aboutsummaryrefslogtreecommitdiffstats
path: root/src/gadc/gadc.c
Commit message (Expand)AuthorAgeFilesLines
* Make all include paths in ugfx relative.inmarket2015-11-211-1/+1
* Big file rename to reduce problems with brain-dead IDE's that don't handle pr...inmarket2015-01-211-0/+353
* Rename lots of files to help prevent compile time name conflicts.inmarket2014-08-201-362/+0
* Update GADCinmarket2014-03-241-315/+233
* Updates to GADC to use new simpler gfx queued bufferring.inmarket2014-03-201-122/+96
* Integrate the include files with each module. Simplifies structure of code.inmarket2014-02-191-1/+1
* implemented gtimerDeinit()Joel Bodenmann2014-02-021-2/+2
* implemented some deinit()Joel Bodenmann2014-02-021-1/+9
* added deinit() routines for all modules (not implemented so far)Joel Bodenmann2014-02-021-1/+7
* Replace NULL's with 0 as NULL is not defined by the Raw32 GOS.inmarket2013-12-211-3/+3
* fixed license headersJoel Bodenmann2013-07-211-1/+1
* License header updatesinmarket2013-06-151-1/+1
* GOS module, for operating system independanceinmarket2013-05-251-45/+38
* updated license headersJoel Bodenmann2013-05-031-18/+5
* Revert "updated license headers"Joel Bodenmann2013-05-021-8/+19
* updated license headersJoel Bodenmann2013-05-021-19/+8
* Correction of copyright messageAndrew Hannam2013-03-081-1/+1
* updated copyright - 2013Joel Bodenmann2013-03-061-1/+1
* __inline becomes inline because most compilers dont like the prefixJoel Bodenmann2013-03-041-3/+3
* GAUDIN implemented with GADC driverAndrew Hannam2013-03-011-0/+11
* GADC implementation with demo programAndrew Hannam2013-02-181-38/+465
* New Subsystems GADC, GAUDIN, GAUDOUT, GMISCAndrew Hannam2013-01-171-0/+38
n262'>262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2020  gatecat <gatecat@ds0.me>
 *
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "log.h"
#include "nextpnr.h"
#include "util.h"

#include <boost/range/adaptor/reversed.hpp>
#include <queue>

NEXTPNR_NAMESPACE_BEGIN
namespace {
struct NexusFasmWriter
{
    const Context *ctx;
    std::ostream &out;
    std::vector<std::string> fasm_ctx;
    bool is_lifcl_17;

    NexusFasmWriter(const Context *ctx, std::ostream &out)
            : ctx(ctx), out(out), is_lifcl_17(ctx->args.device.find("LIFCL-17") != std::string::npos)
    {
    }

    // Add a 'dot' prefix to the FASM context stack
    void push(const std::string &x) { fasm_ctx.push_back(x); }

    // Remove a prefix from the FASM context stack
    void pop() { fasm_ctx.pop_back(); }

    // Remove N prefices from the FASM context stack
    void pop(int N)
    {
        for (int i = 0; i < N; i++)
            fasm_ctx.pop_back();
    }
    bool last_was_blank = true;
    // Insert a blank line if the last wasn't blank
    void blank()
    {
        if (!last_was_blank)
            out << std::endl;
        last_was_blank = true;
    }
    // Write out all prefices from the stack, interspersed with .
    void write_prefix()
    {
        for (auto &x : fasm_ctx)
            out << x << ".";
        last_was_blank = false;
    }
    // Write a single config bit; if value is true
    void write_bit(const std::string &name, bool value = true)
    {
        if (value) {
            write_prefix();
