aboutsummaryrefslogtreecommitdiffstats
path: root/frontends/verilog/Makefile.inc
diff options
context:
space:
mode:
authorClifford Wolf <clifford@clifford.at>2016-02-15 23:06:18 +0100
committerClifford Wolf <clifford@clifford.at>2016-02-15 23:06:18 +0100
commit45af4a4acf6d3bc1f83b65f1cd103c0226f30b8b (patch)
tree16e2f1fc5aa9975761f84cdf9b416a0ea94ac3c1 /frontends/verilog/Makefile.inc
parent7a9257e7b5e4ea039e4bcc7183cee81b363b8166 (diff)
downloadyosys-45af4a4acf6d3bc1f83b65f1cd103c0226f30b8b.tar.gz
yosys-45af4a4acf6d3bc1f83b65f1cd103c0226f30b8b.tar.bz2
yosys-45af4a4acf6d3bc1f83b65f1cd103c0226f30b8b.zip
Use easyer-to-read unoptimized ceil_log2()
see here for details on the optimized version: http://svn.clifford.at/handicraft/2016/esbmc/ceilog2.c
Diffstat (limited to 'frontends/verilog/Makefile.inc')
0 files changed, 0 insertions, 0 deletions
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * cpu_idle - xen idle state module derived from Linux 
 *            drivers/acpi/processor_idle.c & 
 *            arch/x86/kernel/acpi/cstate.c
 *
 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
 *                      - Added processor hotplug support
 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 *                      - Added support for C3 on SMP
 *  Copyright (C) 2007, 2008 Intel Corporation
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or (at
 *  your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */

#include <xen/config.h>
#include <xen/errno.h>
#include <xen/lib.h>
#include <xen/types.h>
#include <xen/acpi.h>
#include <xen/smp.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <xen/guest_access.h>
#include <public/platform.h>
#include <asm/processor.h>
#include <xen/keyhandler.h>

#define DEBUG_PM_CX

#define US_TO_PM_TIMER_TICKS(t)     ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
#define C2_OVERHEAD         4   /* 1us (3.579 ticks per us) */
#define C3_OVERHEAD         4   /* 1us (3.579 ticks per us) */

#define ACPI_PROCESSOR_MAX_POWER        8
#define ACPI_PROCESSOR_MAX_C2_LATENCY   100
#define ACPI_PROCESSOR_MAX_C3_LATENCY   1000

extern u32 pmtmr_ioport;
extern void (*pm_idle) (void);

static void (*pm_idle_save) (void) __read_mostly;
unsigned int max_cstate __read_mostly = 2;
integer_param("max_cstate", max_cstate);
/*
 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
 * reduce history for more aggressive entry into C3
 */
unsigned int bm_history __read_mostly =
    (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
integer_param("bm_history", bm_history);

struct acpi_processor_cx;

struct acpi_processor_cx_policy
{
    u32 count;
    struct acpi_processor_cx *state;
    struct
    {
        u32 time;
        u32 ticks;
        u32 count;
        u32 bm;
    } threshold;
};

struct acpi_processor_cx
{
    u8 valid;
    u8 type;
    u32 address;
    u8 space_id;
    u32 latency;
    u32 latency_ticks;
    u32 power;
    u32 usage;
    u64 time;
    struct acpi_processor_cx_policy promotion;
    struct acpi_processor_cx_policy demotion;
};

struct acpi_processor_flags
{
    u8 bm_control:1;
    u8 bm_check:1;
    u8 has_cst:1;
    u8 power_setup_done:1;
    u8 bm_rld_set:1;
};

struct acpi_processor_power
{
    struct acpi_processor_flags flags;
    struct acpi_processor_cx *state;
    s_time_t bm_check_timestamp;
    u32 default_state;
    u32 bm_activity;
    u32 count;
    struct acpi_processor_cx states[ACPI_PROCESSOR_MAX_POWER];
};

static struct acpi_processor_power processor_powers[NR_CPUS];

static void print_acpi_power(uint32_t cpu, struct acpi_processor_power *power)
{
    uint32_t i;

