/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 Clifford Wolf * Copyright (C) 2018 David Shah * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef NEXTPNR_H #error Include "arch.h" via "nextpnr.h" only. #endif #include #include NEXTPNR_NAMESPACE_BEGIN /**** Everything in this section must be kept in sync with chipdb.py ****/ #include "relptr.h" NPNR_PACKED_STRUCT(struct BelWirePOD { LocationPOD rel_wire_loc; int32_t wire_index; int32_t port; int32_t type; }); NPNR_PACKED_STRUCT(struct BelInfoPOD { RelPtr name; int32_t type; int32_t z; RelSlice bel_wires; }); NPNR_PACKED_STRUCT(struct BelPortPOD { LocationPOD rel_bel_loc; int32_t bel_index; int32_t port; }); NPNR_PACKED_STRUCT(struct PipInfoPOD { LocationPOD rel_src_loc, rel_dst_loc; int32_t src_idx, dst_idx; int32_t timing_class; int16_t tile_type; int8_t pip_type; int8_t padding_0; }); NPNR_PACKED_STRUCT(struct PipLocatorPOD { LocationPOD rel_loc; int32_t index; }); NPNR_PACKED_STRUCT(struct WireInfoPOD { RelPtr name; int32_t type; int32_t tile_wire; RelSlice pips_uphill, pips_downhill; RelSlice bel_pins; }); NPNR_PACKED_STRUCT(struct LocationTypePOD { RelSlice bel_data; RelSlice wire_data; RelSlice pip_data; }); NPNR_PACKED_STRUCT(struct PIOInfoPOD { LocationPOD abs_loc; int32_t bel_index; RelPtr function_name; int16_t bank; int16_t dqsgroup; }); NPNR_PACKED_STRUCT(struct PackagePinPOD { RelPtr name; LocationPOD abs_loc; int32_t bel_index; }); NPNR_PACKED_STRUCT(struct PackageInfoPOD { RelPtr name; RelSlice pin_data; }); NPNR_PACKED_STRUCT(struct TileNamePOD { RelPtr name; int16_t type_idx; int16_t padding; }); NPNR_PACKED_STRUCT(struct TileInfoPOD { RelSlice tile_names; }); enum TapDirection : int8_t { TAP_DIR_LEFT = 0, TAP_DIR_RIGHT = 1 }; enum GlobalQuadrant : int8_t { QUAD_UL = 0, QUAD_UR = 1, QUAD_LL = 2, QUAD_LR = 3, }; NPNR_PACKED_STRUCT(struct GlobalInfoPOD { int16_t tap_col; TapDirection tap_dir; GlobalQuadrant quad; int16_t spine_row; int16_t spine_col; }); NPNR_PACKED_STRUCT(struct CellPropDelayPOD { int32_t from_port; int32_t to_port; int32_t min_delay; int32_t max_delay; }); NPNR_PACKED_STRUCT(struct CellSetupHoldPOD { int32_t sig_port; int32_t clock_port; int32_t min_setup; int32_t max_setup; int32_t min_hold; int32_t max_hold; }); NPNR_PACKED_STRUCT(struct CellTimingPOD { int32_t cell_type; RelSlice prop_delays; RelSlice setup_holds; }); NPNR_PACKED_STRUCT(struct PipDelayPOD { int32_t min_base_delay; int32_t max_base_delay; int32_t min_fanout_adder; int32_t max_fanout_adder; }); NPNR_PACKED_STRUCT(struct SpeedGradePOD { RelSlice cell_timings; RelSlice pip_classes; }); NPNR_PACKED_STRUCT(struct ChipInfoPOD { int32_t width, height; int32_t num_tiles; int32_t const_id_count; RelSlice locations; RelSlice location_type; RelSlice location_glbinfo; RelSlice> tiletype_names; RelSlice package_info; RelSlice pio_info; RelSlice tile_info; RelSlice speed_grades; }); /************************ End of chipdb section. ************************/ struct BelIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; BelIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= int(chip->locations[chip->location_type[cursor_tile]].bel_data.size())) { cursor_index = 0; cursor_tile++; } return *this; } BelIterator operator++(int) { BelIterator prior(*this); ++(*this); return prior; } bool operator!=(const BelIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const BelIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } BelId operator*() const { BelId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct BelRange { BelIterator b, e; BelIterator begin() const { return b; } BelIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct BelPinIterator { const BelPortPOD *ptr = nullptr; Location wire_loc; void operator++() { ptr++; } bool operator!