/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 Claire Xenia Wolf * Copyright (C) 2021 William D. Jones * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef MACHXO2_ARCH_H #define MACHXO2_ARCH_H #include #include #include "base_arch.h" #include "nextpnr_namespaces.h" #include "nextpnr_types.h" NEXTPNR_NAMESPACE_BEGIN /**** Everything in this section must be kept in sync with chipdb.py ****/ template struct RelPtr { int32_t offset; // void set(const T *ptr) { // offset = reinterpret_cast(ptr) - // reinterpret_cast(this); // } const T *get() const { return reinterpret_cast(reinterpret_cast(this) + offset); } const T &operator[](std::size_t index) const { return get()[index]; } const T &operator*() const { return *(get()); } const T *operator->() const { return get(); } }; // FIXME: All "rel locs" are actually absolute, naming typo in facade_import. // Does not affect runtime functionality. NPNR_PACKED_STRUCT(struct BelWirePOD { LocationPOD rel_wire_loc; int32_t wire_index; int32_t port; int32_t dir; // FIXME: Corresponds to "type" in ECP5. }); NPNR_PACKED_STRUCT(struct BelInfoPOD { RelPtr name; int32_t type; int32_t z; int32_t num_bel_wires; RelPtr bel_wires; }); NPNR_PACKED_STRUCT(struct PipLocatorPOD { LocationPOD rel_loc; int32_t index; }); NPNR_PACKED_STRUCT(struct BelPortPOD { LocationPOD rel_bel_loc; int32_t bel_index; int32_t port; }); NPNR_PACKED_STRUCT(struct PipInfoPOD { LocationPOD src; LocationPOD dst; int32_t src_idx; int32_t dst_idx; int32_t timing_class; int16_t tile_type; int8_t pip_type; int8_t padding; }); NPNR_PACKED_STRUCT(struct WireInfoPOD { RelPtr name; int32_t tile_wire; int32_t num_uphill; int32_t num_downhill; RelPtr pips_uphill; RelPtr pips_downhill; int32_t num_bel_pins; RelPtr bel_pins; }); NPNR_PACKED_STRUCT(struct TileTypePOD { int32_t num_bels; int32_t num_wires; int32_t num_pips; RelPtr bel_data; RelPtr wire_data; RelPtr pips_data; }); NPNR_PACKED_STRUCT(struct PackagePinPOD { RelPtr name; LocationPOD abs_loc; int32_t bel_index; }); NPNR_PACKED_STRUCT(struct PackageInfoPOD { RelPtr name; int32_t num_pins; RelPtr pin_data; }); NPNR_PACKED_STRUCT(struct PIOInfoPOD { LocationPOD abs_loc; int32_t bel_index; RelPtr function_name; int16_t bank; int16_t dqsgroup; }); NPNR_PACKED_STRUCT(struct TileNamePOD { RelPtr name; int16_t type_idx; int16_t padding; }); NPNR_PACKED_STRUCT(struct TileInfoPOD { int32_t num_tiles; RelPtr tile_names; }); NPNR_PACKED_STRUCT(struct ChipInfoPOD { int32_t width, height; int32_t num_tiles; int32_t num_packages, num_pios; int32_t const_id_count; RelPtr tiles; RelPtr> tiletype_names; RelPtr package_info; RelPtr pio_info; RelPtr tile_info; }); /************************ End of chipdb section. ************************/ // Iterators // Iterate over Bels across tiles. struct BelIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; BelIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_bels) { cursor_index = 0; cursor_tile++; } return *this; } BelIterator operator++(int) { BelIterator prior(*this); ++(*this); return prior; } bool operator!=(const BelIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const BelIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } BelId operator*() const { BelId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct BelRange { BelIterator b, e; BelIterator begin() const { return b; } BelIterator end() const { return e; } }; // Iterate over Downstream/Upstream Bels for a Wire. struct BelPinIterator { const BelPortPOD *ptr = nullptr; Location wire_loc; void operator++() { ptr++; } bool operator!=(const BelPinIterator &other) const { return ptr != other.ptr; } BelPin operator*() const { BelPin ret; ret.bel.index = ptr->bel_index; ret.bel.location = ptr->rel_bel_loc; ret.pin.index = ptr->port; return ret; } }; struct BelPinRange { BelPinIterator b, e; BelPinIterator begin() const { return b; } BelPinIterator end() const { return e; } }; // Iterator over Wires across tiles. struct WireIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; WireIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_wires) { cursor_index = 0; cursor_tile++; } return *this; } WireIterator operator++(int) { WireIterator prior(*this); ++(*this); return prior; } bool operator!=(const WireIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const WireIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } WireId operator*() const { WireId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct WireRange { WireIterator b, e; WireIterator begin() const { return b; } WireIterator end() const { return e; } }; // Iterator over Pips across tiles. struct AllPipIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; AllPipIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= chip->tiles[cursor_tile].num_pips) { cursor_index = 0; cursor_tile++; } return *this; } AllPipIterator operator++(int) { AllPipIterator prior(*this); ++(*this); return prior; } bool operator!