            out << name << std::endl;
        }
    }
    // Write a FASM attribute
    void write_attribute(const std::string &key, const std::string &value, bool str = true)
    {
        std::string qu = str ? "\"" : "";
        out << "{ " << key << "=" << qu << value << qu << " }" << std::endl;
        last_was_blank = false;
    }
    // Write a FASM comment
    void write_comment(const std::string &cmt) { out << "# " << cmt << std::endl; }
    // Write a FASM bitvector; optionally inverting the values in the process
    void write_vector(const std::string &name, const std::vector<bool> &value, bool invert = false)
    {
        write_prefix();
        out << name << " = " << int(value.size()) << "'b";
        for (auto bit : boost::adaptors::reverse(value))
            out << ((bit ^ invert) ? '1' : '0');
        out << std::endl;
    }
    // Write a FASM bitvector given an integer value
    void write_int_vector(const std::string &name, uint64_t value, int width, bool invert = false)
    {
        std::vector<bool> bits(width, false);
        for (int i = 0; i < width; i++)
            bits[i] = (value & (1ULL << i)) != 0;
        write_vector(name, bits, invert);
    }
    // Write an int vector param
    void write_int_vector_param(const CellInfo *cell, const std::string &name, uint64_t defval, int width,
                                bool invert = false)
    {
        uint64_t value = int_or_default(cell->params, ctx->id(name), defval);
        std::vector<bool> bits(width, false);
        for (int i = 0; i < width; i++)
            bits[i] = (value & (1ULL << i)) != 0;
        write_vector(stringf("%s[%d:0]", name.c_str(), width - 1), bits, invert);
    }
    // Look up an enum value in a cell's parameters and write it to the FASM in name.value format
    void write_enum(const CellInfo *cell, const std::string &name, const std::string &defval = "")
    {
        auto fnd = cell->params.find(ctx->id(name));
        if (fnd == cell->params.end()) {
            if (!defval.empty())
                write_bit(stringf("%s.%s", name.c_str(), defval.c_str()));
        } else {
            write_bit(stringf("%s.%s", name.c_str(), fnd->second.c_str()));
        }
    }
    // Look up an IO attribute in the cell's attributes and write it to the FASM in name.value format
    void write_ioattr(const CellInfo *cell, const std::string &name, const std::string &defval = "")
    {
        auto fnd = cell->attrs.find(ctx->id(name));
        if (fnd == cell->attrs.end()) {
            if (!defval.empty())
                write_bit(stringf("%s.%s", name.c_str(), defval.c_str()));
        } else {
            write_bit(stringf("%s.%s", name.c_str(), fnd->second.c_str()));
        }
    }
    void write_ioattr_postfix(const CellInfo *cell, const std::string &name, const std::string &postfix,
                              const std::string &defval = "")
    {
        auto fnd = cell->attrs.find(ctx->id(name));
        if (fnd == cell->attrs.end()) {
            if (!defval.empty())
                write_bit(stringf("%s_%s.%s", name.c_str(), postfix.c_str(), defval.c_str()));
        } else {
            write_bit(stringf("%s_%s.%s", name.c_str(), postfix.c_str(), fnd->second.c_str()));
        }
    }

