sx)
+ init_y = State::Sx;
+ else if (init_ai != init_bi)
+ init_y = State::S0;
+ }
+
+ initconst_bits[bit] = init_y;
+ return init_y;
+ }
+
+ if (cell->type == ID($initstate))
+ {
+ initconst_bits[bit] = State::S1;
+ return State::S1;
+ }
+
+ log_assert(false);
+ }
+
+ return State::Sx;
+ }
+
+ RTLIL::Const initconst(SigSpec sig)
+ {
+ std::vector<RTLIL::State> bits;
+ for (auto bit : sig)
+ bits.push_back(initconst(bit));
+ return bits;
+ }
+
+ // Is the initial value of this signal used?
+ //
+ // An initial value of a signal is considered as used if it a) aliases a
+ // wire with a public name, an output wire or with a keep attribute b)
+ // combinationally drives such a wire or c) drive an input to an unknown
+ // cell.
+ //
+ // This recurses into driven cells for a small number of known handled
+ // celltypes. Results are cached and initconst is used to detect unused
+ // inputs for the handled celltypes.
+ bool is_initval_used(SigBit bit)
+ {
+ if (!bit.is_wire())
+ return false;
+
+ auto it = used_bits.find(bit);
+ if (it != used_bits.end())
+ return it->second;
+
+ used_bits[bit] = true; // Temporarily set to guard against logic loops
+
+ pool<ModWalker::PortBit> portbits;
+ modwalker.get_consumers(portbits, {bit});
+
+ for (auto portbit : portbits) {
+ RTLIL::Cell *cell = portbit.cell;
+ if (!cell->type.in(ID($mux), ID($and), ID($or), ID($mem_v2)) && !RTLIL::builtin_ff_cell_types().count(cell->type)) {
+ return true;
+ }
+ }
+
+ for (auto portbit : portbits)
+ {
+ RTLIL::Cell *cell = portbit.cell;
+ if (RTLIL::builtin_ff_cell_types().count(cell->type))
+ {
+ FfData ff(&initvals, cell);
+ if (ff.has_aload || ff.has_sr || ff.has_arst || ff.has_gclk || !ff.has_clk)
+ return true;
+ if (ff.has_ce && initconst(ff.sig_ce.as_bit()) == (ff.pol_ce ? State::S0 : State::S1))
+ continue;
+ if (ff.has_srst && initconst(ff.sig_ce.as_bit()) == (ff.pol_srst ? State::S1 : State::S0))
+ continue;
+
+ return true;
+ }
+ else if (cell->type == ID($mux))
+ {
+ State init_s = initconst(cell->getPort(ID::S).as_bit());
+ if (init_s == State::S0 && portbit.port == ID::B)
+ continue;
+ if (init_s == State::S1 && portbit.port == ID::A)
+ continue;
+ auto sig_y = cell->getPort(ID::Y);
+
+ if (is_initval_used(sig_y[portbit.offset]))
+ return true;
+ }
+ else if (cell->type.in(ID($and), ID($or)))
+ {
+ auto sig_a = cell->getPort(ID::A);
+ auto sig_b = cell->getPort(ID::B);
+ auto sig_y = cell->getPort(ID::Y);
+ if (GetSize(sig_y) != GetSize(sig_a) || GetSize(sig_y) != GetSize(sig_b))
+ return true; // TODO handle more of this
+ State absorbing = cell->type == ID($and) ? State::S0 : State::S1;
+ if (portbit.port == ID::A && initconst(sig_b[portbit.offset]) == absorbing)
+ continue;
+ if (portbit.port == ID::B && initconst(sig_a[portbit.offset]) == absorbing)
+ continue;
+
+ if (is_initval_used(sig_y[portbit.offset]))
+ return true;
+ }
+ else if (cell->type == ID($mem_v2))
+ {
+ // TODO Use mem.h instead to uniformily cover all cases, most
+ // likely requires processing all memories when initializing
+ // the worker
+ if (!portbit.port.in(ID::WR_DATA, ID::WR_ADDR, ID::RD_ADDR))
+ return true;
+
+ if (portbit.port == ID::WR_DATA)
+ {
+ if (initconst(cell->getPort(ID::WR_EN)[portbit.offset]) == State::S0)
+ continue;
+ }
+ else if (portbit.port == ID::WR_ADDR)
+ {
+ int port = portbit.offset / cell->getParam(ID::ABITS).as_int();
+ auto sig_en = cell->getPort(ID::WR_EN);