    printk("saved cpu%d cx acpi info:\n", cpu);
    printk("\tcurrent state is C%d\n", (power->state)?power->state->type:-1);
    printk("\tbm_check_timestamp = %"PRId64"\n", power->bm_check_timestamp);
    printk("\tdefault_state = %d\n", power->default_state);
    printk("\tbm_activity = 0x%08x\n", power->bm_activity);
    printk("\tcount = %d\n", power->count);
    
    for ( i = 0; i < power->count; i++ )
    {
        printk("\tstates[%d]:\n", i);
        printk("\t\tvalid   = %d\n", power->states[i].valid);
        printk("\t\ttype    = %d\n", power->states[i].type);
        printk("\t\taddress = 0x%x\n", power->states[i].address);
        printk("\t\tspace_id = 0x%x\n", power->states[i].space_id);
        printk("\t\tlatency = %d\n", power->states[i].latency);
        printk("\t\tpower   = %d\n", power->states[i].power);
        printk("\t\tlatency_ticks = %d\n", power->states[i].latency_ticks);
        printk("\t\tusage   = %d\n", power->states[i].usage);
        printk("\t\ttime    = %"PRId64"\n", power->states[i].time);

        printk("\t\tpromotion policy:\n");
        printk("\t\t\tcount    = %d\n", power->states[i].promotion.count);
        printk("\t\t\tstate    = C%d\n",
               (power->states[i].promotion.state) ? 
               power->states[i].promotion.state->type : -1);
        printk("\t\t\tthreshold.time = %d\n", power->states[i].promotion.threshold.time);
        printk("\t\t\tthreshold.ticks = %d\n", power->states[i].promotion.threshold.ticks);
        printk("\t\t\tthreshold.count = %d\n", power->states[i].promotion.threshold.count);
        printk("\t\t\tthreshold.bm = %d\n", power->states[i].promotion.threshold.bm);

        printk("\t\tdemotion policy:\n");
        printk("\t\t\tcount    = %d\n", power->states[i].demotion.count);
        printk("\t\t\tstate    = C%d\n",
               (power->states[i].demotion.state) ? 
               power->states[i].demotion.state->type : -1);
        printk("\t\t\tthreshold.time = %d\n", power->states[i].demotion.threshold.time);
        printk("\t\t\tthreshold.ticks = %d\n", power->states[i].demotion.threshold.ticks);
        printk("\t\t\tthreshold.count = %d\n", power->states[i].demotion.threshold.count);
        printk("\t\t\tthreshold.bm = %d\n", power->states[i].demotion.threshold.bm);
    }
}

static void dump_cx(unsigned char key)
{
    for( int i = 0; i < num_online_cpus(); i++ )
        print_acpi_power(i, &processor_powers[i]);
}

static int __init cpu_idle_key_init(void)
{
    register_keyhandler(
        'c', dump_cx,        "dump cx structures");
    return 0;
}
__initcall(cpu_idle_key_init);

static inline u32 ticks_elapsed(u32 t1, u32 t2)
{
    if ( t2 >= t1 )
        return (t2 - t1);
    else
        return ((0xFFFFFFFF - t1) + t2);
}

static void acpi_processor_power_activate(struct acpi_processor_power *power,
                                          struct acpi_processor_cx *new)
{
    struct acpi_processor_cx *old;

    if ( !power || !new )
        return;

    old = power->state;

    if ( old )
        old->promotion.count = 0;
    new->demotion.count = 0;

    /* Cleanup from old state. */
    if ( old )
    {
        switch ( old->type )
        {
        case ACPI_STATE_C3:
            /* Disable bus master reload */
            if ( new->type != ACPI_STATE_C3 && power->flags.bm_check )
                acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
            break;
        }
    }

    /* Prepare to use new state. */
    switch ( new->type )
    {
    case ACPI_STATE_C3:
        /* Enable bus master reload */
        if ( old->type != ACPI_STATE_C3 && power->flags.bm_check )
            acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
        break;
    }

    power->state = new;

    return;
}

static void acpi_safe_halt(void)
{
    smp_mb__after_clear_bit();
    safe_halt();
}

