/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef NEXTPNR_H #error Include "arch.h" via "nextpnr.h" only. #endif NEXTPNR_NAMESPACE_BEGIN /**** Everything in this section must be kept in sync with chipdb.py ****/ template struct RelPtr { int32_t offset; // void set(const T *ptr) { // offset = reinterpret_cast(ptr) - // reinterpret_cast(this); // } const T *get() const { return reinterpret_cast(reinterpret_cast(this) + offset); } const T &operator[](size_t index) const { return get()[index]; } const T &operator*() const { return *(get()); } const T *operator->() const { return get(); } }; NPNR_PACKED_STRUCT(struct BelWirePOD { int32_t port; int32_t type; int32_t wire_index; }); NPNR_PACKED_STRUCT(struct BelInfoPOD { RelPtr name; int32_t type; int32_t num_bel_wires; RelPtr bel_wires; int8_t x, y, z; int8_t padding_0; }); NPNR_PACKED_STRUCT(struct BelPortPOD { int32_t bel_index; int32_t port; }); NPNR_PACKED_STRUCT(struct PipInfoPOD { enum PipFlags : uint32_t { FLAG_NONE = 0, FLAG_ROUTETHRU = 1, FLAG_NOCARRY = 2 }; // RelPtr name; int32_t src, dst; int32_t fast_delay; int32_t slow_delay; int8_t x, y; int16_t src_seg, dst_seg; int16_t switch_mask; int32_t switch_index; PipFlags flags; }); NPNR_PACKED_STRUCT(struct WireSegmentPOD { int8_t x, y; int16_t index; }); NPNR_PACKED_STRUCT(struct WireInfoPOD { enum WireType : int8_t { WIRE_TYPE_NONE = 0, WIRE_TYPE_GLB2LOCAL = 1, WIRE_TYPE_GLB_NETWK = 2, WIRE_TYPE_LOCAL = 3, WIRE_TYPE_LUTFF_IN = 4, WIRE_TYPE_LUTFF_IN_LUT = 5, WIRE_TYPE_LUTFF_LOUT = 6, WIRE_TYPE_LUTFF_OUT = 7, WIRE_TYPE_LUTFF_COUT = 8, WIRE_TYPE_LUTFF_GLOBAL = 9, WIRE_TYPE_CARRY_IN_MUX = 10, WIRE_TYPE_SP4_V = 11, WIRE_TYPE_SP4_H = 12, WIRE_TYPE_SP12_V = 13, WIRE_TYPE_SP12_H = 14 }; RelPtr name; int32_t num_uphill, num_downhill; RelPtr pips_uphill, pips_downhill; int32_t num_bel_pins; RelPtr bel_pins; int32_t num_segments; RelPtr segments; int32_t fast_delay; int32_t slow_delay; int8_t x, y, z; WireType type; }); NPNR_PACKED_STRUCT(struct PackagePinPOD { RelPtr name; int32_t bel_index; }); NPNR_PACKED_STRUCT(struct PackageInfoPOD { RelPtr name; int32_t num_pins; RelPtr pins; }); enum TileType : uint32_t { TILE_NONE = 0, TILE_LOGIC = 1, TILE_IO = 2, TILE_RAMB = 3, TILE_RAMT = 4, TILE_DSP0 = 5, TILE_DSP1 = 6, TILE_DSP2 = 7, TILE_DSP3 = 8, TILE_IPCON = 9 }; NPNR_PACKED_STRUCT(struct ConfigBitPOD { int8_t row, col; }); NPNR_PACKED_STRUCT(struct ConfigEntryPOD { RelPtr name; int32_t num_bits; RelPtr bits; }); NPNR_PACKED_STRUCT(struct TileInfoPOD { int8_t cols, rows; int16_t num_config_entries; RelPtr entries; }); static const int max_switch_bits = 5; NPNR_PACKED_STRUCT(struct SwitchInfoPOD { int32_t num_bits; int32_t bel; int8_t x, y; ConfigBitPOD cbits[max_switch_bits]; }); NPNR_PACKED_STRUCT(struct IerenInfoPOD { int8_t iox, ioy, ioz; int8_t ierx, iery, ierz; }); NPNR_PACKED_STRUCT(struct BitstreamInfoPOD { int32_t num_switches, num_ierens; RelPtr tiles_nonrouting; RelPtr switches; RelPtr ierens; }); NPNR_PACKED_STRUCT(struct BelConfigEntryPOD { RelPtr entry_name; RelPtr cbit_name; int8_t x, y; int16_t padding; }); // Stores mapping between bel parameters and config bits, // for extra cells where this mapping is non-trivial NPNR_PACKED_STRUCT(struct BelConfigPOD { int32_t bel_index; int32_t num_entries; RelPtr entries; }); NPNR_PACKED_STRUCT(struct CellPathDelayPOD { int32_t from_port; int32_t to_port; int32_t fast_delay; int32_t slow_delay; }); NPNR_PACKED_STRUCT(struct CellTimingPOD { int32_t type; int32_t num_paths; RelPtr path_delays; }); NPNR_PACKED_STRUCT(struct GlobalNetworkInfoPOD { uint8_t gb_x; uint8_t gb_y; uint8_t pi_gb_x; uint8_t pi_gb_y; uint8_t pi_gb_pio; uint8_t pi_eb_bank; uint16_t pi_eb_x; uint16_t pi_eb_y; uint16_t pad; }); NPNR_PACKED_STRUCT(struct ChipInfoPOD { int32_t width, height; int32_t num_bels, num_wires, num_pips; int32_t num_switches, num_belcfgs, num_packages; int32_t num_timing_cells, num_global_networks; RelPtr bel_data; RelPtr wire_data; RelPtr pip_data; RelPtr tile_grid; RelPtr bits_info; RelPtr bel_config; RelPtr packages_data; RelPtr cell_timing; RelPtr global_network_info; RelPtr> tile_wire_names; }); /************************ End of chipdb section. ************************/ struct BelIterator { int cursor; BelIterator operator++() { cursor++; return *this; } BelIterator operator++(int) { BelIterator prior(*this); cursor++; return prior; } bool operator!