    // Gets the full name of a tile
    std::string tile_name(int loc, const PhysicalTileInfoPOD &tile)
    {
        int r = loc / ctx->chip_info->width;
        int c = loc % ctx->chip_info->width;
        return stringf("%sR%dC%d__%s", ctx->nameOf(IdString(tile.prefix)), r, c, ctx->nameOf(IdString(tile.tiletype)));
    }
    // Look up a tile by location index and tile type
    const PhysicalTileInfoPOD &tile_by_type_and_loc(int loc, IdString type)
    {
        auto &ploc = ctx->chip_info->grid[loc];
        for (auto &pt : ploc.phys_tiles) {
            if (pt.tiletype == type.index)
                return pt;
        }
        log_error("No tile of type %s found at location R%dC%d", ctx->nameOf(type), loc / ctx->chip_info->width,
                  loc % ctx->chip_info->width);
    }
    // Gets the single tile at a location
    const PhysicalTileInfoPOD &tile_at_loc(int loc)
    {
        auto &ploc = ctx->chip_info->grid[loc];
        NPNR_ASSERT(ploc.phys_tiles.size() == 1);
        return ploc.phys_tiles[0];
    }
    // Escape an internal prjoxide name for FASM by replacing : with __
    std::string escape_name(const std::string &name)
    {
        std::string escaped;
        for (char c : name) {
            if (c == ':')
                escaped += "__";
            else
                escaped += c;
        }
        return escaped;
    }
    // Push a tile name onto the prefix stack
    void push_tile(int loc, IdString tile_type) { push(tile_name(loc, tile_by_type_and_loc(loc, tile_type))); }
    void push_tile(int loc) { push(tile_name(loc, tile_at_loc(loc))); }
    // Push a bel name onto the prefix stack
    void push_belname(BelId bel) { push(ctx->nameOf(IdString(ctx->bel_data(bel).name))); }
    // Push the tile group name corresponding to a bel onto the prefix stack
    void push_belgroup(BelId bel)
    {
        int r = bel.tile / ctx->chip_info->width;
        int c = bel.tile % ctx->chip_info->width;
        auto &bel_data = ctx->bel_data(bel);
        r += bel_data.rel_y;
        c += bel_data.rel_x;
        std::string s = stringf("R%dC%d_%s", r, c, ctx->nameOf(IdString(ctx->bel_data(bel).name)));
        push(s);
    }
    // Push a bel's group and name
    void push_bel(BelId bel)
    {
        push_belgroup(bel);
        fasm_ctx.back() += stringf(".%s", ctx->nameOf(IdString(ctx->bel_data(bel).name)));
    }
    // Write out a pip in tile.dst.src format
    void write_pip(PipId pip)
    {
        auto &pd = ctx->pip_data(pip);
        if ((pd.flags & PIP_FIXED_CONN) || (pd.flags & PIP_LUT_PERM))
            return;
        std::string tile = tile_name(pip.tile, tile_by_type_and_loc(pip.tile, IdString(pd.tile_type)));
        std::string source_wire = escape_name(ctx->pip_src_wire_name(pip).str(ctx));
        if (source_wire == "LOCAL_VCC")
            source_wire = "G__VCC";
        std::string dest_wire = escape_name(ctx->pip_dst_wire_name(pip).str(ctx));
        out << stringf("%s.PIP.%s.%s", tile.c_str(), dest_wire.c_str(), source_wire.c_str()) << std::endl;
    }
    // Write out all the pips corresponding to a net
    void write_net(const NetInfo *net)
    {
        write_comment(stringf("Net %s", ctx->nameOf(net)));
        std::set<PipId> sorted_pips;
        for (auto &w : net->wires)
            if (w.second.pip != PipId())
                sorted_pips.insert(w.second.pip);
        for (auto p : sorted_pips)
            write_pip(p);
        blank();
    }
    // Find the CIBMUX output for a signal
    WireId find_cibmux(WireId cursor)
    {
        if (cursor == WireId())
            return WireId();
        for (int i = 0; i < 10; i++) {
            std::string cursor_name = IdString(ctx->wire_data(cursor).name).str(ctx);
            if (cursor_name.find("JCIBMUXOUT") == 0) {
                return cursor;
            }
            for (PipId pip : ctx->getPipsUphill(cursor))
                if (ctx->checkPipAvail(pip)) {
                    cursor = ctx->getPipSrcWire(pip);
                    break;
                }
        }
        return WireId();
    }
    // Write out the mux config for a cell
    void write_cell_muxes(const CellInfo *cell)
    {
        for (auto &port : cell->ports) {
            // Only relevant to inputs
            if (port.second.type != PORT_IN)
                continue;
            auto pin_style = ctx->get_cell_pin_style(cell, port.first);
            auto pin_mux = ctx->get_cell_pinmux(cell, port.first);
            // Invertible pins
            if (pin_style & PINOPT_INV) {
                if (pin_mux == PINMUX_INV || pin_mux == PINMUX_0)
                    write_bit(stringf("%sMUX.INV", ctx->nameOf(port.first)));
                else if (pin_mux == PINMUX_SIG && !(pin_style & PINBIT_GATED))
                    write_bit(stringf("%sMUX.%s", ctx->nameOf(port.first), ctx->nameOf(port.first)));
            }
            // Pins that must be explictly enabled
            if ((pin_style & PINBIT_GATED) && (pin_mux == PINMUX_SIG) && (port.second.net != nullptr))
                write_bit(stringf("%sMUX.%s", ctx->nameOf(port.first), ctx->nameOf(port.first)));
            // Pins that must be explictly set to 1 rather than just left floating
            if ((pin_style & PINBIT_1) && (pin_mux == PINMUX_1))
                write_bit(stringf("%sMUX.1", ctx->nameOf(port.first)));
            // Handle CIB muxes - these must be set such that floating pins really are floating to VCC and not connected
            // to another CIB signal
            if ((pin_style & PINBIT_CIBMUX) && port.second.net == nullptr) {
                WireId cibmuxout = find_cibmux(ctx->getBelPinWire(cell->bel, port.first));
                if (cibmuxout != WireId()) {
                    write_comment(stringf("CIBMUX for unused pin %s", ctx->nameOf(port.first)));
                    bool found = false;
                    for (PipId pip : ctx->getPipsUphill(cibmuxout)) {
                        if (ctx->checkPipAvail(pip) && ctx->checkWireAvail(ctx->getPipSrcWire(pip))) {
                            write_pip(pip);
                            found = true;
                            break;
                        }
                    }
                    NPNR_ASSERT(found);
                }
            }
        }
    }