=(const BelPinIterator &other) const { return ptr != other.ptr; } BelPin operator*() const { BelPin ret; ret.bel.index = ptr->bel_index; ret.bel.location = wire_loc + ptr->rel_bel_loc; ret.pin.index = ptr->port; return ret; } }; struct BelPinRange { BelPinIterator b, e; BelPinIterator begin() const { return b; } BelPinIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct WireIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; WireIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= int(chip->locations[chip->location_type[cursor_tile]].wire_data.size())) { cursor_index = 0; cursor_tile++; } return *this; } WireIterator operator++(int) { WireIterator prior(*this); ++(*this); return prior; } bool operator!=(const WireIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const WireIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } WireId operator*() const { WireId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct WireRange { WireIterator b, e; WireIterator begin() const { return b; } WireIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct AllPipIterator { const ChipInfoPOD *chip; int cursor_index; int cursor_tile; AllPipIterator operator++() { cursor_index++; while (cursor_tile < chip->num_tiles && cursor_index >= int(chip->locations[chip->location_type[cursor_tile]].pip_data.size())) { cursor_index = 0; cursor_tile++; } return *this; } AllPipIterator operator++(int) { AllPipIterator prior(*this); ++(*this); return prior; } bool operator!=(const AllPipIterator &other) const { return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile; } bool operator==(const AllPipIterator &other) const { return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile; } PipId operator*() const { PipId ret; ret.location.x = cursor_tile % chip->width; ret.location.y = cursor_tile / chip->width; ret.index = cursor_index; return ret; } }; struct AllPipRange { AllPipIterator b, e; AllPipIterator begin() const { return b; } AllPipIterator end() const { return e; } }; // ----------------------------------------------------------------------- struct PipIterator { const PipLocatorPOD *cursor = nullptr; Location wire_loc; void operator++() { cursor++; } bool operator!=(const PipIterator &other) const { return cursor != other.cursor; } PipId operator*() const { PipId ret; ret.index = cursor->index; ret.location = wire_loc + cursor->rel_loc; return ret; } }; struct PipRange { PipIterator b, e; PipIterator begin() const { return b; } PipIterator end() const { return e; } }; struct ArchArgs { enum ArchArgsTypes { NONE, LFE5U_12F, LFE5U_25F, LFE5U_45F, LFE5U_85F, LFE5UM_25F, LFE5UM_45F, LFE5UM_85F, LFE5UM5G_25F, LFE5UM5G_45F, LFE5UM5G_85F, } type = NONE; std::string package; enum SpeedGrade { SPEED_6 = 0, SPEED_7, SPEED_8, SPEED_8_5G, } speed = SPEED_6; }; struct DelayKey { IdString celltype, from, to; inline bool operator==(const DelayKey &other) const { return celltype == other.celltype && from == other.from && to == other.to; } }; NEXTPNR_NAMESPACE_END namespace std { template <> struct hash { std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX DelayKey &dk) const noexcept { std::size_t seed = std::hash()(dk.celltype); seed ^= std::hash()(dk.from) + 0x9e3779b9 + (seed << 6) + (seed >> 2); seed ^= std::hash()(dk.to) + 0x9e3779b9 + (seed << 6) + (seed >> 2); return seed; } }; } // namespace std NEXTPNR_NAMESPACE_BEGIN struct Arch : BaseCtx { const ChipInfoPOD *chip_info; const PackageInfoPOD *package_info; const SpeedGradePOD *speed_grade; mutable std::unordered_map bel_by_name; mutable std::unordered_map wire_by_name; mutable std::unordered_map pip_by_name; std::vector bel_to_cell; std::unordered_map wire_to_net; std::unordered_map pip_to_net; std::unordered_map wire_fanout; ArchArgs args; Arch(ArchArgs args); static bool isAvailable(ArchArgs::ArchArgsTypes chip); static std::vector getSupportedPackages(ArchArgs::ArchArgsTypes chip); std::string getChipName() const; std::string getFullChipName() const; IdString archId() const { return id("ecp5"); } ArchArgs archArgs() const { return args; } IdString archArgsToId(ArchArgs