#define MWAIT_ECX_INTERRUPT_BREAK   (0x1)

static void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
{
    __monitor((void *)current, 0, 0);
    smp_mb();
    __mwait(eax, ecx);
}

static void acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx)
{
    mwait_idle_with_hints(cx->address, MWAIT_ECX_INTERRUPT_BREAK);
}

static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
{
    if ( cx->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE )
    {
        /* Call into architectural FFH based C-state */
        acpi_processor_ffh_cstate_enter(cx);
    }
    else
    {
        int unused;
        /* IO port based C-state */
        inb(cx->address);
        /* Dummy wait op - must do something useless after P_LVL2 read
           because chipsets cannot guarantee that STPCLK# signal
           gets asserted in time to freeze execution properly. */
        unused = inl(pmtmr_ioport);
    }
}

static atomic_t c3_cpu_count;

static void acpi_processor_idle(void)
{
    struct acpi_processor_power *power = NULL;
    struct acpi_processor_cx *cx = NULL;
    struct acpi_processor_cx *next_state = NULL;
    int sleep_ticks = 0;
    u32 t1, t2 = 0;

    power = &processor_powers[smp_processor_id()];

    /*
     * Interrupts must be disabled during bus mastering calculations and
     * for C2/C3 transitions.
     */
    local_irq_disable();
    cx = power->state;
    if ( !cx )
    {
        if ( pm_idle_save )
        {
            printk(XENLOG_DEBUG "call pm_idle_save()\n");
            pm_idle_save();
        }
        else
        {
            printk(XENLOG_DEBUG "call acpi_safe_halt()\n");
            acpi_safe_halt();
        }
        return;
    }

    /*
     * Check BM Activity
     * -----------------
     * Check for bus mastering activity (if required), record, and check
     * for demotion.
     */
    if ( power->flags.bm_check )
    {
        u32 bm_status = 0;
        unsigned long diff = (NOW() - power->bm_check_timestamp) >> 23;

        if ( diff > 31 )
            diff = 31;

        power->bm_activity <<= diff;

        acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
        if ( bm_status )
        {
            power->bm_activity |= 0x1;
            acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
        }
        /*
         * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
         * the true state of bus mastering activity; forcing us to
         * manually check the BMIDEA bit of each IDE channel.
         */
        /*else if ( errata.piix4.bmisx )
        {
            if ( (inb_p(errata.piix4.bmisx + 0x02) & 0x01)
                || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01) )
                pr->power.bm_activity |= 0x1;
        }*/

        power->bm_check_timestamp = NOW();

        /*
         * If bus mastering is or was active this jiffy, demote
         * to avoid a faulty transition.  Note that the processor
         * won't enter a low-power state during this call (to this
         * function) but should upon the next.
         *
         * TBD: A better policy might be to fallback to the demotion
         *      state (use it for this quantum only) istead of
         *      demoting -- and rely on duration as our sole demotion
         *      qualification.  This may, however, introduce DMA
         *      issues (e.g. floppy DMA transfer overrun/underrun).
         */
        if ( (power->bm_activity & 0x1) && cx->demotion.threshold.bm )
        {
            local_irq_enable();
            next_state = cx->demotion.state;
            goto end;
        }
    }

    /*
     * Sleep:
     * ------
     * Invoke the current Cx state to put the processor to sleep.
     */
    if ( cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3 )
        smp_mb__after_clear_bit();

    switch ( cx->type )
    {
    case ACPI_STATE_C1:
        /*
         * Invoke C1.
         * Use the appropriate idle routine, the one that would
         * be used without acpi C-states.
         */
        if ( pm_idle_save )
            pm_idle_save();
        else 
            acpi_safe_halt();

        /*
         * TBD: Can't get time duration while in C1, as resumes
         *      go to an ISR rather than here.  Need to instrument
         *      base interrupt handler.
         */
        sleep_ticks = 0xFFFFFFFF;
        break;

    case ACPI_STATE_C2:
        /* Get start time (ticks) */
        t1 = inl(pmtmr_ioport);
        /* Invoke C2 */
        acpi_idle_do_entry(cx);
        /* Get end time (ticks) */
        t2 = inl(pmtmr_ioport);

