/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 David Shah * Copyright (C) 2018 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "timing.h" #include #include #include #include #include "log.h" #include "util.h" NEXTPNR_NAMESPACE_BEGIN typedef std::vector PortRefVector; typedef std::map DelayFrequency; struct Timing { Context *ctx; bool net_delays; bool update; delay_t min_slack; PortRefVector *crit_path; DelayFrequency *slack_histogram; struct TimingData { TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {} TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {} delay_t max_arrival; unsigned max_path_length = 0; delay_t min_remaining_budget; }; Timing(Context *ctx, bool net_delays, bool update, PortRefVector *crit_path = nullptr, DelayFrequency *slack_histogram = nullptr) : ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq), crit_path(crit_path), slack_histogram(slack_histogram) { } delay_t walk_paths() { const auto clk_period = delay_t(1.0e12 / ctx->target_freq); // First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph // TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops std::vector topographical_order; std::unordered_map net_data; // In lieu of deleting edges from the graph, simply count the number of fanins to each output port std::unordered_map port_fanin; std::vector input_ports; std::vector output_ports; for (auto &cell : ctx->cells) { input_ports.clear(); output_ports.clear(); for (auto &port : cell.second->ports) { if (!port.second.net) continue; if (port.second.type == PORT_OUT) output_ports.push_back(&port.second); else input_ports.push_back(port.first); } for (auto o : output_ports) { IdString clockPort; TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clockPort); // If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing // start-point if (portClass == TMG_REGISTER_OUTPUT) { DelayInfo clkToQ; ctx->getCellDelay(cell.second.get(), clockPort, o->name, clkToQ); topographical_order.emplace_back(o->net); net_data.emplace(o->net, TimingData{clkToQ.maxDelay()}); } else { // TODO(eddieh): Generated clocks and ignored ports are currently added into the ordering as if it was a regular timing start point in order to enable the full topographical order to be computed, however these false nets (and their downstream paths) should not be in the final ordering if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) { topographical_order.emplace_back(o->net); net_data.emplace(o->net, TimingData{}); } // Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and // the current output port, increment fanin counter for (auto i : input_ports) { DelayInfo comb_delay; bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay); if (is_path) port_fanin[o]++; } } } } // If these constant nets exist, add them to the topographical ordering too // TODO(eddieh): Also false paths and should be removed from ordering auto it = ctx->nets.find(ctx->id("$PACKER_VCC_NET")); if (it != ctx->nets.end()) { topographical_order.emplace_back(it->second.get()); net_data.emplace(it->second.get(), TimingData{}); } it = ctx->nets.find(ctx->id("$PACKER_GND_NET")); if (it != ctx->nets.end()) { topographical_order.emplace_back(it->second.get()); net_data.emplace(it->second.get(), TimingData{}); } std::deque queue(topographical_order.begin(), topographical_order.end()); // Now walk the design, from the start points identified previously, building up a topographical order while (!queue.empty()) { const auto net = queue.front(); queue.pop_front(); DelayInfo clkToQ; for (auto &usr : net->users) { IdString clockPort; TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort); if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT) continue; for (auto &port : usr.cell->ports) { if (port.second.type != PORT_OUT || !port.second.net) continue; TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, clockPort); // Skip if this is a clocked output (but allow non-clocked ones) if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE || portClass == TMG_GEN_CLOCK) continue; DelayInfo comb_delay; bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); if (!is_path) continue; // Decrement the fanin count, and only add to topographical order if all its fanins have already // been visited auto it = port_fanin.find(&port.second); NPNR_ASSERT(it != port_fanin.end()); if (--it->second == 0) { topographical_order.emplace_back(port.second.net); queue.emplace_back(port.second.net); port_fanin.erase(it); } } } } // Sanity check to ensure that all ports where fanins were recorded were indeed visited NPNR_ASSERT(port_fanin.empty()); // Go forwards topographically to find the maximum arrival time and max path length for each net for (auto net : topographical_order) { auto &nd = net_data.at(net); const auto net_arrival = nd.max_arrival; const auto net_length_plus_one = nd.max_path_length + 1; nd.min_remaining_budget = clk_period; for (auto &usr : net->users) { IdString clockPort; TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort); if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE) { } else { auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); auto usr_arrival = net_arrival + net_delay; // Iterate over all output ports on the same cell as the sink for (auto port : usr.cell->ports) { if (port.second.type != PORT_OUT || !port.second.net) continue; DelayInfo comb_delay; // Look up delay through this path bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); if (!is_path) continue; auto &data = net_data[port.second.net]; auto &arrival = data.max_arrival; arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay()); if (!budget_override) { // Do not increment path length if budget overriden since it doesn't // require a share of the slack auto &path_length = data.max_path_length; path_length = std::max(path_length, net_length_plus_one); } } } } } const NetInfo *crit_net = nullptr; // Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly // between all nets on the path for (auto net : boost::adaptors::reverse(topographical_order)) { auto &nd = net_data.at(net); const delay_t net_length_plus_one = nd.max_path_length + 1; auto &net_min_remaining_budget = nd.min_remaining_budget; for (auto &usr : net->users) { auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); IdString associatedClock; TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, associatedClock); if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) { const auto net_arrival = nd.max_arrival; auto