-- Iir to ortho translator. -- Copyright (C) 2002 - 2014 Tristan Gingold -- -- GHDL is free software; you can redistribute it and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation; either version 2, or (at your option) any later -- version. -- -- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY -- WARRANTY; without even the implied warranty of MERCHANTABILITY or -- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for more details. -- -- You should have received a copy of the GNU General Public License -- along with GCC; see the file COPYING. If not, write to the Free -- Software Foundation, 59 Temple Place - Suite 330, Boston, MA -- 02111-1307, USA. with Files_Map; with Errorout; use Errorout; with Iirs_Utils; use Iirs_Utils; with Evaluation; use Evaluation; with Trans.Chap3; with Trans.Chap7; with Trans.Chap14; with Trans.Helpers2; use Trans.Helpers2; with Trans_Decls; use Trans_Decls; package body Trans.Chap6 is use Trans.Helpers; function Get_Array_Bound_Length (Arr : Mnode; Arr_Type : Iir; Dim : Natural) return O_Enode is Tinfo : constant Type_Info_Acc := Get_Info (Arr_Type); Index_Type, Constraint : Iir; begin if Tinfo.Type_Locally_Constrained then Index_Type := Get_Index_Type (Arr_Type, Dim - 1); Constraint := Get_Range_Constraint (Index_Type); return New_Lit (Chap7.Translate_Static_Range_Length (Constraint)); else return M2E (Chap3.Range_To_Length (Chap3.Get_Array_Range (Arr, Arr_Type, Dim))); end if; end Get_Array_Bound_Length; procedure Gen_Bound_Error (Loc : Iir) is Constr : O_Assoc_List; Name : Name_Id; Line, Col : Natural; begin Files_Map.Location_To_Position (Get_Location (Loc), Name, Line, Col); Start_Association (Constr, Ghdl_Bound_Check_Failed_L1); Assoc_Filename_Line (Constr, Line); New_Procedure_Call (Constr); end Gen_Bound_Error; procedure Gen_Program_Error (Loc : Iir; Code : Natural) is Assoc : O_Assoc_List; begin Start_Association (Assoc, Ghdl_Program_Error); if Current_Filename_Node = O_Dnode_Null then New_Association (Assoc, New_Lit (New_Null_Access (Char_Ptr_Type))); New_Association (Assoc, New_Lit (New_Signed_Literal (Ghdl_I32_Type, 0))); else Assoc_Filename_Line (Assoc, Get_Line_Number (Loc)); end if; New_Association (Assoc, New_Lit (New_Unsigned_Literal (Ghdl_Index_Type, Unsigned_64 (Code)))); New_Procedure_Call (Assoc); end Gen_Program_Error; -- Generate code to emit a failure if COND is TRUE, indicating an -- index violation for dimension DIM of an array. LOC is usually -- the expression which has computed the index and is used only for -- its location. procedure Check_Bound_Error (Cond : O_Enode; Loc : Iir; Dim : Natural) is pragma Unreferenced (Dim); If_Blk : O_If_Block; begin Start_If_Stmt (If_Blk, Cond); Gen_Bound_Error (Loc); Finish_If_Stmt (If_Blk); end Check_Bound_Error; -- Return TRUE if an array whose index type is RNG_TYPE indexed by -- an expression of type EXPR_TYPE needs a bound check. function Need_Index_Check (Expr_Type : Iir; Rng_Type : Iir) return Boolean is Rng : Iir; begin -- Do checks if type of the expression is not a subtype. -- FIXME: EXPR_TYPE shound not be NULL_IIR (generate stmt) if Expr_Type = Null_Iir then return True; end if; case Get_Kind (Expr_Type) is when Iir_Kind_Integer_Subtype_Definition | Iir_Kind_Enumeration_Subtype_Definition | Iir_Kind_Enumeration_Type_Definition => null; when others => return True; end case; -- No check if the expression has the type of the index. if Expr_Type = Rng_Type then return False; end if; -- No check for 'Range or 'Reverse_Range. Rng := Get_Range_Constraint (Expr_Type); if (Get_Kind (Rng) = Iir_Kind_Range_Array_Attribute or Get_Kind (Rng) = Iir_Kind_Reverse_Range_Array_Attribute) and then Get_Type (Rng) = Rng_Type then return False; end if; return True; end Need_Index_Check; procedure Get_Deep_Range_Expression (Atype : Iir; Rng : out Iir; Is_Reverse : out Boolean) is T : Iir; R : Iir; begin Is_Reverse := False; -- T is an integer/enumeration subtype. T := Atype; loop case Get_Kind (T) is when Iir_Kind_Integer_Subtype_Definition | Iir_Kind_Enumeration_Subtype_Definition | Iir_Kind_Enumeration_Type_Definition => -- These types have a range. null; when others => Error_Kind ("get_deep_range_expression(1)", T); end case; R := Get_Range_Constraint (T); case Get_Kind (R) is when Iir_Kind_Range_Expression => Rng := R; return; when Iir_Kind_Range_Array_Attribute => null; when Iir_Kind_Reverse_Range_Array_Attribute => Is_Reverse := not Is_Reverse; when others => Error_Kind ("get_deep_range_expression(2)", R); end case; T := Get_Index_Subtype (R); if T = Null_Iir then Rng := Null_Iir; return; end if; end loop; end Get_Deep_Range_Expression; function Translate_Index_To_Offset (Rng : Mnode; Index : O_Enode; Index_Expr : Iir; Range_Type : Iir; Loc : Iir) return O_Enode is Need_Check : Boolean; Dir : O_Enode; If_Blk : O_If_Block; Res : O_Dnode; Off : O_Dnode; Bound : O_Enode; Cond1, Cond2 : O_Enode; Index_Node : O_Dnode; Bound_Node : O_Dnode; Index_Info : Type_Info_Acc; Deep_Rng : Iir; Deep_Reverse : Boolean; begin Index_Info := Get_Info (Get_Base_Type (Range_Type)); if Index_Expr = Null_Iir then Need_Check := True; Deep_Rng := Null_Iir; Deep_Reverse := False; else Need_Check := Need_Index_Check (Get_Type (Index_Expr), Range_Type); Get_Deep_Range_Expression (Range_Type, Deep_Rng, Deep_Reverse); end if; Res := Create_Temp (Ghdl_Index_Type); Open_Temp; Off := Create_Temp (Index_Info.Ortho_Type (Mode_Value)); Bound := M2E (Chap3.Range_To_Left (Rng)); if Deep_Rng /= Null_Iir then if Get_Direction (Deep_Rng) = Iir_To xor Deep_Reverse then -- Direction TO: INDEX - LEFT. New_Assign_Stmt (New_Obj (Off), New_Dyadic_Op (ON_Sub_Ov, Index, Bound)); else -- Direction DOWNTO: LEFT - INDEX. New_Assign_Stmt (New_Obj (Off), New_Dyadic_Op (ON_Sub_Ov, Bound, Index)); end if; else Index_Node := Create_Temp_Init (Index_Info.Ortho_Type (Mode_Value), Index); Bound_Node := Create_Temp_Init (Index_Info.Ortho_Type (Mode_Value), Bound); Dir := M2E (Chap3.Range_To_Dir (Rng)); -- Non-static direction. Start_If_Stmt (If_Blk, New_Compare_Op (ON_Eq, Dir, New_Lit (Ghdl_Dir_To_Node), Ghdl_Bool_Type)); -- Direction TO: INDEX - LEFT. New_Assign_Stmt (New_Obj (Off), New_Dyadic_Op (ON_Sub_Ov, New_Obj_Value (Index_Node), New_Obj_Value (Bound_Node))); New_Else_Stmt (If_Blk); -- Direction DOWNTO: LEFT - INDEX. New_Assign_Stmt (New_Obj (Off), New_Dyadic_Op (ON_Sub_Ov, New_Obj_Value (Bound_Node), New_Obj_Value (Index_Node))); Finish_If_Stmt (If_Blk); end if; -- Get the offset. New_Assign_Stmt (New_Obj (Res), New_Convert_Ov (New_Obj_Value (Off), Ghdl_Index_Type)); -- Check bounds. if Need_Check then Cond1 := New_Compare_Op (ON_Lt, New_Obj_Value (Off), New_Lit (New_Signed_Literal (Index_Info.Ortho_Type (Mode_Value), 0)), Ghdl_Bool_Type); Cond2 := New_Compare_Op (ON_Ge, New_Obj_Value (Res), M2E (Chap3.Range_To_Length (Rng)), Ghdl_Bool_Type); Check_Bound_Error (New_Dyadic_Op (ON_Or, Cond1, Cond2), Loc, 0); end if; Close_Temp; return New_Obj_Value (Res); end Translate_Index_To_Offset; -- Translate index EXPR in dimension DIM of thin array into an -- offset. -- This checks bounds. function Translate_Thin_Index_Offset (Index_Type : Iir; Dim : Natural; Expr : Iir) return O_Enode is Index_Range : constant Iir := Get_Range_Constraint (Index_Type); Obound : O_Cnode; Res : O_Dnode; Cond2 : O_Enode; Index : O_Enode; Index_Base_Type : Iir; V : Iir_Int64; B : Iir_Int64; begin B := Eval_Pos (Get_Left_Limit (Index_Range)); if Get_Expr_Staticness (Expr) = Locally then V := Eval_Pos (Eval_Static_Expr (Expr)); if Get_Direction (Index_Range) = Iir_To then B := V - B; else B := B - V; end if; return New_Lit (New_Unsigned_Literal (Ghdl_Index_Type, Unsigned_64 (B))); else Index_Base_Type := Get_Base_Type (Index_Type); Index := Chap7.Translate_Expression (Expr, Index_Base_Type); if Get_Direction (Index_Range) = Iir_To then -- Direction TO: INDEX - LEFT. if B /= 0 then Obound := Chap7.Translate_Static_Range_Left (Index_Range, Index_Base_Type); Index := New_Dyadic_Op (ON_Sub_Ov, Index, New_Lit (Obound)); end if; else -- Direction DOWNTO: LEFT - INDEX. Obound := Chap7.Translate_Static_Range_Left (Index_Range, Index_Base_Type); Index := New_Dyadic_Op (ON_Sub_Ov, New_Lit (Obound), Index); end if; -- Get the offset. Index := New_Convert_Ov (Index, Ghdl_Index_Type); -- Since the value is unsigned, both left and right bounds are -- checked in the same time. if Get_Type (Expr) /= Index_Type then Res := Create_Temp_Init (Ghdl_Index_Type, Index); Cond2 := New_Compare_Op (ON_Ge, New_Obj_Value (Res), New_Lit (Chap7.Translate_Static_Range_Length (Index_Range)), Ghdl_Bool_Type); Check_Bound_Error (Cond2, Expr, Dim); Index := New_Obj_Value (Res); end if; return Index; end if; end Translate_Thin_Index_Offset; -- Translate an indexed name. type Indexed_Name_Data is record Offset : O_Dnode; Res : Mnode; end record; function Translate_Indexed_Name_Init (Prefix_Orig : Mnode; Expr : Iir) return Indexed_Name_Data is