/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 Claire Xen * Copyright (C) 2021 William D. Jones * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef NEXTPNR_H #error Include "arch.h" via "nextpnr.h" only. #endif NEXTPNR_NAMESPACE_BEGIN /**** Everything in this section must be kept in sync with chipdb.py ****/ template struct RelPtr { int32_t offset; // void set(const T *ptr) { // offset = reinterpret_cast(ptr) - // reinterpret_cast(this); // } const T *get() const { return reinterpret_cast(reinterpret_cast(this) + offset); } const T &operator[](size_t index) const { return get()[index]; } const T &operator*() const { return *(get()); } const T *operator->() const { return get(); } }; // FIXME: All "rel locs" are actually absolute, naming typo in facade_import. // Does not affect runtime functionality. NPNR_PACKED_STRUCT(struct BelWirePOD { LocationPOD rel_wire_loc; int32_t wire_index; int32_t port; int32_t dir; // FIXME: Corresponds to "type" in ECP5. }); NPNR_PACKED_STRUCT(struct BelInfoPOD { RelPtr name; int32_t type; int32_t z; int32_t num_bel_wires; RelPtr bel_wires; }); NPNR_PACKED_STRUCT(struct PipLocatorPOD { LocationPOD rel_loc; int32_t index; }); NPNR_PACKED_STRUCT(struct BelPortPOD { LocationPOD rel_bel_loc; int32_t bel_index; int32_t port; }); NPNR_PACKED_STRUCT(struct PipInfoPOD { LocationPOD src; LocationPOD dst; int32_t src_idx; int32_t dst_idx; int32_t timing_class; int16_t tile_type; int8_t pip_type; int8_t padding; }); NPNR_PACKED_STRUCT(struct WireInfoPOD { RelPtr name; int32_t tile_wire; int32_t num_uphill; int32_t num_downhill; RelPtr pips_uphill; RelPtr pips_downhill; int32_t num_bel_pins; RelPtr bel_pins; }); NPNR_PACKED_STRUCT(struct TileTypePOD { int32_t num_bels; int32_t num_wires; int32_t num_pips; RelPtr bel_data; RelPtr wire_data; RelPtr pips_data; }); NPNR_PACKED_STRUCT(struct PackagePinPOD { RelPtr name; LocationPOD abs_loc; int32_t bel_index; }); NPNR_PACKED_STRUCT(struct PackageInfoPOD { RelPtr name; int32_t num_pins; RelPtr pin_data; }); NPNR_PACKED_STRUCT(struct PIOInfoPOD { LocationPOD abs_loc; int32_t bel_index; RelPtr function_name; int16_t bank; int16_t dqsgroup; }); NPNR_PACKED_STRUCT(struct TileNamePOD { RelPtr name; int16_t type_idx; int16_t padding; }); NPNR_PACKED_STRUCT(struct TileInfoPOD { int32_t num_tiles; RelPtr tile_names; }); NPNR_PACKED_STRUCT(struct ChipInfoPOD { int32_t width, height; int32_t num_tiles; int32_t num_packages, num_pios; int32_t const_id_count; RelPtr tiles; RelPtr> tiletype_names; RelPtr package_info; RelPtr pio_info; RelPtr tile_info; }); /************************ End of chipdb section. ************************/ // Iterators // Iterate over Bels across tiles. struct BelIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; BelIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_bels) { cursor_index = 0; cursor_tile++; } return *this; } BelIterator operator++(int) { BelIterator prior(*this); ++(*this); return prior; } bool operator!=(const BelIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const BelIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } BelId operator*() const { BelId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct BelRange { BelIterator b, e; BelIterator begin() const { return b; } BelIterator end() const { return e; } }; // Iterate over Downstream/Upstream Bels for a Wire. struct BelPinIterator { const BelPortPOD *ptr = nullptr; Location wire_loc; void operator++() { ptr++; } bool operator!=(const BelPinIterator &other) const { return ptr != other.ptr; } BelPin operator*() const { BelPin ret; ret.bel.index = ptr->bel_index; ret.bel.location = ptr->rel_bel_loc; ret.pin.index = ptr->port; return ret; } }; struct BelPinRange { BelPinIterator b, e; BelPinIterator begin() const { return b; } BelPinIterator end() const { return e; } }; // Iterator over Wires across tiles. struct WireIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; WireIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_wires) { cursor_index = 0; cursor_tile++; } return *this; } WireIterator operator++(int) { WireIterator prior(*this); ++(*this); return prior; } bool operator!