path_budget = clk_period - (net_arrival + net_delay); if (update) { auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; usr.budget = std::min(usr.budget, net_delay + budget_share); net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share); } if (path_budget < min_slack) { min_slack = path_budget; if (crit_path) { crit_path->clear(); crit_path->push_back(&usr); crit_net = net; } } if (slack_histogram) { int slack_ps = ctx->getDelayNS(path_budget) * 1000; (*slack_histogram)[slack_ps]++; } } else if (update) { // Iterate over all output ports on the same cell as the sink for (const auto &port : usr.cell->ports) { if (port.second.type != PORT_OUT || !port.second.net) continue; DelayInfo comb_delay; bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); if (!is_path) continue; auto path_budget = net_data.at(port.second.net).min_remaining_budget; auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; usr.budget = std::min(usr.budget, net_delay + budget_share); net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share); } } } } if (crit_path) { // Walk backwards from the most critical net while (crit_net) { const PortInfo *crit_ipin = nullptr; delay_t max_arrival = std::numeric_limits::min(); // Look at all input ports on its driving cell for (const auto &port : crit_net->driver.cell->ports) { if (port.second.type != PORT_IN || !port.second.net) continue; DelayInfo comb_delay; bool is_path = ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay); if (!is_path) continue; // If input port is influenced by a clock, skip IdString portClock; TimingPortClass portClass = ctx->getPortTimingClass(crit_net->driver.cell, port.first, portClock); if (portClass == TMG_REGISTER_INPUT || portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE) continue; // And find the fanin net with the latest arrival time const auto net_arrival = net_data.at(port.second.net).max_arrival; if (net_arrival > max_arrival) { max_arrival = net_arrival; crit_ipin = &port.second; } } if (!crit_ipin) break; // Now convert PortInfo* into a PortRef* for (auto &usr : crit_ipin->net->users) { if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) { crit_path->push_back(&usr); break; } } crit_net = crit_ipin->net; } std::reverse(crit_path->begin(), crit_path->end()); } return min_slack; } void assign_budget() { // Clear delays to a very high value first for (auto &net : ctx->nets) { for (auto &usr : net.second->users) { usr.budget = std::numeric_limits::max(); } } walk_paths(); } }; void assign_budget(Context *ctx, bool quiet) { if (!quiet) { log_break(); log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n", ctx->target_freq / 1e6); } Timing timing(ctx, ctx->slack_redist_iter > 0 /* net_delays */, true /* update */); timing.assign_budget(); if (!quiet || ctx->verbose) { for (auto &net : ctx->nets) { for (auto &user : net.second->users) { // Post-update check if (!ctx->auto_freq && user.budget < 0) log_warning("port %s.%s, connected to net '%s', has negative " "timing budget of %fns\n", user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx), ctx->getDelayNS(user.budget)); else if (ctx->verbose) log_info("port %s.%s, connected to net '%s', has " "timing budget of %fns\n", user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx), ctx->getDelayNS(user.budget)); } } } // For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the // currently achieved maximum if (ctx->auto_freq && ctx->slack_redist_iter > 0) { delay_t default_slack = delay_t(1.0e12 / ctx->target_freq); ctx->target_freq = 1e12 / (default_slack - timing.min_slack); if (ctx->verbose) log_info("minimum slack for this assign = %d, target Fmax for next " "update = %.2f MHz\n", timing.min_slack, ctx->target_freq / 1e6); } if (!quiet) log_info("Checksum: 0x%08x\n", ctx->checksum()); } void timing_analysis(Context *ctx, bool print_histogram, bool print_path) { PortRefVector crit_path; DelayFrequency slack_histogram; Timing timing(ctx, true /* net_delays */, false /* update */, print_path ? &crit_path : nullptr, print_histogram ? &slack_histogram : nullptr); auto min_slack = timing.walk_paths(); if (print_path) { if (crit_path.empty()) { log_info("Design contains no timing paths\n"); } else { delay_t total = 0; log_break(); log_info("Critical path report:\n"); log_info("curr total\n"); auto &front = crit_path.front(); auto &front_port = front->cell->ports.at(front->port); auto &front_driver = front_port.net->driver; IdString last_port; ctx->getPortTimingClass(front_driver.cell, front_driver.port, last_port); for (auto sink : crit_path) { auto sink_cell = sink->cell; auto &port = sink_cell->ports.at(sink->port); auto net = port.net; auto &driver = net->driver; auto driver_cell = driver.cell; DelayInfo comb_delay; ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay); total += comb_delay.maxDelay(); log_info("%4d %4d Source %s.%s\n", comb_delay.maxDelay(), total, driver_cell->name.c_str(ctx), driver.port.c_str(ctx)); auto net_delay = ctx->getNetinfoRouteDelay(net, *sink); total += net_delay; auto driver_loc = ctx->getBelLocation(driver_cell->bel); auto sink_loc = ctx->getBelLocation(sink_cell->bel); log_info("%4d %4d Net %s budget %d (%d,%d) -> (%d,%d)\n", net_delay, total, net->name.c_str(ctx), sink->budget, driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y); log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx)); last_port = sink->port; } log_break(); } } delay_t default_slack = delay_t(1.0e12 / ctx->target_freq); log_info("estimated Fmax = %.2f MHz\n", 1e6 / (default_slack - min_slack)); if (print_histogram && slack_histogram.size() > 0) { constexpr unsigned num_bins = 20; unsigned bar_width = 60; auto min_slack = slack_histogram.begin()->first; auto max_slack = slack_histogram.rbegin()->first; auto bin_size = (max_slack - min_slack) / num_bins; std::vector bins(num_bins + 1); unsigned max_freq = 0; for (const auto &i : slack_histogram) { auto &bin = bins[(i.first - min_slack) / bin_size]; bin += i.second; max_freq = std::max(max_freq, bin); } bar_width = std::min(bar_width, max_freq); log_break(); log_info("Slack histogram:\n"); log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width); log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width); for (unsigned i = 0; i < bins.size(); ++i) log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1), std::string(bins[i] * bar_width / max_freq, '*').c_str(), (bins[i] * bar_width) % max_freq > 0 ? '+' : ' '); } } NEXTPNR_NAMESPACE_END