args) const; // ------------------------------------------------- static const int max_loc_bels = 20; int getGridDimX() const { return chip_info->width; }; int getGridDimY() const { return chip_info->height; }; int getTileBelDimZ(int, int) const { return max_loc_bels; }; int getTilePipDimZ(int, int) const { return 1; }; char getNameDelimiter() const { return '/'; } // ------------------------------------------------- BelId getBelByName(IdString name) const; template const LocationTypePOD *locInfo(Id &id) const { return &(chip_info->locations[chip_info->location_type[id.location.y * chip_info->width + id.location.x]]); } IdString getBelName(BelId bel) const { NPNR_ASSERT(bel != BelId()); std::stringstream name; name << "X" << bel.location.x << "/Y" << bel.location.y << "/" << locInfo(bel)->bel_data[bel.index].name.get(); return id(name.str()); } uint32_t getBelChecksum(BelId bel) const { return bel.index; } int getBelFlatIndex(BelId bel) const { return (bel.location.y * chip_info->width + bel.location.x) * max_loc_bels + bel.index; } void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) { NPNR_ASSERT(bel != BelId()); int idx = getBelFlatIndex(bel); NPNR_ASSERT(bel_to_cell.at(idx) == nullptr); bel_to_cell[idx] = cell; cell->bel = bel; cell->belStrength = strength; refreshUiBel(bel); } void unbindBel(BelId bel) { NPNR_ASSERT(bel != BelId()); int idx = getBelFlatIndex(bel); NPNR_ASSERT(bel_to_cell.at(idx) != nullptr); bel_to_cell[idx]->bel = BelId(); bel_to_cell[idx]->belStrength = STRENGTH_NONE; bel_to_cell[idx] = nullptr; refreshUiBel(bel); } Loc getBelLocation(BelId bel) const { Loc loc; loc.x = bel.location.x; loc.y = bel.location.y; loc.z = locInfo(bel)->bel_data[bel.index].z; return loc; } BelId getBelByLocation(Loc loc) const; BelRange getBelsByTile(int x, int y) const; bool getBelGlobalBuf(BelId bel) const { return getBelType(bel) == id_DCCA; } bool checkBelAvail(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[getBelFlatIndex(bel)] == nullptr; } CellInfo *getBoundBelCell(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[getBelFlatIndex(bel)]; } CellInfo *getConflictingBelCell(BelId bel) const { NPNR_ASSERT(bel != BelId()); return bel_to_cell[getBelFlatIndex(bel)]; } BelRange getBels() const { BelRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no Bels in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } IdString getBelType(BelId bel) const { NPNR_ASSERT(bel != BelId()); IdString id; id.index = locInfo(bel)->bel_data[bel.index].type; return id; } std::vector> getBelAttrs(BelId) const { std::vector> ret; return ret; } WireId getBelPinWire(BelId bel, IdString pin) const; BelPinRange getWireBelPins(WireId wire) const { BelPinRange range; NPNR_ASSERT(wire != WireId()); range.b.ptr = locInfo(wire)->wire_data[wire.index].bel_pins.begin(); range.b.wire_loc = wire.location; range.e.ptr = locInfo(wire)->wire_data[wire.index].bel_pins.end(); range.e.wire_loc = wire.location; return range; } std::vector getBelPins(BelId bel) const; // ------------------------------------------------- WireId getWireByName(IdString name) const; IdString getWireName(WireId wire) const { NPNR_ASSERT(wire != WireId()); std::stringstream name; name << "X" << wire.location.x << "/Y" << wire.location.y << "/" << locInfo(wire)->wire_data[wire.index].name.get(); return id(name.str()); } IdString getWireType(WireId wire) const { NPNR_ASSERT(wire != WireId()); IdString id; id.index = locInfo(wire)->wire_data[wire.index].type; return id; } std::vector> getWireAttrs(WireId) const; uint32_t getWireChecksum(WireId wire) const { return wire.index; } void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) { NPNR_ASSERT(wire != WireId()); NPNR_ASSERT(wire_to_net[wire] == nullptr); wire_to_net[wire] = net; net->wires[wire].pip = PipId(); net->wires[wire].strength = strength; refreshUiWire(wire); } void unbindWire(WireId wire) { NPNR_ASSERT(wire != WireId()); NPNR_ASSERT(wire_to_net[wire] != nullptr); auto &net_wires = wire_to_net[wire]->wires; auto it = net_wires.find(wire); NPNR_ASSERT(it != net_wires.end()); auto pip = it->second.pip; if (pip != PipId()) { wire_fanout[getPipSrcWire(pip)]--; pip_to_net[pip] = nullptr; } net_wires.erase(it); wire_to_net[wire] = nullptr; refreshUiWire(wire); } bool checkWireAvail(WireId wire) const { NPNR_ASSERT(wire != WireId()); return wire_to_net.find(wire) == wire_to_net.end() || wire_to_net.at(wire) == nullptr; } NetInfo *getBoundWireNet(WireId wire) const { NPNR_ASSERT(wire != WireId()); if (wire_to_net.find(wire) == wire_to_net.end()) return nullptr; else return wire_to_net.at(wire); } WireId getConflictingWireWire(WireId wire) const { return wire; } NetInfo *getConflictingWireNet(WireId wire) const { NPNR_ASSERT(wire != WireId()); if (wire_to_net.find(wire) == wire_to_net.end()) return nullptr; else return wire_to_net.at(wire); } DelayInfo getWireDelay(WireId wire) const { DelayInfo delay; delay.min_delay = 0; delay.max_delay = 0; return delay; } WireRange getWires() const { WireRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no wries in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } IdString getWireBasename(WireId wire) const { return id(locInfo(wire)->wire_data[wire.index].name.get()); } WireId getWireByLocAndBasename(Location loc, std::string basename) const { WireId wireId; wireId.location = loc; for (int i = 0; i < int(locInfo(wireId)->wire_data.size()); i++) { if (locInfo(wireId)->wire_data[i].name.get() == basename) { wireId.index = i; return wireId; } } return WireId(); } // ------------------------------------------------- PipId getPipByName(IdString name) const; IdString getPipName(PipId pip) const; IdString getPipType(PipId pip) const { return IdString(); } std::vector> getPipAttrs(PipId) const { std::vector> ret; return ret; } uint32_t getPipChecksum(PipId pip) const { return pip.index; } void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) { NPNR_ASSERT(pip != PipId()); NPNR_ASSERT(pip_to_net[pip] == nullptr); pip_to_net[pip] = net; wire_fanout[getPipSrcWire(pip)]++; WireId dst; dst.index = locInfo(pip)->pip_data[pip.index].dst_idx; dst.location = pip.location + locInfo(pip)->pip_data[pip.index].rel_dst_loc; NPNR_ASSERT(wire_to_net[dst] == nullptr); wire_to_net[dst] = net; net->wires[dst].pip = pip; net->wires[dst].strength = strength; } void unbindPip(PipId pip) { NPNR_ASSERT(pip != PipId()); NPNR_ASSERT(pip_to_net[pip] != nullptr); wire_fanout[getPipSrcWire(pip)]--; WireId dst; dst.index = locInfo(pip)->pip_data[pip.index].dst_idx; dst.location = pip.location + locInfo(pip)->pip_data[pip.index].rel_dst_loc; NPNR_ASSERT(wire_to_net[dst] != nullptr); wire_to_net[dst] = nullptr; pip_to_net[pip]->wires.erase(dst); pip_to_net[pip] = nullptr; } bool checkPipAvail(PipId pip) const { NPNR_ASSERT(pip != PipId()); return pip_to_net.find(pip) == pip_to_net.end() || pip_to_net.at(pip) == nullptr; } NetInfo *getBoundPipNet(PipId pip) const { NPNR_ASSERT(pip != PipId()); if (pip_to_net.find(pip) == pip_to_net.end()) return nullptr; else return pip_to_net.at(pip); } WireId getConflictingPipWire(PipId pip) const { return WireId(); } NetInfo *getConflictingPipNet(PipId pip) const { NPNR_ASSERT(pip != PipId()); if (pip_to_net.find(pip) == pip_to_net.end()) return nullptr; else return pip_to_net.at(pip); } AllPipRange getPips() const { AllPipRange range; range.b.cursor_tile = 0; range.b.cursor_index = -1; range.b.chip = chip_info; ++range.b; //-1 and then ++ deals with the case of no wries in the first tile range.e.cursor_tile = chip_info->width * chip_info->height; range.e.cursor_index = 0; range.e.chip = chip_info; return range; } WireId getPipSrcWire(PipId pip) const { WireId wire; NPNR_ASSERT(pip != PipId()); wire.index = locInfo(pip)->pip_data[pip.index].src_idx; wire.location = pip.location + locInfo(pip)->pip_data[pip.index].rel_src_loc; return wire; } WireId getPipDstWire(PipId pip) const { WireId wire; NPNR_ASSERT(pip != PipId()); wire.index = locInfo(pip)->pip_data[pip.index].dst_idx; wire.location = pip.location + locInfo(pip)->pip_data[pip.index].rel_dst_loc; return wire; } DelayInfo getPipDelay(PipId pip) const { DelayInfo delay; NPNR_ASSERT(pip != PipId()); int fanout = 0; auto fnd_fanout = wire_fanout.find(getPipSrcWire(pip)); if (fnd_fanout != wire_fanout.end()) fanout = fnd_fanout->second; delay.min_delay = speed_grade->pip_classes[locInfo(pip)->pip_data[pip.index].timing_class].min_base_delay + fanout * speed_grade->pip_classes[locInfo(pip)->pip_data[pip.index].timing_class].min_fanout_adder; delay.max_delay = speed_grade->pip_classes[locInfo(pip)->pip_data[pip.index].timing_class].max_base_delay + fanout * speed_grade->pip_classes[locInfo(pip)->pip_data[pip.index].timing_class].max_fanout_adder; return delay; } PipRange getPipsDownhill(WireId wire) const { PipRange range; NPNR_ASSERT(wire != WireId()); range.b.cursor = locInfo(wire)->wire_data[wire.index].pips_downhill.get(); range.b.wire_loc = wire.location; range.e.cursor = range.b.cursor + locInfo(wire)->wire_data[wire.index].pips_downhill.size(); range.e.wire_loc = wire.location; return range; } PipRange getPipsUphill(WireId wire) const { PipRange range; NPNR_ASSERT(wire != WireId()); range.b.cursor = locInfo(wire)->wire_data[wire.index].pips_uphill.get(); range.b.wire_loc = wire.location; range.e.cursor = range.b.cursor + locInfo(wire)->wire_data[wire.index].pips_uphill.size(); range.e.wire_loc = wire.location; return range; } std::string getPipTilename(PipId pip) const { auto &tileloc = chip_info->tile_info[pip.location.y * chip_info->width + pip.location.x]; for (auto &tn : tileloc.tile_names) { if (tn.type_idx == locInfo(pip)->pip_data[pip.index].tile_type) return tn.name.get(); } NPNR_ASSERT_FALSE("failed to find Pip tile"); } std::string getPipTiletype(PipId pip) const { return chip_info->tiletype_names[locInfo(pip)->pip_data[pip.index].tile_type].get(); } Loc getPipLocation(PipId pip) const { Loc loc; loc.x = pip.location.x; loc.y = pip.location.y; loc.z = 0; return loc; } int8_t getPipClass(PipId pip) const { return locInfo(pip)->pip_data[pip.index].pip_type; } BelId getPackagePinBel(const std::string &pin) const; std::string getBelPackagePin(BelId bel) const; int getPioBelBank(BelId bel) const; // For getting GCLK, PLL, Vref, etc, pins std::string getPioFunctionName(BelId bel) const; BelId getPioByFunctionName(const std::string &name) const; PortType getBelPinType(BelId bel, IdString pin) const; // ------------------------------------------------- GroupId getGroupByName(IdString name) const; IdString getGroupName(GroupId group) const; std::vector getGroups() const; std::vector getGroupBels(GroupId group) const; std::vector getGroupWires(GroupId group) const; std::vector getGroupPips(GroupId group) const; std::vector getGroupGroups(GroupId group) const; // ------------------------------------------------- delay_t estimateDelay(WireId src, WireId dst) const; ArcBounds getRouteBoundingBox(WireId src, WireId dst) const; delay_t predictDelay(const NetInfo *net_info, const PortRef &sink) const; delay_t getDelayEpsilon() const { return 20; } delay_t getRipupDelayPenalty() const; float getDelayNS(delay_t v) const { return v * 0.001; } DelayInfo getDelayFromNS(float ns) const { DelayInfo del; del.min_delay = delay_t(ns * 1000); del.max_delay = delay_t(ns * 1000); return del; } uint32_t getDelayChecksum(delay_t v) const { return v; } bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const; // ------------------------------------------------- bool pack(); bool place(); bool route(); // ------------------------------------------------- std::vector getDecalGraphics(DecalId decal) const; DecalXY getBelDecal(BelId bel) const; DecalXY getWireDecal(WireId wire) const; DecalXY getPipDecal(PipId pip) const; DecalXY getGroupDecal(GroupId group) const; // ------------------------------------------------- // Get the delay through a