=(const AllPipIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const AllPipIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } PipId operator*() const { PipId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct AllPipRange { AllPipIterator b, e; AllPipIterator begin() const { return b; } AllPipIterator end() const { return e; } }; // Iterate over Downstream/Upstream Pips for a Wire. struct PipIterator { const PipLocatorPOD *cursor = nullptr; Location wire_loc; void operator++() { cursor++; } bool operator!=(const PipIterator &other) const { return cursor != other.cursor; } PipId operator*() const { PipId ret; ret.index = cursor->index; ret.location = cursor->rel_loc; return ret; } }; struct PipRange { PipIterator b, e; PipIterator begin() const { return b; } PipIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct ArchArgs { enum ArchArgsTypes { NONE, LCMXO2_256HC, LCMXO2_640HC, LCMXO2_1200HC, LCMXO2_2000HC, LCMXO2_4000HC, LCMXO2_7000HC, } type = NONE; std::string package; enum SpeedGrade { SPEED_1 = 0, SPEED_2, SPEED_3, SPEED_4, SPEED_5, SPEED_6, } speed = SPEED_4; }; struct ArchRanges : BaseArchRanges { using ArchArgsT = ArchArgs; // Bels using AllBelsRangeT = BelRange; using TileBelsRangeT = BelRange; using BelPinsRangeT = std::vector; // Wires using AllWiresRangeT = WireRange; using DownhillPipRangeT = PipRange; using UphillPipRangeT = PipRange; using WireBelPinRangeT = BelPinRange; // Pips using AllPipsRangeT = AllPipRange; }; struct Arch : BaseArch { const ChipInfoPOD *chip_info; const PackageInfoPOD *package_info; mutable dict pip_by_name; // fast access to X and Y IdStrings for building object names std::vector x_ids, y_ids; // inverse of the above for name->object mapping dict id_to_x, id_to_y; // Helpers template const TileTypePOD *tile_info(Id &id) const { return &(chip_info->tiles[id.location.y * chip_info->width + id.location.x]); } int get_bel_flat_index(BelId bel) const { return (bel.location.y * chip_info->width + bel.location.x) * max_loc_bels + bel.index; } // --------------------------------------------------------------- // Common Arch API. Every arch must provide the following methods. // General ArchArgs args; Arch(ArchArgs args); static bool is_available(ArchArgs::ArchArgsTypes chip); static std::vector get_supported_packages(ArchArgs::ArchArgsTypes chip); std::string getChipName() const override; // Extra helper std::string get_full_chip_name() const; IdString archId() const override { return id_machxo2; } ArchArgs archArgs() const override { return args; } IdString archArgsToId(ArchArgs args) const override; static const int max_loc_bels = 20; int getGridDimX() const override { return chip_info->width; } int getGridDimY() const override { return chip_info->height; } int getTileBelDimZ(int x, int y) const override { return max_loc_bels; } // TODO: Make more precise? The CENTER MUX having config bits across // tiles can complicate this? int getTilePipDimZ(int x, int y) const override { return 2; } char getNameDelimiter() const override { return '/'; } // Bels BelId getBelByName(IdStringList name) const override; IdStringList getBelName(BelId bel) const override { NPNR_ASSERT(bel != BelId()); std::array ids{x_ids.at(bel.location.x), y_ids.at(bel.location.y), id(tile_info(bel)->bel_data[bel.index].name.get())}; return IdStringList(ids); } Loc getBelLocation(BelId bel) const override { NPNR_ASSERT(bel != BelId()); Loc loc; loc.x = bel.location.x; loc.y = bel.location.y; loc.z = tile_info(bel)->bel_data[bel.index].z; return loc; } BelId getBelByLocation(Loc loc) const override; BelRange getBelsByTile(int x, int y) const override; bool getBelGlobalBuf(BelId bel) const override; BelRange getBels() const override { BelRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no Bels in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } IdString getBelType(BelId bel) const override { NPNR_ASSERT(bel != BelId()); IdString id; id.index = tile_info(bel)->bel_data[bel.index].type; return id; } WireId getBelPinWire(BelId bel, IdString pin) const override; PortType getBelPinType(BelId bel, IdString pin) const override; std::vector getBelPins(BelId bel) const override; // Package BelId getPackagePinBel(const std::string &pin) const; // Wires WireId getWireByName(IdStringList name) const override; IdStringList getWireName(WireId wire) const override { NPNR_ASSERT(wire != WireId()); std::array ids{x_ids.at(wire.location.x), y_ids.at(wire.location.y), id(tile_info(wire)->wire_data[wire.index].name.get())}; return IdStringList(ids); } DelayQuad getWireDelay(WireId wire) const override { return DelayQuad(0.01); } WireRange getWires() const override { WireRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no wries in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } BelPinRange getWireBelPins(WireId