    // Handle route-through DCCs
    void write_dcc_thru()
    {
        for (auto bel : ctx->getBels()) {
            if (ctx->getBelType(bel) != id_DCC)
                continue;
            if (!ctx->checkBelAvail(bel))
                continue;
            WireId dst = ctx->getBelPinWire(bel, id_CLKO);
            if (ctx->getBoundWireNet(dst) == nullptr)
                continue;
            // Set up the CIBMUX so CE is guaranteed to be tied high
            WireId ce = ctx->getBelPinWire(bel, id_CE);
            WireId cibmuxout = find_cibmux(ce);
            NPNR_ASSERT(cibmuxout != WireId());

            write_comment(stringf("CE CIBMUX for DCC route-thru %s", ctx->nameOfBel(bel)));
            bool found = false;
            for (PipId pip : ctx->getPipsUphill(cibmuxout)) {
                if (ctx->checkPipAvail(pip) && ctx->checkWireAvail(ctx->getPipSrcWire(pip))) {
                    write_pip(pip);
                    found = true;
                    break;
                }
            }
            NPNR_ASSERT(found);
        }
    }

    unsigned permute_init(const CellInfo *cell)
    {
        unsigned orig_init = int_or_default(cell->params, id_INIT, 0);
        std::array<std::vector<unsigned>, 4> phys_to_log;
        const std::array<IdString, 4> ports{id_A, id_B, id_C, id_D};
        for (unsigned i = 0; i < 4; i++) {
            WireId pin_wire = ctx->getBelPinWire(cell->bel, ports[i]);
            for (PipId pip : ctx->getPipsUphill(pin_wire)) {
                if (!ctx->getBoundPipNet(pip))
                    continue;
                const auto &data = ctx->pip_data(pip);
                if (data.flags & PIP_FIXED_CONN) { // non-permuting
                    phys_to_log[i].push_back(i);
                } else { // permuting
                    NPNR_ASSERT(data.flags & PIP_LUT_PERM);
                    unsigned from_pin = (data.flags >> 4) & 0xF;
                    unsigned to_pin = (data.flags >> 0) & 0xF;
                    NPNR_ASSERT(to_pin == i);
                    phys_to_log[from_pin].push_back(i);
                }
            }
        }
        unsigned permuted_init = 0;
        for (unsigned i = 0; i < 16; i++) {
            unsigned log_idx = 0;
            for (unsigned j = 0; j < 4; j++) {
                if ((i >> j) & 0x1) {
                    for (auto log_pin : phys_to_log[j])
                        log_idx |= (1 << log_pin);
                }
            }
            if ((orig_init >> log_idx) & 0x1)
                permuted_init |= (1 << i);
        }
        return permuted_init;
    }

    // Write config for an OXIDE_COMB cell
    void write_comb(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        int z = ctx->bel_data(bel).z;
        int k = z & 0x1;
        char slice = 'A' + (z >> 3);
        push_tile(bel.tile, id_PLC);
        push(stringf("SLICE%c", slice));
        if (cell->params.count(id_INIT))
            write_int_vector(stringf("K%d.INIT[15:0]", k), permute_init(cell), 16);
        if (cell->lutInfo.is_carry) {
            write_bit("MODE.CCU2");
            write_enum(cell, "CCU2.INJECT", "NO");
        }
        pop(2);
    }
    // Write config for an OXIDE_FF cell
    void write_ff(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        int z = ctx->bel_data(bel).z;
        int k = z & 0x1;
        char slice = 'A' + (z >> 3);
        push_tile(bel.tile, id_PLC);
        push(stringf("SLICE%c", slice));
        push(stringf("REG%d", k));
        write_bit("USED.YES");
        write_enum(cell, "REGSET", "RESET");
        write_enum(cell, "LSRMODE", "LSR");
        write_enum(cell, "SEL", "DF");
        pop();
        write_enum(cell, "REGDDR");
        write_enum(cell, "SRMODE");
        write_cell_muxes(cell);
        pop(2);
    }

    // Write out config for an OXIDE_RAMW cell
    void write_ramw(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        push_tile(bel.tile, id_PLC);
        push("SLICEC");
        write_bit("MODE.RAMW");
        write_cell_muxes(cell);
        pop(2);
    }

    pool<BelId> used_io;

    struct BankConfig
    {
        bool diff_used = false;
        bool lvds_used = false;
        bool slvs_used = false;
        bool dphy_used = false;
    };

    std::map<int, BankConfig> bank_cfg;

    // Write config for an SEIO33_CORE cell
    void write_io33(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        used_io.insert(bel);
        push_bel(bel);
        const NetInfo *t = cell->getPort(id_T);
        auto tmux = ctx->get_cell_pinmux(cell, id_T);
        bool is_input = false, is_output = false;
        if (tmux == PINMUX_0) {
            is_output = true;
        } else if (tmux == PINMUX_1 || t == nullptr) {
            is_input = true;
        }
        const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
        write_bit(stringf("BASE_TYPE.%s_%s", iodir, str_or_default(cell->attrs, id_IO_TYPE, "LVCMOS33").c_str()));
        write_ioattr(cell, "PULLMODE", "NONE");
        write_ioattr(cell, "GLITCHFILTER", "OFF");
        write_ioattr(cell, "SLEWRATE", str_or_default(cell->attrs, id_SLEWRATE, "MED").c_str());
        write_cell_muxes(cell);
        pop();
    }
    // Write config for an SEIO18_CORE cell
    void write_io18(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        used_io.insert(bel);
        push_bel(bel);
        push("SEIO18");
        const NetInfo *t = cell->getPort(id_T);
        auto tmux = ctx->get_cell_pinmux(cell, id_T);
        bool is_input = false, is_output = false;
        if (tmux == PINMUX_0) {
            is_output = true;
        } else if (tmux == PINMUX_1 || t == nullptr) {
            is_input = true;
        }
        auto &bank = bank_cfg[ctx->get_bel_pad(bel)->bank];
        if (is_lifcl_17 && (is_output || !is_input))
            bank.diff_used = true; // what exactly should this bit be called?
        const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
        write_bit(stringf("BASE_TYPE.%s_%s", iodir, str_or_default(cell->attrs, id_IO_TYPE, "LVCMOS18H").c_str()));
        write_ioattr(cell, "PULLMODE", "NONE");
        write_ioattr(cell, "SLEWRATE", str_or_default(cell->attrs, id_SLEWRATE, "MED").c_str());
        pop();
        write_cell_muxes(cell);
        pop();
    }
    // Write config for an SEIO18_CORE cell
    void write_diffio18(const CellInfo *cell)
    {
        BelId bel = cell->bel;

