/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 Claire Xenia Wolf * Copyright (C) 2018 gatecat * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef NO_PYTHON #include "pybindings.h" #include "arch_pybindings.h" #include "json_frontend.h" #include "log.h" #include "nextpnr.h" #include #include #include NEXTPNR_NAMESPACE_BEGIN // Required to determine concatenated module name (which differs for different // archs) #define PASTER(x, y) x##_##y #define EVALUATOR(x, y) PASTER(x, y) #define MODULE_NAME EVALUATOR(nextpnrpy, ARCHNAME) #define PYINIT_MODULE_NAME EVALUATOR(&PyInit_nextpnrpy, ARCHNAME) #define STRINGIFY(x) #x #define TOSTRING(x) STRINGIFY(x) // Architecture-specific bindings should be created in the below function, which // must be implemented in all architectures void arch_wrap_python(py::module &m); bool operator==(const PortRef &a, const PortRef &b) { return (a.cell == b.cell) && (a.port == b.port); } // Load a JSON file into a design void parse_json_shim(std::string filename, Context &d) { std::ifstream inf(filename); if (!inf) throw std::runtime_error("failed to open file " + filename); parse_json(inf, filename, &d); } // Create a new Chip and load design from json file Context *load_design_shim(std::string filename, ArchArgs args) { Context *d = new Context(args); parse_json_shim(filename, *d); return d; } namespace PythonConversion { template <> struct string_converter { inline PortRef from_str(Context *ctx, std::string name) { NPNR_ASSERT_FALSE("PortRef from_str not implemented"); } inline std::string to_str(Context *ctx, const PortRef &pr) { return pr.cell->name.str(ctx) + "." + pr.port.str(ctx); } }; template <> struct string_converter { inline Property from_str(Context *ctx, std::string s) { return Property::from_string(s); } inline std::string to_str(Context *ctx, Property p) { return p.to_string(); } }; } // namespace PythonConversion std::string loc_repr_py(Loc loc) { return stringf("Loc(%d, %d, %d)", loc.x, loc.y, loc.z); } PYBIND11_EMBEDDED_MODULE(MODULE_NAME, m) { py::register_exception_translator([](std::exception_ptr p) { try { if (p) std::rethrow_exception(p); } catch (const assertion_failure &e) { PyErr_SetString(PyExc_AssertionError, e.what()); } }); using namespace PythonConversion; py::enum_(m, "GraphicElementType") .value("TYPE_NONE", GraphicElement::TYPE_NONE) .value("TYPE_LINE", GraphicElement::TYPE_LINE) .value("TYPE_ARROW", GraphicElement::TYPE_ARROW) .value("TYPE_BOX", GraphicElement::TYPE_BOX) .value("TYPE_CIRCLE", GraphicElement::TYPE_CIRCLE) .value("TYPE_LABEL", GraphicElement::TYPE_LABEL) .export_values(); py::enum_(m, "GraphicElementStyle") .value("STYLE_GRID", GraphicElement::STYLE_GRID) .value("STYLE_FRAME", GraphicElement::STYLE_FRAME) .value("STYLE_HIDDEN", GraphicElement::STYLE_HIDDEN) .value("STYLE_INACTIVE", GraphicElement::STYLE_INACTIVE) .value("STYLE_ACTIVE", GraphicElement::STYLE_ACTIVE) .export_values(); py::class_(m, "GraphicElement") .def(py::init(), py::arg("type"), py::arg("style"), py::arg("x1"), py::arg("y1"), py::arg("x2"), py::arg("y2"), py::arg("z")) .def_readwrite("type", &GraphicElement::type) .def_readwrite("x1", &GraphicElement::x1) .def