/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] Power-Modulus Algorithm // Schneier, Bruce (1996). Applied Cryptography: Protocols, Algorithms, and Source Code in C, // Second Edition (2nd ed.). Wiley. ISBN 978-0-471-11709-4, page 244 #include "kernel/yosys.h" #include "libs/bigint/BigIntegerLibrary.hh" YOSYS_NAMESPACE_BEGIN static void extend_u0(RTLIL::Const &arg, int width, bool is_signed) { RTLIL::State padding = RTLIL::State::S0; if (arg.bits.size() > 0 && is_signed) padding = arg.bits.back(); while (int(arg.bits.size()) < width) arg.bits.push_back(padding); arg.bits.resize(width); } static BigInteger const2big(const RTLIL::Const &val, bool as_signed, int &undef_bit_pos) { BigUnsigned mag; BigInteger::Sign sign = BigInteger::positive; State inv_sign_bit = RTLIL::State::S1; size_t num_bits = val.bits.size(); if (as_signed && num_bits && val.bits[num_bits-1] == RTLIL::State::S1) { inv_sign_bit = RTLIL::State::S0; sign = BigInteger::negative; num_bits--; } for (size_t i = 0; i < num_bits; i++) if (val.bits[i] == RTLIL::State::S0 || val.bits[i] == RTLIL::State::S1) mag.setBit(i, val.bits[i] == inv_sign_bit); else if (undef_bit_pos < 0) undef_bit_pos = i; if (sign == BigInteger::negative) mag += 1; return BigInteger(mag, sign); } static RTLIL::Const big2const(const BigInteger &val, int result_len, int undef_bit_pos) { if (undef_bit_pos >= 0) return RTLIL::Const(RTLIL::State::Sx, result_len); BigUnsigned mag = val.getMagnitude(); RTLIL::Const result(0, result_len); if (!mag.isZero()) { if (val.getSign() < 0) { mag--; for (int i = 0; i < result_len; i++) result.bits[i] = mag.getBit(i) ? RTLIL::State::S0 : RTLIL::State::S1; } else { for (int i = 0; i < result_len; i++) result.bits[i] = mag.getBit(i) ? RTLIL::State::S1 : RTLIL::State::S0; } } #if 0 if (undef_bit_pos >= 0) for (int i = undef_bit_pos; i < result_len; i++) result.bits[i] = RTLIL::State::Sx; #endif return result; } static RTLIL::State logic_and(RTLIL::State a, RTLIL::State b) { if (a == RTLIL::State::S0) return RTLIL::State::S0; if (b == RTLIL::State::S0) return RTLIL::State::S0; if (a != RTLIL::State::S1) return RTLIL::State::Sx; if (b != RTLIL::State::S1) return RTLIL::State::Sx; return RTLIL::State::S1; } static RTLIL::State logic_or(RTLIL::State a, RTLIL::State b) { if (a == RTLIL::State::S1) return RTLIL::State::S1; if (b == RTLIL::State::S1) return RTLIL::State::S1; if (a != RTLIL::State::S0) return RTLIL::State::Sx; if (b != RTLIL::State::S0) return RTLIL::State::Sx; return RTLIL::State::S0; } static RTLIL::State logic_xor(RTLIL::State a, RTLIL::State b) { if (a != RTLIL::State::S0 && a != RTLIL::State::S1) return RTLIL::State::Sx; if (b != RTLIL::State::S0 && b != RTLIL::State::S1) return RTLIL::State::Sx; return a != b ? RTLIL::State::S1 : RTLIL::State::S0; } static RTLIL::State logic_xnor(RTLIL::State a, RTLIL::State b) { if (a != RTLIL::State::S0 && a != RTLIL::State::S1) return RTLIL::State::Sx; if (b != RTLIL::State::S0 && b != RTLIL::State::S1) return RTLIL::State::Sx; return a == b ? RTLIL::State::S1 : RTLIL::State::S0; } RTLIL::Const RTLIL::const_not(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { if (result_len < 0) result_len = arg1.bits.size(); RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, result_len, signed1); RTLIL::Const result(RTLIL::State::Sx, result_len); for (size_t i = 0; i < size_t(result_len); i++) { if (i >= arg1_ext.bits.size()) result.bits[i] = RTLIL::State::S0; else if (arg1_ext.bits[i] == RTLIL::State::S0) result.bits[i] = RTLIL::State::S1; else if (arg1_ext.bits[i] == RTLIL::State::S1) result.bits[i] = RTLIL::State::S0; } return result; } static RTLIL::Const logic_wrapper(RTLIL::State(*logic_func)(RTLIL::State, RTLIL::State), RTLIL::Const arg1, RTLIL::Const arg2, bool signed1, bool signed2, int result_len = -1) { if (result_len < 0) result_len = max(arg1.bits.size(), arg2.bits.size()); extend_u0(arg1, result_len, signed1); extend_u0(arg2, result_len, signed2); RTLIL::Const result(RTLIL::State::Sx, result_len); for (size_t i = 0; i < size_t(result_len); i++) { RTLIL::State a = i < arg1.bits.size() ? arg1.bits[i] : RTLIL::State::S0; RTLIL::State b = i < arg2.bits.size() ? arg2.bits[i] : RTLIL::State::S0; result.bits[i] = logic_func(a, b); } return result; } RTLIL::Const RTLIL::const_and(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { return logic_wrapper(logic_and, arg1, arg2, signed1, signed2, result_len); } RTLIL::Const RTLIL::const_or(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { return logic_wrapper(logic_or, arg1, arg2, signed1, signed2, result_len); } RTLIL::Const RTLIL::const_xor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { return logic_wrapper(logic_xor, arg1, arg2, signed1, signed2, result_len); } RTLIL::Const RTLIL::const_xnor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { return logic_wrapper(logic_xnor, arg1, arg2, signed1, signed2, result_len); } static RTLIL::Const logic_reduce_wrapper(RTLIL::State initial, RTLIL::State(*logic_func)(RTLIL::State, RTLIL::State), const RTLIL::Const &arg1, int result_len) { RTLIL::State temp = initial; for (size_t i = 0; i < arg1.bits.size(); i++) temp = logic_func(temp, arg1.bits[i]); RTLIL::Const result(temp); while (int(result.bits.size()) < result_len) result.bits.push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_reduce_and(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { return logic_reduce_wrapper(RTLIL::State::S1, logic_and, arg1, result_len); } RTLIL::Const RTLIL::const_reduce_or(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { return logic_reduce_wrapper(RTLIL::State::S0, logic_or, arg1, result_len); } RTLIL::Const RTLIL::const_reduce_xor(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { return logic_reduce_wrapper(RTLIL::State::S0, logic_xor, arg1, result_len); } RTLIL::Const RTLIL::const_reduce_xnor(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { RTLIL::Const buffer = logic_reduce_wrapper(RTLIL::State::S0, logic_xor, arg1, result_len); if (!buffer.bits.empty()) { if (buffer.bits.front() == RTLIL::State::S0) buffer.bits.front() = RTLIL::State::S1; else if (buffer.bits.front() == RTLIL::State::S1) buffer.bits.front() = RTLIL::State::S0; } return buffer; } RTLIL::Const RTLIL::const_reduce_bool(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { return logic_reduce_wrapper(RTLIL::State::S0, logic_or, arg1, result_len); } RTLIL::Const RTLIL::const_logic_not(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { int undef_bit_pos_a = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos_a); RTLIL::Const result(a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S1 : RTLIL::State::S0); while (int(result.bits.size()) < result_len) result.bits.push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_logic_and(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos_a = -1, undef_bit_pos_b = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos_a); BigInteger b = const2big(arg2, signed2, undef_bit_pos_b); RTLIL::State bit_a = a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1; RTLIL::State bit_b = b.isZero() ? undef_bit_pos_b >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1; RTLIL::Const result(logic_and(bit_a, bit_b)); while (int(result.bits.size()) < result_len) result.bits.push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_logic_or(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos_a = -1, undef_bit_pos_b = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos_a); BigInteger b = const2big(arg2, signed2, undef_bit_pos_b); RTLIL::State bit_a = a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1; RTLIL::State bit_b = b.isZero() ? undef_bit_pos_b >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1; RTLIL::Const result(logic_or(bit_a, bit_b)); while (int(result.bits.size()) < result_len) result.bits.push_back(RTLIL::State::S0); return result; } // Shift `arg1` by `arg2` bits. // If `direction` is +1, `arg1` is shifted right by `arg2` bits; if `direction` is -1, `arg1` is shifted left by `arg2` bits. // If `signed2` is true, `arg2` is interpreted as a signed integer; a negative `arg2` will cause a shift in the opposite direction. // Any required bits outside the bounds of `arg1` are padded with `vacant_bits` unless `sign_ext` is true, in which case any bits outside the left // bounds are filled with the leftmost bit of `arg1` (arithmetic shift). static RTLIL::Const const_shift_worker(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool sign_ext, bool signed2, int direction, int result_len, RTLIL::State vacant_bits = RTLIL::State::S0) { int undef_bit_pos = -1; BigInteger offset = const2big(arg2, signed2, undef_bit_pos) * direction; if (result_len < 0) result_len = arg1.bits.size(); RTLIL::Const result(RTLIL::State::Sx, result_len); if (undef_bit_pos >= 0) return result; for (int i = 0; i < result_len; i++) { BigInteger pos = BigInteger(i) + offset; if (pos < 0) result.bits[i] = vacant_bits; else if (pos >= BigInteger(int(arg1.bits.size()))) result.bits[i] = sign_ext ? arg1.bits.back() : vacant_bits; else result.bits[i] = arg1.bits[pos.toInt()]; } return result; } RTLIL::Const RTLIL::const_shl(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, result_len, signed1); return const_shift_worker(arg1_ext, arg2, false, false, -1, result_len); } RTLIL::Const RTLIL::const_shr(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, max(result_len, GetSize(arg1)), signed1); return const_shift_worker(arg1_ext, arg2, false, false, +1, result_len); } RTLIL::Const RTLIL::const_sshl(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len) { return const_shift_worker(arg1, arg2, signed1, false, -1, result_len); } RTLIL::Const RTLIL::const_sshr(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len) { return const_shift_worker(arg1, arg2, signed1, false, +1, result_len); } RTLIL::Const RTLIL::const_shift(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, max(result_len, GetSize(arg1)), signed1); return const_shift_worker(arg1_ext, arg2, false, signed2, +1, result_len); } RTLIL::Const RTLIL::const_shiftx(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool, bool signed2, int result_len) { return const_shift_worker(arg1, arg2, false, signed2, +1, result_len, RTLIL::State::Sx); } RTLIL::Const RTLIL::const_lt(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; bool y = const2big(arg1, signed1, undef_bit_pos) < const2big(arg2, signed2, undef_bit_pos); RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0); while (int(result.bits.size()) < result_len) result.bits.push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_le(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; bool y = const2big(arg1, signed1, undef_bit_pos) <= const2big(arg2, signed2, undef_bit_pos); RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0); while (int(result.bits.size()) < result_len) result.bits.push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_eq(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const arg1_ext = arg1; RTLIL::Const arg2_ext = arg2; RTLIL::Const result(RTLIL::State::S0, result_len); int width = max(arg1_ext.bits.size(), arg2_ext.bits.size()); extend_u0(arg1_ext, width, signed1 && signed2); extend_u0(arg2_ext, width, signed1 && signed2); RTLIL::State matched_status = RTLIL::State::S1; for (size_t i = 0; i < arg1_ext.bits.size(); i++) { if (arg1_ext.bits.at(i) == RTLIL::State::S0 && arg2_ext.bits.at(i) == RTLIL::State::S1) return result; if (arg1_ext.bits.at(i) == RTLIL::State::S1 && arg2_ext.bits.at(i) == RTLIL::State::S0) return result; if (arg1_ext.bits.at(i) > RTLIL::State::S1 || arg2_ext.bits.at(i) > RTLIL::State::S1) matched_status = RTLIL::State::Sx; } result.bits.front() = matched_status; return result; } RTLIL::Const RTLIL::const_ne(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const result = RTLIL::const_eq(arg1, arg2, signed1, signed2, result_len); if (result.bits.front() == RTLIL::State::S0) result.bits.front() = RTLIL::State::S1; else if (result.bits.front() == RTLIL::State::S1) result.bits.front() = RTLIL::State::S0; return result; } RTLIL::Const RTLIL::const_eqx(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const arg1_ext = arg1; RTLIL::Const arg2_ext = arg2; RTLIL::Const result(RTLIL::State::S0, result_len); int width = max(arg1_ext.bits.size(), arg2_ext.bits.size()); extend_u0(arg1_ext, width, signed1 && signed2); extend_u0(arg2_ext, width, signed1 && signed2); for (size_t i = 0; i < arg1_ext.bits.size(); i++) { if (arg1_ext.bits.at(i) != arg2_ext.bits.at(i)) return result; } result.bits.front() = RTLIL::State::S1; return result; } RTLIL::Const RTLIL::const_nex(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const result = RTLIL::const_eqx(arg1, arg2, signed1, signed2, result_len); if (result.bits.front() == RTLIL::State::S0) result.bits.front() = RTLIL::State::S1; else if (result.bits.front() == RTLIL::State::S1) result.bits.front() = RTLIL::State::S0; return result; } RTLIL::Const RTLIL::const_ge(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; bool y = const2big(arg1, signed1, undef_bit_pos) >= const2big(arg2, signed2, undef_bit_pos); RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0); while (int(result.bits.size()) < result_len) result.bits.push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_gt(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; bool y = const2big(arg1, signed1, undef_bit_pos) > const2big(arg2, signed2, undef_bit_pos); RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0); while (int(result.bits.size()) < result_len) result.bits.push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_add(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger y = const2big(arg1, signed1, undef_bit_pos) + const2big(arg2, signed2, undef_bit_pos); return big2const(y, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), undef_bit_pos); } RTLIL::Const RTLIL::const_sub(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger y = const2big(arg1, signed1, undef_bit_pos) - const2big(arg2, signed2, undef_bit_pos); return big2const(y, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), undef_bit_pos); } RTLIL::Const RTLIL::const_mul(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger y = const2big(arg1, signed1, undef_bit_pos) * const2big(arg2, signed2, undef_bit_pos); return big2const(y, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0)); } // truncating division RTLIL::Const RTLIL::const_div(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); if (b.isZero()) return RTLIL::Const(RTLIL::State::Sx, result_len); bool result_neg = (a.getSign() == BigInteger::negative) != (b.getSign() == BigInteger::negative); a = a.getSign() == BigInteger::negative ? -a : a; b = b.getSign() == BigInteger::negative ? -b : b; return big2const(result_neg ? -(a / b) : (a / b), result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0)); } // truncating modulo RTLIL::Const RTLIL::const_mod(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); if (b.isZero()) return RTLIL::Const(RTLIL::State::Sx, result_len); bool result_neg = a.getSign() == BigInteger::negative; a = a.getSign() == BigInteger::negative ? -a : a; b = b.getSign() == BigInteger::negative ? -b : b; return big2const(result_neg ? -(a % b) : (a % b), result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0)); } RTLIL::Const RTLIL::const_divfloor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); if (b.isZero()) return RTLIL::Const(RTLIL::State::Sx, result_len); bool result_pos = (a.getSign() == BigInteger::negative) == (b.getSign() == BigInteger::negative); a = a.getSign() == BigInteger::negative ? -a : a; b = b.getSign() == BigInteger::negative ? -b : b; BigInteger result; if (result_pos || a == 0) { result = a / b; } else { // bigint division with negative numbers is wonky, make sure we only negate at the very end result = -((a + b - 1) / b); } return big2const(result, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0)); } RTLIL::Const RTLIL::const_modfloor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); if (b.isZero()) return RTLIL::Const(RTLIL::State::Sx, result_len); BigInteger::Sign a_sign = a.getSign(); BigInteger::Sign b_sign = b.getSign(); a = a_sign == BigInteger::negative ? -a : a; b = b_sign == BigInteger::negative ? -b : b; BigInteger truncated = a_sign == BigInteger::negative ? -(a % b) : (a % b); BigInteger modulo; if (truncated == 0 || (a_sign == b_sign)) { modulo = truncated; } else { modulo = b_sign == BigInteger::negative ? truncated - b : truncated + b; } return big2const(modulo, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0)); } RTLIL::Const RTLIL::const_pow(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); BigInteger y = 1; if (a == 0 && b < 0) return RTLIL::Const(RTLIL::State::Sx, result_len); if (a == 0 && b > 0) return RTLIL::Const(RTLIL::State::S0, result_len); if (b < 0) { if (a < -1 || a > 1) y = 0; if (a == -1) y = (-b % 2) == 0 ? 1 : -1; } if (b > 0) { // Power-modulo with 2^result_len as modulus BigInteger modulus = 1; int modulus_bits = (result_len >= 0 ? result_len : 1024); for (int i = 0; i < modulus_bits; i++) modulus *= 2; bool flip_result_sign = false; if (a < 0) { a *= -1; if (b % 2 == 1) flip_result_sign = true; } while (b > 0) { if (b % 2 == 1) y = (y * a) % modulus; b = b / 2; a = (a * a) % modulus; } if (flip_result_sign) y *= -1; } return big2const(y, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0)); } RTLIL::Const RTLIL::const_pos(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, result_len, signed1); return arg1_ext; } RTLIL::Const RTLIL::const_neg(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; RTLIL::Const zero(RTLIL::State::S0, 1); return RTLIL::const_sub(zero, arg1_ext, true, signed1, result_len); } RTLIL::Const RTLIL::const_bmux(const RTLIL::Const &arg1, const RTLIL::Const &arg2) { std::vector t = arg1.bits; for (int i = GetSize(arg2)-1; i >= 0; i--) { RTLIL::State sel = arg2.bits.at(i); std::vector new_t; if (sel == State::S0) new_t = std::vector(t.begin(), t.begin() + GetSize(t)/2); else if (sel == State::S1) new_t = std::vector(t.begin() + GetSize(t)/2, t.end()); else for (int j = 0; j < GetSize(t)/2; j++) new_t.push_back(t[j] == t[j + GetSize(t)/2] ? t[j] : RTLIL::Sx); t.swap(new_t); } return t; } RTLIL::Const RTLIL::const_demux(const RTLIL::Const &arg1, const RTLIL::Const &arg2) { int width = GetSize(arg1); int s_width = GetSize(arg2); std::vector res; for (int i = 0; i < (1 << s_width); i++) { bool ne = false; bool x = false; for (int j = 0; j < s_width; j++) { bool bit = i & 1 << j; if (arg2[j] == (bit ? RTLIL::S0 : RTLIL::S1)) ne = true; else if (arg2[j] != RTLIL::S0 && arg2[j] != RTLIL::S1) x = true; } if (ne) { for (int j = 0; j < width; j++) res.push_back(State::S0); } else if (x) { for (int j = 0; j < width; j++) res.push_back(arg1.bits[j] == State::S0 ? State::S0 : State::Sx); } else { for (int j = 0; j < width; j++) res.push_back(arg1.bits[j]); } } return res; } YOSYS_NAMESPACE_END > 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  Claire Xenia Wolf <claire@yosyshq.com>
 *  Copyright (C) 2018  gatecat <gatecat@ds0.me>
 *  Copyright (C) 2018  Serge Bazanski <q3k@q3k.org>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include <algorithm>
#include <iterator>
#include "cells.h"
#include "chains.h"
#include "design_utils.h"
#include "log.h"
#include "util.h"