        /* Re-enable interrupts */
        local_irq_enable();
        /* Compute time (ticks) that we were actually asleep */
        sleep_ticks =
            ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
        break;

    case ACPI_STATE_C3:
        /*
         * disable bus master
         * bm_check implies we need ARB_DIS
         * !bm_check implies we need cache flush
         * bm_control implies whether we can do ARB_DIS
         *
         * That leaves a case where bm_check is set and bm_control is
         * not set. In that case we cannot do much, we enter C3
         * without doing anything.
         */
        if ( power->flags.bm_check && power->flags.bm_control )
        {
            atomic_inc(&c3_cpu_count);
            if ( atomic_read(&c3_cpu_count) == num_online_cpus() )
            {
                /*
                 * All CPUs are trying to go to C3
                 * Disable bus master arbitration
                 */
                acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
            }
        }
        else if ( !power->flags.bm_check )
        {
            /* SMP with no shared cache... Invalidate cache  */
            ACPI_FLUSH_CPU_CACHE();
        }

        /* Get start time (ticks) */
        t1 = inl(pmtmr_ioport);

        /*
         * FIXME: Before invoking C3, be aware that TSC/APIC timer may be 
         * stopped by H/W. Without carefully handling of TSC/APIC stop issues,
         * deep C state can't work correctly.
         */
        /* preparing TSC stop */
        cstate_save_tsc();
        /* placeholder for preparing APIC stop */

        /* Invoke C3 */
        acpi_idle_do_entry(cx);

        /* placeholder for recovering APIC */

        /* recovering TSC */
        cstate_restore_tsc();

        /* Get end time (ticks) */
        t2 = inl(pmtmr_ioport);
        if ( power->flags.bm_check && power->flags.bm_control )
        {
            /* Enable bus master arbitration */
            atomic_dec(&c3_cpu_count);
            acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
        }

        /* Compute time (ticks) that we were actually asleep */
        sleep_ticks = ticks_elapsed(t1, t2);
        /* Re-enable interrupts */
        local_irq_enable();
        /* Do not account our idle-switching overhead: */
        sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;

        break;

    default:
        local_irq_enable();
        return;
    }

    cx->usage++;
    if ( (cx->type != ACPI_STATE_C1) && (sleep_ticks > 0) )
        cx->time += sleep_ticks;

    next_state = power->state;

    /*
     * Promotion?
     * ----------
     * Track the number of longs (time asleep is greater than threshold)
     * and promote when the count threshold is reached.  Note that bus
     * mastering activity may prevent promotions.
     * Do not promote above max_cstate.
     */
    if ( cx->promotion.state &&
         ((cx->promotion.state - power->states) <= max_cstate) )
    {
        if ( sleep_ticks > cx->promotion.threshold.ticks )
        {
            cx->promotion.count++;
            cx->demotion.count = 0;
            if ( cx->promotion.count >= cx->promotion.threshold.count )
            {
                if ( power->flags.bm_check )
                {
                    if ( !(power->bm_activity & cx->promotion.threshold.bm) )
                    {
                        next_state = cx->promotion.state;
                        goto end;
                    }
                }
                else
                {
                    next_state = cx->promotion.state;
                    goto end;
                }
            }
        }
    }

    /*
     * Demotion?
     * ---------
     * Track the number of shorts (time asleep is less than time threshold)
     * and demote when the usage threshold is reached.
     */
    if ( cx->demotion.state )
    {
        if ( sleep_ticks < cx->demotion.threshold.ticks )
        {
            cx->demotion.count++;
            cx->promotion.count = 0;
            if ( cx->demotion.count >= cx->demotion.threshold.count )
            {
                next_state = cx->demotion.state;
                goto end;
            }
        }
    }

end:
    /*
     * Demote if current state exceeds max_cstate
     */
    if ( (power->state - power->states) > max_cstate )
    {
        if ( cx->demotion.state )
            next_state = cx->demotion.state;
    }