_readwrite("y1", &GraphicElement::y1) .def_readwrite("x2", &GraphicElement::x2) .def_readwrite("y2", &GraphicElement::y2) .def_readwrite("text", &GraphicElement::text); py::enum_(m, "PortType") .value("PORT_IN", PORT_IN) .value("PORT_OUT", PORT_OUT) .value("PORT_INOUT", PORT_INOUT) .export_values(); py::enum_(m, "PlaceStrength") .value("STRENGTH_NONE", STRENGTH_NONE) .value("STRENGTH_WEAK", STRENGTH_WEAK) .value("STRENGTH_STRONG", STRENGTH_STRONG) .value("STRENGTH_FIXED", STRENGTH_FIXED) .value("STRENGTH_LOCKED", STRENGTH_LOCKED) .value("STRENGTH_USER", STRENGTH_USER) .export_values(); py::class_(m, "DelayPair") .def(py::init<>()) .def(py::init()) .def(py::init()) .def_readwrite("min_delay", &DelayPair::min_delay) .def_readwrite("max_delay", &DelayPair::max_delay) .def("minDelay", &DelayPair::minDelay) .def("maxDelay", &DelayPair::maxDelay); py::class_(m, "DelayQuad") .def(py::init<>()) .def(py::init()) .def(py::init()) .def(py::init()) .def(py::init()) .def_readwrite("rise", &DelayQuad::rise) .def_readwrite("fall", &DelayQuad::fall) .def("minDelay", &DelayQuad::minDelay) .def("minRiseDelay", &DelayQuad::minRiseDelay) .def("minFallDelay", &DelayQuad::minFallDelay) .def("maxDelay", &DelayQuad::maxDelay) .def("maxRiseDelay", &DelayQuad::maxRiseDelay) .def("maxFallDelay", &DelayQuad::maxFallDelay) .def("delayPair", &DelayQuad::delayPair); typedef dict AttrMap; typedef dict PortMap; typedef dict IdIdMap; typedef dict> RegionMap; py::class_(m, "BaseCtx"); auto loc_cls = py::class_(m, "Loc") .def(py::init()) .def_readwrite("x", &Loc::x) .def_readwrite("y", &Loc::y) .def_readwrite("z", &Loc::z) .def("__repr__", loc_repr_py); auto ci_cls = py::class_>(m, "CellInfo"); readwrite_wrapper, conv_from_str>::def_wrap(ci_cls, "name"); readwrite_wrapper, conv_from_str>::def_wrap(ci_cls, "type"); readonly_wrapper>::def_wrap( ci_cls, "attrs"); readonly_wrapper>::def_wrap( ci_cls, "params"); readonly_wrapper>::def_wrap( ci_cls, "ports"); readonly_wrapper>::def_wrap(ci_cls, "bel"); readwrite_wrapper, pass_through>::def_wrap(ci_cls, "belStrength"); fn_wrapper_1a_v>::def_wrap( ci_cls, "addInput"); fn_wrapper_1a_v>::def_wrap(ci_cls, "addOutput"); fn_wrapper_1a_v>::def_wrap( ci_cls, "addInout"); fn_wrapper_2a_v, conv_from_str>::def_wrap(ci_cls, "setParam"); fn_wrapper_1a_v>::def_wrap(ci_cls, "unsetParam"); fn_wrapper_2a_v, conv_from_str>::def_wrap(ci_cls, "setAttr"); fn_wrapper_1a_v>::def_wrap(ci_cls, "unsetAttr"); auto pi_cls = py::class_>(m, "PortInfo"); readwrite_wrapper, conv_from_str>::def_wrap(pi_cls, "name"); readonly_wrapper>::def_wrap(pi_cls, "net"); readwrite_wrapper, pass_through>::def_wrap(pi_cls, "type"); typedef indexed_store PortRefVector; typedef dict WireMap; typedef pool BelSet; typedef pool WireSet; auto ni_cls = py::class_>(m, "NetInfo"); readwrite_wrapper, conv_from_str>::def_wrap(ni_cls, "name"); readonly_wrapper>::def_wrap( ni_cls, "driver"); readonly_wrapper>::def_wrap( ni_cls, "users"); readonly_wrapper>::def_wrap(ni_cls, "wires"); auto pr_cls = py::class_>(m, "PortRef"); readonly_wrapper>::def_wrap(pr_cls, "cell"); readonly_wrapper>::def_wrap(pr_cls, "port"); readonly_wrapper>::def_wrap(pr_cls, "budget"); auto