NEXTPNR_NAMESPACE_BEGIN

// Pack LUTs and LUT-FF pairs
static void pack_lut_lutffs(Context *ctx)
{
    log_info("Packing LUT-FFs..\n");
    int lut_only = 0, lut_and_ff = 0;
    pool<IdString> packed_cells;
    std::vector<std::unique_ptr<CellInfo>> new_cells;
    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (ctx->verbose)
            log_info("cell '%s' is of type '%s'\n", ci->name.c_str(ctx), ci->type.c_str(ctx));
        if (is_lut(ctx, ci)) {
            std::unique_ptr<CellInfo> packed = create_ice_cell(ctx, ctx->id("ICESTORM_LC"), ci->name.str(ctx) + "_LC");
            for (auto &attr : ci->attrs)
                packed->attrs[attr.first] = attr.second;
            packed_cells.insert(ci->name);
            if (ctx->verbose)
                log_info("packed cell %s into %s\n", ci->name.c_str(ctx), packed->name.c_str(ctx));
            // See if we can pack into a DFF
            // TODO: LUT cascade
            NetInfo *o = ci->ports.at(ctx->id("O")).net;
            CellInfo *dff = net_only_drives(ctx, o, is_ff, ctx->id("D"), true);
            auto lut_bel = ci->attrs.find(ctx->id("BEL"));
            bool packed_dff = false;
            if (dff) {
                if (ctx->verbose)
                    log_info("found attached dff %s\n", dff->name.c_str(ctx));
                auto dff_bel = dff->attrs.find(ctx->id("BEL"));
                if (lut_bel != ci->attrs.end() && dff_bel != dff->attrs.end() && lut_bel->second != dff_bel->second) {
                    // Locations don't match, can't pack
                } else {
                    lut_to_lc(ctx, ci, packed.get(), false);
                    dff_to_lc(ctx, dff, packed.get(), false);
                    ++lut_and_ff;
                    ctx->nets.erase(o->name);
                    if (dff_bel != dff->attrs.end())
                        packed->attrs[ctx->id("BEL")] = dff_bel->second;
                    for (const auto &attr : dff->attrs) {
                        // BEL is dealt with specially
                        if (attr.first != ctx->id("BEL"))
                            packed->attrs[attr.first] = attr.second;
                    }
                    packed_cells.insert(dff->name);
                    if (ctx->verbose)
                        log_info("packed cell %s into %s\n", dff->name.c_str(ctx), packed->name.c_str(ctx));
                    packed_dff = true;
                }
            }
            if (!packed_dff) {
                lut_to_lc(ctx, ci, packed.get(), true);
                ++lut_only;
            }
            new_cells.push_back(std::move(packed));
        }
    }
    for (auto pcell : packed_cells) {
        ctx->cells.erase(pcell);
    }
    for (auto &ncell : new_cells) {
        ctx->cells[ncell->name] = std::move(ncell);
    }
    log_info("    %4d LCs used as LUT4 only\n", lut_only);
    log_info("    %4d LCs used as LUT4 and DFF\n", lut_and_ff);
}

// Pack FFs not packed as LUTFFs
static void pack_nonlut_ffs(Context *ctx)
{
    log_info("Packing non-LUT FFs..\n");

    pool<IdString> packed_cells;
    std::vector<std::unique_ptr<CellInfo>> new_cells;
    int ff_only = 0;

    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (is_ff(ctx, ci)) {
            std::unique_ptr<CellInfo> packed =
                    create_ice_cell(ctx, ctx->id("ICESTORM_LC"), ci->name.str(ctx) + "_DFFLC");
            for (auto &attr : ci->attrs)
                packed->attrs[attr.first] = attr.second;
            if (ctx->verbose)
                log_info("packed cell %s into %s\n", ci->name.c_str(ctx), packed->name.c_str(ctx));
            packed_cells.insert(ci->name);
            dff_to_lc(ctx, ci, packed.get(), true);
            new_cells.push_back(std::move(packed));
            ++ff_only;
        }
    }
    for (auto pcell : packed_cells) {
        ctx->cells.erase(pcell);
    }
    for (auto &ncell : new_cells) {
        ctx->cells[ncell->name] = std::move(ncell);
    }
    log_info("    %4d LCs used as DFF only\n", ff_only);
}

static bool net_is_constant(const Context *ctx, NetInfo *net, bool &value)
{
    if (net == nullptr)
        return false;
    if (net->name == ctx->id("$PACKER_GND_NET") || net->name == ctx->id("$PACKER_VCC_NET")) {
        value = (net->name == ctx->id("$PACKER_VCC_NET"));
        return true;
    } else {
        return false;
    }
}