        Loc bel_loc = ctx->getBelLocation(bel);
        for (int i = 0; i < 2; i++) {
            // Mark both A and B pins as used
            used_io.insert(ctx->getBelByLocation(Loc(bel_loc.x, bel_loc.y, i)));
        }
        push_belgroup(bel);
        push("PIOA");
        push("DIFFIO18");

        auto &bank = bank_cfg[ctx->get_bel_pad(ctx->getBelByLocation(Loc(bel_loc.x, bel_loc.y, 0)))->bank];

        bank.diff_used = true;

        const NetInfo *t = cell->getPort(id_T);
        auto tmux = ctx->get_cell_pinmux(cell, id_T);
        bool is_input = false, is_output = false;
        if (tmux == PINMUX_0) {
            is_output = true;
        } else if (tmux == PINMUX_1 || t == nullptr) {
            is_input = true;
        }

        const char *iodir = is_input ? "INPUT" : (is_output ? "OUTPUT" : "BIDIR");
        std::string type = str_or_default(cell->attrs, id_IO_TYPE, "LVDS");
        write_bit(stringf("BASE_TYPE.%s_%s", iodir, type.c_str()));
        if (type == "LVDS") {
            write_ioattr_postfix(cell, "DIFFDRIVE", "LVDS", "3P5");
            bank.lvds_used = true;
        } else if (type == "SLVS") {
            write_ioattr_postfix(cell, "DIFFDRIVE", "SLVS", "2P0");
            bank.slvs_used = true;
        } else if (type == "MIPI_DPHY") {
            write_ioattr_postfix(cell, "DIFFDRIVE", "MIPI_DPHY", "2P0");
            bank.dphy_used = true;
        }

        write_ioattr(cell, "PULLMODE", "FAILSAFE");
        write_ioattr(cell, "DIFFRESISTOR");
        pop();
        write_cell_muxes(cell);
        pop(2);
    }
    // Write config for an OSC_CORE cell
    void write_osc(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        push_tile(bel.tile);
        push_belname(bel);
        write_enum(cell, "HF_OSC_EN", "ENABLED");
        write_enum(cell, "HF_FABRIC_EN");
        write_enum(cell, "HFDIV_FABRIC_EN", "ENABLED");
        write_enum(cell, "LF_FABRIC_EN");
        write_enum(cell, "LF_OUTPUT_EN");
        write_enum(cell, "DEBUG_N", "DISABLED");
        write_int_vector(stringf("HF_CLK_DIV[7:0]"), ctx->parse_lattice_param(cell, id_HF_CLK_DIV, 8, 0).intval, 8);
        write_cell_muxes(cell);
        pop(2);
    }
    // Write config for an OXIDE_EBR cell
    void write_bram(const CellInfo *cell)
    {
        // EBR configuration
        BelId bel = cell->bel;
        push_bel(bel);
        int wid = int_or_default(cell->params, id_WID, 0);
        std::string mode = str_or_default(cell->params, id_MODE, "");

        write_bit(stringf("MODE.%s_MODE", mode.c_str()));
        write_enum(cell, "INIT_DATA", "STATIC");
        write_enum(cell, "GSR", "DISABLED");

        write_int_vector("WID[10:0]", wid, 11);

        push(stringf("%s_MODE", mode.c_str()));

        if (mode == "DP16K") {
            write_int_vector_param(cell, "CSDECODE_A", 7, 3, true);
            write_int_vector_param(cell, "CSDECODE_B", 7, 3, true);
            write_enum(cell, "ASYNC_RST_RELEASE_A");
            write_enum(cell, "ASYNC_RST_RELEASE_B");
            write_enum(cell, "DATA_WIDTH_A");
            write_enum(cell, "DATA_WIDTH_B");
            write_enum(cell, "OUTREG_A");
            write_enum(cell, "OUTREG_B");
            write_enum(cell, "RESETMODE_A");
            write_enum(cell, "RESETMODE_B");
        } else if (mode == "PDP16K" || mode == "PDPSC16K") {
            write_int_vector_param(cell, "CSDECODE_W", 7, 3, true);
            write_int_vector_param(cell, "CSDECODE_R", 7, 3, true);
            write_enum(cell, "ASYNC_RST_RELEASE");
            write_enum(cell, "DATA_WIDTH_W");
            write_enum(cell, "DATA_WIDTH_R");
            write_enum(cell, "OUTREG");
            write_enum(cell, "RESETMODE");
        }

        pop();
        push("DP16K_MODE"); // muxes always use the DP16K perspective
        write_cell_muxes(cell);
        pop(2);
        blank();

        // EBR initialisation
        if (wid > 0) {
            push(stringf("IP_EBR_WID%d", wid));
            for (int i = 0; i < 64; i++) {
                IdString param = ctx->id(stringf("INITVAL_%02X", i));
                if (!cell->params.count(param))
                    continue;
                auto &prop = cell->params.at(param);
                std::string value;
                if (prop.is_string) {
                    NPNR_ASSERT(prop.str.substr(0, 2) == "0x");
                    // Lattice-style hex string
                    value = prop.str.substr(2);
                    value = stringf("320'h%s", value.c_str());
                } else {
                    // True Verilog bitvector
                    value = stringf("320'b%s", prop.str.c_str());
                }
                write_bit(stringf("INITVAL_%02X[319:0] = %s", i, value.c_str()));
            }
            pop();
        }
    }

    bool is_mux_param(const std::string &key)
    {
        return (key.size() >= 3 && (key.compare(key.size() - 3, 3, "MUX") == 0));
    }