+ int width = cell->getParam(ID::WIDTH).as_int();
+
+ for (int i = port * width; i < (port + 1) * width; i++)
+ if (initconst(sig_en[i]) != State::S0)
+ return true;
+
+ continue;
+ }
+ else if (portbit.port == ID::RD_ADDR)
+ {
+ int port = portbit.offset / cell->getParam(ID::ABITS).as_int();
+ auto sig_en = cell->getPort(ID::RD_EN);
+
+ if (initconst(sig_en[port]) != State::S0)
+ return true;
+
+ continue;
+ }
+ else
+ return true;
+ }
+ else
+ log_assert(false);
+ }
+
+ used_bits[bit] = false;
+ return false;
+ }
+};
+
+struct ReplacedPort {
+ IdString name;
+ int offset;
+ bool clk_pol;
+};
+
+struct HierarchyWorker
+{
+ Design *design;
+ pool<Module *> pending;
+
+ dict<Module *, std::vector<ReplacedPort>> replaced_clk_inputs;
+
+ HierarchyWorker(Design *design) :
+ design(design)
+ {
+ for (auto module : design->modules())
+ pending.insert(module);
+ }
+
+ void propagate();
+
+ const std::vector<ReplacedPort> &find_replaced_clk_inputs(IdString cell_type);
+};
+
+// Propagates replaced clock signals
+struct PropagateWorker
+{
+ HierarchyWorker &hierarchy;
+
+ Module *module;
+ SigMap sigmap;
+
+ dict<SigBit, bool> replaced_clk_bits;
+ dict<SigBit, SigBit> not_drivers;
+
+ std::vector<ReplacedPort> replaced_clk_inputs;
+ std::vector<std::pair<SigBit, bool>> pending;
+
+ PropagateWorker(Module *module, HierarchyWorker &hierarchy) :
+ hierarchy(hierarchy), module(module), sigmap(module)
+ {
+ hierarchy.pending.erase(module);
+
+ for (auto wire : module->wires())
+ if (wire->has_attribute(ID::replaced_by_gclk))
+ replace_clk_bit(SigBit(wire), wire->attributes[ID::replaced_by_gclk].bits.at(0) == State::S1, false);
+
+ for (auto cell : module->cells()) {
+ if (cell->type.in(ID($not), ID($_NOT_))) {
+ auto sig_a = cell->getPort(ID::A);
+ auto &sig_y = cell->getPort(ID::Y);
+ sig_a.extend_u0(GetSize(sig_y), cell->hasParam(ID::A_SIGNED) && cell->parameters.at(ID::A_SIGNED).as_bool());
+
+ for (int i = 0; i < GetSize(sig_a); i++)
+ if (sig_a[i].is_wire())
+ not_drivers.emplace(sigmap(sig_y[i]), sigmap(sig_a[i]));
+ } else {
+ for (auto &port_bit : hierarchy.find_replaced_clk_inputs(cell->type))
+ replace_clk_bit(cell->getPort(port_bit.name)[port_bit.offset], port_bit.clk_pol, true);
+ }
+ }
+
+ while (!pending.empty()) {
+ auto current = pending.back();
+ pending.pop_back();
+ auto it = not_drivers.find(current.first);
+ if (it == not_drivers.end())
+ continue;
+
+ replace_clk_bit(it->second, !current.second, true);
+ }
+
+ for (auto cell : module->cells()) {
+ if (cell->type.in(ID($not), ID($_NOT_)))
+ continue;
+ for (auto &conn : cell->connections()) {
+ if (!cell->output(conn.first))
+ continue;
+ for (SigBit bit : conn.second) {
+ sigmap.apply(bit);
+ if (replaced_clk_bits.count(bit))
+ log_error("derived signal %s driven by %s (%s) from module %s is used as clock, derived clocks are only supported with clk2fflogic.\n",
+ log_signal(bit), log_id(cell->name), log_id(cell->type), log_id(module));
+ }
+ }
+ }
+
+ for (auto port : module->ports) {
+ auto wire = module->wire(port);
+ if (!wire->port_input)
+ continue;
+ for (int i = 0; i < GetSize(wire); i++) {
+ SigBit bit(wire, i);
+ sigmap.apply(bit);
+ auto it = replaced_clk_bits.find(bit);
+ if (it == replaced_clk_bits.end())
+ continue;
+ replaced_clk_inputs.emplace_back(ReplacedPort {port, i, it->second});
+
+ if (it->second) {
+ bit = module->Not(NEW_ID, bit);
+ }
+ }
+ }
+ }
+