    /*
     * New Cx State?
     * -------------
     * If we're going to start using a new Cx state we must clean up
     * from the previous and prepare to use the new.
     */
    if ( next_state != power->state )
        acpi_processor_power_activate(power, next_state);
}

static int acpi_processor_set_power_policy(struct acpi_processor_power *power)
{
    unsigned int i;
    unsigned int state_is_set = 0;
    struct acpi_processor_cx *lower = NULL;
    struct acpi_processor_cx *higher = NULL;
    struct acpi_processor_cx *cx;

    if ( !power )
        return -EINVAL;

    /*
     * This function sets the default Cx state policy (OS idle handler).
     * Our scheme is to promote quickly to C2 but more conservatively
     * to C3.  We're favoring C2  for its characteristics of low latency
     * (quick response), good power savings, and ability to allow bus
     * mastering activity.  Note that the Cx state policy is completely
     * customizable and can be altered dynamically.
     */

    /* startup state */
    for ( i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++ )
    {
        cx = &power->states[i];
        if ( !cx->valid )
            continue;

        if ( !state_is_set )
            power->state = cx;
        state_is_set++;
        break;
    }

    if ( !state_is_set )
        return -ENODEV;

    /* demotion */
    for ( i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++ )
    {
        cx = &power->states[i];
        if ( !cx->valid )
            continue;

        if ( lower )
        {
            cx->demotion.state = lower;
            cx->demotion.threshold.ticks = cx->latency_ticks;
            cx->demotion.threshold.count = 1;
            if ( cx->type == ACPI_STATE_C3 )
                cx->demotion.threshold.bm = bm_history;
        }

        lower = cx;
    }

    /* promotion */
    for ( i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i-- )
    {
        cx = &power->states[i];
        if ( !cx->valid )
            continue;

        if ( higher )
        {
            cx->promotion.state = higher;
            cx->promotion.threshold.ticks = cx->latency_ticks;
            if ( cx->type >= ACPI_STATE_C2 )
                cx->promotion.threshold.count = 4;
            else
                cx->promotion.threshold.count = 10;
            if ( higher->type == ACPI_STATE_C3 )
                cx->promotion.threshold.bm = bm_history;
        }

        higher = cx;
    }

    return 0;
}

static int init_cx_pminfo(struct acpi_processor_power *acpi_power)
{
    memset(acpi_power, 0, sizeof(*acpi_power));

    acpi_power->states[ACPI_STATE_C1].type = ACPI_STATE_C1;

    acpi_power->states[ACPI_STATE_C0].valid = 1;
    acpi_power->states[ACPI_STATE_C1].valid = 1;

    acpi_power->count = 2;

    return 0;
}

#define CPUID_MWAIT_LEAF (5)
#define CPUID5_ECX_EXTENSIONS_SUPPORTED (0x1)
#define CPUID5_ECX_INTERRUPT_BREAK      (0x2)

#define MWAIT_ECX_INTERRUPT_BREAK       (0x1)

#define MWAIT_SUBSTATE_MASK (0xf)
#define MWAIT_SUBSTATE_SIZE (4)

static int acpi_processor_ffh_cstate_probe(xen_processor_cx_t *cx)
{
    struct cpuinfo_x86 *c = &current_cpu_data;
    unsigned int eax, ebx, ecx, edx;
    unsigned int edx_part;
    unsigned int cstate_type; /* C-state type and not ACPI C-state type */
    unsigned int num_cstate_subtype;

    if ( c->cpuid_level < CPUID_MWAIT_LEAF )
    {
        printk(XENLOG_INFO "MWAIT leaf not supported by cpuid\n");
        return -EFAULT;
    }

    cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
    printk(XENLOG_DEBUG "cpuid.MWAIT[.eax=%x, .ebx=%x, .ecx=%x, .edx=%x]\n",
           eax, ebx, ecx, edx);

    /* Check whether this particular cx_type (in CST) is supported or not */
    cstate_type = (cx->reg.address >> MWAIT_SUBSTATE_SIZE) + 1;
    edx_part = edx >> (cstate_type * MWAIT_SUBSTATE_SIZE);
    num_cstate_subtype = edx_part & MWAIT_SUBSTATE_MASK;

    if ( num_cstate_subtype < (cx->reg.address & MWAIT_SUBSTATE_MASK) )
        return -EFAULT;