    // Write config for some kind of IOLOGIC cell
    void write_iol(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        push_bel(bel);
        write_enum(cell, "MODE");
        write_enum(cell, "IDDRX1_ODDRX1.OUTPUT");
        write_enum(cell, "IDDRX1_ODDRX1.TRISTATE");
        write_enum(cell, "GSR", "DISABLED");
        write_enum(cell, "TSREG.REGSET", "RESET");
        write_cell_muxes(cell);
        pop();
    }

    // Write config for some kind of DSP cell
    void write_dsp(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        push_bel(bel);
        if (cell->type != id_MULT18_CORE && cell->type != id_MULT18X36_CORE && cell->type != id_MULT36_CORE)
            write_bit(stringf("MODE.%s", ctx->nameOf(cell->type)));
        for (auto &param : cell->params) {
            const std::string &param_name = param.first.str(ctx);
            if (is_mux_param(param_name))
                continue;
            if (param.first == id_ROUNDBIT) {
                // currently unsupported in oxide, but appears rarely used
                NPNR_ASSERT(param.second.as_string() == "ROUND_TO_BIT0");
                continue;
            }
            write_enum(cell, param_name);
        }
        write_cell_muxes(cell);
        pop();
    }

    // Which PLL params are 'word' values
    /* clang-format off */
    const dict<std::string, int> pll_word_params = {
            {"DIVA", 7}, {"DELA", 7}, {"PHIA", 3}, {"DIVB", 7},
            {"DELB", 7}, {"PHIB", 3}, {"DIVC", 7}, {"DELC", 7},
            {"PHIC", 3}, {"DIVD", 7}, {"DELD", 7}, {"PHID", 3},
            {"DIVE", 7},  {"DELE", 7}, {"PHIE", 3}, {"DIVF", 7},
            {"DELF", 7}, {"PHIF", 3}, {"BW_CTL_BIAS", 4},
            {"CLKOP_TRIM", 4}, {"CLKOS_TRIM", 4}, {"CLKOS2_TRIM", 4},
            {"CLKOS3_TRIM", 4}, {"CLKOS4_TRIM", 4}, {"CLKOS5_TRIM", 4},
            {"DIV_DEL", 7}, {"DYN_SEL", 3}, {"FBK_CUR_BLE", 8}, {"FBK_IF_TIMING_CTL", 2},
            {"FBK_MASK", 8}, {"FBK_MMD_DIG", 8}, {"FBK_MMD_PULS_CTL", 4},
            {"FBK_MODE", 2}, {"FBK_PI_RC", 4}, {"FBK_PR_CC", 4},
            {"FBK_PR_IC", 4}, {"FBK_RSV", 16},
            {"IPI_CMP", 4}, {"IPI_CMPN", 4},
            {"IPP_CTRL", 4}, {"IPP_SEL", 4},
            {"KP_VCO", 5},
            {"MFG_CTRL", 4}, {"MFGOUT1_SEL", 3}, {"MFGOUT2_SEL", 3},
            {"REF_MASK", 8}, {"REF_MMD_DIG", 8}, {"REF_MMD_IN", 8},
            {"REF_MMD_PULS_CTL", 4}, {"REF_TIMING_CTL", 2},
            {"RESERVED", 7}, {"SSC_DELTA", 15},
            {"SSC_DELTA_CTL", 2},  {"SSC_F_CODE", 15},
            {"SSC_N_CODE", 9}, {"SSC_REG_WEIGHTING_SEL", 3},
            {"SSC_STEP_IN", 7}, {"SSC_TBASE", 12},
            {"V2I_PP_ICTRL", 5},
    };

    // Which MIPI params are 'word' values
    const dict<std::string, int> dphy_word_params = {
            {"CM", 8}, {"CN", 5}, {"CO", 3}, {"RSEL", 2}, {"RXCDRP", 2},
            {"RXDATAWIDTHHS", 2}, {"RXLPRP", 3}, {"TEST_ENBL", 6},
            {"TEST_PATTERN", 32}, {"TST", 4}, {"TXDATAWIDTHHS", 2},
            {"UC_PRG_RXHS_SETTLE", 6}, {"U_PRG_HS_PREPARE", 2},
            {"U_PRG_HS_TRAIL", 6}, {"U_PRG_HS_ZERO", 6}, {"U_PRG_RXHS_SETTLE", 6}
    };
    /* clang-format on */