// Pack carry logic
static void pack_carries(Context *ctx)
{
    log_info("Packing carries..\n");
    pool<IdString> exhausted_cells;
    pool<IdString> packed_cells;
    std::vector<std::unique_ptr<CellInfo>> new_cells;
    int carry_only = 0;

    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (is_carry(ctx, ci)) {
            packed_cells.insert(cell.first);

            CellInfo *carry_ci_lc;
            bool ci_value;
            bool ci_const = net_is_constant(ctx, ci->ports.at(ctx->id("CI")).net, ci_value);
            if (ci_const) {
                carry_ci_lc = nullptr;
            } else {
                carry_ci_lc = net_only_drives(ctx, ci->ports.at(ctx->id("CI")).net, is_lc, ctx->id("I3"), false);
            }

            std::set<IdString> i0_matches, i1_matches;
            NetInfo *i0_net = ci->ports.at(ctx->id("I0")).net;
            NetInfo *i1_net = ci->ports.at(ctx->id("I1")).net;
            // Find logic cells connected to both I0 and I1
            if (i0_net) {
                for (auto usr : i0_net->users) {
                    if (is_lc(ctx, usr.cell) && usr.port == ctx->id("I1")) {
                        if (ctx->cells.find(usr.cell->name) != ctx->cells.end() &&
                            exhausted_cells.find(usr.cell->name) == exhausted_cells.end()) {
                            // This clause stops us double-packing cells
                            i0_matches.insert(usr.cell->name);
                            if (!i1_net && !usr.cell->ports.at(ctx->id("I2")).net) {
                                // I1 is don't care when disconnected, duplicate I0
                                i1_matches.insert(usr.cell->name);
                            }
                        }
                    }
                }
            }
            if (i1_net) {
                for (auto usr : i1_net->users) {
                    if (is_lc(ctx, usr.cell) && usr.port == ctx->id("I2")) {
                        if (ctx->cells.find(usr.cell->name) != ctx->cells.end() &&
                            exhausted_cells.find(usr.cell->name) == exhausted_cells.end()) {
                            // This clause stops us double-packing cells
                            i1_matches.insert(usr.cell->name);
                            if (!i0_net && !usr.cell->ports.at(ctx->id("I1")).net) {
                                // I0 is don't care when disconnected, duplicate I1
                                i0_matches.insert(usr.cell->name);
                            }
                        }
                    }
                }
            }

            std::set<IdString> carry_lcs;
            std::set_intersection(i0_matches.begin(), i0_matches.end(), i1_matches.begin(), i1_matches.end(),
                                  std::inserter(carry_lcs, carry_lcs.end()));
            CellInfo *carry_lc = nullptr;
            if (carry_ci_lc && carry_lcs.find(carry_ci_lc->name) != carry_lcs.end()) {
                carry_lc = carry_ci_lc;
            } else {
                // No LC to pack into matching I0/I1, insert a new one
                std::unique_ptr<CellInfo> created_lc =
                        create_ice_cell(ctx, ctx->id("ICESTORM_LC"), cell.first.str(ctx) + "$CARRY");
                carry_lc = created_lc.get();
                created_lc->ports.at(ctx->id("I1")).net = i0_net;
                if (i0_net) {
                    PortRef pr;
                    pr.cell = created_lc.get();
                    pr.port = ctx->id("I1");
                    i0_net->users.push_back(pr);
                }
                created_lc->ports.at(ctx->id("I2")).net = i1_net;
                if (i1_net) {
                    PortRef pr;
                    pr.cell = created_lc.get();
                    pr.port = ctx->id("I2");
                    i1_net->users.push_back(pr);
                }
                new_cells.push_back(std::move(created_lc));
                ++carry_only;
            }
            carry_lc->params[ctx->id("CARRY_ENABLE")] = Property::State::S1;
            replace_port(ci, ctx->id("CI"), carry_lc, ctx->id("CIN"));
            replace_port(ci, ctx->id("CO"), carry_lc, ctx->id("COUT"));
            if (i0_net) {
                auto &i0_usrs = i0_net->users;
                i0_usrs.erase(std::remove_if(i0_usrs.begin(), i0_usrs.end(), [ci, ctx](const PortRef &pr) {
                    return pr.cell == ci && pr.port == ctx->id("I0");
                }));
            }
            if (i1_net) {
                auto &i1_usrs = i1_net->users;
                i1_usrs.erase(std::remove_if(i1_usrs.begin(), i1_usrs.end(), [ci, ctx](const PortRef &pr) {
                    return pr.cell == ci && pr.port == ctx->id("I1");
                }));
            }

            // Check for constant driver on CIN
            if (carry_lc->ports.at(ctx->id("CIN")).net != nullptr) {
                IdString cin_net = carry_lc->ports.at(ctx->id("CIN")).net->name;
                if (cin_net == ctx->id("$PACKER_GND_NET") || cin_net == ctx->id("$PACKER_VCC_NET")) {
                    carry_lc->params[ctx->id("CIN_CONST")] = Property::State::S1;
                    carry_lc->params[ctx->id("CIN_SET")] =
                            cin_net == ctx->id("$PACKER_VCC_NET") ? Property::State::S1 : Property::State::S0;
                    carry_lc->ports.at(ctx->id("CIN")).net = nullptr;
                    auto &cin_users = ctx->nets.at(cin_net)->users;
                    cin_users.erase(
                            std::remove_if(cin_users.begin(), cin_users.end(), [carry_lc, ctx](const PortRef &pr) {
                                return pr.cell == carry_lc && pr.port == ctx->id("CIN");
                            }));
                }
            }
            exhausted_cells.insert(carry_lc->name);
        }
    }
    for (auto pcell : packed_cells) {
        ctx->cells.erase(pcell);
    }
    for (auto &ncell : new_cells) {
        ctx->cells[ncell->name] = std::move(ncell);
    }
    log_info("    %4d LCs used as CARRY only\n", carry_only);
}

// "Pack" RAMs
static void pack_ram(Context *ctx)
{
    log_info("Packing RAMs..\n");

    pool<IdString> packed_cells;
    std::vector<std::unique_ptr<CellInfo>> new_cells;

    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (is_ram(ctx, ci)) {
            std::unique_ptr<CellInfo> packed =
                    create_ice_cell(ctx, ctx->id("ICESTORM_RAM"), ci->name.str(ctx) + "_RAM");
            packed_cells.insert(ci->name);
            for (auto attr : ci->attrs)
                packed->attrs[attr.first] = attr.second;
            for (auto param : ci->params)
                packed->params[param.first] = param.second;
            packed->params[ctx->id("NEG_CLK_W")] =
                    Property(ci->type == ctx->id("SB_RAM40_4KNW") || ci->type == ctx->id("SB_RAM40_4KNRNW"), 1);
            packed->params[ctx->id("NEG_CLK_R")] =
                    Property(ci->type == ctx->id("SB_RAM40_4KNR") || ci->type == ctx->id("SB_RAM40_4KNRNW"), 1);
            packed->type = ctx->id("ICESTORM_RAM");
            for (auto port : ci->ports) {
                PortInfo &pi = port.second;
                std::string newname = pi.name.str(ctx);
                size_t bpos = newname.find('[');
                if (bpos != std::string::npos) {
                    newname = newname.substr(0, bpos) + "_" + newname.substr(bpos + 1, (newname.size() - bpos) - 2);
                }
                if (pi.name == ctx->id("RCLKN"))
                    newname = "RCLK";
                else if (pi.name == ctx->id("WCLKN"))
                    newname = "WCLK";
                replace_port(ci, ctx->id(pi.name.c_str(ctx)), packed.get(), ctx->id(newname));
            }
            new_cells.push_back(std::move(packed));
        }
    }

    for (auto pcell : packed_cells) {
        ctx->cells.erase(pcell);
    }
    for (auto &ncell : new_cells) {
        ctx->cells[ncell->name] = std::move(ncell);
    }
}

// Merge a net into a constant net
static void set_net_constant(const Context *ctx, NetInfo *orig, NetInfo *constnet, bool constval)
{
    orig->driver.cell = nullptr;
    for (auto user : orig->users) {
        if (user.cell != nullptr) {
            CellInfo *uc = user.cell;
            if (ctx->verbose)
                log_info("%s user %s\n", orig->name.c_str(ctx), uc->name.c_str(ctx));
            if ((is_lut(ctx, uc) || is_lc(ctx, uc) || is_carry(ctx, uc)) && (user.port.str(ctx).at(0) == 'I') &&
                !constval) {
                uc->ports[user.port].net = nullptr;
            } else if ((is_sb_mac16(ctx, uc) || uc->type == ctx->id("ICESTORM_DSP")) &&
                       (user.port != ctx->id("CLK") &&
                        ((constval && user.port == ctx->id("CE")) || (!constval && user.port != ctx->id("CE"))))) {
                uc->ports[user.port].net = nullptr;
            } else if (is_ram(ctx, uc) && !constval && user.port != ctx->id("RCLK") && user.port != ctx->id("RCLKN") &&
                       user.port != ctx->id("WCLK") && user.port != ctx->id("WCLKN") && user.port != ctx->id("RCLKE") &&
                       user.port != ctx->id("WCLKE")) {
                uc->ports[user.port].net = nullptr;
            } else {
                uc->ports[user.port].net = constnet;
                constnet->users.push_back(user);
            }
        }
    }
    orig->users.clear();
}

// Pack constants (simple implementation)
static void pack_constants(Context *ctx)
{
    log_info("Packing constants..\n");

    std::unique_ptr<CellInfo> gnd_cell = create_ice_cell(ctx, ctx->id("ICESTORM_LC"), "$PACKER_GND");
    gnd_cell->params[ctx->id("LUT_INIT")] = Property(0, 16);
    std::unique_ptr<NetInfo> gnd_net = std::unique_ptr<NetInfo>(new NetInfo);
    gnd_net->name = ctx->id("$PACKER_GND_NET");
    gnd_net->driver.cell = gnd_cell.get();
    gnd_net->driver.port = ctx->id("O");
    gnd_cell->ports.at(ctx->id("O")).net = gnd_net.get();

    NetInfo *gnd_net_info = gnd_net.get();
    if (ctx->nets.find(ctx->id("$PACKER_GND_NET")) != ctx->nets.end()) {
        gnd_net_info = ctx->nets.find(ctx->id("$PACKER_GND_NET"))->second.get();
    }

    std::unique_ptr<CellInfo> vcc_cell = create_ice_cell(ctx, ctx->id("ICESTORM_LC"), "$PACKER_VCC");
    vcc_cell->params[ctx->id("LUT_INIT")] = Property(1, 16);
    std::unique_ptr<NetInfo> vcc_net = std::unique_ptr<NetInfo>(new NetInfo);
    vcc_net->name = ctx->id("$PACKER_VCC_NET");
    vcc_net->driver.cell = vcc_cell.get();
    vcc_net->driver.port = ctx->id("O");
    vcc_cell->ports.at(ctx->id("O")).net = vcc_net.get();