Prefix_Type : constant Iir := Get_Type (Get_Prefix (Expr)); Prefix_Info : constant Type_Info_Acc := Get_Info (Prefix_Type); Index_List : constant Iir_List := Get_Index_List (Expr); Type_List : constant Iir_List := Get_Index_Subtype_List (Prefix_Type); Nbr_Dim : constant Natural := Get_Nbr_Elements (Index_List); Prefix : Mnode; Index : Iir; Offset : O_Dnode; R : O_Enode; Length : O_Enode; Itype : Iir; Ibasetype : Iir; Range_Ptr : Mnode; begin case Prefix_Info.Type_Mode is when Type_Mode_Fat_Array => Prefix := Stabilize (Prefix_Orig); when Type_Mode_Array => Prefix := Prefix_Orig; when others => raise Internal_Error; end case; Offset := Create_Temp (Ghdl_Index_Type); for Dim in 1 .. Nbr_Dim loop Index := Get_Nth_Element (Index_List, Dim - 1); Itype := Get_Index_Type (Type_List, Dim - 1); Ibasetype := Get_Base_Type (Itype); Open_Temp; -- Compute index for the current dimension. case Prefix_Info.Type_Mode is when Type_Mode_Fat_Array => Range_Ptr := Stabilize (Chap3.Get_Array_Range (Prefix, Prefix_Type, Dim)); R := Translate_Index_To_Offset (Range_Ptr, Chap7.Translate_Expression (Index, Ibasetype), Null_Iir, Itype, Index); when Type_Mode_Array => if Prefix_Info.Type_Locally_Constrained then R := Translate_Thin_Index_Offset (Itype, Dim, Index); else -- Manually extract range since there is no infos for -- index subtype. Range_Ptr := Chap3.Bounds_To_Range (Chap3.Get_Array_Type_Bounds (Prefix_Type), Prefix_Type, Dim); Stabilize (Range_Ptr); R := Translate_Index_To_Offset (Range_Ptr, Chap7.Translate_Expression (Index, Ibasetype), Index, Itype, Index); end if; when others => raise Internal_Error; end case; if Dim = 1 then -- First dimension. New_Assign_Stmt (New_Obj (Offset), R); else -- If there are more dimension(s) to follow, then multiply -- the current offset by the length of the current dimension. if Prefix_Info.Type_Locally_Constrained then Length := New_Lit (Chap7.Translate_Static_Range_Length (Get_Range_Constraint (Itype))); else Length := M2E (Chap3.Range_To_Length (Range_Ptr)); end if; New_Assign_Stmt (New_Obj (Offset), New_Dyadic_Op (ON_Add_Ov, New_Dyadic_Op (ON_Mul_Ov, New_Obj_Value (Offset), Length), R)); end if; Close_Temp; end loop; return (Offset => Offset, Res => Chap3.Index_Base (Chap3.Get_Composite_Base (Prefix), Prefix_Type, New_Obj_Value (Offset))); end Translate_Indexed_Name_Init; function Translate_Indexed_Name_Finish (Prefix : Mnode; Expr : Iir; Data : Indexed_Name_Data) return Mnode is begin return Chap3.Index_Base (Chap3.Get_Composite_Base (Prefix), Get_Type (Get_Prefix (Expr)), New_Obj_Value (Data.Offset)); end Translate_Indexed_Name_Finish; function Translate_Indexed_Name (Prefix : Mnode; Expr : Iir) return Mnode is begin return Translate_Indexed_Name_Init (Prefix, Expr).Res; end Translate_Indexed_Name; type Slice_Name_Data is record Off : Unsigned_64; Is_Off : Boolean; Unsigned_Diff : O_Dnode; -- Variable pointing to the prefix. Prefix_Var : Mnode; -- Variable pointing to slice. Slice_Range : Mnode; end record; procedure Translate_Slice_Name_Init (Prefix : Mnode; Expr : Iir_Slice_Name; Data : out Slice_Name_Data) is -- Type of the prefix. Prefix_Type : constant Iir := Get_Type (Get_Prefix (Expr)); -- Type info of the prefix. Prefix_Info : Type_Info_Acc; -- Type of the first (and only) index of the prefix array type. Index_Type : constant Iir := Get_Index_Type (Prefix_Type, 0); -- Type of the slice. Slice_Type : constant Iir := Get_Type (Expr); Slice_Info : Type_Info_Acc; -- True iff the direction of the slice is known at compile time. Static_Range : Boolean; -- Suffix of the slice (discrete range). Expr_Range : constant Iir := Get_Suffix (Expr); -- Variable pointing to the prefix. Prefix_Var : Mnode; -- Type info of the range base type. Index_Info : Type_Info_Acc; -- Variables pointing to slice and prefix ranges. Slice_Range : Mnode; Prefix_Range : Mnode; Diff : O_Dnode; Unsigned_Diff : O_Dnode; If_Blk, If_Blk1 : O_If_Block; begin -- Evaluate slice bounds. Chap3.Create_Array_Subtype (Slice_Type); -- The info may have just been created. Prefix_Info := Get_Info (Prefix_Type); Slice_Info := Get_Info (Slice_Type); if Slice_Info.Type_Mode = Type_Mode_Array and then Slice_Info.Type_Locally_Constrained and then Prefix_Info.Type_Mode = Type_Mode_Array and then Prefix_Info.Type_Locally_Constrained then Data.Is_Off := True; Data.Prefix_Var := Prefix; -- Both prefix and result are constrained array. declare Prefix_Left, Slice_Left : Iir_Int64; Off : Iir_Int64; Slice_Index_Type : Iir; Slice_Range : Iir; Slice_Length : Iir_Int64; Index_Range : Iir; begin Index_Range := Get_Range_Constraint (Index_Type); Prefix_Left := Eval_Pos (Get_Left_Limit (Index_Range)); Slice_Index_Type := Get_Index_Type (Slice_Type, 0); Slice_Range := Get_Range_Constraint (Slice_Index_Type); Slice_Left := Eval_Pos (Get_Left_Limit (Slice_Range)); Slice_Length := Eval_Discrete_Range_Length (Slice_Range); if Slice_Length = 0 then -- Null slice. Data.Off := 0; return; end if; if Get_Direction (Index_Range) /= Get_Direction (Slice_Range) then -- This is allowed with vhdl87 Off := 0; Slice_Length := 0; else -- Both prefix and slice are thin array. case Get_Direction (Index_Range) is when Iir_To => Off := Slice_Left - Prefix_Left; when Iir_Downto => Off := Prefix_Left - Slice_Left; end case; if Off < 0 then -- Must have been caught by sem. raise Internal_Error; end if; if Off + Slice_Length > Eval_Discrete_Range_Length (Index_Range) then -- Must have been caught by sem. raise Internal_Error; end if; end if; Data.Off := Unsigned_64 (Off); return; end; end if; Data.Is_Off := False; -- Save prefix. Prefix_Var := Stabilize (Prefix); Index_Info := Get_Info (Get_Base_Type (Index_Type)); -- Save prefix bounds. Prefix_Range := Stabilize (Chap3.Get_Array_Range (Prefix_Var, Prefix_Type, 1)); -- Save slice bounds. Slice_Range := Stabilize (Chap3.Bounds_To_Range (Chap3.Get_Array_Type_Bounds (Slice_Type), Slice_Type, 1)); -- TRUE if the direction of the slice is known. Static_Range := Get_Kind (Expr_Range) = Iir_Kind_Range_Expression; -- Check direction against same direction, error if different. -- FIXME: what about v87 -> if different then null slice if not Static_Range or else Get_Kind (Prefix_Type) /= Iir_Kind_Array_Subtype_Definition then -- Check same direction. Check_Bound_Error (New_Compare_Op (ON_Neq, M2E (Chap3.Range_To_Dir (Prefix_Range)), M2E (Chap3.Range_To_Dir (Slice_Range)), Ghdl_Bool_Type), Expr, 1); end if; Unsigned_Diff := Create_Temp (Ghdl_Index_Type); -- Check if not a null slice. -- The bounds of a null slice may be out of range. So DIFF cannot -- be computed by substraction. Start_If_Stmt (If_Blk, New_Compare_Op (ON_Eq, M2E (Chap3.Range_To_Length (Slice_Range)), New_Lit (Ghdl_Index_0), Ghdl_Bool_Type)); New_Assign_Stmt (New_Obj (Unsigned_Diff), New_Lit (Ghdl_Index_0)); New_Else_Stmt (If_Blk); Diff := Create_Temp (Index_Info.Ortho_Type (Mode_Value)); -- Compute the offset in the prefix. if not Static_Range then Start_If_Stmt (If_Blk1, New_Compare_Op (ON_Eq, M2E (Chap3.Range_To_Dir (Slice_Range)), New_Lit (Ghdl_Dir_To_Node), Ghdl_Bool_Type)); end if; if not Static_Range or else Get_Direction (Expr_Range) = Iir_To then -- Diff = slice - bounds. New_Assign_Stmt (New_Obj (Diff), New_Dyadic_Op (ON_Sub_Ov, M2E (Chap3.Range_To_Left (Slice_Range)), M2E (Chap3.Range_To_Left (Prefix_Range)))); end if; if not Static_Range then New_Else_Stmt (If_Blk1); end if; if not Static_Range or else Get_Direction (Expr_Range) = Iir_Downto then -- Diff = bounds - slice. New_Assign_Stmt (New_Obj (Diff), New_Dyadic_Op (ON_Sub_Ov, M2E (Chap3.Range_To_Left (Prefix_Range)), M2E (Chap3.Range_To_Left (Slice_Range)))); end if; if not Static_Range then Finish_If_Stmt (If_Blk1); end if; -- Note: this also check for overflow. New_Assign_Stmt (New_Obj (Unsigned_Diff), New_Convert_Ov (New_Obj_Value (Diff), Ghdl_Index_Type)); -- Check bounds. declare Err_1 : O_Enode; Err_2 : O_Enode; begin -- Bounds error if left of slice is before left of prefix. Err_1 := New_Compare_Op (ON_Lt, New_Obj_Value (Diff), New_Lit (New_Signed_Literal (Index_Info.Ortho_Type (Mode_Value), 0)), Ghdl_Bool_Type); -- Bounds error if right of slice is after right of prefix. Err_2 := New_Compare_Op (ON_Gt, New_Dyadic_Op (ON_Add_Ov, New_Obj_Value (Unsigned_Diff), M2E (Chap3.Range_To_Length (Slice_Range))), M2E (Chap3.Range_To_Length (Prefix_Range)), Ghdl_Bool_Type); Check_Bound_Error (New_Dyadic_Op (ON_Or, Err_1, Err_2), Expr, 1); end; Finish_If_Stmt (If_Blk); Data.Slice_Range := Slice_Range; Data.Prefix_Var := Prefix_Var; Data.Unsigned_Diff := Unsigned_Diff; Data.Is_Off := False; end Translate_Slice_Name_Init; function Translate_Slice_Name_Finish (Prefix : Mnode; Expr : Iir_Slice_Name; Data : Slice_Name_Data) return Mnode is -- Type of the slice. Slice_Type : constant Iir := Get_Type (Expr); Slice_Info : constant Type_Info_Acc := Get_Info (Slice_Type); -- Object kind of the prefix. Kind : constant Object_Kind_Type := Get_Object_Kind (Prefix); Res_D : O_Dnode; begin if Data.Is_Off then return Chap3.Slice_Base (Prefix, Slice_Type, New_Lit (New_Unsigned_Literal (Ghdl_Index_Type, Data.Off))); else -- Create the result (fat array) and assign the bounds field. case Slice_Info.Type_Mode is when Type_Mode_Fat_Array => Res_D := Create_Temp (Slice_Info.Ortho_Type (Kind)); New_Assign_Stmt (New_Selected_Element (New_Obj (Res_D), Slice_Info.B.Bounds_Field (Kind)), New_Value (M2Lp (Data.Slice_Range))); New_Assign_Stmt (New_Selected_Element (New_Obj (Res_D), Slice_Info.B.Base_Field (Kind)), M2E (Chap3.Slice_Base (Chap3.Get_Composite_Base (Prefix), Slice_Type, New_Obj_Value (Data.Unsigned_Diff)))); return Dv2M (Res_D, Slice_Info, Kind); when Type_Mode_Array => return Chap3.Slice_Base (Chap3.Get_Composite_Base (Prefix), Slice_Type, New_Obj_Value (Data.Unsigned_Diff)); when others => raise Internal_Error; end case; end if; end Translate_Slice_Name_Finish; function Translate_Slice_Name (Prefix : Mnode; Expr : Iir_Slice_Name) return Mnode is Data : Slice_Name_Data; begin Translate_Slice_Name_Init (Prefix, Expr, Data); return Translate_Slice_Name_Finish (Data.Prefix_Var, Expr, Data); end Translate_Slice_Name; function Translate_Interface_Name (Inter : Iir; Info : Ortho_Info_Acc; Mode : Object_Kind_Type) return Mnode is Type_Info : constant Type_Info_Acc := Get_Info (Get_Type (Inter)); begin case Info.Kind is when Kind_Object => -- For a generic. pragma Assert (Mode = Mode_Value); return Get_Var (Info.Object_Var, Type_Info, Mode); when Kind_Signal => -- For a port. if Mode = Mode_Signal then return Get_Var (Info.Signal_Sig, Type_Info, Mode_Signal); else pragma Assert (Info.Signal_Valp /= Null_Var); if Type_Info.Type_Mode = Type_Mode_Fat_Array then return Get_Var (Info.Signal_Valp, Type_Info, Mode_Value); else return Get_Varp (Info.Signal_Valp, Type_Info, Mode_Value); end if; end if; when Kind_Interface => -- For a parameter. if Info.Interface_Field (Mode) = O_Fnode_Null then -- Normal case: the parameter was translated as an ortho -- interface. case Info.Interface_Mechanism (Mode) is when Pass_By_Copy => return Dv2M (Info.Interface_Decl (Mode), Type_Info, Mode); when Pass_By_Address => -- Parameter is passed by reference. return Dp2M (Info.Interface_Decl (Mode), Type_Info, Mode); end case; else -- The parameter was put somewhere else. declare Subprg : constant Iir := Get_Parent (Inter); Subprg_Info : constant Subprg_Info_Acc := Get_Info (Subprg); Linter : O_Lnode; begin if Info.Interface_Decl (Mode) = O_Dnode_Null then -- The parameter is passed via a field of the PARAMS -- record parameter. if Subprg_Info.Subprg_Params_Var = Null_Var then -- Direct access to the parameter. Linter := New_Obj (Subprg_Info.Res_Interface); else -- Unnesting case: upscope access. Linter := Get_Var (Subprg_Info.Subprg_Params_Var); end if; Linter := New_Selected_Element (New_Acc_Value (Linter), Info.Interface_Field (Mode)); else -- Unnesting case: the parameter was copied in the -- subprogram frame so that nested subprograms can -- reference it. Use field in FRAME. Linter := New_Selected_Element (Get_Instance_Ref (Subprg_Info.Subprg_Frame_Scope), Info.Interface_Field (Mode)); end if; case Info.Interface_Mechanism (Mode) is when Pass_By_Copy => return Lv2M (Linter, Type_Info, Mode); when Pass_By_Address => return Lp2M (Linter, Type_Info, Mode); end case; end; end if; when others => raise Internal_Error; end case; end Translate_Interface_Name; function Translate_Selected_Element (Prefix : Mnode; El : Iir_Element_Declaration) return Mnode is El_Type : constant Iir := Get_Type (El); El_Tinfo : constant Type_Info_Acc := Get_Info (El_Type); Kind : constant Object_Kind_Type := Get_Object_Kind (Prefix); El_Info : Field_Info_Acc; Base_Tinfo : Type_Info_Acc; Stable_Prefix, Base, Res, Fat_Res : Mnode; Box_Field : O_Fnode; B : O_Lnode; begin -- There are 3 cases: -- a) the record is bounded (and so is the element). -- b) the record is unbounded and the element is bounded -- c) the record is unbounded and the element is unbounded. -- If the record is unbounded, PREFIX is a fat pointer. -- On top of that, the element may be complex. -- For record subtypes, there is no info for elements that have not -- changed. El_Info := Get_Info (El); if El_Info = null then El_Info := Get_Info (Get_Base_Element_Declaration (El)); end if; if Is_Unbounded_Type (El_Tinfo) then Stable_Prefix := Stabilize (Prefix); -- Result is a fat pointer, create