cell from one port to another, returning false // if no path exists bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const; // Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const; // Get the TimingClockingInfo of a port TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const; // Return true if a port is a net bool isGlobalNet(const NetInfo *net) const; bool getDelayFromTimingDatabase(IdString tctype, IdString from, IdString to, DelayInfo &delay) const; void getSetupHoldFromTimingDatabase(IdString tctype, IdString clock, IdString port, DelayInfo &setup, DelayInfo &hold) const; // ------------------------------------------------- // Placement validity checks bool isValidBelForCellType(IdString cell_type, BelId bel) const { return cell_type == getBelType(bel); } const std::vector &getCellTypes() const { return cell_types; } std::vector getBelBuckets() const { return buckets; } IdString getBelBucketName(BelBucketId bucket) const { return bucket.name; } BelBucketId getBelBucketByName(IdString name) const { BelBucketId bucket; bucket.name = name; return bucket; } BelBucketId getBelBucketForBel(BelId bel) const { BelBucketId bucket; bucket.name = getBelType(bel); return bucket; } BelBucketId getBelBucketForCellType(IdString cell_type) const { BelBucketId bucket; bucket.name = cell_type; return bucket; } std::vector getBelsInBucket(BelBucketId bucket) const { std::vector bels; for (BelId bel : getBels()) { if (getBelType(bel) == bucket.name) { bels.push_back(bel); } } return bels; } bool isValidBelForCell(CellInfo *cell, BelId bel) const; bool isBelLocationValid(BelId bel) const; // Helper function for above bool slicesCompatible(const std::vector &cells) const; void assignArchInfo(); void permute_luts(); std::vector> getTilesAtLocation(int row, int col); std::string getTileByTypeAndLocation(int row, int col, std::string type) const { auto &tileloc = chip_info->tile_info[row * chip_info->width + col]; for (auto &tn : tileloc.tile_names) { if (chip_info->tiletype_names[tn.type_idx].get() == type) return tn.name.get(); } NPNR_ASSERT_FALSE_STR("no tile at (" + std::to_string(col) + ", " + std::to_string(row) + ") with type " + type); } std::string getTileByTypeAndLocation(int row, int col, const std::set &type) const { auto &tileloc = chip_info->tile_info[row * chip_info->width + col]; for (auto &tn : tileloc.tile_names) { if (type.count(chip_info->tiletype_names[tn.type_idx].get())) return tn.name.get(); } NPNR_ASSERT_FALSE_STR("no tile at (" + std::to_string(col) + ", " + std::to_string(row) + ") with type in set"); } std::string getTileByType(std::string type) const { for (int i = 0; i < chip_info->height * chip_info->width; i++) { auto &tileloc = chip_info->tile_info[i]; for (auto &tn : tileloc.tile_names) if (chip_info->tiletype_names[tn.type_idx].get() == type) return tn.name.get(); } NPNR_ASSERT_FALSE_STR("no tile with type " + type); } GlobalInfoPOD globalInfoAtLoc(Location loc); bool getPIODQSGroup(BelId pio, bool &dqsright, int &dqsrow); BelId getDQSBUF(bool dqsright, int dqsrow); WireId getBankECLK(int bank, int eclk); // Apply LPF constraints to the context bool applyLPF(std::string filename, std::istream &in); IdString id_trellis_slice; IdString id_clk, id_lsr; IdString id_clkmux, id_lsrmux; IdString id_srmode, id_mode; // Special case for delay estimates due to its physical location // being far from the logical location of its primitive WireId gsrclk_wire; // Improves directivity of routing to DSP inputs, avoids issues // with different routes to the same physical reset wire causing // conflicts and slow routing std::unordered_map> wire_loc_overrides; void setupWireLocations(); mutable std::unordered_map> celldelay_cache; static const std::string defaultPlacer; static const std::vector availablePlacers; static const std::string defaultRouter; static const std::vector availableRouters; std::vector cell_types; std::vector buckets; }; NEXTPNR_NAMESPACE_END