    NetInfo *vcc_net_info = vcc_net.get();
    if (ctx->nets.find(ctx->id("$PACKER_VCC_NET")) != ctx->nets.end()) {
        vcc_net_info = ctx->nets.find(ctx->id("$PACKER_VCC_NET"))->second.get();
    }

    std::vector<IdString> dead_nets;

    bool gnd_used = false;

    for (auto &net : ctx->nets) {
        NetInfo *ni = net.second.get();
        if (ni->driver.cell != nullptr && ni->driver.cell->type == ctx->id("GND")) {
            IdString drv_cell = ni->driver.cell->name;
            set_net_constant(ctx, ni, gnd_net_info, false);
            gnd_used = true;
            dead_nets.push_back(net.first);
            ctx->cells.erase(drv_cell);
        } else if (ni->driver.cell != nullptr && ni->driver.cell->type == ctx->id("VCC")) {
            IdString drv_cell = ni->driver.cell->name;
            set_net_constant(ctx, ni, vcc_net_info, true);
            dead_nets.push_back(net.first);
            ctx->cells.erase(drv_cell);
        }
    }

    if (gnd_used && (gnd_net_info == gnd_net.get())) {
        ctx->cells[gnd_cell->name] = std::move(gnd_cell);
        ctx->nets[gnd_net->name] = std::move(gnd_net);
    }
    // Vcc cell always inserted for now, as it may be needed during carry legalisation (TODO: trim later if actually
    // never used?)
    if (vcc_net_info == vcc_net.get()) {
        ctx->cells[vcc_cell->name] = std::move(vcc_cell);
        ctx->nets[vcc_net->name] = std::move(vcc_net);
    }

    for (auto dn : dead_nets) {
        ctx->nets.erase(dn);
    }
}

static BelId find_padin_gbuf(Context *ctx, BelId bel, IdString port_name)
{
    BelId gb_bel;
    auto wire = ctx->getBelPinWire(bel, port_name);

    if (wire == WireId())
        log_error("BEL '%s' has no global buffer connection available\n", ctx->nameOfBel(bel));

    for (auto src_bel : ctx->getWireBelPins(wire)) {
        if (ctx->getBelType(src_bel.bel) == id_SB_GB && src_bel.pin == id_GLOBAL_BUFFER_OUTPUT) {
            gb_bel = src_bel.bel;
            break;
        }
    }

    return gb_bel;
}

static std::unique_ptr<CellInfo> create_padin_gbuf(Context *ctx, CellInfo *cell, IdString port_name,
                                                   std::string gbuf_name)
{
    // Find the matching SB_GB BEL connected to the same global network
    if (!cell->attrs.count(ctx->id("BEL")))
        log_error("Unconstrained SB_GB_IO %s is not supported.\n", ctx->nameOf(cell));
    BelId bel = ctx->getBelByNameStr(cell->attrs[ctx->id("BEL")].as_string());
    BelId gb_bel = find_padin_gbuf(ctx, bel, port_name);
    NPNR_ASSERT(gb_bel != BelId());

    // Create a SB_GB Cell and lock it there
    std::unique_ptr<CellInfo> gb = create_ice_cell(ctx, ctx->id("SB_GB"), gbuf_name);
    gb->attrs[ctx->id("FOR_PAD_IN")] = Property::State::S1;
    gb->attrs[ctx->id("BEL")] = ctx->getBelName(gb_bel).str(ctx);

    // Reconnect the net to that port for easier identification it's a global net
    replace_port(cell, port_name, gb.get(), id_GLOBAL_BUFFER_OUTPUT);

    return gb;
}

static bool is_nextpnr_iob(Context *ctx, CellInfo *cell)
{
    return cell->type == ctx->id("$nextpnr_ibuf") || cell->type == ctx->id("$nextpnr_obuf") ||
           cell->type == ctx->id("$nextpnr_iobuf");
}

static bool is_ice_iob(const Context *ctx, const CellInfo *cell)
{
    return is_sb_io(ctx, cell) || is_sb_gb_io(ctx, cell);
}

// Pack IO buffers
static void pack_io(Context *ctx)
{
    pool<IdString> packed_cells;
    pool<IdString> delete_nets;
    std::vector<std::unique_ptr<CellInfo>> new_cells;
    log_info("Packing IOs..\n");

    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (is_nextpnr_iob(ctx, ci)) {
            CellInfo *sb = nullptr, *rgb = nullptr;
            if (ci->type == ctx->id("$nextpnr_ibuf") || ci->type == ctx->id("$nextpnr_iobuf")) {
                sb = net_only_drives(ctx, ci->ports.at(ctx->id("O")).net, is_ice_iob, ctx->id("PACKAGE_PIN"), true, ci);

            } else if (ci->type == ctx->id("$nextpnr_obuf")) {
                NetInfo *net = ci->ports.at(ctx->id("I")).net;
                sb = net_only_drives(ctx, net, is_ice_iob, ctx->id("PACKAGE_PIN"), true, ci);
                if (net && net->driver.cell &&
                    (is_sb_rgba_drv(ctx, net->driver.cell) || is_sb_rgb_drv(ctx, net->driver.cell)))
                    rgb = net->driver.cell;
            }
            if (sb != nullptr) {
                // Trivial case, SB_IO used. Just destroy the iobuf
                log_info("%s feeds SB_IO %s, removing %s %s.\n", ci->name.c_str(ctx), sb->name.c_str(ctx),
                         ci->type.c_str(ctx), ci->name.c_str(ctx));
                NetInfo *net = sb->ports.at(ctx->id("PACKAGE_PIN")).net;
                if (((ci->type == ctx->id("$nextpnr_ibuf") || ci->type == ctx->id("$nextpnr_iobuf")) &&
                     net->users.size() > 1) ||
                    (ci->type == ctx->id("$nextpnr_obuf") && (net->users.size() > 2 || net->driver.cell != nullptr)))
                    log_error("PACKAGE_PIN of %s '%s' connected to more than a single top level IO.\n",
                              sb->type.c_str(ctx), sb->name.c_str(ctx));

                if (net != nullptr) {
                    if (net->clkconstr != nullptr) {
                        if (sb->ports.count(id_D_IN_0)) {
                            NetInfo *din0_net = sb->ports.at(id_D_IN_0).net;
                            if (din0_net != nullptr && !din0_net->clkconstr) {
                                // Copy clock constraint from IO pad to input buffer output
                                din0_net->clkconstr =
                                        std::unique_ptr<ClockConstraint>(new ClockConstraint(*net->clkconstr));
                            }
                        }
                        if (is_sb_gb_io(ctx, sb) && sb->ports.count(id_GLOBAL_BUFFER_OUTPUT)) {
                            NetInfo *gb_net = sb->ports.at(id_GLOBAL_BUFFER_OUTPUT).net;
                            if (gb_net != nullptr && !gb_net->clkconstr) {
                                // Copy clock constraint from IO pad to global buffer output
                                gb_net->clkconstr =
                                        std::unique_ptr<ClockConstraint>(new ClockConstraint(*net->clkconstr));
                            }
                        }
                    }
                }
            } else if (rgb != nullptr) {
                log_info("%s use by SB_RGBA_DRV/SB_RGB_DRV %s, not creating SB_IO\n", ci->name.c_str(ctx),
                         rgb->name.c_str(ctx));
                disconnect_port(ctx, ci, ctx->id("I"));
                packed_cells.insert(ci->name);
                continue;
            } else {
                // Create a SB_IO buffer
                std::unique_ptr<CellInfo> ice_cell =
                        create_ice_cell(ctx, ctx->id("SB_IO"), ci->name.str(ctx) + "$sb_io");
                nxio_to_sb(ctx, ci, ice_cell.get(), packed_cells);
                new_cells.push_back(std::move(ice_cell));
                sb = new_cells.back().get();
            }
            for (auto port : ci->ports)
                disconnect_port(ctx, ci, port.first);
            packed_cells.insert(ci->name);
            for (auto &attr : ci->attrs)
                sb->attrs[attr.first] = attr.second;
        } else if (is_sb_io(ctx, ci) || is_sb_gb_io(ctx, ci)) {
            NetInfo *net = ci->ports.at(ctx->id("PACKAGE_PIN")).net;
            if ((net != nullptr) && ((net->users.size() > 2) ||
                                     (net->driver.cell != nullptr &&
                                      net->driver.cell->type == ctx->id("$nextpnr_obuf") && net->users.size() > 1)))
                log_error("PACKAGE_PIN of %s '%s' connected to more than a single top level IO.\n", ci->type.c_str(ctx),
                          ci->name.c_str(ctx));
        }
    }
    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (is_sb_gb_io(ctx, ci)) {
            // If something is connecto the GLOBAL OUTPUT, create the fake 'matching' SB_GB
            std::unique_ptr<CellInfo> gb =
                    create_padin_gbuf(ctx, ci, id_GLOBAL_BUFFER_OUTPUT, "$gbuf_" + ci->name.str(ctx) + "_io");
            new_cells.push_back(std::move(gb));

            // Make it a normal SB_IO with global marker
            ci->type = ctx->id("SB_IO");
            ci->attrs[ctx->id("GLOBAL")] = Property::State::S1;
        } else if (is_sb_io(ctx, ci)) {
            // Disconnect unused inputs
            NetInfo *net_in0 = ci->ports.count(id_D_IN_0) ? ci->ports[id_D_IN_0].net : nullptr;
            NetInfo *net_in1 = ci->ports.count(id_D_IN_1) ? ci->ports[id_D_IN_1].net : nullptr;

            if (net_in0 != nullptr && net_in0->users.size() == 0) {
                delete_nets.insert(net_in0->name);
                ci->ports[id_D_IN_0].net = nullptr;
            }
            if (net_in1 != nullptr && net_in1->users.size() == 0) {
                delete_nets.insert(net_in1->name);
                ci->ports[id_D_IN_1].net = nullptr;
            }
        }
    }
    for (auto pcell : packed_cells) {
        ctx->cells.erase(pcell);
    }
    for (auto dnet : delete_nets) {
        ctx->nets.erase(dnet);
    }
    for (auto &ncell : new_cells) {
        ctx->cells[ncell->name] = std::move(ncell);
    }
}

// Return true if a port counts as "logic" for global promotion
static bool is_logic_port(BaseCtx *ctx, const PortRef &port)
{
    if (is_clock_port(ctx, port) || is_reset_port(ctx, port) || is_enable_port(ctx, port))
        return false;
    return !is_sb_io(ctx, port.cell) && !is_sb_gb_io(ctx, port.cell) && !is_gbuf(ctx, port.cell) &&
           !is_sb_pll40(ctx, port.cell);
}

static void insert_global(Context *ctx, NetInfo *net, bool is_reset, bool is_cen, bool is_logic, int fanout)
{
    log_info("promoting %s%s%s%s (fanout %d)\n", net->name.c_str(ctx), is_reset ? " [reset]" : "",
             is_cen ? " [cen]" : "", is_logic ? " [logic]" : "", fanout);

    std::string glb_name = net->name.str(ctx) + std::string("_$glb_") + (is_reset ? "sr" : (is_cen ? "ce" : "clk"));
    std::unique_ptr<CellInfo> gb = create_ice_cell(ctx, ctx->id("SB_GB"), "$gbuf_" + glb_name);
    gb->ports[ctx->id("USER_SIGNAL_TO_GLOBAL_BUFFER")].net = net;
    PortRef pr;
    pr.cell = gb.get();
    pr.port = ctx->id("USER_SIGNAL_TO_GLOBAL_BUFFER");
    net->users.push_back(pr);

    pr.cell = gb.get();
    pr.port = ctx->id("GLOBAL_BUFFER_OUTPUT");
    std::unique_ptr<NetInfo> glbnet = std::unique_ptr<NetInfo>(new NetInfo());
    glbnet->name = ctx->id(glb_name);
    glbnet->driver = pr;
    gb->ports[ctx->id("GLOBAL_BUFFER_OUTPUT")].net = glbnet.get();
    std::vector<PortRef> keep_users;
    for (auto user : net->users) {
        if (is_clock_port(ctx, user) || (is_reset && is_reset_port(ctx, user)) ||
            (is_cen && is_enable_port(ctx, user)) || (is_logic && is_logic_port(ctx, user))) {
            user.cell->ports[user.port].net = glbnet.get();
            glbnet->users.push_back(user);
        } else {
            keep_users.push_back(user);
        }
    }
    net->users = keep_users;

    if (net->clkconstr) {
        glbnet->clkconstr = std::unique_ptr<ClockConstraint>(new ClockConstraint());
        glbnet->clkconstr->low = net->clkconstr->low;
        glbnet->clkconstr->high = net->clkconstr->high;
        glbnet->clkconstr->period = net->clkconstr->period;
    }

    ctx->nets[glbnet->name] = std::move(glbnet);
    ctx->cells[gb->name] = std::move(gb);
}