=(const BelIterator &other) const { return cursor != other.cursor; } bool operator==(const BelIterator &other) const { return cursor == other.cursor; } BelId operator*() const { BelId ret; ret.index = cursor; return ret; } }; struct BelRange { BelIterator b, e; BelIterator begin() const { return b; } BelIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct BelPinIterator { const BelPortPOD *ptr = nullptr; void operator++() { ptr++; } bool operator!=(const BelPinIterator &other) const { return ptr != other.ptr; } BelPin operator*() const { BelPin ret; ret.bel.index = ptr->bel_index; ret.pin = ptr->port; return ret; } }; struct BelPinRange { BelPinIterator b, e; BelPinIterator begin() const { return b; } BelPinIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct WireIterator { int cursor = -1; void operator++() { cursor++; } bool operator!=(const WireIterator &other) const { return cursor != other.cursor; } WireId operator*() const { WireId ret; ret.index = cursor; return ret; } }; struct WireRange { WireIterator b, e; WireIterator begin() const { return b; } WireIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct AllPipIterator { int cursor = -1; void operator++() { cursor++; } bool operator!=(const AllPipIterator &other) const { return cursor != other.cursor; } PipId operator*() const { PipId ret; ret.index = cursor; return ret; } }; struct AllPipRange { AllPipIterator b, e; AllPipIterator begin() const { return b; } AllPipIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct PipIterator { const int *cursor = nullptr; void operator++() { cursor++; } bool operator!=(const PipIterator &other) const { return cursor != other.cursor; } PipId operator*() const { PipId ret; ret.index = *cursor; return ret; } }; struct PipRange { PipIterator b, e; PipIterator begin() const { return b; } PipIterator end() const { return e; } }; struct ArchArgs { enum ArchArgsTypes { NONE, LP384, LP1K, LP4K, LP8K, HX1K, HX4K, HX8K, UP3K, UP5K, U1K, U2K, U4K } type = NONE; std::string package; }; struct Arch : BaseCtx { bool fast_part; const ChipInfoPOD *chip_info; const PackageInfoPOD *package_info; mutable std::unordered_map bel_by_name; mutable std::unordered_map wire_by_name; mutable std::unordered_map pip_by_name; mutable std::unordered_map bel_by_loc; std::vector bel_carry; std::vector bel_to_cell; std::vector wire_to_net; std::vector pip_to_net; std::vector switches_locked; ArchArgs args; Arch(ArchArgs args); static bool isAvailable(ArchArgs::ArchArgsTypes chip); static std::vector getSupportedPackages(ArchArgs::ArchArgsTypes chip); std::string getChipName() const; IdString archId() const { return id("ice40"); } ArchArgs archArgs() const { return args; } IdString archArgsToId(ArchArgs args) const; // ------------------------------------------------- int getGridDimX() const { return chip_info->width; } int getGridDimY() const { return chip_info->height; } int getTileBelDimZ(int, int) const { return 8; } int getTilePipDimZ(int, int) const { return 1; } // ------------------------------------------------- BelId getBelByName(IdString name) const; IdString getBelName(BelId bel) const { NPNR_ASSERT(bel != BelId()); return id(chip_info->bel_data[bel.index].name.get()); } uint32_t getBelChecksum(BelId bel) const { return bel.index; } void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) { NPNR_ASSERT(bel != BelId()); NPNR_ASSERT(bel_to_cell[bel.index] == nullptr); bel_to_cell[bel.index] = cell; bel_carry[bel.index] = (cell->type == id_ICESTORM_LC && cell->lcInfo.carryEnable); cell->bel = bel; cell->belStrength = strength; refreshUiBel(bel); } void unbindBel(BelId bel) { NPNR_ASSERT(bel != BelId()); NPNR_ASSERT(bel_to_cell[bel.index] != nullptr); bel_to_cell[bel.index]->bel = BelId(); bel_to_cell[bel.index]->belStrength = STRENGTH_NONE; bel_to_cell[bel.index] = nullptr; bel_carry[bel.index] = false; refreshUiBel(bel); } bool checkBelAvail(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[bel.index] == nullptr; } CellInfo *getBoundBelCell(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[bel.index]; } CellInfo *getConflictingBelCell(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[bel.index]; } BelRange getBels() const { BelRange range; range.b.cursor = 0; range.e.cursor = chip_info->num_bels; return range; } Loc getBelLocation(BelId bel) const { NPNR_ASSERT(bel != BelId()); Loc loc; loc.x = chip_info->bel_data[bel.index].x; loc.y = chip_info->bel_data[bel.index].y; loc.z = chip_info->bel_data[bel.index].z; return loc; } BelId getBelByLocation(Loc loc) const; BelRange getBelsByTile(int x, int y) const; bool getBelGlobalBuf(BelId bel) const { return chip_info->bel_data[bel.index].type == ID_SB_GB; } IdString getBelType(BelId bel) const { NPNR_ASSERT(bel != BelId()); return IdString(chip_info->bel_data[bel.index].type); } std::vector> getBelAttrs(BelId bel) const; WireId getBelPinWire(BelId bel, IdString pin) const; PortType getBelPinType(BelId bel, IdString pin) const; std::vector getBelPins(BelId bel) const; bool isBelLocked(BelId bel) const; // ------------------------------------------------- WireId getWireByName(IdString name) const; IdString getWireName(WireId wire) const { NPNR_ASSERT(wire != WireId()); return id(chip_info->wire_data[wire.index].name.get()); } IdString getWireType(WireId wire) const; std::vector> getWireAttrs(WireId wire) const; uint32_t getWireChecksum(WireId wire) const { return wire.index; } void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) { NPNR_ASSERT(wire != WireId()); NPNR_ASSERT(wire_to_net[wire.index] == nullptr); wire_to_net[wire.index] = net; net->wires[wire].pip = PipId(); net->wires[wire].strength = strength; refreshUiWire(wire); } void unbindWire(WireId wire) { NPNR_ASSERT(wire != WireId()); NPNR_ASSERT(wire_to_net[wire.index] != nullptr); auto &net_wires = wire_to_net[wire.index]->wires; auto it = net_wires.find(wire); NPNR_ASSERT(it != net_wires.end()); auto pip = it->second.pip; if (pip != PipId()) { pip_to_net[pip.index] = nullptr; switches_locked[chip_info->pip_data[pip.index].switch_index] = WireId(); } net_wires.erase(it); wire_to_net[wire.index] = nullptr; refreshUiWire(wire); } bool checkWireAvail(WireId wire) const { NPNR_ASSERT(wire != WireId()); return wire_to_net[wire.index] == nullptr; } NetInfo *getBoundWireNet(WireId wire) const { NPNR_ASSERT(wire != WireId()); return wire_to_net[wire.index]; } WireId getConflictingWireWire(WireId wire) const { return wire; } NetInfo *getConflictingWireNet(WireId wire) const { NPNR_ASSERT(wire != WireId()); return wire_to_net[wire.index]; } DelayInfo getWireDelay(WireId wire) const { DelayInfo delay; NPNR_ASSERT(wire != WireId()); if (fast_part) delay.delay = chip_info->wire_data[wire.index].fast_delay; else delay.delay = chip_info->wire_data[wire.index].slow_delay; return delay; } BelPinRange getWireBelPins(WireId wire) const { BelPinRange range; NPNR_ASSERT(wire != WireId()); range.b.ptr = chip_info->wire_data[wire.index].bel_pins.get(); range.e.ptr = range.b.ptr + chip_info->wire_data[wire.index].num_bel_pins; return range; } WireRange getWires() const { WireRange range; range.b.cursor = 0; range.e.cursor = chip_info->num_wires; return