    /* mwait ecx extensions INTERRUPT_BREAK should be supported for C2/C3 */
    if ( !(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
         !(ecx & CPUID5_ECX_INTERRUPT_BREAK) )
        return -EFAULT;

    printk(XENLOG_INFO "Monitor-Mwait will be used to enter C-%d state\n", cx->type);
    return 0;
}

/*
 * Initialize bm_flags based on the CPU cache properties
 * On SMP it depends on cache configuration
 * - When cache is not shared among all CPUs, we flush cache
 *   before entering C3.
 * - When cache is shared among all CPUs, we use bm_check
 *   mechanism as in UP case
 *
 * This routine is called only after all the CPUs are online
 */
static void acpi_processor_power_init_bm_check(struct acpi_processor_flags *flags)
{
    struct cpuinfo_x86 *c = &current_cpu_data;

    flags->bm_check = 0;
    if ( num_online_cpus() == 1 )
        flags->bm_check = 1;
    else if ( c->x86_vendor == X86_VENDOR_INTEL )
    {
        /*
         * Today all CPUs that support C3 share cache.
         * TBD: This needs to look at cache shared map, once
         * multi-core detection patch makes to the base.
         */
        flags->bm_check = 1;
    }
}

#define VENDOR_INTEL                   (1)
#define NATIVE_CSTATE_BEYOND_HALT      (2)

static int check_cx(struct acpi_processor_power *power, xen_processor_cx_t *cx)
{
    static int bm_check_flag;
    if ( cx == NULL )
        return -EINVAL;

    switch ( cx->reg.space_id )
    {
    case ACPI_ADR_SPACE_SYSTEM_IO:
        if ( cx->reg.address == 0 )
            return -EINVAL;
        break;

    case ACPI_ADR_SPACE_FIXED_HARDWARE:
        if ( cx->type > ACPI_STATE_C1 )
        {
            if ( cx->reg.bit_width != VENDOR_INTEL || 
                 cx->reg.bit_offset != NATIVE_CSTATE_BEYOND_HALT )
                return -EINVAL;

            /* assume all logical cpu has the same support for mwait */
            if ( acpi_processor_ffh_cstate_probe(cx) )
                return -EFAULT;
        }
        break;

    default:
        return -ENODEV;
    }

    if ( cx->type == ACPI_STATE_C3 )
    {
        /* All the logic here assumes flags.bm_check is same across all CPUs */
        if ( !bm_check_flag )
        {
            /* Determine whether bm_check is needed based on CPU  */
            acpi_processor_power_init_bm_check(&(power->flags));
            bm_check_flag = power->flags.bm_check;
        }
        else
        {
            power->flags.bm_check = bm_check_flag;
        }

        if ( power->flags.bm_check )
        {
            if ( !power->flags.bm_control )
            {
                if ( power->flags.has_cst != 1 )
                {
                    /* bus mastering control is necessary */
                    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                        "C3 support requires BM control\n"));
                    return -1;
                }
                else
                {
                    /* Here we enter C3 without bus mastering */
                    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                        "C3 support without BM control\n"));
                }
            }
        }
        else
        {
            /*
             * WBINVD should be set in fadt, for C3 state to be
             * supported on when bm_check is not required.
             */
            if ( !(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD) )
            {
                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
                          "Cache invalidation should work properly"
                          " for C3 to be enabled on SMP systems\n"));
                return -1;
            }
            acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
        }
    }

    return 0;
}

static int set_cx(struct acpi_processor_power *acpi_power,
                  xen_processor_cx_t *xen_cx)
{
    struct acpi_processor_cx *cx;