// Simple global promoter (clock only)
static void promote_globals(Context *ctx)
{
    log_info("Promoting globals..\n");
    const int logic_fanout_thresh = 15;
    const int enable_fanout_thresh = 15;
    const int reset_fanout_thresh = 15;
    std::map<IdString, int> clock_count, reset_count, cen_count, logic_count;
    for (auto &net : ctx->nets) {
        NetInfo *ni = net.second.get();
        if (ni->driver.cell != nullptr && !ctx->is_global_net(ni)) {
            clock_count[net.first] = 0;
            reset_count[net.first] = 0;
            cen_count[net.first] = 0;

            for (auto user : ni->users) {
                if (is_clock_port(ctx, user))
                    clock_count[net.first]++;
                if (is_reset_port(ctx, user))
                    reset_count[net.first]++;
                if (is_enable_port(ctx, user))
                    cen_count[net.first]++;
                if (is_logic_port(ctx, user))
                    logic_count[net.first]++;
            }
        }
    }
    int prom_globals = 0, prom_resets = 0, prom_cens = 0, prom_logics = 0;
    int gbs_available = 8, resets_available = 4, cens_available = 4;
    for (auto &cell : ctx->cells)
        if (is_gbuf(ctx, cell.second.get())) {
            /* One less buffer available */
            --gbs_available;

            /* And possibly limits what we can promote */
            if (cell.second->attrs.find(ctx->id("BEL")) != cell.second->attrs.end()) {
                /* If the SB_GB is locked, doesn't matter what it drives */
                BelId bel = ctx->getBelByNameStr(cell.second->attrs[ctx->id("BEL")].as_string());
                int glb_id = ctx->get_driven_glb_netwk(bel);
                if ((glb_id % 2) == 0)
                    resets_available--;
                else if ((glb_id % 2) == 1)
                    cens_available--;
            } else {
                /* If it's free to move around, then look at what it drives */
                NetInfo *ni = cell.second->ports[id_GLOBAL_BUFFER_OUTPUT].net;

                for (auto user : ni->users) {
                    if (is_reset_port(ctx, user)) {
                        resets_available--;
                        break;
                    } else if (is_enable_port(ctx, user)) {
                        cens_available--;
                        break;
                    }
                }
            }
        }
    while (prom_globals < gbs_available) {
        auto global_clock = std::max_element(clock_count.begin(), clock_count.end(),
                                             [](const std::pair<IdString, int> &a, const std::pair<IdString, int> &b) {
                                                 return a.second < b.second;
                                             });

        auto global_reset = std::max_element(reset_count.begin(), reset_count.end(),
                                             [](const std::pair<IdString, int> &a, const std::pair<IdString, int> &b) {
                                                 return a.second < b.second;
                                             });
        auto global_cen = std::max_element(cen_count.begin(), cen_count.end(),
                                           [](const std::pair<IdString, int> &a, const std::pair<IdString, int> &b) {
                                               return a.second < b.second;
                                           });
        auto global_logic = std::max_element(logic_count.begin(), logic_count.end(),
                                             [](const std::pair<IdString, int> &a, const std::pair<IdString, int> &b) {
                                                 return a.second < b.second;
                                             });
        if (global_clock->second == 0 && prom_logics < 4 && global_logic->second > logic_fanout_thresh &&
            (global_logic->second > global_cen->second || prom_cens >= cens_available) &&
            (global_logic->second > global_reset->second || prom_resets >= resets_available) &&
            bool_or_default(ctx->settings, ctx->id("promote_logic"), false)) {
            NetInfo *logicnet = ctx->nets[global_logic->first].get();
            insert_global(ctx, logicnet, false, false, true, global_logic->second);
            ++prom_globals;
            ++prom_logics;
            clock_count.erase(logicnet->name);
            reset_count.erase(logicnet->name);
            cen_count.erase(logicnet->name);
            logic_count.erase(logicnet->name);
        } else if (global_reset->second > global_clock->second && prom_resets < resets_available &&
                   global_reset->second > reset_fanout_thresh) {
            NetInfo *rstnet = ctx->nets[global_reset->first].get();
            insert_global(ctx, rstnet, true, false, false, global_reset->second);
            ++prom_globals;
            ++prom_resets;
            clock_count.erase(rstnet->name);
            reset_count.erase(rstnet->name);
            cen_count.erase(rstnet->name);
            logic_count.erase(rstnet->name);
        } else if (global_cen->second > global_clock->second && prom_cens < cens_available &&
                   global_cen->second > enable_fanout_thresh) {
            NetInfo *cennet = ctx->nets[global_cen->first].get();
            insert_global(ctx, cennet, false, true, false, global_cen->second);
            ++prom_globals;
            ++prom_cens;
            clock_count.erase(cennet->name);
            reset_count.erase(cennet->name);
            cen_count.erase(cennet->name);
            logic_count.erase(cennet->name);
        } else if (global_clock->second != 0) {
            NetInfo *clknet = ctx->nets[global_clock->first].get();
            insert_global(ctx, clknet, false, false, false, global_clock->second);
            ++prom_globals;
            clock_count.erase(clknet->name);
            reset_count.erase(clknet->name);
            cen_count.erase(clknet->name);
            logic_count.erase(clknet->name);
        } else {
            break;
        }
    }
}

// Figure out where to place PLLs
static void place_plls(Context *ctx)
{
    std::map<BelId, std::tuple<BelPin, BelId, BelPin, BelId>> pll_all_bels;
    std::map<BelId, CellInfo *> pll_used_bels;
    std::vector<CellInfo *> pll_cells;
    std::map<BelId, CellInfo *> bel2io;
    std::map<BelId, CellInfo *> bel2gb;

    log_info("Placing PLLs..\n");

    // Find all the PLLs BELs and matching IO sites and global networks
    for (auto bel : ctx->getBels()) {
        if (ctx->getBelType(bel) != id_ICESTORM_PLL)
            continue;
        if (ctx->is_bel_locked(bel))
            continue;

        auto io_a_pin = ctx->get_iob_sharing_pll_pin(bel, id_PLLOUT_A);
        auto io_b_pin = ctx->get_iob_sharing_pll_pin(bel, id_PLLOUT_B);
        auto gb_a = find_padin_gbuf(ctx, bel, id_PLLOUT_A_GLOBAL);
        auto gb_b = find_padin_gbuf(ctx, bel, id_PLLOUT_B_GLOBAL);

        pll_all_bels[bel] = std::make_tuple(io_a_pin, gb_a, io_b_pin, gb_b);
    }

    // Find all the PLLs cells we need to place and do pre-checks
    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (!is_sb_pll40(ctx, ci))
            continue;

        // If it's constrained already, add to already used list
        if (ci->attrs.count(ctx->id("BEL"))) {
            BelId bel_constrain = ctx->getBelByNameStr(ci->attrs[ctx->id("BEL")].as_string());
            if (pll_all_bels.count(bel_constrain) == 0)
                log_error("PLL '%s' is constrained to invalid BEL '%s'\n", ci->name.c_str(ctx),
                          ci->attrs[ctx->id("BEL")].as_string().c_str());
            pll_used_bels[bel_constrain] = ci;
        }

        // Add it to our list of PLLs to process
        pll_cells.push_back(ci);
    }

    // Scan all the PAD PLLs
    for (auto ci : pll_cells) {
        if (!is_sb_pll40_pad(ctx, ci))
            continue;

        // Check PACKAGEPIN connection
        if (!ci->ports.count(ctx->id("PACKAGEPIN")))
            log_error("PLL '%s' is of PAD type but doesn't have a PACKAGEPIN port\n", ci->name.c_str(ctx));

        NetInfo *ni = ci->ports.at(ctx->id("PACKAGEPIN")).net;
        if (ni == nullptr || ni->driver.cell == nullptr)
            log_error("PLL '%s' is of PAD type but doesn't have a valid PACKAGEPIN connection\n", ci->name.c_str(ctx));

        CellInfo *io_cell = ni->driver.cell;
        if (io_cell->type != id_SB_IO || ni->driver.port != id_D_IN_0)
            log_error("PLL '%s' has a PACKAGEPIN driven by an %s, should be directly connected to an input "
                      "SB_IO.D_IN_0 port\n",
                      ci->name.c_str(ctx), io_cell->type.c_str(ctx));
        if (ni->users.size() != 1)
            log_error("PLL '%s' clock input '%s' can only drive PLL\n", ci->name.c_str(ctx), ni->name.c_str(ctx));
        if (!io_cell->attrs.count(ctx->id("BEL")))
            log_error("PLL '%s' PACKAGEPIN SB_IO '%s' is unconstrained\n", ci->name.c_str(ctx),
                      io_cell->name.c_str(ctx));

        BelId io_bel = ctx->getBelByNameStr(io_cell->attrs.at(ctx->id("BEL")).as_string());
        BelId found_bel;

        // Find the PLL BEL that would suit that connection
        for (auto pll_bel : pll_all_bels) {
            if (std::get<0>(pll_bel.second).bel == io_bel) {
                found_bel = pll_bel.first;
                break;
            }
        }

        if (found_bel == BelId())
            log_error("PLL '%s' PACKAGEPIN SB_IO '%s' is not connected to any PLL BEL\n", ci->name.c_str(ctx),
                      io_cell->name.c_str(ctx));
        if (pll_used_bels.count(found_bel)) {
            CellInfo *conflict_cell = pll_used_bels.at(found_bel);
            if (conflict_cell == ci)
                continue;
            log_error("PLL '%s' PACKAGEPIN forces it to BEL %s but BEL is already assigned to PLL '%s'\n",
                      ci->name.c_str(ctx), ctx->nameOfBel(found_bel), conflict_cell->name.c_str(ctx));
        }

        // Is it user constrained ?
        if (ci->attrs.count(ctx->id("BEL"))) {
            // Yes. Check it actually matches !
            BelId bel_constrain = ctx->getBelByNameStr(ci->attrs[ctx->id("BEL")].as_string());
            if (bel_constrain != found_bel)
                log_error("PLL '%s' is user constrained to %s but can only be placed in %s based on its PACKAGEPIN "
                          "connection\n",
                          ci->name.c_str(ctx), ctx->nameOfBel(bel_constrain), ctx->nameOfBel(found_bel));
        } else {
            // No, we can constrain it ourselves
            ci->attrs[ctx->id("BEL")] = ctx->getBelName(found_bel).str(ctx);
            pll_used_bels[found_bel] = ci;
        }

        // Inform user
        log_info("  constrained PLL '%s' to %s\n", ci->name.c_str(ctx), ctx->nameOfBel(found_bel));
    }

    // Scan all SB_IOs to check for conflict with PLL BELs
    for (auto &io_cell : ctx->cells) {
        CellInfo *io_ci = io_cell.second.get();
        if (!is_sb_io(ctx, io_ci))
            continue;

        // Only consider bound IO that are used as inputs
        if (!io_ci->attrs.count(ctx->id("BEL")))
            continue;
        if ((!io_ci->ports.count(id_D_IN_0) || (io_ci->ports[id_D_IN_0].net == nullptr)) &&
            (!io_ci->ports.count(id_D_IN_1) || (io_ci->ports[id_D_IN_1].net == nullptr)) &&
            !bool_or_default(io_ci->attrs, ctx->id("GLOBAL")))
            continue;

        // Check all placed PLL (either forced by user, or forced by PACKAGEPIN)
        BelId io_bel = ctx->getBelByNameStr(io_ci->attrs[ctx->id("BEL")].as_string());

        for (auto placed_pll : pll_used_bels) {
            BelPin pll_io_a, pll_io_b;
            BelId gb_a, gb_b;
            std::tie(pll_io_a, gb_a, pll_io_b, gb_b) = pll_all_bels[placed_pll.first];
            if (io_bel == pll_io_a.bel) {
                // All the PAD type PLL stuff already checked above,so only
                // check for conflict with a user placed CORE PLL
                if (!is_sb_pll40_pad(ctx, placed_pll.second))
                    log_error("PLL '%s' A output conflict with SB_IO '%s' that's used as input\n",
                              placed_pll.second->name.c_str(ctx), io_cell.second->name.c_str(ctx));
            } else if (io_bel == pll_io_b.bel) {
                if (is_sb_pll40_dual(ctx, placed_pll.second))
                    log_error("PLL '%s' B output conflicts with SB_IO '%s' that's used as input\n",
                              placed_pll.second->name.c_str(ctx), io_cell.second->name.c_str(ctx));
            }
        }