    // Write out config for some kind of PLL cell
    void write_pll(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        push_bel(bel);
        write_bit("MODE.PLL_CORE");
        write_enum(cell, "CLKMUX_FB");
        write_cell_muxes(cell);
        pop();
        push(stringf("IP_%s", ctx->nameOf(IdString(ctx->bel_data(bel).name))));
        for (auto &param : cell->params) {
            const std::string &name = param.first.str(ctx);
            if (is_mux_param(name) || name == "CLKMUX_FB" || name == "SEL_FBK")
                continue;
            auto fnd_word = pll_word_params.find(name);
            if (fnd_word != pll_word_params.end()) {
                write_int_vector(stringf("%s[%d:0]", name.c_str(), fnd_word->second - 1),
                                 ctx->parse_lattice_param(cell, param.first, fnd_word->second, 0).as_int64(),
                                 fnd_word->second);
            } else {
                write_bit(stringf("%s.%s", name.c_str(), param.second.as_string().c_str()));
            }
        }
        pop();
    }
    // Write out config for a DPHY_CORE cell
    // TODO: duplication with PLL and other hard IP...
    void write_dphy(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        push(stringf("IP_%s", ctx->nameOf(IdString(ctx->bel_data(bel).name))));
        for (auto &param : cell->params) {
            const std::string &name = param.first.str(ctx);
            if (is_mux_param(name) || name == "GSR")
                continue;
            auto fnd_word = dphy_word_params.find(name);
            if (fnd_word != dphy_word_params.end()) {
                write_int_vector(stringf("%s[%d:0]", name.c_str(), fnd_word->second - 1),
                                 ctx->parse_lattice_param(cell, param.first, fnd_word->second, 0).as_int64(),
                                 fnd_word->second);
            } else {
                write_bit(stringf("%s.%s", name.c_str(), param.second.as_string().c_str()));
            }
        }
        pop();
    }
    // Write out config for an LRAM_CORE cell
    void write_lram(const CellInfo *cell)
    {
        BelId bel = cell->bel;
        push_bel(bel);
        if (is_lifcl_17)
            write_bit("MODE.LRAM_CORE");
        write_enum(cell, "ASYNC_RST_RELEASE", "SYNC");
        write_enum(cell, "EBR_SP_EN", "DISABLE");
        write_enum(cell, "ECC_BYTE_SEL", "BYTE_EN");
        write_enum(cell, "GSR", "DISABLED");
        write_enum(cell, "OUT_REGMODE_A", "NO_REG");
        write_enum(cell, "OUT_REGMODE_B", "NO_REG");
        write_enum(cell, "RESETMODE", "SYNC");
        write_enum(cell, "UNALIGNED_READ", "DISABLE");
        write_cell_muxes(cell);
        pop();
        blank();

        Loc l = ctx->getBelLocation(bel);
        if (is_lifcl_17 && l.x == 0)
            l.x = 1;
        push(stringf("IP_LRAM_CORE_R%dC%d", l.y, l.x));
        for (int i = 0; i < 128; i++) {
            IdString param = ctx->id(stringf("INITVAL_%02X", i));
            if (!cell->params.count(param))
                continue;
            auto &prop = cell->params.at(param);
            std::string value;
            if (prop.is_string) {
                NPNR_ASSERT(prop.str.substr(0, 2) == "0x");
                // Lattice-style hex string
                value = prop.str.substr(2);
                value = stringf("5120'h%s", value.c_str());
            } else {
                // True Verilog bitvector
                value = stringf("5120'b%s", prop.str.c_str());
            }
            write_bit(stringf("INITVAL_%02X[5119:0] = %s", i, value.c_str()));
        }
        pop();
    }
    // Write out FASM for unused bels where needed
    void write_unused()
    {
        write_comment("# Unused bels");

        // DSP primitives are configured to a default mode; even if unused
        static const dict<IdString, std::vector<std::string>> dsp_defconf = {
                {id_MULT9_CORE,
                 {
                         "GSR.ENABLED",
                         "MODE.NONE",
                         "RSTAMUX.RSTA",
                         "RSTPMUX.RSTP",
                 }},
                {id_PREADD9_CORE,
                 {
                         "GSR.ENABLED",
                         "MODE.NONE",
                         "RSTBMUX.RSTB",
                         "RSTCLMUX.RSTCL",
                 }},
                {id_REG18_CORE,
                 {
                         "GSR.ENABLED",
                         "MODE.NONE",
                         "RSTPMUX.RSTP",
                 }},
                {id_ACC54_CORE,
                 {
                         "ACCUBYPS.BYPASS",
                         "MODE.NONE",
                 }},
        };