=(const WireIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const WireIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } WireId operator*() const { WireId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct WireRange { WireIterator b, e; WireIterator begin() const { return b; } WireIterator end() const { return e; } }; // Iterator over Pips across tiles. struct AllPipIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; AllPipIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_pips) { cursor_index = 0; cursor_tile++; } return *this; } AllPipIterator operator++(int) { AllPipIterator prior(*this); ++(*this); return prior; } bool operator!=(const AllPipIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const AllPipIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } PipId operator*() const { PipId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct AllPipRange { AllPipIterator b, e; AllPipIterator begin() const { return b; } AllPipIterator end() const { return e; } }; // Iterate over Downstream/Upstream Pips for a Wire. struct PipIterator { const PipLocatorPOD *cursor = nullptr; Location wire_loc; void operator++() { cursor++; } bool operator!=(const PipIterator &other) const { return cursor != other.cursor; } PipId operator*() const { PipId ret; ret.index = cursor->index; ret.location = cursor->rel_loc; return ret; } }; struct PipRange { PipIterator b, e; PipIterator begin() const { return b; } PipIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct ArchArgs { enum ArchArgsTypes { NONE, LCMXO2_256HC, LCMXO2_640HC, LCMXO2_1200HC, LCMXO2_2000HC, LCMXO2_4000HC, LCMXO2_7000HC, } type = NONE; std::string package; enum SpeedGrade { SPEED_1 = 0, SPEED_2, SPEED_3, SPEED_4, SPEED_5, SPEED_6, } speed = SPEED_4; }; struct WireInfo; struct PipInfo { IdString name, type; std::map attrs; NetInfo *bound_net; WireId srcWire, dstWire; DelayInfo delay; DecalXY decalxy; Loc loc; }; struct WireInfo { IdString name, type; std::map attrs; NetInfo *bound_net; std::vector downhill, uphill, aliases; BelPin uphill_bel_pin; std::vector downhill_bel_pins; std::vector bel_pins; DecalXY decalxy; int x, y; }; struct PinInfo { IdString name; WireId wire; PortType type; }; struct BelInfo { IdString name, type; std::map attrs; CellInfo *bound_cell; std::unordered_map pins; DecalXY decalxy; int x, y, z; bool gb; }; struct GroupInfo { IdString name; std::vector bels; std::vector wires; std::vector pips; std::vector groups; DecalXY decalxy; }; struct CellDelayKey { IdString from, to; inline bool operator==(const CellDelayKey &other) const { return from == other.from && to == other.to; } }; NEXTPNR_NAMESPACE_END namespace std { template <> struct hash { std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX CellDelayKey &dk) const noexcept { std::size_t seed = std::hash()(dk.from); seed ^= std::hash()(dk.to) + 0x9e3779b9 + (seed << 6) + (seed >> 2); return seed; } }; } // namespace std NEXTPNR_NAMESPACE_BEGIN struct CellTiming { std::unordered_map portClasses; std::unordered_map combDelays; std::unordered_map> clockingInfo; }; struct Arch : BaseCtx { const ChipInfoPOD *chip_info; const PackageInfoPOD *package_info; std::vector bel_to_cell; std::unordered_map wire_to_net; std::unordered_map pip_to_net; mutable std::unordered_map bel_by_name; mutable std::unordered_map wire_by_name; mutable std::unordered_map pip_by_name; // Placeholders to be removed. std::unordered_map bel_by_loc; std::vector bel_id_dummy; std::vector bel_pin_dummy; std::vector wire_id_dummy; std::vector pip_id_dummy; std::vector group_id_dummy; std::vector graphic_element_dummy; // Helpers template const TileTypePOD *tileInfo(Id &id) const { return &(chip_info->tiles[id.location.y * chip_info->width + id.location.x]); } int getBelFlatIndex(BelId bel) const { return (bel.location.y * chip_info->width + bel.location.x) * max_loc_bels + bel.index; } // --------------------------------------------------------------- // Common Arch API. Every arch must provide the following methods. // General ArchArgs args; Arch(ArchArgs args); static bool