it and set bounds. Fat_Res := Create_Temp (El_Tinfo, Kind); New_Assign_Stmt (New_Selected_Element (M2Lv (Fat_Res), El_Tinfo.B.Bounds_Field (Kind)), New_Address (New_Selected_Element (M2Lv (Chap3.Get_Array_Bounds (Stable_Prefix)), El_Info.Field_Bound), El_Tinfo.B.Bounds_Ptr_Type)); else Stable_Prefix := Prefix; end if; Base := Chap3.Get_Composite_Base (Stable_Prefix); Base_Tinfo := Get_Type_Info (Base); Box_Field := Base_Tinfo.S.Box_Field (Kind); if Box_Field = O_Fnode_Null and then (Is_Complex_Type (El_Tinfo) or Is_Unbounded_Type (El_Tinfo)) then -- The element is complex: it's an offset. Stabilize (Base); Res := E2M (New_Unchecked_Address (New_Slice (New_Access_Element (New_Unchecked_Address (M2Lv (Base), Char_Ptr_Type)), Chararray_Type, New_Value (New_Selected_Element (M2Lv (Base), El_Info.Field_Node (Kind)))), El_Tinfo.B.Base_Ptr_Type (Kind)), El_Tinfo, Kind); else -- Normal element. B := M2Lv (Base); if Box_Field /= O_Fnode_Null and then Get_Kind (El) = Iir_Kind_Element_Declaration then -- Unbox. B := New_Selected_Element (B, Box_Field); end if; Res := Lv2M (New_Selected_Element (B, El_Info.Field_Node (Kind)), El_Tinfo, Kind); end if; if Is_Unbounded_Type (El_Tinfo) then New_Assign_Stmt (New_Selected_Element (M2Lv (Fat_Res), El_Tinfo.B.Base_Field (Kind)), M2Addr (Res)); return Fat_Res; else return Res; end if; end Translate_Selected_Element; -- function Translate_Formal_Interface_Name (Scope_Type : O_Tnode; -- Scope_Param : O_Lnode; -- Name : Iir; -- Kind : Object_Kind_Type) -- return Mnode -- is -- Type_Info : Type_Info_Acc; -- Info : Ortho_Info_Acc; -- Res : Mnode; -- begin -- Type_Info := Get_Info (Get_Type (Name)); -- Info := Get_Info (Name); -- Push_Scope_Soft (Scope_Type, Scope_Param); -- Res := Get_Var (Info.Object_Var, Type_Info, Kind); -- Clear_Scope_Soft (Scope_Type); -- return Res; -- end Translate_Formal_Interface_Name; -- function Translate_Formal_Name (Scope_Type : O_Tnode; -- Scope_Param : O_Lnode; -- Name : Iir) -- return Mnode -- is -- Prefix : Iir; -- Prefix_Name : Mnode; -- begin -- case Get_Kind (Name) is -- when Iir_Kind_Interface_Constant_Declaration => -- return Translate_Formal_Interface_Name -- (Scope_Type, Scope_Param, Name, Mode_Value); -- when Iir_Kind_Interface_Signal_Declaration => -- return Translate_Formal_Interface_Name -- (Scope_Type, Scope_Param, Name, Mode_Signal); -- when Iir_Kind_Indexed_Name => -- Prefix := Get_Prefix (Name); -- Prefix_Name := Translate_Formal_Name -- (Scope_Type, Scope_Param, Prefix); -- return Translate_Indexed_Name (Prefix_Name, Name); -- when Iir_Kind_Slice_Name => -- Prefix := Get_Prefix (Name); -- Prefix_Name := Translate_Formal_Name -- (Scope_Type, Scope_Param, Prefix); -- return Translate_Slice_Name (Prefix_Name, Name); -- when Iir_Kind_Selected_Element => -- Prefix := Get_Prefix (Name); -- Prefix_Name := Translate_Formal_Name -- (Scope_Type, Scope_Param, Prefix); -- return Translate_Selected_Element -- (Prefix_Name, Get_Selected_Element (Name)); -- when others => -- Error_Kind ("translate_generic_name", Name); -- end case; -- end Translate_Formal_Name; function Translate_Object_Alias_Name (Name : Iir; Mode : Object_Kind_Type) return Mnode is Name_Type : constant Iir := Get_Type (Name); Name_Info : constant Ortho_Info_Acc := Get_Info (Name); Type_Info : constant Type_Info_Acc := Get_Info (Name_Type); R : O_Lnode; pragma Assert (Mode <= Name_Info.Alias_Kind); begin -- Alias_Var is not like an object variable, since it is -- always a pointer to the aliased object. case Type_Info.Type_Mode is when Type_Mode_Fat_Array => -- Get_Var for Mnode is ok here as an unbounded object is always -- a pointer (and so is an alias). return Get_Var (Name_Info.Alias_Var (Mode), Type_Info, Mode); when Type_Mode_Array | Type_Mode_Record | Type_Mode_Acc | Type_Mode_Bounds_Acc => R := Get_Var (Name_Info.Alias_Var (Mode)); return Lp2M (R, Type_Info, Mode); when Type_Mode_Scalar => R := Get_Var (Name_Info.Alias_Var (Mode)); if Mode = Mode_Signal then return Lv2M (R, Type_Info, Mode_Signal); else return Lp2M (R, Type_Info, Mode_Value); end if; when others => raise Internal_Error; end case; end Translate_Object_Alias_Name; function Translate_Name (Name : Iir; Mode : Object_Kind_Type) return Mnode is Name_Type : constant Iir := Get_Type (Name); Name_Info : constant Ortho_Info_Acc := Get_Info (Name); Type_Info : constant Type_Info_Acc := Get_Info (Name_Type); begin case Get_Kind (Name) is when Iir_Kind_Constant_Declaration | Iir_Kind_Variable_Declaration | Iir_Kind_File_Declaration => pragma Assert (Mode = Mode_Value); return Get_Var (Name_Info.Object_Var, Type_Info, Mode_Value); when Iir_Kind_Attribute_Name => return Translate_Name (Get_Named_Entity (Name), Mode); when Iir_Kind_Attribute_Value => pragma Assert (Mode = Mode_Value); declare Attr : constant Iir := Get_Attribute_Specification (Name); Val : Iir; begin if Get_Expr_Staticness (Get_Expression (Attr)) = None then Val := Name; else -- If the expression is static, an object is created only -- for the first value. Val := Get_Attribute_Value_Spec_Chain (Attr); end if; return Get_Var (Get_Info (Val).Object_Var, Type_Info, Mode_Value); end; when Iir_Kind_Object_Alias_Declaration => -- Alias_Var is not like an object variable, since it is -- always a pointer to the aliased object. declare R : O_Lnode; begin pragma Assert (Mode <= Name_Info.Alias_Kind); case Type_Info.Type_Mode is when Type_Mode_Fat_Array => return Get_Var (Name_Info.Alias_Var (Mode), Type_Info, Mode); when Type_Mode_Array | Type_Mode_Record | Type_Mode_Acc | Type_Mode_Bounds_Acc => R := Get_Var (Name_Info.Alias_Var (Mode)); return Lp2M (R, Type_Info, Mode); when Type_Mode_Scalar => R := Get_Var (Name_Info.Alias_Var (Mode)); if Mode = Mode_Signal then return Lv2M (R, Type_Info, Mode_Signal); else return Lp2M (R, Type_Info, Mode_Value); end if; when others => raise Internal_Error; end case; end; when Iir_Kind_Signal_Declaration | Iir_Kind_Stable_Attribute | Iir_Kind_Quiet_Attribute | Iir_Kind_Delayed_Attribute | Iir_Kind_Transaction_Attribute | Iir_Kind_Guard_Signal_Declaration => if Mode = Mode_Signal then return Get_Var (Name_Info.Signal_Sig, Type_Info, Mode_Signal); else return Get_Var (Name_Info.Signal_Val, Type_Info, Mode_Value); end if; when Iir_Kind_Interface_Constant_Declaration | Iir_Kind_Interface_File_Declaration | Iir_Kind_Interface_Variable_Declaration => pragma Assert (Mode = Mode_Value); return Translate_Interface_Name (Name, Name_Info, Mode_Value); when Iir_Kind_Interface_Signal_Declaration => return Translate_Interface_Name (Name, Name_Info, Mode); when Iir_Kind_Indexed_Name => return Translate_Indexed_Name (Translate_Name (Get_Prefix (Name), Mode), Name); when Iir_Kind_Slice_Name => return Translate_Slice_Name (Translate_Name (Get_Prefix (Name), Mode), Name); when Iir_Kind_Dereference | Iir_Kind_Implicit_Dereference => pragma Assert (Mode = Mode_Value); declare Prefix : constant Iir := Get_Prefix (Name); Prefix_Type : constant Iir := Get_Type (Prefix); Pt_Info : constant Type_Info_Acc := Get_Info (Prefix_Type); Pfx : O_Enode; Pfx_Var : O_Dnode; begin Pfx := Chap7.Translate_Expression (Prefix); if Pt_Info.Type_Mode = Type_Mode_Bounds_Acc then Pfx_Var := Create_Temp_Init (Pt_Info.Ortho_Type (Mode_Value), Pfx); return Chap7.Bounds_Acc_To_Fat_Pointer (Pfx_Var, Prefix_Type); else return Lv2M (New_Access_Element (New_Convert_Ov (Pfx, Type_Info.Ortho_Ptr_Type (Mode_Value))), Type_Info, Mode_Value); end if; end; when Iir_Kind_Selected_Element => return Translate_Selected_Element (Translate_Name (Get_Prefix (Name), Mode), Get_Selected_Element (Name)); when Iir_Kind_Function_Call => pragma Assert (Mode = Mode_Value); -- This can appear as a prefix of a name, therefore, the -- result is always a composite type or an access type. return E2M (Chap7.Translate_Expression (Name), Type_Info, Mode_Value); when Iir_Kind_Image_Attribute => pragma Assert (Mode = Mode_Value); -- Can appear as a prefix. return E2M (Chap14.Translate_Image_Attribute (Name), Type_Info, Mode_Value); when Iir_Kind_Simple_Name | Iir_Kind_Selected_Name => return Translate_Name (Get_Named_Entity (Name), Mode); when others => Error_Kind ("translate_name", Name); end case; end Translate_Name; function Get_Signal_Direct_Driver (Sig : Iir) return Mnode is Info : constant Ortho_Info_Acc := Get_Info (Sig); Type_Info : constant Type_Info_Acc := Get_Info (Get_Type (Sig)); begin return Get_Var (Info.Signal_Driver, Type_Info, Mode_Value); end Get_Signal_Direct_Driver; function Get_Port_Init_Value (Port : Iir) return Mnode is Info : constant Ortho_Info_Acc := Get_Info (Port); Type_Info : constant Type_Info_Acc := Get_Info (Get_Type (Port)); begin return Get_Var (Info.Signal_Val, Type_Info, Mode_Value); end Get_Port_Init_Value; generic with procedure Translate_Signal_Base (Name : Iir; Sig : out Mnode; Drv : out Mnode); procedure Translate_Signal (Name : Iir; Sig : out Mnode; Drv : out Mnode); procedure