    /* skip unsupported acpi cstate */
    if ( check_cx(acpi_power, xen_cx) )
        return -EFAULT;

    cx = &acpi_power->states[xen_cx->type];
    if ( !cx->valid )
        acpi_power->count++;

    cx->valid    = 1;
    cx->type     = xen_cx->type;
    cx->address  = xen_cx->reg.address;
    cx->space_id = xen_cx->reg.space_id;
    cx->latency  = xen_cx->latency;
    cx->power    = xen_cx->power;
    
    cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);

    return 0;   
}

int get_cpu_id(u8 acpi_id)
{
    int i;
    u8 apic_id;

    apic_id = x86_acpiid_to_apicid[acpi_id];
    if ( apic_id == 0xff )
        return -1;

    for ( i = 0; i < NR_CPUS; i++ )
    {
        if ( apic_id == x86_cpu_to_apicid[i] )
            return i;
    }

    return -1;
}

#ifdef DEBUG_PM_CX
static void print_cx_pminfo(uint32_t cpu, struct xen_processor_power *power)
{
    XEN_GUEST_HANDLE(xen_processor_cx_t) states;
    xen_processor_cx_t  state;
    XEN_GUEST_HANDLE(xen_processor_csd_t) csd;
    xen_processor_csd_t dp;
    uint32_t i;

    printk("cpu%d cx acpi info:\n", cpu);
    printk("\tcount = %d\n", power->count);
    printk("\tflags: bm_cntl[%d], bm_chk[%d], has_cst[%d],\n"
           "\t       pwr_setup_done[%d], bm_rld_set[%d]\n",
           power->flags.bm_control, power->flags.bm_check, power->flags.has_cst,
           power->flags.power_setup_done, power->flags.bm_rld_set);
    
    states = power->states;
    
    for ( i = 0; i < power->count; i++ )
    {
        if ( unlikely(copy_from_guest_offset(&state, states, i, 1)) )
            return;
        
        printk("\tstates[%d]:\n", i);
        printk("\t\treg.space_id = 0x%x\n", state.reg.space_id);
        printk("\t\treg.bit_width = 0x%x\n", state.reg.bit_width);
        printk("\t\treg.bit_offset = 0x%x\n", state.reg.bit_offset);
        printk("\t\treg.access_size = 0x%x\n", state.reg.access_size);
        printk("\t\treg.address = 0x%"PRIx64"\n", state.reg.address);
        printk("\t\ttype    = %d\n", state.type);
        printk("\t\tlatency = %d\n", state.latency);
        printk("\t\tpower   = %d\n", state.power);

        csd = state.dp;
        printk("\t\tdp(@0x%p)\n", csd.p);
        
        if ( csd.p != NULL )
        {
            if ( unlikely(copy_from_guest(&dp, csd, 1)) )
                return;
            printk("\t\t\tdomain = %d\n", dp.domain);
            printk("\t\t\tcoord_type   = %d\n", dp.coord_type);
            printk("\t\t\tnum = %d\n", dp.num);
        }
    }
}
#else
#define print_cx_pminfo(c, p)
#endif

long set_cx_pminfo(uint32_t cpu, struct xen_processor_power *power)
{
    XEN_GUEST_HANDLE(xen_processor_cx_t) states;
    xen_processor_cx_t xen_cx;
    struct acpi_processor_power *acpi_power;
    int cpu_id, i;

    if ( unlikely(!guest_handle_okay(power->states, power->count)) )
        return -EFAULT;

    print_cx_pminfo(cpu, power);

    /* map from acpi_id to cpu_id */
    cpu_id = get_cpu_id((u8)cpu);
    if ( cpu_id == -1 )
    {
        printk(XENLOG_ERR "no cpu_id for acpi_id %d\n", cpu);
        return -EFAULT;
    }

    acpi_power = &processor_powers[cpu_id];

    init_cx_pminfo(acpi_power);

    acpi_power->flags.bm_check = power->flags.bm_check;
    acpi_power->flags.bm_control = power->flags.bm_control;
    acpi_power->flags.has_cst = power->flags.has_cst;

    states = power->states;

    for ( i = 0; i < power->count; i++ )
    {
        if ( unlikely(copy_from_guest_offset(&xen_cx, states, i, 1)) )
            return -EFAULT;

        set_cx(acpi_power, &xen_cx);
    }

    /* FIXME: C-state dependency is not supported by far */
    
    /* initialize default policy */
    acpi_processor_set_power_policy(acpi_power);

    print_acpi_power(cpu_id, acpi_power);

    if ( cpu_id == 0 && pm_idle_save == NULL )
    {
        pm_idle_save = pm_idle;
        pm_idle = acpi_processor_idle;
    }
        
    return 0;
}