isAvailable(ArchArgs::ArchArgsTypes chip); std::string getChipName() const; // Extra helper std::string getFullChipName() const; IdString archId() const { return id("machxo2"); } ArchArgs archArgs() const { return args; } IdString archArgsToId(ArchArgs args) const; static const int max_loc_bels = 20; int getGridDimX() const { return chip_info->width; } int getGridDimY() const { return chip_info->height; } int getTileBelDimZ(int x, int y) const { return max_loc_bels; } // TODO: Make more precise? The CENTER MUX having config bits across // tiles can complicate this? int getTilePipDimZ(int x, int y) const { return 2; } // Bels BelId getBelByName(IdString name) const; IdString getBelName(BelId bel) const { NPNR_ASSERT(bel != BelId()); std::stringstream name; name << "X" << bel.location.x << "/Y" << bel.location.y << "/" << tileInfo(bel)->bel_data[bel.index].name.get(); return id(name.str()); } Loc getBelLocation(BelId bel) const { NPNR_ASSERT(bel != BelId()); Loc loc; loc.x = bel.location.x; loc.y = bel.location.y; loc.z = tileInfo(bel)->bel_data[bel.index].z; return loc; } BelId getBelByLocation(Loc loc) const; BelRange getBelsByTile(int x, int y) const; bool getBelGlobalBuf(BelId bel) const; uint32_t getBelChecksum(BelId bel) const { // FIXME- Copied from ECP5. Should be return val from getBelFlatIndex? return bel.index; } void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) { NPNR_ASSERT(bel != BelId()); int idx = getBelFlatIndex(bel); NPNR_ASSERT(bel_to_cell.at(idx) == nullptr); bel_to_cell[idx] = cell; cell->bel = bel; cell->belStrength = strength; refreshUiBel(bel); } void unbindBel(BelId bel) { NPNR_ASSERT(bel != BelId()); int idx = getBelFlatIndex(bel); NPNR_ASSERT(bel_to_cell.at(idx) != nullptr); bel_to_cell[idx]->bel = BelId(); bel_to_cell[idx]->belStrength = STRENGTH_NONE; bel_to_cell[idx] = nullptr; refreshUiBel(bel); } bool checkBelAvail(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[getBelFlatIndex(bel)] == nullptr; } CellInfo *getBoundBelCell(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[getBelFlatIndex(bel)]; } CellInfo *getConflictingBelCell(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[getBelFlatIndex(bel)]; } BelRange getBels() const { BelRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no Bels in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } IdString getBelType(BelId bel) const { NPNR_ASSERT(bel != BelId()); IdString id; id.index = tileInfo(bel)->bel_data[bel.index].type; return id; } std::vector> getBelAttrs(BelId) const { std::vector> ret; return ret; } WireId getBelPinWire(BelId bel, IdString pin) const; PortType getBelPinType(BelId bel, IdString pin) const; std::vector getBelPins(BelId bel) const; // Package BelId getPackagePinBel(const std::string &pin) const; // Wires WireId getWireByName(IdString name) const; IdString getWireName(WireId wire) const { NPNR_ASSERT(wire != WireId()); std::stringstream name; name << "X" << wire.location.x << "/Y" << wire.location.y << "/" << tileInfo(wire)->wire_data[wire.index].name.get(); return id(name.str()); } IdString getWireType(WireId wire) const { return IdString(); } std::vector> getWireAttrs(WireId) const { std::vector> ret; return ret; } uint32_t getWireChecksum(WireId wire) const { return wire.index; } void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) { NPNR_ASSERT(wire != WireId()); NPNR_ASSERT(wire_to_net[wire] == nullptr); wire_to_net[wire] = net; // Needs to be set; bindWires is meant for source wires attached // to a Bel. net->wires[wire].pip = PipId(); net->wires[wire].strength = strength; refreshUiWire(wire); } void unbindWire(WireId wire) { NPNR_ASSERT(wire != WireId()); NPNR_ASSERT(wire_to_net[wire] != nullptr); auto &net_wires = wire_to_net[wire]->wires; auto it = net_wires.find(wire); NPNR_ASSERT(it != net_wires.end()); // If we have unbound a wire, then the upstream pip is no longer // used either. auto pip = it->second.pip; if (pip != PipId()) { // TODO: fanout // wire_fanout[getPipSrcWire(pip)]--; pip_to_net[pip] = nullptr; } net_wires.erase(it); wire_to_net[wire] = nullptr; refreshUiWire(wire); } bool