        // Save for later checks
        bel2io[io_bel] = io_ci;
    }

    // Scan all SB_GBs to check for conflicts with PLL BELs
    for (auto &gb_cell : ctx->cells) {
        CellInfo *gb_ci = gb_cell.second.get();
        if (!is_gbuf(ctx, gb_ci))
            continue;

        // Only consider the bound ones
        if (!gb_ci->attrs.count(ctx->id("BEL")))
            continue;

        // Check all placed PLL (either forced by user, or forced by PACKAGEPIN)
        BelId gb_bel = ctx->getBelByNameStr(gb_ci->attrs[ctx->id("BEL")].as_string());

        for (auto placed_pll : pll_used_bels) {
            CellInfo *ci = placed_pll.second;

            // Used global connections
            bool gb_a_used = ci->ports.count(id_PLLOUT_A_GLOBAL) && (ci->ports[id_PLLOUT_A_GLOBAL].net != nullptr) &&
                             (ci->ports[id_PLLOUT_A_GLOBAL].net->users.size() > 0);
            bool gb_b_used = is_sb_pll40_dual(ctx, ci) && ci->ports.count(id_PLLOUT_B_GLOBAL) &&
                             (ci->ports[id_PLLOUT_B_GLOBAL].net != nullptr) &&
                             (ci->ports[id_PLLOUT_B_GLOBAL].net->users.size() > 0);

            // Check for conflict
            BelPin pll_io_a, pll_io_b;
            BelId gb_a, gb_b;
            std::tie(pll_io_a, gb_a, pll_io_b, gb_b) = pll_all_bels[placed_pll.first];
            if (gb_a_used && (gb_bel == gb_a)) {
                log_error("PLL '%s' A output conflict with SB_GB '%s'\n", placed_pll.second->name.c_str(ctx),
                          gb_cell.second->name.c_str(ctx));
            }
            if (gb_b_used && (gb_bel == gb_b)) {
                log_error("PLL '%s' B output conflicts with SB_GB '%s'\n", placed_pll.second->name.c_str(ctx),
                          gb_cell.second->name.c_str(ctx));
            }
        }

        // Save for later checks
        bel2gb[gb_bel] = gb_ci;
    }

    // Scan all the CORE PLLs and place them in remaining available PLL BELs
    // (in two pass ... first do the dual ones, harder to place, then single port)
    for (int i = 0; i < 2; i++) {
        for (auto ci : pll_cells) {
            if (is_sb_pll40_pad(ctx, ci))
                continue;
            if (is_sb_pll40_dual(ctx, ci) ^ i)
                continue;

            // Check REFERENCECLK connection
            if (!ci->ports.count(id_REFERENCECLK))
                log_error("PLL '%s' is of CORE type but doesn't have a REFERENCECLK port\n", ci->name.c_str(ctx));

            NetInfo *ni = ci->ports.at(id_REFERENCECLK).net;
            if (ni == nullptr || ni->driver.cell == nullptr)
                log_error("PLL '%s' is of CORE type but doesn't have a valid REFERENCECLK connection\n",
                          ci->name.c_str(ctx));

            // Used global connections
            bool gb_a_used = ci->ports.count(id_PLLOUT_A_GLOBAL) && (ci->ports[id_PLLOUT_A_GLOBAL].net != nullptr) &&
                             (ci->ports[id_PLLOUT_A_GLOBAL].net->users.size() > 0);
            bool gb_b_used = is_sb_pll40_dual(ctx, ci) && ci->ports.count(id_PLLOUT_B_GLOBAL) &&
                             (ci->ports[id_PLLOUT_B_GLOBAL].net != nullptr) &&
                             (ci->ports[id_PLLOUT_B_GLOBAL].net->users.size() > 0);

            // Could this be a PAD PLL ?
            bool could_be_pad = false;
            BelId pad_bel;
            if (ni->users.size() == 1 && is_sb_io(ctx, ni->driver.cell) && ni->driver.cell->attrs.count(ctx->id("BEL")))
                pad_bel = ctx->getBelByNameStr(ni->driver.cell->attrs[ctx->id("BEL")].as_string());

            // Find a BEL for it
            BelId found_bel;
            for (auto bel_pll : pll_all_bels) {
                if (pll_used_bels.count(bel_pll.first))
                    continue;
                BelPin pll_io_a, pll_io_b;
                BelId gb_a, gb_b;
                std::tie(pll_io_a, gb_a, pll_io_b, gb_b) = bel_pll.second;
                if (bel2io.count(pll_io_a.bel)) {
                    if (pll_io_a.bel == pad_bel)
                        could_be_pad = !bel2io.count(pll_io_b.bel) || !is_sb_pll40_dual(ctx, ci);
                    continue;
                }
                if (bel2io.count(pll_io_b.bel) && is_sb_pll40_dual(ctx, ci))
                    continue;
                if (gb_a_used && bel2gb.count(gb_a))
                    continue;
                if (gb_b_used && bel2gb.count(gb_b))
                    continue;
                found_bel = bel_pll.first;
                break;
            }

            // Apply constrain & Inform user of result
            if (found_bel == BelId())
                log_error("PLL '%s' couldn't be placed anywhere, no suitable BEL found.%s\n", ci->name.c_str(ctx),
                          could_be_pad ? " Did you mean to use a PAD PLL ?" : "");

            log_info("  constrained PLL '%s' to %s\n", ci->name.c_str(ctx), ctx->nameOfBel(found_bel));
            if (could_be_pad)
                log_info("  (given its connections, this PLL could have been a PAD PLL)\n");

            ci->attrs[ctx->id("BEL")] = ctx->getBelName(found_bel).str(ctx);
            pll_used_bels[found_bel] = ci;
        }
    }
}

// spliceLUT adds a pass-through LUT LC between the given cell's output port
// and either all users or only non_LUT users.
static std::unique_ptr<CellInfo> spliceLUT(Context *ctx, CellInfo *ci, IdString portId, bool onlyNonLUTs)
{
    auto port = ci->ports[portId];

    NPNR_ASSERT(port.net != nullptr);

    // Create pass-through LUT.
    std::unique_ptr<CellInfo> pt = create_ice_cell(ctx, ctx->id("ICESTORM_LC"),
                                                   ci->name.str(ctx) + "$nextpnr_" + portId.str(ctx) + "_lut_through");
    pt->params[ctx->id("LUT_INIT")] = Property(65280, 16); // output is always I3

    // Create LUT output net.
    std::unique_ptr<NetInfo> out_net = std::unique_ptr<NetInfo>(new NetInfo);
    out_net->name = ctx->id(ci->name.str(ctx) + "$nextnr_" + portId.str(ctx) + "_lut_through_net");
    out_net->driver.cell = pt.get();
    out_net->driver.port = ctx->id("O");
    pt->ports.at(ctx->id("O")).net = out_net.get();

    // New users of the original cell's port
    std::vector<PortRef> new_users;
    for (const auto &user : port.net->users) {
        if (onlyNonLUTs && user.cell->type == ctx->id("ICESTORM_LC")) {
            new_users.push_back(user);
            continue;
        }
        // Rewrite pointer into net in user.
        user.cell->ports[user.port].net = out_net.get();
        // Add user to net.
        PortRef pr;
        pr.cell = user.cell;
        pr.port = user.port;
        out_net->users.push_back(pr);
    }

    // Add LUT to new users.
    PortRef pr;
    pr.cell = pt.get();
    pr.port = ctx->id("I3");
    new_users.push_back(pr);
    pt->ports.at(ctx->id("I3")).net = port.net;

    // Replace users of the original net.
    port.net->users = new_users;

    ctx->nets[out_net->name] = std::move(out_net);
    return pt;
}

// Force placement for cells that are unique anyway
static BelId cell_place_unique(Context *ctx, CellInfo *ci)
{
    for (auto bel : ctx->getBels()) {
        if (ctx->getBelType(bel) != ci->type)
            continue;
        if (ctx->is_bel_locked(bel))
            continue;
        IdStringList bel_name = ctx->getBelName(bel);
        ci->attrs[ctx->id("BEL")] = bel_name.str(ctx);
        log_info("  constrained %s '%s' to %s\n", ci->type.c_str(ctx), ci->name.c_str(ctx), ctx->nameOfBel(bel));
        return bel;
    }
    log_error("Unable to place cell '%s' of type '%s'\n", ci->name.c_str(ctx), ci->type.c_str(ctx));
}

namespace {
float MHz(Context *ctx, delay_t a) { return 1000.0f / ctx->getDelayNS(a); };
bool equals_epsilon(delay_t a, delay_t b) { return (std::abs(a - b) / std::max(double(b), 1.0)) < 1e-3; };
void set_period(Context *ctx, CellInfo *ci, IdString port, delay_t period)
{
    if (!ci->ports.count(port))
        return;
    NetInfo *to = ci->ports.at(port).net;
    if (to == nullptr)
        return;
    if (to->clkconstr != nullptr) {
        if (!equals_epsilon(to->clkconstr->period.maxDelay(), period))
            log_warning("    Overriding derived constraint of %.1f MHz on net %s with user-specified constraint of "
                        "%.1f MHz.\n",
                        MHz(ctx, period), to->name.c_str(ctx), MHz(ctx, to->clkconstr->period.maxDelay()));
        return;
    }
    to->clkconstr = std::unique_ptr<ClockConstraint>(new ClockConstraint());
    to->clkconstr->low = DelayPair(period / 2);
    to->clkconstr->high = DelayPair(period / 2);
    to->clkconstr->period = DelayPair(period);
    log_info("    Derived frequency constraint of %.1f MHz for net %s\n", MHz(ctx, to->clkconstr->period.maxDelay()),
             to->name.c_str(ctx));
};
bool get_period(Context *ctx, CellInfo *ci, IdString port, delay_t &period)
{
    if (!ci->ports.count(port))
        return false;
    NetInfo *from = ci->ports.at(port).net;
    if (from == nullptr || from->clkconstr == nullptr)
        return false;
    period = from->clkconstr->period.maxDelay();
    return true;
};

} // namespace

// Pack special functions
static void pack_special(Context *ctx)
{
    log_info("Packing special functions..\n");

    pool<IdString> packed_cells;
    std::vector<std::unique_ptr<CellInfo>> new_cells;

    // Handle LED_DRV_CUR first to set the ledCurConnected flag before RGB_DRV is handled below.
    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (is_sb_led_drv_cur(ctx, ci)) {
            /* Force placement (no choices anyway) */
            cell_place_unique(ctx, ci);