        for (BelId bel : ctx->getBels()) {
            IdString type = ctx->getBelType(bel);
            if (type == id_SEIO33_CORE && !used_io.count(bel)) {
                push_bel(bel);
                write_bit("BASE_TYPE.NONE");
                pop();
                blank();
            } else if (type == id_SEIO18_CORE && !used_io.count(bel)) {
                push_bel(bel);
                push("SEIO18");
                write_bit("BASE_TYPE.NONE");
                pop(2);
                blank();
            } else if (dsp_defconf.count(type) && ctx->getBoundBelCell(bel) == nullptr) {
                push_bel(bel);
                for (const auto &cbit : dsp_defconf.at(type))
                    write_bit(cbit);
                pop();
                blank();
            }
        }
    }
    dict<int, int> bank_vcco;
    // bank VccO in mV
    int get_bank_vcco(const std::string &iostd)
    {
        if (iostd == "LVCMOS33" || iostd == "LVCMOS33D")
            return 3300;
        else if (iostd == "LVCMOS25" || iostd == "LVCMOS25D")
            return 2500;
        else if (iostd == "LVCMOS18")
            return 1800;
        else if (iostd == "LVCMOS15")
            return 1500;
        else if (iostd == "LVCMOS12")
            return 1200;
        else
            return -1;
    }
    // Write out placeholder bankref config
    void write_bankcfg()
    {
        for (auto &c : ctx->cells) {
            const CellInfo *ci = c.second.get();
            if (ci->type != id_SEIO33_CORE)
                continue;
            if (!ci->attrs.count(id_IO_TYPE))
                continue;
            // VccO only concerns outputs
            const NetInfo *t = ci->getPort(id_T);
            auto tmux = ctx->get_cell_pinmux(ci, id_T);
            if (tmux == PINMUX_1 || (tmux != PINMUX_0 && t == nullptr))
                continue;
            int bank = ctx->get_bel_pad(ci->bel)->bank;
            std::string iostd = ci->attrs.at(id_IO_TYPE).as_string();
            int vcco = get_bank_vcco(iostd);
            if (vcco == -1) {
                log_warning("Unexpected IO standard '%s' on port '%s'\n", iostd.c_str(), ctx->nameOf(ci));
                continue;
            }
            if (bank_vcco.count(bank) && bank_vcco.at(bank) != vcco) {
                log_warning("Conflicting Vcco %.1fV and %.1fV on bank %d\n", bank_vcco.at(bank) / 1000.0, vcco / 1000.0,
                            bank);
                continue;
            }
            bank_vcco[bank] = vcco;
        }
        for (int i = 0; i < 8; i++) {
            if (i >= 3 && i <= 5) {
                // 1.8V banks
                push(stringf("GLOBAL.BANK%d", i));
                auto &bank = bank_cfg[i];
                write_bit("DIFF_IO.ON", bank.diff_used);
                write_bit("LVDS_IO.ON", bank.lvds_used);
                write_bit("SLVS_IO.ON", bank.slvs_used);
                write_bit("MIPI_DPHY_IO.ON", bank.dphy_used);

                pop();
            } else {
                if (is_lifcl_17 && (i != 0) && (i != 1))
                    continue;
                auto vcco = bank_vcco.find(i);
                if (vcco != bank_vcco.end())
                    write_bit(stringf("GLOBAL.BANK%d.VCC.%dV%d", i, vcco->second / 1000, (vcco->second / 100) % 10));
                else
                    write_bit(stringf("GLOBAL.BANK%d.VCC.3V3", i));
            }
        }
        blank();
    }
    // Write out FASM for the whole design
    void operator()()
    {
        // Write device config
        write_attribute("oxide.device", ctx->device);
        write_attribute("oxide.device_variant", ctx->variant);
        blank();
        // Write routing
        for (auto &n : ctx->nets) {
            write_net(n.second.get());
        }
        // Write cell config
        for (auto &c : ctx->cells) {
            const CellInfo *ci = c.second.get();
            write_comment(stringf("# Cell %s", ctx->nameOf(ci)));
            if (ci->type == id_OXIDE_COMB)
                write_comb(ci);
            else if (ci->type == id_OXIDE_FF)
                write_ff(ci);
            else if (ci->type == id_RAMW)
                write_ramw(ci);
            else if (ci->type == id_SEIO33_CORE)
                write_io33(ci);
            else if (ci->type == id_SEIO18_CORE)
                write_io18(ci);
            else if (ci->type == id_DIFFIO18_CORE)
                write_diffio18(ci);
            else if (ci->type == id_OSC_CORE)
                write_osc(ci);
            else if (ci->type == id_OXIDE_EBR)
                write_bram(ci);
            else if (ci->type == id_MULT9_CORE || ci->type == id_PREADD9_CORE || ci->type == id_MULT18_CORE ||
                     ci->type == id_MULT18X36_CORE || ci->type == id_MULT36_CORE || ci->type == id_REG18_CORE ||
                     ci->type == id_ACC54_CORE)
                write_dsp(ci);
            else if (ci->type == id_PLL_CORE)
                write_pll(ci);
            else if (ci->type == id_LRAM_CORE)
                write_lram(ci);
            else if (ci->type == id_DPHY_CORE)
                write_dphy(ci);
            else if (ci->type == id_IOLOGIC || ci->type == id_SIOLOGIC)
                write_iol(ci);
            blank();
        }
        // Handle DCC route-throughs
        write_dcc_thru();
        // Write config for unused bels
        write_unused();
        // Write bank config
        write_bankcfg();
    }
};
} // namespace

void Arch::write_fasm(std::ostream &out) const { NexusFasmWriter(getCtx(), out)(); }

NEXTPNR_NAMESPACE_END