range; } // ------------------------------------------------- PipId getPipByName(IdString name) const; void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) { NPNR_ASSERT(pip != PipId()); NPNR_ASSERT(pip_to_net[pip.index] == nullptr); NPNR_ASSERT(switches_locked[chip_info->pip_data[pip.index].switch_index] == WireId()); WireId dst; dst.index = chip_info->pip_data[pip.index].dst; NPNR_ASSERT(wire_to_net[dst.index] == nullptr); pip_to_net[pip.index] = net; switches_locked[chip_info->pip_data[pip.index].switch_index] = dst; wire_to_net[dst.index] = net; net->wires[dst].pip = pip; net->wires[dst].strength = strength; refreshUiPip(pip); refreshUiWire(dst); } void unbindPip(PipId pip) { NPNR_ASSERT(pip != PipId()); NPNR_ASSERT(pip_to_net[pip.index] != nullptr); NPNR_ASSERT(switches_locked[chip_info->pip_data[pip.index].switch_index] != WireId()); WireId dst; dst.index = chip_info->pip_data[pip.index].dst; NPNR_ASSERT(wire_to_net[dst.index] != nullptr); wire_to_net[dst.index] = nullptr; pip_to_net[pip.index]->wires.erase(dst); pip_to_net[pip.index] = nullptr; switches_locked[chip_info->pip_data[pip.index].switch_index] = WireId(); refreshUiPip(pip); refreshUiWire(dst); } bool ice40_pip_hard_unavail(PipId pip) const { NPNR_ASSERT(pip != PipId()); auto &pi = chip_info->pip_data[pip.index]; auto &si = chip_info->bits_info->switches[pi.switch_index]; if (pi.flags & PipInfoPOD::FLAG_ROUTETHRU) { NPNR_ASSERT(si.bel >= 0); if (bel_to_cell[si.bel] != nullptr) return true; } if (pi.flags & PipInfoPOD::FLAG_NOCARRY) { NPNR_ASSERT(si.bel >= 0); if (bel_carry[si.bel]) return true; } return false; } bool checkPipAvail(PipId pip) const { if (ice40_pip_hard_unavail(pip)) return false; auto &pi = chip_info->pip_data[pip.index]; return switches_locked[pi.switch_index] == WireId(); } NetInfo *getBoundPipNet(PipId pip) const { NPNR_ASSERT(pip != PipId()); return pip_to_net[pip.index]; } WireId getConflictingPipWire(PipId pip) const { if (ice40_pip_hard_unavail(pip)) return WireId(); return switches_locked[chip_info->pip_data[pip.index].switch_index]; } NetInfo *getConflictingPipNet(PipId pip) const { if (ice40_pip_hard_unavail(pip)) return nullptr; WireId wire = switches_locked[chip_info->pip_data[pip.index].switch_index]; return wire == WireId() ? nullptr : wire_to_net[wire.index]; } AllPipRange getPips() const { AllPipRange range; range.b.cursor = 0; range.e.cursor = chip_info->num_pips; return range; } Loc getPipLocation(PipId pip) const { Loc loc; loc.x = chip_info->pip_data[pip.index].x; loc.y = chip_info->pip_data[pip.index].y; loc.z = 0; return loc; } IdString getPipName(PipId pip) const; IdString getPipType(PipId pip) const; std::vector> getPipAttrs(PipId pip) const; uint32_t getPipChecksum(PipId pip) const { return pip.index; } WireId getPipSrcWire(PipId pip) const { WireId wire; NPNR_ASSERT(pip != PipId()); wire.index = chip_info->pip_data[pip.index].src; return wire; } WireId getPipDstWire(PipId pip) const { WireId wire; NPNR_ASSERT(pip != PipId()); wire.index = chip_info->pip_data[pip.index].dst; return wire; } DelayInfo getPipDelay(PipId pip) const { DelayInfo delay; NPNR_ASSERT(pip != PipId()); if (fast_part) delay.delay = chip_info->pip_data[pip.index].fast_delay; else delay.delay = chip_info->pip_data[pip.index].slow_delay; return delay; } PipRange getPipsDownhill(WireId wire) const { PipRange range; NPNR_ASSERT(wire != WireId()); range.b.cursor = chip_info->wire_data[wire.index].pips_downhill.get(); range.e.cursor = range.b.cursor + chip_info->wire_data[wire.index].num_downhill; return range; } PipRange getPipsUphill(WireId wire) const { PipRange range; NPNR_ASSERT(wire != WireId()); range.b.cursor = chip_info->wire_data[wire.index].pips_uphill.get(); range.e.cursor = range.b.cursor + chip_info->wire_data[wire.index].num_uphill; return range; } BelId getPackagePinBel(const std::string &pin) const; std::string getBelPackagePin(BelId bel) const; // ------------------------------------------------- GroupId getGroupByName(IdString name) const; IdString getGroupName(GroupId group) const; std::vector getGroups() const; std::vector getGroupBels(GroupId group) const; std::vector getGroupWires(GroupId group) const; std::vector getGroupPips(GroupId group) const; std::vector getGroupGroups(GroupId group) const; // ------------------------------------------------- delay_t estimateDelay(WireId src, WireId dst) const; delay_t predictDelay(const NetInfo *net_info, const PortRef &sink) const; delay_t getDelayEpsilon() const { return 20; } delay_t getRipupDelayPenalty() const { return 200; } float getDelayNS(delay_t v) const { return v * 0.001; } DelayInfo getDelayFromNS(float ns) const { DelayInfo del; del.delay = delay_t(ns * 1000); return del; } uint32_t getDelayChecksum(delay_t v) const { return v; } bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const; ArcBounds getRouteBoundingBox(WireId src, WireId dst) const; // ------------------------------------------------- bool pack(); bool place(); bool route(); // ------------------------------------------------- std::vector getDecalGraphics(DecalId decal) const; DecalXY getBelDecal(BelId bel) const; DecalXY getWireDecal(WireId wire) const; DecalXY getPipDecal(PipId pip) const; DecalXY getGroupDecal(GroupId group) const; // ------------------------------------------------- // Get the delay through a cell from one port to another, returning false // if no path exists. This only considers combinational delays, as required by the Arch API bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const; // getCellDelayInternal is similar to the above, but without false path checks and including clock to out delays // for internal arch use only bool getCellDelayInternal(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const; // Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const; // Get the TimingClockingInfo of a port TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const; // Return true if a port is a net bool isGlobalNet(const NetInfo *net) const; // ------------------------------------------------- // Perform placement validity checks, returning false on failure (all // implemented in arch_place.cc) // Whether or not a given cell can be placed at a given Bel // This is not intended for Bel type checks, but finer-grained constraints // such as conflicting set/reset signals, etc bool isValidBelForCell(CellInfo *cell, BelId bel) const; // Return true whether all Bels at a given location are valid bool isBelLocationValid(BelId bel) const; // Helper function for above bool logicCellsCompatible(const CellInfo **it, const size_t size) const; // ------------------------------------------------- // Assign architecure-specific arguments to nets and cells, which must be // called between packing or further // netlist modifications, and validity checks void assignArchInfo(); void assignCellInfo(CellInfo *cell); // ------------------------------------------------- BelPin getIOBSharingPLLPin(BelId pll, IdString pll_pin) const { auto wire = getBelPinWire(pll, pll_pin); for (auto src_bel : getWireBelPins(wire)) { if (getBelType(src_bel.bel) == id_SB_IO && src_bel.pin == id_D_IN_0) { return src_bel; } } NPNR_ASSERT_FALSE("Expected PLL pin to share an output with an SB_IO D_IN_{0,1}"); } int getDrivenGlobalNetwork(BelId bel) const { NPNR_ASSERT(getBelType(bel) == id_SB_GB); IdString glb_net = getWireName(getBelPinWire(bel, id_GLOBAL_BUFFER_OUTPUT)); return std::stoi(std::string("") + glb_net.str(this).back()); } static const std::string defaultPlacer; static const std::vector availablePlacers; static const std::string defaultRouter; static const std::vector availableRouters; }; void ice40DelayFuzzerMain(Context *ctx); NEXTPNR_NAMESPACE_END