+ void replace_clk_bit(SigBit bit, bool polarity, bool add_attribute)
+ {
+ sigmap.apply(bit);
+ if (!bit.is_wire())
+ log_error("XXX todo\n");
+
+ auto it = replaced_clk_bits.find(bit);
+ if (it != replaced_clk_bits.end()) {
+ if (it->second != polarity)
+ log_error("signal %s from module %s is used as clock with different polarities, run clk2fflogic instead.\n",
+ log_signal(bit), log_id(module));
+ return;
+ }
+
+ replaced_clk_bits.emplace(bit, polarity);
+
+ if (add_attribute) {
+ Wire *clk_wire = bit.wire;
+ if (bit.offset != 0 || GetSize(bit.wire) != 1) {
+ clk_wire = module->addWire(NEW_ID);
+ module->connect(RTLIL::SigBit(clk_wire), bit);
+ }
+ clk_wire->attributes[ID::replaced_by_gclk] = polarity ? State::S1 : State::S0;
+ clk_wire->set_bool_attribute(ID::keep);
+ }
+
+ pending.emplace_back(bit, polarity);
+ }
+};
+
+const std::vector<ReplacedPort> &HierarchyWorker::find_replaced_clk_inputs(IdString cell_type)
+{
+ static const std::vector<ReplacedPort> empty;
+ if (!cell_type.isPublic())
+ return empty;
+
+ Module *module = design->module(cell_type);
+ if (module == nullptr)
+ return empty;
+
+ auto it = replaced_clk_inputs.find(module);
+ if (it != replaced_clk_inputs.end())
+ return it->second;
+
+ if (pending.count(module)) {
+ PropagateWorker worker(module, *this);
+ return replaced_clk_inputs.emplace(module, std::move(worker.replaced_clk_inputs)).first->second;
+ }
+
+ return empty;
+}
+
+
+void HierarchyWorker::propagate()
+{
+ while (!pending.empty())
+ PropagateWorker worker(pending.pop(), *this);
+}
+
+struct FormalFfPass : public Pass {
+ FormalFfPass() : Pass("formalff", "prepare FFs for formal") { }
+ void help() override
+ {
+ // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+ log("\n");
+ log(" formalff [options] [selection]\n");
+ log("\n");
+ log("This pass transforms clocked flip-flops to prepare a design for formal\n");
+ log("verification. If a design contains latches and/or multiple different clocks run\n");
+ log("the async2sync or clk2fflogic passes before using this pass.\n");
+ log("\n");
+ log(" -clk2ff\n");
+ log(" Replace all clocked flip-flops with $ff cells that use the implicit\n");
+ log(" global clock. This assumes, without checking, that the design uses a\n");
+ log(" single global clock. If that is not the case, the clk2fflogic pass\n");
+ log(" should be used instead.\n");
+ log("\n");
+ log(" -ff2anyinit\n");
+ log(" Replace uninitialized bits of $ff cells with $anyinit cells. An\n");
+ log(" $anyinit cell behaves exactly like an $ff cell with an undefined\n");
+ log(" initialization value. The difference is that $anyinit inhibits\n");
+ log(" don't-care optimizations and is used to track solver-provided values\n");
+ log(" in witness traces.\n");
+ log("\n");
+ log(" If combined with -clk2ff this also affects newly created $ff cells.\n");
+ log("\n");
+ log(" -anyinit2ff\n");
+ log(" Replaces $anyinit cells with uninitialized $ff cells. This performs the\n");
+ log(" reverse of -ff2anyinit and can be used, before running a backend pass\n");
+ log(" (or similar) that is not yet aware of $anyinit cells.\n");
+ log("\n");
+ log(" Note that after running -anyinit2ff, in general, performing don't-care\n");
+ log(" optimizations is not sound in a formal verification setting.\n");
+ log("\n");
+ log(" -fine\n");
+ log(" Emit fine-grained $_FF_ cells instead of coarse-grained $ff cells for\n");