pm_cls = py::class_>(m, "PipMap"); readwrite_wrapper, conv_from_str>::def_wrap(pm_cls, "pip"); readwrite_wrapper, pass_through>::def_wrap(pm_cls, "strength"); m.def("parse_json", parse_json_shim); m.def("load_design", load_design_shim, py::return_value_policy::take_ownership); auto region_cls = py::class_>(m, "Region"); readwrite_wrapper, conv_from_str>::def_wrap(region_cls, "name"); readwrite_wrapper, pass_through>::def_wrap(region_cls, "constr_bels"); readwrite_wrapper, pass_through>::def_wrap(region_cls, "constr_bels"); readwrite_wrapper, pass_through>::def_wrap(region_cls, "constr_pips"); readonly_wrapper>::def_wrap(region_cls, "bels"); readonly_wrapper>::def_wrap(region_cls, "wires"); auto hierarchy_cls = py::class_>(m, "HierarchicalCell"); readwrite_wrapper, conv_from_str>::def_wrap(hierarchy_cls, "name"); readwrite_wrapper, conv_from_str>::def_wrap(hierarchy_cls, "type"); readwrite_wrapper, conv_from_str>::def_wrap(hierarchy_cls, "parent"); readwrite_wrapper, conv_from_str>::def_wrap(hierarchy_cls, "fullpath"); readonly_wrapper>::def_wrap(hierarchy_cls, "leaf_cells"); readonly_wrapper>::def_wrap(hierarchy_cls, "nets"); readonly_wrapper>::def_wrap(hierarchy_cls, "hier_cells"); WRAP_MAP(m, AttrMap, conv_to_str, "AttrMap"); WRAP_MAP(m, PortMap, wrap_context, "PortMap"); WRAP_MAP(m, IdIdMap, conv_to_str, "IdIdMap"); WRAP_MAP(m, WireMap, wrap_context, "WireMap"); WRAP_MAP_UPTR(m, RegionMap, "RegionMap"); WRAP_INDEXSTORE(m, PortRefVector, wrap_context); typedef dict ClockFmaxMap; WRAP_MAP(m, ClockFmaxMap, pass_through, "ClockFmaxMap"); auto clk_fmax_cls = py::class_(m, "ClockFmax") .def_readonly("achieved", &ClockFmax::achieved) .def_readonly("constraint", &ClockFmax::constraint); auto tmg_result_cls = py::class_>(m, "TimingResult"); readonly_wrapper>::def_wrap(tmg_result_cls, "clock_fmax"); arch_wrap_python(m); } #ifdef MAIN_EXECUTABLE static wchar_t *program; #endif void (*python_sighandler)(int) = nullptr; void init_python(const char *executable) { #ifdef MAIN_EXECUTABLE program = Py_DecodeLocale(executable, NULL); if (program == NULL) { fprintf(stderr, "Fatal error: cannot decode executable filename\n"); exit(1); } Py_SetProgramName(program); py::initialize_interpreter(); py::module::import(TOSTRING(MODULE_NAME)); PyRun_SimpleString("from " TOSTRING(MODULE_NAME) " import *"); python_sighandler = signal(SIGINT, SIG_DFL); #endif } void deinit_python() { #ifdef MAIN_EXECUTABLE py::finalize_interpreter(); PyMem_RawFree(program); #endif } void execute_python_file(const char *python_file) { try { FILE *fp = fopen(python_file, "r"); if (fp == NULL) { fprintf(stderr, "Fatal error: file not found %s\n", python_file); exit(1); } if (python_sighandler) signal(SIGINT, python_sighandler); int result = PyRun_SimpleFile(fp, python_file); signal(SIGINT, SIG_DFL); fclose(fp); if (result == -1) { log_error("Error occurred while executing Python script %s\n", python_file); } } catch (py::error_already_set const &) { // Parse and output the exception std::string perror_str = parse_python_exception(); signal(SIGINT, SIG_DFL); log_error("Error in Python: %s\n", perror_str.c_str()); } } NEXTPNR_NAMESPACE_END #endif // NO_PYTHON