            NetInfo *ledpu_net = ci->ports.at(ctx->id("LEDPU")).net;
            for (auto &user : ledpu_net->users) {
                if (!is_sb_rgb_drv(ctx, user.cell)) {
                    log_error("SB_LED_DRV_CUR LEDPU port can only be connected to SB_RGB_DRV!\n");
                } else {
                    user.cell->ledInfo.ledCurConnected = true;
                    user.cell->ports.at(user.port).net = nullptr;
                }
            }
            ci->ports.erase(ctx->id("LEDPU"));
            ctx->nets.erase(ledpu_net->name);
        }
    }
    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (is_sb_lfosc(ctx, ci)) {
            std::unique_ptr<CellInfo> packed =
                    create_ice_cell(ctx, ctx->id("ICESTORM_LFOSC"), ci->name.str(ctx) + "_OSC");
            packed_cells.insert(ci->name);
            cell_place_unique(ctx, packed.get());
            replace_port(ci, ctx->id("CLKLFEN"), packed.get(), ctx->id("CLKLFEN"));
            replace_port(ci, ctx->id("CLKLFPU"), packed.get(), ctx->id("CLKLFPU"));
            if (bool_or_default(ci->attrs, ctx->id("ROUTE_THROUGH_FABRIC"))) {
                replace_port(ci, ctx->id("CLKLF"), packed.get(), ctx->id("CLKLF_FABRIC"));
                set_period(ctx, packed.get(), ctx->id("CLKLF_FABRIC"), 100000000); // 10kHz
            } else {
                replace_port(ci, ctx->id("CLKLF"), packed.get(), ctx->id("CLKLF"));
                std::unique_ptr<CellInfo> gb =
                        create_padin_gbuf(ctx, packed.get(), ctx->id("CLKLF"), "$gbuf_" + ci->name.str(ctx) + "_lfosc");
                set_period(ctx, gb.get(), id_GLOBAL_BUFFER_OUTPUT, 100000000); // 10kHz
                new_cells.push_back(std::move(gb));
            }
            new_cells.push_back(std::move(packed));
        } else if (is_sb_hfosc(ctx, ci)) {
            std::unique_ptr<CellInfo> packed =
                    create_ice_cell(ctx, ctx->id("ICESTORM_HFOSC"), ci->name.str(ctx) + "_OSC");
            packed_cells.insert(ci->name);
            cell_place_unique(ctx, packed.get());
            packed->params[ctx->id("TRIM_EN")] = str_or_default(ci->params, ctx->id("TRIM_EN"), "0b0");
            packed->params[ctx->id("CLKHF_DIV")] = str_or_default(ci->params, ctx->id("CLKHF_DIV"), "0b00");
            replace_port(ci, ctx->id("CLKHFEN"), packed.get(), ctx->id("CLKHFEN"));
            replace_port(ci, ctx->id("CLKHFPU"), packed.get(), ctx->id("CLKHFPU"));
            for (int i = 0; i < 10; i++) {
                auto port = ctx->id("TRIM" + std::to_string(i));
                replace_port(ci, port, packed.get(), port);
            }
            std::string div = packed->params[ctx->id("CLKHF_DIV")].as_string();
            int frequency;
            if (div == "0b00")
                frequency = 48;
            else if (div == "0b01")
                frequency = 24;
            else if (div == "0b10")
                frequency = 12;
            else if (div == "0b11")
                frequency = 6;
            else
                log_error("Invalid HFOSC divider value '%s' - expecting 0b00, 0b01, 0b10 or 0b11\n", div.c_str());
            if (bool_or_default(ci->attrs, ctx->id("ROUTE_THROUGH_FABRIC"))) {
                replace_port(ci, ctx->id("CLKHF"), packed.get(), ctx->id("CLKHF_FABRIC"));
                set_period(ctx, packed.get(), ctx->id("CLKHF_FABRIC"), 1000000 / frequency);
            } else {
                replace_port(ci, ctx->id("CLKHF"), packed.get(), ctx->id("CLKHF"));
                std::unique_ptr<CellInfo> gb =
                        create_padin_gbuf(ctx, packed.get(), ctx->id("CLKHF"), "$gbuf_" + ci->name.str(ctx) + "_hfosc");
                set_period(ctx, gb.get(), id_GLOBAL_BUFFER_OUTPUT, 1000000 / frequency);
                new_cells.push_back(std::move(gb));
            }
            new_cells.push_back(std::move(packed));
        } else if (is_sb_spram(ctx, ci)) {
            std::unique_ptr<CellInfo> packed =
                    create_ice_cell(ctx, ctx->id("ICESTORM_SPRAM"), ci->name.str(ctx) + "_RAM");
            packed_cells.insert(ci->name);
            for (auto attr : ci->attrs)
                packed->attrs[attr.first] = attr.second;
            for (auto port : ci->ports) {
                PortInfo &pi = port.second;
                std::string newname = pi.name.str(ctx);
                size_t bpos = newname.find('[');
                if (bpos != std::string::npos) {
                    newname = newname.substr(0, bpos) + "_" + newname.substr(bpos + 1, (newname.size() - bpos) - 2);
                }
                replace_port(ci, ctx->id(pi.name.c_str(ctx)), packed.get(), ctx->id(newname));
            }
            new_cells.push_back(std::move(packed));
        } else if (is_sb_mac16(ctx, ci)) {
            std::unique_ptr<CellInfo> packed =
                    create_ice_cell(ctx, ctx->id("ICESTORM_DSP"), ci->name.str(ctx) + "_DSP");
            packed_cells.insert(ci->name);
            for (auto attr : ci->attrs)
                packed->attrs[attr.first] = attr.second;
            for (auto param : ci->params)
                packed->params[param.first] = param.second;

            for (auto port : ci->ports) {
                PortInfo &pi = port.second;
                std::string newname = pi.name.str(ctx);
                size_t bpos = newname.find('[');
                if (bpos != std::string::npos) {
                    newname = newname.substr(0, bpos) + "_" + newname.substr(bpos + 1, (newname.size() - bpos) - 2);
                }
                replace_port(ci, ctx->id(pi.name.c_str(ctx)), packed.get(), ctx->id(newname));
            }
            new_cells.push_back(std::move(packed));
        } else if (is_sb_rgba_drv(ctx, ci) || is_sb_rgb_drv(ctx, ci)) {
            /* Force placement (no choices anyway) */
            cell_place_unique(ctx, ci);

            /* Disconnect all external ports and check there is no users (they should have been
             * dealth with during IO packing */
            for (auto port : ci->ports) {
                PortInfo &pi = port.second;
                NetInfo *net = pi.net;

                if (net == nullptr)
                    continue;

                if ((pi.name != ctx->id("RGB0")) && (pi.name != ctx->id("RGB1")) && (pi.name != ctx->id("RGB2")))
                    continue;

                if (net->users.size() > 0)
                    log_error("SB_RGB_DRV/SB_RGBA_DRV port connected to more than just package pin !\n");

                ctx->nets.erase(net->name);
            }

            if (is_sb_rgb_drv(ctx, ci) && !ci->ledInfo.ledCurConnected)
                log_error("Port RGBPU of SB_RGB_DRV should be driven by port LEDPU of SB_LED_DRV_CUR!\n");

            ci->ports.erase(ctx->id("RGBPU"));
            ci->ports.erase(ctx->id("RGB0"));
            ci->ports.erase(ctx->id("RGB1"));
            ci->ports.erase(ctx->id("RGB2"));
        } else if (is_sb_ledda_ip(ctx, ci)) {
            /* Force placement (no choices anyway) */
            cell_place_unique(ctx, ci);
        } else if (is_sb_i2c(ctx, ci) || is_sb_spi(ctx, ci)) {
            const std::map<std::tuple<IdString, std::string>, Loc> map_ba74 = {
                    {std::make_tuple(id_SB_SPI, "0b0000"), Loc(0, 0, 0)},
                    {std::make_tuple(id_SB_I2C, "0b0001"), Loc(0, 31, 0)},
                    {std::make_tuple(id_SB_SPI, "0b0010"), Loc(25, 0, 1)},
                    {std::make_tuple(id_SB_I2C, "0b0011"), Loc(25, 31, 0)},
            };
            std::string bus_addr74 =
                    str_or_default(ci->params, ctx->id("BUS_ADDR74"), is_sb_i2c(ctx, ci) ? "0b0001" : "0b0000");
            if (map_ba74.find(std::make_tuple(ci->type, bus_addr74)) == map_ba74.end())
                log_error("Invalid value for BUS_ADDR74 for cell '%s' of type '%s'\n", ci->name.c_str(ctx),
                          ci->type.c_str(ctx));
            Loc bel_loc = map_ba74.at(std::make_tuple(ci->type, bus_addr74));
            BelId bel = ctx->getBelByLocation(bel_loc);
            if (bel == BelId() || ctx->getBelType(bel) != ci->type)
                log_error("Unable to find placement for cell '%s' of type '%s'\n", ci->name.c_str(ctx),
                          ci->type.c_str(ctx));
            IdStringList bel_name = ctx->getBelName(bel);
            ci->attrs[ctx->id("BEL")] = bel_name.str(ctx);
            log_info("  constrained %s '%s' to %s\n", ci->type.c_str(ctx), ci->name.c_str(ctx), ctx->nameOfBel(bel));
        }
    }

    for (auto pcell : packed_cells) {
        ctx->cells.erase(pcell);
    }
    for (auto &ncell : new_cells) {
        ctx->cells[ncell->name] = std::move(ncell);
    }
}

void pack_plls(Context *ctx)
{
    log_info("Packing PLLs..\n");

    pool<IdString> packed_cells;
    std::vector<std::unique_ptr<CellInfo>> new_cells;
    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        if (is_sb_pll40(ctx, ci)) {
            bool is_pad = is_sb_pll40_pad(ctx, ci);
            bool is_core = !is_pad;

            std::unique_ptr<CellInfo> packed =
                    create_ice_cell(ctx, ctx->id("ICESTORM_PLL"), ci->name.str(ctx) + "_PLL");
            packed->attrs[ctx->id("TYPE")] = ci->type.str(ctx);
            packed_cells.insert(ci->name);
            if (!is_sb_pll40_dual(ctx, ci)) {
                // Remove second output, so a buffer isn't created for it, for these
                // cell types with only one output
                packed->ports.erase(ctx->id("PLLOUT_B"));
                packed->ports.erase(ctx->id("PLLOUT_B_GLOBAL"));
            }
            for (auto attr : ci->attrs)
                packed->attrs[attr.first] = attr.second;
            for (auto param : ci->params)
                packed->params[param.first] = param.second;

            const std::map<IdString, IdString> pos_map_name = {
                    {ctx->id("PLLOUT_SELECT"), ctx->id("PLLOUT_SELECT_A")},
                    {ctx->id("PLLOUT_SELECT_PORTA"), ctx->id("PLLOUT_SELECT_A")},
                    {ctx->id("PLLOUT_SELECT_PORTB"), ctx->id("PLLOUT_SELECT_B")},
            };
            const std::map<std::string, int> pos_map_val = {
                    {"GENCLK", 0},
                    {"GENCLK_HALF", 1},
                    {"SHIFTREG_90deg", 2},
                    {"SHIFTREG_0deg", 3},
            };
            for (auto param : ci->params)
                if (pos_map_name.find(param.first) != pos_map_name.end()) {
                    if (pos_map_val.find(param.second.as_string()) == pos_map_val.end())
                        log_error("Invalid PLL output selection '%s'\n", param.second.as_string().c_str());
                    packed->params[pos_map_name.at(param.first)] = pos_map_val.at(param.second.as_string());
                }
            const std::map<IdString, std::pair<IdString, IdString>> delmodes = {
                    {ctx->id("DELAY_ADJUSTMENT_MODE_FEEDBACK"), {ctx->id("DELAY_ADJMODE_FB"), ctx->id("FDA_FEEDBACK")}},
                    {ctx->id("DELAY_ADJUSTMENT_MODE_RELATIVE"),
                     {ctx->id("DELAY_ADJMODE_REL"), ctx->id("FDA_RELATIVE")}},
            };
            for (auto delmode : delmodes) {
                if (ci->params.count(delmode.first)) {
                    std::string value = str_or_default(ci->params, delmode.first, "");
                    if (value == "DYNAMIC") {
                        packed->params[delmode.second.first] = 1;
                        packed->params[delmode.second.second] = 15;
                    } else if (value == "FIXED")
                        packed->params[delmode.second.first] = 0;
                    else
                        log_error("Invalid PLL %s selection '%s'\n", delmode.first.c_str(ctx), value.c_str());
                }
            }
            auto feedback_path = packed->params[ctx->id("FEEDBACK_PATH")].is_string
                                         ? packed->params[ctx->id("FEEDBACK_PATH")].as_string()
                                         : std::to_string(packed->params[ctx->id("FEEDBACK_PATH")].as_int64());
            std::string fbp_value = feedback_path == "DELAY"             ? "0"
                                    : feedback_path == "SIMPLE"          ? "1"
                                    : feedback_path == "PHASE_AND_DELAY" ? "2"
                                    : feedback_path == "EXTERNAL"        ? "6"
                                                                         : std::string(feedback_path);
            if (!std::all_of(fbp_value.begin(), fbp_value.end(), isdigit))
                log_error("PLL '%s' has unsupported FEEDBACK_PATH value '%s'\n", ci->name.c_str(ctx),
                          feedback_path.c_str());
            packed->params[ctx->id("FEEDBACK_PATH")] = Property(std::stoi(fbp_value), 3);
            packed->params[ctx->id("PLLTYPE")] = sb_pll40_type(ctx, ci);