+ log(" -anyinit2ff. Cannot be combined with -clk2ff or -ff2anyinit.\n");
+ log("\n");
+ log(" -setundef\n");
+ log(" Find FFs with undefined initialization values for which changing the\n");
+ log(" initialization does not change the observable behavior and initialize\n");
+ log(" them. For -ff2anyinit, this reduces the number of generated $anyinit\n");
+ log(" cells that drive wires with private names.\n");
+ log("\n");
+ log(" -hierarchy\n");
+ log(" Propagates the 'replaced_by_gclk' attribute set by clk2ff upwards\n");
+ log(" through the design hierarchy towards the toplevel inputs. This option\n");
+ log(" works on the whole design and ignores the selection.\n");
+ log("\n");
+ log(" -assume\n");
+ log(" Add assumptions that constrain wires with the 'replaced_by_gclk'\n");
+ log(" attribute to the value they would have before an active clock edge.\n");
+ log("\n");
+
+ // TODO: An option to check whether all FFs use the same clock before changing it to the global clock
+ }
+ void execute(std::vector<std::string> args, RTLIL::Design *design) override
+ {
+ bool flag_clk2ff = false;
+ bool flag_ff2anyinit = false;
+ bool flag_anyinit2ff = false;
+ bool flag_fine = false;
+ bool flag_setundef = false;
+ bool flag_hierarchy = false;
+ bool flag_assume = false;
+
+ log_header(design, "Executing FORMALFF pass.\n");
+
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++)
+ {
+ if (args[argidx] == "-clk2ff") {
+ flag_clk2ff = true;
+ continue;
+ }
+ if (args[argidx] == "-ff2anyinit") {
+ flag_ff2anyinit = true;
+ continue;
+ }
+ if (args[argidx] == "-anyinit2ff") {
+ flag_anyinit2ff = true;
+ continue;
+ }
+ if (args[argidx] == "-fine") {
+ flag_fine = true;
+ continue;
+ }
+ if (args[argidx] == "-setundef") {
+ flag_setundef = true;
+ continue;
+ }
+ if (args[argidx] == "-hierarchy") {
+ flag_hierarchy = true;
+ continue;
+ }
+ if (args[argidx] == "-assume") {
+ flag_assume = true;
+ continue;
+ }
+ break;
+ }
+ extra_args(args, argidx, design);
+
+ if (!(flag_clk2ff || flag_ff2anyinit || flag_anyinit2ff || flag_hierarchy || flag_assume))
+ log_cmd_error("One of the options -clk2ff, -ff2anyinit, -anyinit2ff, -hierarchy or -assume must be specified.\n");
+
+ if (flag_ff2anyinit && flag_anyinit2ff)
+ log_cmd_error("The options -ff2anyinit and -anyinit2ff are exclusive.\n");
+
+ if (flag_fine && !flag_anyinit2ff)
+ log_cmd_error("The option -fine requries the -anyinit2ff option.\n");
+
+ if (flag_fine && flag_clk2ff)
+ log_cmd_error("The options -fine and -clk2ff are exclusive.\n");
+
+ for (auto module : design->selected_modules())
+ {
+ if (flag_setundef)
+ {
+ InitValWorker worker(module);
+
+ for (auto cell : module->selected_cells())
+ {
+ if (RTLIL::builtin_ff_cell_types().count(cell->type))
+ {
+ FfData ff(&worker.initvals, cell);
+ if (ff.has_aload || ff.has_sr || ff.has_arst || ff.val_init.is_fully_def())
+ continue;
+
+ if (ff.has_ce && // CE can make the initval stick around
+ worker.initconst(ff.sig_ce.as_bit()) != (ff.pol_ce ? State::S1 : State::S0) && // unless it's known active
+ (!ff.has_srst || ff.ce_over_srst ||
+ worker.initconst(ff.sig_srst.as_bit()) != (ff.pol_srst ? State::S1 : State::S0))) // or a srst with priority is known active
+ continue;
+
+ auto before = ff.val_init;
+ for (int i = 0; i < ff.width; i++)
+ if (ff.val_init[i] == State::Sx && !worker.is_initval_used(ff.sig_q[i]))
+ ff.val_init[i] = State::S0;
+
+ if (ff.val_init != before) {
