-- Values in synthesis. -- Copyright (C) 2017 Tristan Gingold -- -- This file is part of GHDL. -- -- This program is free software: you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation, either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program. If not, see . with Ada.Unchecked_Conversion; with System; with Grt.Types; use Grt.Types; with Vhdl.Nodes; use Vhdl.Nodes; package body Synth.Values is function To_Value_Acc is new Ada.Unchecked_Conversion (System.Address, Value_Acc); function Is_Static (Val : Value_Acc) return Boolean is begin case Val.Kind is when Value_Memory => return True; when Value_Net | Value_Wire => return False; when Value_File => return True; when Value_Alias => return Is_Static (Val.A_Obj); when Value_Const => return True; end case; end Is_Static; function Is_Static_Val (Val : Value_Acc) return Boolean is begin case Val.Kind is when Value_Memory => return True; when Value_Net => return False; when Value_Wire => return Is_Static_Wire (Val.W); when Value_File => return True; when Value_Const => return True; when Value_Alias => return Is_Static_Val (Val.A_Obj); end case; end Is_Static_Val; function Strip_Alias_Const (V : Value_Acc) return Value_Acc is Res : Value_Acc; begin Res := V; loop case Res.Kind is when Value_Const => Res := Res.C_Val; when Value_Alias => if Res.A_Off /= (0, 0) then raise Internal_Error; end if; Res := Res.A_Obj; when others => return Res; end case; end loop; end Strip_Alias_Const; function Strip_Alias_Const (V : Valtyp) return Valtyp is begin return (V.Typ, Strip_Alias_Const (V.Val)); end Strip_Alias_Const; function Is_Equal (L, R : Valtyp) return Boolean is begin return Is_Equal (Get_Memtyp (L), Get_Memtyp (R)); end Is_Equal; function Create_Value_Memtyp (Mt : Memtyp) return Valtyp is subtype Value_Type_Memory is Value_Type (Value_Memory); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Memory); Res : Value_Acc; begin Res := To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Memory, Mem => Mt.Mem))); return (Mt.Typ, Res); end Create_Value_Memtyp; function Create_Value_Wire (W : Wire_Id) return Value_Acc is subtype Value_Type_Wire is Value_Type (Values.Value_Wire); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Wire); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Wire, W => W))); end Create_Value_Wire; function Create_Value_Wire (W : Wire_Id; Wtype : Type_Acc) return Valtyp is pragma Assert (Wtype /= null); begin return (Wtype, Create_Value_Wire (W)); end Create_Value_Wire; function Create_Value_Net (N : Net) return Value_Acc is subtype Value_Type_Net is Value_Type (Value_Net); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Net); begin return To_Value_Acc (Alloc (Current_Pool, Value_Type_Net'(Kind => Value_Net, N => N))); end Create_Value_Net; function Create_Value_Net (N : Net; Ntype : Type_Acc) return Valtyp is pragma Assert (Ntype /= null); begin return (Ntype, Create_Value_Net (N)); end Create_Value_Net; function Create_Value_Memory (Vtype : Type_Acc) return Valtyp is subtype Value_Type_Memory is Value_Type (Value_Memory); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Memory); function To_Memory_Ptr is new Ada.Unchecked_Conversion (System.Address, Memory_Ptr); V : Value_Acc; M : System.Address; begin Areapools.Allocate (Current_Pool.all, M, Vtype.Sz, Size_Type (2 ** Natural (Vtype.Al))); V := To_Value_Acc (Alloc (Current_Pool, Value_Type_Memory'(Kind => Value_Memory, Mem => To_Memory_Ptr (M)))); return (Vtype, V); end Create_Value_Memory; function Create_Value_Memory (Mt : Memtyp) return Valtyp is subtype Value_Type_Memory is Value_Type (Value_Memory); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Memory); V : Value_Acc; begin V := To_Value_Acc (Alloc (Current_Pool, Value_Type_Memory'(Kind => Value_Memory, Mem => Mt.Mem))); return (Mt.Typ, V); end Create_Value_Memory; function Create_Value_File (File : File_Index) return Value_Acc is subtype Value_Type_File is Value_Type (Value_File); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_File); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_File, File => File))); end Create_Value_File; function Create_Value_File (Vtype : Type_Acc; File : File_Index) return Valtyp is pragma Assert (Vtype /= null); begin return (Vtype, Create_Value_File (File)); end Create_Value_File; function Vec_Length (Typ : Type_Acc) return Iir_Index32 is begin return Iir_Index32 (Typ.Vbound.Len); end Vec_Length; function Get_Array_Flat_Length (Typ : Type_Acc) return Iir_Index32 is begin case Typ.Kind is when Type_Vector => return Iir_Index32 (Typ.Vbound.Len); when Type_Array => declare Len : Width; begin Len := 1; for I in Typ.Abounds.D'Range loop Len := Len * Typ.Abounds.D (I).Len; end loop; return Iir_Index32 (Len); end; when others => raise Internal_Error; end case; end Get_Array_Flat_Length; function Create_Value_Alias (Obj : Valtyp; Off : Value_Offsets; Typ : Type_Acc) return Valtyp is pragma Assert (Typ /= null); subtype Value_Type_Alias is Value_Type (Value_Alias); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Alias); Val : Value_Acc; begin Val := To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Alias, A_Obj => Obj.Val, A_Typ => Obj.Typ, A_Off => Off))); return (Typ, Val); end Create_Value_Alias; function Create_Value_Const (Val : Value_Acc; Loc : Syn_Src) return Value_Acc is subtype Value_Type_Const is Value_Type (Value_Const); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Const); begin pragma Assert (Val = null or else Val.Kind /= Value_Const); return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Const, C_Val => Val, C_Loc => Loc, C_Net => No_Net))); end Create_Value_Const; function Create_Value_Const (Val : Valtyp; Loc : Syn_Src) return Valtyp is begin return (Val.Typ, Create_Value_Const (Val.Val, Loc)); end Create_Value_Const; procedure Strip_Const (Vt : in out Valtyp) is begin if Vt.Val.Kind = Value_Const then Vt.Val := Vt.Val.C_Val; end if; end Strip_Const; procedure Write_Value (Dest : Memory_Ptr; Vt : Valtyp) is Mt : Memtyp; begin Mt := Get_Memtyp (Vt); Copy_Memory (Dest, Mt.Mem, Mt.Typ.Sz); end Write_Value; function Copy (Src : Valtyp) return Valtyp is Res : Valtyp; begin case Src.Val.Kind is when Value_Memory => Res := Create_Value_Memory (Src.Typ); for I in 1 .. Src.Typ.Sz loop Res.Val.Mem (I - 1) := Src.Val.Mem (I - 1); end loop; when Value_Net => Res := Create_Value_Net (Src.Val.N, Src.Typ); when Value_Wire => Res := Create_Value_Wire (Src.Val.W, Src.Typ); when Value_File => Res := Create_Value_File (Src.Typ, Src.Val.File); when Value_Const => raise Internal_Error; when Value_Alias => raise Internal_Error; end case; return Res; end Copy; function Unshare (Src : Valtyp; Pool : Areapool_Acc) return Valtyp is Prev_Pool : constant Areapool_Acc := Current_Pool; Res : Valtyp; begin Current_Pool := Pool; Res := Copy (Src); Current_Pool := Prev_Pool; return Res; end Unshare; procedure Write_Access (Mem : Memory_Ptr; Val : Heap_Index) is V : Heap_Index; for V'Address use Mem.all'Address; pragma Import (Ada, V); begin V := Val; end Write_Access; function Read_Access (Mem : Memory_Ptr) return Heap_Index is V : Heap_Index; for V'Address use Mem.all'Address; pragma Import (Ada, V); begin return V; end Read_Access; function Read_Access (Mt : Memtyp) return Heap_Index is begin return Read_Access (Mt.Mem); end Read_Access; procedure Write_Discrete (Vt : Valtyp; Val : Int64) is begin Write_Discrete (Vt.Val.Mem, Vt.Typ, Val); end Write_Discrete; function Read_Discrete (Vt : Valtyp) return Int64 is begin return Read_Discrete (Get_Memtyp (Vt)); end Read_Discrete; function Create_Value_Float (Val : Fp64; Vtype : Type_Acc) return Valtyp is Res : Valtyp; pragma Assert (Vtype /= null); begin Res := Create_Value_Memory (Vtype); Write_Fp64 (Res.Val.Mem, Val); return Res; end Create_Value_Float; function Read_Fp64 (Vt : Valtyp) return Fp64 is begin pragma Assert (Vt.Typ.Kind = Type_Float); pragma Assert (Vt.Typ.Sz = 8); return Read_Fp64 (Vt.Val.Mem); end Read_Fp64; function Read_Access (Vt : Valtyp) return Heap_Index is begin pragma Assert (Vt.Typ.Kind = Type_Access); return Read_Access (Vt.Val.Mem); end Read_Access; function Create_Value_Discrete (Val : Int64; Vtype : Type_Acc) return Valtyp is Res : Valtyp; begin Res := Create_Value_Memory (Vtype); case Vtype.Sz is when 1 => Write_U8 (Res.Val.Mem, Ghdl_U8 (Val)); when 4 => Write_I32 (Res.Val.Mem, Ghdl_I32 (Val)); when 8 => Write_I64 (Res.Val.Mem, Ghdl_I64 (Val)); when others => raise Internal_Error; end case; return Res; end Create_Value_Discrete; function Create_Value_Uns (Val : Uns64; Vtype : Type_Acc) return Valtyp is Res : Valtyp; begin Res := Create_Value_Memory (Vtype); case Vtype.Sz is when 1 => Write_U8 (Res.Val.Mem, Ghdl_U8 (Val)); when 4 => Write_U32 (Res.Val.Mem, Ghdl_U32 (Val)); when others => raise Internal_Error; end case; return Res; end Create_Value_Uns; function Create_Value_Int (Val : Int64; Vtype : Type_Acc) return Valtyp is Res : Valtyp; begin Res := Create_Value_Memory (Vtype); case Vtype.Sz is when 4 => Write_I32 (Res.Val.Mem, Ghdl_I32 (Val)); when 8 => Write_I64 (Res.Val.Mem, Ghdl_I64 (Val)); when others => raise Internal_Error; end case; return Res; end Create_Value_Int; function Arr_Index (M : Memory_Ptr; Idx : Iir_Index32; El_Typ : Type_Acc) return Memory_Ptr is begin return M + Size_Type (Idx) * El_Typ.Sz; end Arr_Index; procedure Write_Value_Default (M : Memory_Ptr; Typ : Type_Acc) is begin case Typ.Kind is when Type_Bit | Type_Logic => -- FIXME: what about subtype ? Write_U8 (M, 0); when Type_Discrete => Write_Discrete (M, Typ, Typ.Drange.Left); when Type_Float => Write_Fp64 (M, Typ.Frange.Left); when Type_Vector => declare Len : constant Iir_Index32 := Vec_Length (Typ); El_Typ : constant Type_Acc := Typ.Vec_El; begin for I in 1 .. Len loop Write_Value_Default (Arr_Index (M, I - 1, El_Typ), El_Typ); end loop; end; when Type_Unbounded_Vector | Type_Unbounded_Array | Type_Unbounded_Record => raise Internal_Error; when Type_Slice => raise Internal_Error; when Type_Array => declare Len : constant Iir_Index32 := Get_Array_Flat_Length (Typ); El_Typ : constant Type_Acc := Typ.Arr_El; begin for I in 1 .. Len loop Write_Value_Default (Arr_Index (M, I - 1, El_Typ), El_Typ); end loop; end; when Type_Record => for I in Typ.Rec.E'Range loop Write_Value_Default (M + Typ.Rec.E (I).Moff, Typ.Rec.E (I).Typ); end loop; when Type_Access => Write_Access (M, Null_Heap_Index); when Type_File | Type_Protected => raise Internal_Error; end case; end Write_Value_Default; function Create_Value_Default (Typ : Type_Acc) return Valtyp is Res : Valtyp; begin Res := Create_Value_Memory (Typ); Write_Value_Default (Res.Val.Mem, Typ); return Res; end Create_Value_Default; function Create_Value_Access (Val : Heap_Index; Acc_Typ : Type_Acc) return Valtyp is Res : Valtyp; begin Res := Create_Value_Memory (Acc_Typ); Write_Access (Res.Val.Mem, Val); return Res; end Create_Value_Access; function Value_To_String (Val : Valtyp) return String is Str : String (1 .. Natural (Val.Typ.Abounds.D (1).Len)); begin for I in Str'Range loop Str (Natural (I)) := Character'Val (Read_U8 (Val.Val.Mem + Size_Type (I - 1))); end loop; return Str; end Value_To_String; function Get_Memtyp (V : Valtyp) return Memtyp is begin case V.Val.Kind is when Value_Net | Value_Wire => raise Internal_Error; when Value_Memory => return (V.Typ, V.Val.Mem); when Value_Alias => declare T : Memtyp; begin T := Get_Memtyp ((V.Typ, V.Val.A_Obj)); return (T.Typ, T.Mem + V.Val.A_Off.Mem_Off); end; when Value_Const => return Get_Memtyp ((V.Typ, V.Val.C_Val)); when Value_File => raise Internal_Error; end case; end Get_Memtyp; end Synth.Values;