            NetInfo *pad_packagepin_net = nullptr;

            bool got_input_constr = false;
            delay_t input_constr = 0;

            for (auto port : ci->ports) {
                PortInfo &pi = port.second;
                std::string newname = pi.name.str(ctx);
                size_t bpos = newname.find('[');
                if (bpos != std::string::npos) {
                    newname = newname.substr(0, bpos) + "_" + newname.substr(bpos + 1, (newname.size() - bpos) - 2);
                }

                if (pi.name == ctx->id("PLLOUTCOREA") || pi.name == ctx->id("PLLOUTCORE"))
                    newname = "PLLOUT_A";
                if (pi.name == ctx->id("PLLOUTCOREB"))
                    newname = "PLLOUT_B";
                if (pi.name == ctx->id("PLLOUTGLOBALA") || pi.name == ctx->id("PLLOUTGLOBAL"))
                    newname = "PLLOUT_A_GLOBAL";
                if (pi.name == ctx->id("PLLOUTGLOBALB"))
                    newname = "PLLOUT_B_GLOBAL";

                if (pi.name == ctx->id("PACKAGEPIN")) {
                    if (!is_pad) {
                        log_error("PLL '%s' has a PACKAGEPIN but is not a PAD PLL\n", ci->name.c_str(ctx));
                    } else {
                        // We drop this port and instead place the PLL adequately below.
                        got_input_constr = get_period(ctx, ci, pi.name, input_constr);
                        pad_packagepin_net = port.second.net;
                        NPNR_ASSERT(pad_packagepin_net != nullptr);
                        continue;
                    }
                }
                if (pi.name == ctx->id("REFERENCECLK")) {
                    if (!is_core)
                        log_error("PLL '%s' has a REFERENCECLK but is not a CORE PLL\n", ci->name.c_str(ctx));
                    got_input_constr = get_period(ctx, ci, pi.name, input_constr);
                }

                if (packed->ports.count(ctx->id(newname)) == 0) {
                    if (ci->ports[pi.name].net == nullptr) {
                        log_warning("PLL '%s' has unknown unconnected port '%s' - ignoring\n", ci->name.c_str(ctx),
                                    pi.name.c_str(ctx));
                        continue;
                    } else {
                        if (ctx->force) {
                            log_error("PLL '%s' has unknown connected port '%s'\n", ci->name.c_str(ctx),
                                      pi.name.c_str(ctx));
                        } else {
                            log_warning("PLL '%s' has unknown connected port '%s' - ignoring\n", ci->name.c_str(ctx),
                                        pi.name.c_str(ctx));
                            continue;
                        }
                    }
                }
                replace_port(ci, ctx->id(pi.name.c_str(ctx)), packed.get(), ctx->id(newname));
            }

            // Compute derive constraints
            if (got_input_constr) {
                log_info("    Input frequency of PLL '%s' is constrained to %.1f MHz\n", ctx->nameOf(ci),
                         MHz(ctx, input_constr));
                // Input divider (DIVR)
                input_constr *= (int_or_default(packed->params, ctx->id("DIVR"), 0) + 1);
                delay_t vco_constr = 0;
                delay_t outa_constr = 0, outb_constr = 0;
                int sr_div = 4;
                int divq = 0;

                // For dealing with the various output modes
                auto process_output = [&](IdString mode_param) {
                    int mode = int_or_default(packed->params, mode_param, 0);
                    switch (mode) {
                    case 0: // GENCLK
                        return vco_constr * divq;
                    case 1: // GENCLK_HALF
                        return vco_constr * divq * 2;
                    case 2: // SHIFTREG_90deg
                    case 3: // SHIFTREG_0deg
                        return vco_constr * divq * sr_div;
                    default:
                        NPNR_ASSERT_FALSE("bad PLL output mode");
                    }
                };

                // Lookup shiftreg divider
                int sr_div_mode = int_or_default(packed->params, ctx->id("SHIFTREG_DIV_MODE"), 0);
                switch (sr_div_mode) {
                case 0:
                    sr_div = 4;
                    break;
                case 1:
                    sr_div = 7;
                    break;
                case 3:
                    sr_div = 5;
                    break;
                default: {
                    log_info("    Unsupported SHIFTREG_DIV_MODE value %d; can't derive constraints for PLL '%s'\n",
                             sr_div_mode, ctx->nameOf(ci));
                    goto constr_fail;
                }
                }
                // Determine dividers in VCO path
                vco_constr = input_constr / (int_or_default(packed->params, ctx->id("DIVF"), 0) + 1);
                divq = 1 << (int_or_default(packed->params, ctx->id("DIVQ"), 0));
                if (fbp_value != "1") // anything other than SIMPLE - feedback after DIVQ
                    vco_constr /= divq;
                if (fbp_value == "6") { // EXTERNAL
                    log_info("    Can't derive constraints for PLL '%s' in EXTERNAL feedback mode\n", ctx->nameOf(ci));
                    goto constr_fail;
                }
                if (fbp_value == "2") { // PHASE_AND_DELAY feedback - via shiftreg
                    // Shiftreg divider is also in the VCO feedback path
                    vco_constr /= sr_div;
                }
                log_info("    VCO frequency of PLL '%s' is constrained to %.1f MHz\n", ctx->nameOf(ci),
                         MHz(ctx, vco_constr));
                if (ci->type == ctx->id("SB_PLL40_2_PAD"))
                    outa_constr = input_constr; // 2_PAD variant passes through input to OUTPUT A
                else
                    outa_constr = process_output(ctx->id("PLLOUT_SELECT_A"));
                outb_constr = process_output(ctx->id("PLLOUT_SELECT_B"));
                set_period(ctx, packed.get(), ctx->id("PLLOUT_A"), outa_constr);
                set_period(ctx, packed.get(), ctx->id("PLLOUT_A_GLOBAL"), outa_constr);
                set_period(ctx, packed.get(), ctx->id("PLLOUT_B"), outb_constr);
                set_period(ctx, packed.get(), ctx->id("PLLOUT_B_GLOBAL"), outb_constr);
            }
        constr_fail:
            // PLL must have been placed already in place_plls()
            BelId pll_bel = ctx->getBelByNameStr(packed->attrs[ctx->id("BEL")].as_string());
            NPNR_ASSERT(pll_bel != BelId());

            // Deal with PAD PLL peculiarities
            if (is_pad) {
                NPNR_ASSERT(pad_packagepin_net != nullptr);
                auto pll_packagepin_driver = pad_packagepin_net->driver;
                NPNR_ASSERT(pll_packagepin_driver.cell != nullptr);
                auto packagepin_cell = pll_packagepin_driver.cell;
                auto packagepin_bel_name = packagepin_cell->attrs.find(ctx->id("BEL"));

                // Set an attribute about this PLL's PAD SB_IO.
                packed->attrs[ctx->id("BEL_PAD_INPUT")] = packagepin_bel_name->second;

                // Disconnect PACKAGEPIN (it's a physical HW link)
                for (auto user : pad_packagepin_net->users)
                    user.cell->ports.erase(user.port);
                packagepin_cell->ports.erase(pll_packagepin_driver.port);
                ctx->nets.erase(pad_packagepin_net->name);
                pad_packagepin_net = nullptr;
            }

            // The LOCK signal on iCE40 PLLs goes through the neigh_op_bnl_1 wire.
            // In practice, this means the LOCK signal can only directly reach LUT
            // inputs.
            // If we have a net connected to LOCK, make sure it only drives LUTs.
            auto port = packed->ports[ctx->id("LOCK")];
            if (port.net != nullptr) {
                log_info("  PLL '%s' has LOCK output, need to pass all outputs via LUT\n", ci->name.c_str(ctx));
                bool found_lut = false;
                bool all_luts = true;
                bool found_carry = false;
                unsigned int lut_count = 0;
                for (const auto &user : port.net->users) {
                    NPNR_ASSERT(user.cell != nullptr);
                    if (user.cell->type == ctx->id("ICESTORM_LC")) {
                        if (bool_or_default(user.cell->params, ctx->id("CARRY_ENABLE"), false)) {
                            found_carry = true;
                            all_luts = false;
                        } else {
                            found_lut = true;
                            lut_count++;
                        }
                    } else {
                        all_luts = false;
                    }
                }

                if (found_lut && all_luts && lut_count < 8) {
                    // Every user is a LUT, carry on now.
                } else if (found_lut && !all_luts && !found_carry && lut_count < 8) {
                    // Strategy: create a pass-through LUT, move all non-LUT users behind it.
                    log_info("  LUT strategy for %s: move non-LUT users to new LUT\n", port.name.c_str(ctx));
                    auto pt = spliceLUT(ctx, packed.get(), port.name, true);
                    new_cells.push_back(std::move(pt));
                } else {
                    // Strategy: create a pass-through LUT, move every user behind it.
                    log_info("  LUT strategy for %s: move all users to new LUT\n", port.name.c_str(ctx));
                    auto pt = spliceLUT(ctx, packed.get(), port.name, false);
                    new_cells.push_back(std::move(pt));
                }

                // Find wire that will be driven by this port.
                const auto pll_out_wire = ctx->getBelPinWire(pll_bel, port.name);
                NPNR_ASSERT(pll_out_wire.index != -1);

                // Now, constrain all LUTs on the output of the signal to be at
                // the correct Bel relative to the PLL Bel.
                int x = ctx->chip_info->wire_data[pll_out_wire.index].x;
                int y = ctx->chip_info->wire_data[pll_out_wire.index].y;
                int z = 0;
                for (const auto &user : port.net->users) {
                    NPNR_ASSERT(user.cell != nullptr);
                    NPNR_ASSERT(user.cell->type == ctx->id("ICESTORM_LC"));

                    // TODO(q3k): handle when the Bel might be already the
                    // target of another constraint.
                    NPNR_ASSERT(z < 8);
                    auto target_bel = ctx->getBelByLocation(Loc(x, y, z++));
                    auto target_bel_name = ctx->getBelName(target_bel).str(ctx);
                    user.cell->attrs[ctx->id("BEL")] = target_bel_name;
                    log_info("  constrained '%s' to %s\n", user.cell->name.c_str(ctx), target_bel_name.c_str());
                }
            }

            // Handle the global buffer connections
            for (auto port : packed->ports) {
                PortInfo &pi = port.second;
                bool is_b_port;

                if (pi.name == ctx->id("PLLOUT_A_GLOBAL"))
                    is_b_port = false;
                else if (pi.name == ctx->id("PLLOUT_B_GLOBAL"))
                    is_b_port = true;
                else
                    continue;

                // Only if there is actually a net ...
                if (pi.net != nullptr) {
                    // ... and it's used
                    if (pi.net->users.size() > 0) {
                        std::unique_ptr<CellInfo> gb =
                                create_padin_gbuf(ctx, packed.get(), pi.name,
                                                  "$gbuf_" + ci->name.str(ctx) + "_pllout_" + (is_b_port ? "b" : "a"));
                        new_cells.push_back(std::move(gb));
                    } else {
                        // If not, remove it to avoid routing issues
                        ctx->nets.erase(pi.net->name);
                        packed->ports[pi.name].net = nullptr;
                    }
                }
            }

            new_cells.push_back(std::move(packed));
        }
    }
    for (auto pcell : packed_cells) {
        ctx->cells.erase(pcell);
    }
    for (auto &ncell : new_cells) {
        ctx->cells[ncell->name] = std::move(ncell);
    }
}

// Main pack function
bool Arch::pack()
{
    Context *ctx = getCtx();
    try {
        log_break();
        pack_constants(ctx);
        pack_io(ctx);
        pack_lut_lutffs(ctx);
        pack_nonlut_ffs(ctx);
        pack_carries(ctx);
        pack_ram(ctx);
        place_plls(ctx);
        pack_special(ctx);
        pack_plls(ctx);
        if (!bool_or_default(ctx->settings, ctx->id("no_promote_globals"), false))
            promote_globals(ctx);
        ctx->assignArchInfo();
        constrain_chains(ctx);
        ctx->fixupHierarchy();
        ctx->assignArchInfo();
        ctx->settings[ctx->id("pack")] = 1;
        archInfoToAttributes();
        log_info("Checksum: 0x%08x\n", ctx->checksum());
        return true;
    } catch (log_execution_error_exception) {
        return false;
    }
}

NEXTPNR_NAMESPACE_END