+ log("Setting unused undefined initial value of %s.%s (%s) from %s to %s\n",
+ log_id(module), log_id(cell), log_id(cell->type),
+ log_const(before), log_const(ff.val_init));
+ worker.initvals.set_init(ff.sig_q, ff.val_init);
+ }
+ }
+ }
+ }
+ SigMap sigmap(module);
+ FfInitVals initvals(&sigmap, module);
+
+
+ for (auto cell : module->selected_cells())
+ {
+ if (flag_anyinit2ff && cell->type == ID($anyinit))
+ {
+ FfData ff(&initvals, cell);
+ ff.remove();
+ ff.is_anyinit = false;
+ ff.is_fine = flag_fine;
+ if (flag_fine)
+ for (int i = 0; i < ff.width; i++)
+ ff.slice({i}).emit();
+ else
+ ff.emit();
+
+ continue;
+ }
+
+ if (!RTLIL::builtin_ff_cell_types().count(cell->type))
+ continue;
+
+ FfData ff(&initvals, cell);
+ bool emit = false;
+
+ if (flag_clk2ff && ff.has_clk) {
+ if (ff.sig_clk.is_fully_const())
+ log_error("Const CLK on %s (%s) from module %s, run async2sync first.\n",
+ log_id(cell), log_id(cell->type), log_id(module));
+ if (ff.has_aload || ff.has_arst || ff.has_sr)
+ log_error("Async inputs on %s (%s) from module %s, run async2sync first.\n",
+ log_id(cell), log_id(cell->type), log_id(module));
+
+ auto clk_wire = ff.sig_clk.is_wire() ? ff.sig_clk.as_wire() : nullptr;
+
+ if (clk_wire == nullptr) {
+ clk_wire = module->addWire(NEW_ID);
+ module->connect(RTLIL::SigBit(clk_wire), ff.sig_clk);
+ }
+
+ auto clk_polarity = ff.pol_clk ? State::S1 : State::S0;
+
+ std::string attribute = clk_wire->get_string_attribute(ID::replaced_by_gclk);
+
+ auto &attr = clk_wire->attributes[ID::replaced_by_gclk];
+
+ if (!attr.empty() && attr != clk_polarity)
+ log_error("CLK %s on %s (%s) from module %s also used with opposite polarity, run clk2fflogic instead.\n",
+ log_id(clk_wire), log_id(cell), log_id(cell->type), log_id(module));
+
+ attr = clk_polarity;
+ clk_wire->set_bool_attribute(ID::keep);
+
+ // TODO propagate the replaced_by_gclk attribute upwards throughout the hierarchy
+
+ ff.unmap_ce_srst();
+ ff.has_clk = false;
+ ff.has_gclk = true;
+ emit = true;
+ }
+
+ if (!ff.has_gclk) {
+ continue;
+ }
+
+ if (flag_ff2anyinit && !ff.val_init.is_fully_def())
+ {
+ ff.remove();
+ emit = false;
+
+ int cursor = 0;
+ while (cursor < ff.val_init.size())
+ {
+ bool is_anyinit = ff.val_init[cursor] == State::Sx;
+ std::vector<int> bits;
+ bits.push_back(cursor++);
+ while (cursor < ff.val_init.size() && (ff.val_init[cursor] == State::Sx) == is_anyinit)
+ bits.push_back(cursor++);
+
+ if ((int)bits.size() == ff.val_init.size()) {
+ // This check is only to make the private names more helpful for debugging
+ ff.is_anyinit = true;
+ ff.is_fine = false;
+ emit = true;
+ break;
+ }
+
+ auto slice = ff.slice(bits);
+ slice.is_anyinit = is_anyinit;
+ slice.is_fine = false;
+ slice.emit();
+ }
+ }
+
+ if (emit)
+ ff.emit();
+ }
+ }
+
+ if (flag_hierarchy) {
+ HierarchyWorker worker(design);
+ worker.propagate();
+ }
+
+ if (flag_assume) {
+ for (auto module : design->selected_modules()) {
+ std::vector<pair<SigBit, bool>> found;
+ for (auto wire : module->wires()) {
+ if (!wire->has_attribute(ID::replaced_by_gclk))
+ continue;
+ bool clk_pol = wire->attributes[ID::replaced_by_gclk].bits.at(0) == State::S1;
+
+ found.emplace_back(SigSpec(wire), clk_pol);
+ }
+ for (auto pair : found) {
+ SigBit clk = pair.first;
+
+ if (pair.second)
+ clk = module->Not(NEW_ID, clk);
+
+ module->addAssume(NEW_ID, clk, State::S1);
+
+ }
+ }
+ }
+ }
+} FormalFfPass;
+
+PRIVATE_NAMESPACE_END