wire) const override { BelPinRange range; NPNR_ASSERT(wire != WireId()); range.b.ptr = tile_info(wire)->wire_data[wire.index].bel_pins.get(); range.b.wire_loc = wire.location; range.e.ptr = range.b.ptr + tile_info(wire)->wire_data[wire.index].num_bel_pins; range.e.wire_loc = wire.location; return range; } // Pips PipId getPipByName(IdStringList name) const override; IdStringList getPipName(PipId pip) const override; AllPipRange getPips() const override { AllPipRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no Bels in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } Loc getPipLocation(PipId pip) const override { Loc loc; loc.x = pip.location.x; loc.y = pip.location.y; // FIXME: Some Pip's config bits span across tiles. Will Z // be affected by this? loc.z = 0; return loc; } WireId getPipSrcWire(PipId pip) const override { WireId wire; NPNR_ASSERT(pip != PipId()); wire.index = tile_info(pip)->pips_data[pip.index].src_idx; wire.location = tile_info(pip)->pips_data[pip.index].src; return wire; } WireId getPipDstWire(PipId pip) const override { WireId wire; NPNR_ASSERT(pip != PipId()); wire.index = tile_info(pip)->pips_data[pip.index].dst_idx; wire.location = tile_info(pip)->pips_data[pip.index].dst; return wire; } DelayQuad getPipDelay(PipId pip) const override { return DelayQuad(0.01); } PipRange getPipsDownhill(WireId wire) const override { PipRange range; NPNR_ASSERT(wire != WireId()); range.b.cursor = tile_info(wire)->wire_data[wire.index].pips_downhill.get(); range.b.wire_loc = wire.location; range.e.cursor = range.b.cursor + tile_info(wire)->wire_data[wire.index].num_downhill; range.e.wire_loc = wire.location; return range; } PipRange getPipsUphill(WireId wire) const override { PipRange range; NPNR_ASSERT(wire != WireId()); range.b.cursor = tile_info(wire)->wire_data[wire.index].pips_uphill.get(); range.b.wire_loc = wire.location; range.e.cursor = range.b.cursor + tile_info(wire)->wire_data[wire.index].num_uphill; range.e.wire_loc = wire.location; return range; } // Extra Pip helpers. int8_t get_pip_class(PipId pip) const { return tile_info(pip)->pips_data[pip.index].pip_type; } std::string get_pip_tilename(PipId pip) const { auto &tileloc = chip_info->tile_info[pip.location.y * chip_info->width + pip.location.x]; for (int i = 0; i < tileloc.num_tiles; i++) { if (tileloc.tile_names[i].type_idx == tile_info(pip)->pips_data[pip.index].tile_type) return tileloc.tile_names[i].name.get(); } NPNR_ASSERT_FALSE("failed to find Pip tile"); } // Delay delay_t estimateDelay(WireId src, WireId dst) const override; delay_t predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const override; delay_t getDelayEpsilon() const override { return 0.001; } delay_t getRipupDelayPenalty() const override { return 0.015; } float getDelayNS(delay_t v) const override { return v; } delay_t getDelayFromNS(float ns) const override { return ns; } uint32_t getDelayChecksum(delay_t v) const override { return v; } BoundingBox getRouteBoundingBox(WireId src, WireId dst) const override; // Flow bool pack() override; bool place() override; bool route() override; // Placer bool isBelLocationValid(BelId bel, bool explain_invalid = false) const override; static const std::string defaultPlacer; static const std::vector availablePlacers; static const std::string defaultRouter; static const std::vector availableRouters; // --------------------------------------------------------------- // Internal usage bool cells_compatible(const CellInfo **cells, int count) const; std::vector> get_tiles_at_location(int row, int col); std::string get_tile_by_type_and_loc(int row, int col, std::string type) const { auto &tileloc = chip_info->tile_info[row * chip_info->width + col]; for (int i = 0; i < tileloc.num_tiles; i++) { if (chip_info->tiletype_names[tileloc.tile_names[i].type_idx].get() == type) return tileloc.tile_names[i].name.get(); } NPNR_ASSERT_FALSE_STR("no tile at (" + std::to_string(col) + ", " + std::to_string(row) + ") with type " + type); } std::string get_tile_by_type_and_loc(int row, int col, const std::set &type) const { auto &tileloc = chip_info->tile_info[row * chip_info->width + col]; for (int i = 0; i < tileloc.num_tiles; i++) { if (type.count(chip_info->tiletype_names[tileloc.tile_names[i].type_idx].get())) return tileloc.tile_names[i].name.get(); } NPNR_ASSERT_FALSE_STR("no tile at (" + std::to_string(col) + ", " + std::to_string(row) + ") with type in set"); } std::string get_tile_by_type(std::string type) const { for (int i = 0; i < chip_info->height * chip_info->width; i++) { auto &tileloc = chip_info->tile_info[i]; for (int j = 0; j < tileloc.num_tiles; j++) if (chip_info->tiletype_names[tileloc.tile_names[j].type_idx].get() == type) return tileloc.tile_names[j].name.get(); } NPNR_ASSERT_FALSE_STR("no tile with type " + type); } }; NEXTPNR_NAMESPACE_END #endif /* MACHXO2_ARCH_H */