checkWireAvail(WireId wire) const { NPNR_ASSERT(wire != WireId()); return wire_to_net.find(wire) == wire_to_net.end() || wire_to_net.at(wire) == nullptr; } NetInfo *getBoundWireNet(WireId wire) const { NPNR_ASSERT(wire != WireId()); if (wire_to_net.find(wire) == wire_to_net.end()) return nullptr; else return wire_to_net.at(wire); } WireId getConflictingWireWire(WireId wire) const { return wire; } NetInfo *getConflictingWireNet(WireId wire) const { NPNR_ASSERT(wire != WireId()); if (wire_to_net.find(wire) == wire_to_net.end()) return nullptr; else return wire_to_net.at(wire); } DelayInfo getWireDelay(WireId wire) const { return DelayInfo(); } WireRange getWires() const { WireRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no wries in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } BelPinRange getWireBelPins(WireId wire) const { BelPinRange range; NPNR_ASSERT(wire != WireId()); range.b.ptr = tileInfo(wire)->wire_data[wire.index].bel_pins.get(); range.b.wire_loc = wire.location; range.e.ptr = range.b.ptr + tileInfo(wire)->wire_data[wire.index].num_bel_pins; range.e.wire_loc = wire.location; return range; } // Pips PipId getPipByName(IdString name) const; IdString getPipName(PipId pip) const; IdString getPipType(PipId pip) const { return IdString(); } std::vector> getPipAttrs(PipId) const { std::vector> ret; return ret; } uint32_t getPipChecksum(PipId pip) const { return pip.index; } void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) { NPNR_ASSERT(pip != PipId()); NPNR_ASSERT(pip_to_net[pip] == nullptr); pip_to_net[pip] = net; // wire_fanout[getPipSrcWire(pip)]++; WireId dst; dst.index = tileInfo(pip)->pips_data[pip.index].dst_idx; dst.location = tileInfo(pip)->pips_data[pip.index].dst; NPNR_ASSERT(wire_to_net[dst] == nullptr); // Since NetInfo::wires holds info about uphill pips, bind info about // this pip to the downhill wire. wire_to_net[dst] = net; net->wires[dst].pip = pip; net->wires[dst].strength = strength; } void unbindPip(PipId pip) { NPNR_ASSERT(pip != PipId()); NPNR_ASSERT(pip_to_net[pip] == nullptr); // wire_fanout[getPipSrcWire(pip)]--; WireId dst; dst.index = tileInfo(pip)->pips_data[pip.index].dst_idx; dst.location = tileInfo(pip)->pips_data[pip.index].dst; NPNR_ASSERT(wire_to_net[dst] != nullptr); // If we unbind a pip, then the downstream wire is no longer in use // either. wire_to_net[dst] = nullptr; pip_to_net[pip]->wires.erase(dst); pip_to_net[pip] = nullptr; } bool checkPipAvail(PipId pip) const { NPNR_ASSERT(pip != PipId()); return pip_to_net.find(pip) == pip_to_net.end() || pip_to_net.at(pip) == nullptr; } NetInfo *getBoundPipNet(PipId pip) const { NPNR_ASSERT(pip != PipId()); if (pip_to_net.find(pip) == pip_to_net.end()) return nullptr; else return pip_to_net.at(pip); } WireId getConflictingPipWire(PipId pip) const { return WireId(); } NetInfo *getConflictingPipNet(PipId pip) const { NPNR_ASSERT(pip != PipId()); if (pip_to_net.find(pip) == pip_to_net.end()) return nullptr; else return pip_to_net.at(pip); } AllPipRange getPips() const { AllPipRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no Bels in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } Loc getPipLocation(PipId pip) const { Loc loc; loc.x = pip.location.x; loc.y = pip.location.y; // FIXME: Some Pip's config bits span across tiles. Will Z // be affected by this? loc.z = 0; return loc; } WireId getPipSrcWire(PipId pip) const { WireId wire; NPNR_ASSERT(pip != PipId()); wire.index = tileInfo(pip)->pips_data[pip.index].src_idx; wire.location = tileInfo(pip)->pips_data[pip.index].src; return wire; } WireId getPipDstWire(PipId pip) const { WireId wire; NPNR_ASSERT(pip != PipId()); wire.index = tileInfo(pip)->pips_data[pip.index].dst_idx; wire.location = tileInfo(pip)->pips_data[pip.index].dst; return wire; } DelayInfo getPipDelay(PipId pip) const { DelayInfo delay; delay.delay = 0.01; return delay; } PipRange getPipsDownhill(WireId wire) const { PipRange range; NPNR_ASSERT(wire != WireId()); range.b.cursor = tileInfo(wire)->wire_data[wire.index].pips_downhill.get(); range.b.wire_loc = wire.location; range.e.cursor = range.b.cursor + tileInfo(wire)->wire_data[wire.index].num_downhill; range.e.wire_loc = wire.location; return range; } PipRange getPipsUphill(WireId wire) const { PipRange range; NPNR_ASSERT(wire != WireId()); range.b.cursor = tileInfo(wire)->wire_data[wire.index].pips_uphill.get(); range.b.wire_loc = wire.location; range.e.cursor = range.b.cursor + tileInfo(wire)->wire_data[wire.index].num_uphill; range.e.wire_loc = wire.location; return range; } // Extra Pip helpers. int8_t getPipClass(PipId pip) const { return tileInfo(pip)->pips_data[pip.index].pip_type; } std::string getPipTilename(PipId pip) const { auto &tileloc = chip_info->tile_info[pip.location.y * chip_info->width + pip.location.x]; for (int i = 0; i < tileloc.num_tiles; i++) { if (tileloc.tile_names[i].type_idx == tileInfo(pip)->pips_data[pip.index].tile_type) return tileloc.tile_names[i].name.get(); } NPNR_ASSERT_FALSE("failed to find Pip tile"); } // Group GroupId getGroupByName(IdString name) const; IdString getGroupName(GroupId group) const; std::vector getGroups() const; const std::vector &getGroupBels(GroupId group) const; const std::vector &getGroupWires(GroupId group) const; const std::vector &getGroupPips(GroupId group) const; const std::vector &getGroupGroups(GroupId group) const; // Delay delay_t estimateDelay(WireId src, WireId dst) const; delay_t predictDelay(const NetInfo *net_info, const PortRef &sink) const; delay_t getDelayEpsilon() const { return 0.001; } delay_t getRipupDelayPenalty() const { return 0.015; } float getDelayNS(delay_t v) const { return v; } DelayInfo getDelayFromNS(float ns) const { DelayInfo del; del.delay = ns; return del; } uint32_t getDelayChecksum(delay_t v) const { return 0; } bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const; ArcBounds getRouteBoundingBox(WireId src, WireId dst) const; // Flow bool pack(); bool place(); bool route(); // Graphics const std::vector &getDecalGraphics(DecalId decal) const; DecalXY getBelDecal(BelId bel) const; DecalXY getWireDecal(WireId wire) const; DecalXY getPipDecal(PipId pip) const; DecalXY getGroupDecal(GroupId group) const; // Cell Delay bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const; // Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const; // Get the TimingClockingInfo of a port TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const; // Placer bool isValidBelForCell(CellInfo *cell, BelId bel) const; bool isBelLocationValid(BelId bel) const; static const std::string defaultPlacer; static const std::vector availablePlacers; static const std::string defaultRouter; static const std::vector availableRouters; // --------------------------------------------------------------- // Internal usage void assignArchInfo(); bool cellsCompatible(const CellInfo **cells, int count) const; std::vector> getTilesAtLocation(int row, int col); std::string getTileByTypeAndLocation(int row, int col, std::string type) const { auto &tileloc = chip_info->tile_info[row * chip_info->width + col]; for (int i = 0; i < tileloc.num_tiles; i++) { if (chip_info->tiletype_names[tileloc.tile_names[i].type_idx].get() == type) return tileloc.tile_names[i].name.get(); } NPNR_ASSERT_FALSE_STR("no tile at (" + std::to_string(col) + ", " + std::to_string(row) + ") with type " + type); } std::string getTileByTypeAndLocation(int row, int col, const std::set &type) const { auto &tileloc = chip_info->tile_info[row * chip_info->width + col]; for (int i = 0; i < tileloc.num_tiles; i++) { if (type.count(chip_info->tiletype_names[tileloc.tile_names[i].type_idx].get())) return tileloc.tile_names[i].name.get(); } NPNR_ASSERT_FALSE_STR("no tile at (" + std::to_string(col) + ", " + std::to_string(row) + ") with type in set"); } std::string getTileByType(std::string type) const { for (int i = 0; i < chip_info->height * chip_info->width; i++) { auto &tileloc = chip_info->tile_info[i]; for (int j = 0; j < tileloc.num_tiles; j++) if (chip_info->tiletype_names[tileloc.tile_names[j].type_idx].get() == type) return tileloc.tile_names[j].name.get(); } NPNR_ASSERT_FALSE_STR("no tile with type " + type); } }; NEXTPNR_NAMESPACE_END