Translate_Signal (Name : Iir; Sig : out Mnode; Drv : out Mnode) is begin case Get_Kind (Name) is when Iir_Kind_Simple_Name | Iir_Kind_Selected_Name => Translate_Signal (Get_Named_Entity (Name), Sig, Drv); when Iir_Kind_Signal_Declaration | Iir_Kind_Interface_Signal_Declaration | Iir_Kind_Stable_Attribute | Iir_Kind_Quiet_Attribute | Iir_Kind_Delayed_Attribute | Iir_Kind_Transaction_Attribute | Iir_Kind_Guard_Signal_Declaration | Iir_Kind_Object_Alias_Declaration => Translate_Signal_Base (Name, Sig, Drv); when Iir_Kind_Slice_Name => declare Data : Slice_Name_Data; Pfx_Sig : Mnode; Pfx_Drv : Mnode; begin Translate_Signal (Get_Prefix (Name), Pfx_Sig, Pfx_Drv); Translate_Slice_Name_Init (Pfx_Sig, Name, Data); Sig := Translate_Slice_Name_Finish (Data.Prefix_Var, Name, Data); Drv := Translate_Slice_Name_Finish (Pfx_Drv, Name, Data); end; when Iir_Kind_Indexed_Name => declare Data : Indexed_Name_Data; Pfx_Sig : Mnode; Pfx_Drv : Mnode; begin Translate_Signal (Get_Prefix (Name), Pfx_Sig, Pfx_Drv); Data := Translate_Indexed_Name_Init (Pfx_Sig, Name); Sig := Data.Res; Drv := Translate_Indexed_Name_Finish (Pfx_Drv, Name, Data); end; when Iir_Kind_Selected_Element => declare El : constant Iir := Get_Selected_Element (Name); Pfx_Sig : Mnode; Pfx_Drv : Mnode; begin Translate_Signal (Get_Prefix (Name), Pfx_Sig, Pfx_Drv); Sig := Translate_Selected_Element (Pfx_Sig, El); Drv := Translate_Selected_Element (Pfx_Drv, El); end; when others => Error_Kind ("translate_signal", Name); end case; end Translate_Signal; procedure Translate_Direct_Driver_Base (Name : Iir; Sig : out Mnode; Drv : out Mnode) is begin case Get_Kind (Name) is when Iir_Kind_Signal_Declaration | Iir_Kind_Interface_Signal_Declaration => declare Name_Type : constant Iir := Get_Type (Name); Name_Info : constant Ortho_Info_Acc := Get_Info (Name); Type_Info : constant Type_Info_Acc := Get_Info (Name_Type); begin Sig := Get_Var (Name_Info.Signal_Sig, Type_Info, Mode_Signal); Drv := Get_Var (Name_Info.Signal_Driver, Type_Info, Mode_Value); end; when Iir_Kind_Object_Alias_Declaration => Translate_Direct_Driver (Get_Name (Name), Sig, Drv); when others => Error_Kind ("translate_direct_driver_base", Name); end case; end Translate_Direct_Driver_Base; procedure Translate_Direct_Driver_1 is new Translate_Signal (Translate_Signal_Base => Translate_Direct_Driver_Base); procedure Translate_Direct_Driver (Name : Iir; Sig : out Mnode; Drv : out Mnode) renames Translate_Direct_Driver_1; procedure Translate_Port_Init_Base (Name : Iir; Sig : out Mnode; Drv : out Mnode) is Name_Type : constant Iir := Get_Type (Name); Name_Info : constant Ortho_Info_Acc := Get_Info (Name); Type_Info : constant Type_Info_Acc := Get_Info (Name_Type); begin case Get_Kind (Name) is when Iir_Kind_Interface_Signal_Declaration => Sig := Get_Var (Name_Info.Signal_Sig, Type_Info, Mode_Signal); Drv := Get_Var (Name_Info.Signal_Val, Type_Info, Mode_Value); when others => Error_Kind ("translate_direct_driver_base", Name); end case; end Translate_Port_Init_Base; procedure Translate_Port_Init_1 is new Translate_Signal (Translate_Signal_Base => Translate_Port_Init_Base); procedure Translate_Port_Init (Name : Iir; Sig : out Mnode; Init : out Mnode) renames Translate_Port_Init_1; procedure Translate_Signal_Base (Name : Iir; Sig : out Mnode; Val : out Mnode) is Name_Type : constant Iir := Get_Type (Name); Name_Info : constant Ortho_Info_Acc := Get_Info (Name); Type_Info : constant Type_Info_Acc := Get_Info (Name_Type); begin case Get_Kind (Name) is when Iir_Kind_Signal_Declaration | Iir_Kind_Stable_Attribute | Iir_Kind_Quiet_Attribute | Iir_Kind_Delayed_Attribute | Iir_Kind_Transaction_Attribute | Iir_Kind_Guard_Signal_Declaration => Sig := Get_Var (Name_Info.Signal_Sig, Type_Info, Mode_Signal); Val := Get_Var (Name_Info.Signal_Val, Type_Info, Mode_Value); when Iir_Kind_Interface_Signal_Declaration => Sig := Translate_Interface_Name (Name, Name_Info, Mode_Signal); Val := Translate_Interface_Name (Name, Name_Info, Mode_Value); when Iir_Kind_Object_Alias_Declaration => Sig := Translate_Object_Alias_Name (Name, Mode_Signal); Val := Translate_Object_Alias_Name (Name, Mode_Value); when others => Error_Kind ("translate_signal_base", Name); end case; end Translate_Signal_Base; procedure Translate_Signal_Name_1 is new Translate_Signal (Translate_Signal_Base); procedure Translate_Signal_Name (Name : Iir; Sig : out Mnode; Val : out Mnode) renames Translate_Signal_Name_1; end Trans.Chap6;