-- Fixed-length lists. -- Copyright (C) 2017 Tristan Gingold -- -- GHDL is free software; you can redistribute it and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation; either version 2, or (at your option) any later -- version. -- -- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY -- WARRANTY; without even the implied warranty of MERCHANTABILITY or -- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for more details. -- -- You should have received a copy of the GNU General Public License -- along with GHDL; see the file COPYING. If not, write to the Free -- Software Foundation, 59 Temple Place - Suite 330, Boston, MA -- 02111-1307, USA. with Tables; package body Flists is -- Index of elements. type El_Index_Type is new Int32; -- Describe an flist. type Entry_Type is record -- Index of the first element (in the element table). Els : El_Index_Type; -- Length of the list. Len : Nat32; end record; -- Flists descriptors. package Flistt is new Tables (Table_Component_Type => Entry_Type, Table_Index_Type => Flist_Type, Table_Low_Bound => 4, Table_Initial => 32); -- Table of all elements. package Els is new Tables (Table_Component_Type => El_Type, Table_Index_Type => El_Index_Type, Table_Low_Bound => 0, Table_Initial => 128); type Flist_Array is array (Natural range <>) of Flist_Type; -- Linked list of free flist. For length less than the last index, the -- index corresponds to the length. All free lists whose length is equal -- or greater than the last index are grouped to the last index. Free_Flists : Flist_Array (0 .. 16) := (others => Null_Flist); -- Get the chain for a free flist for large length. It is stored at the -- first element of the list. function Free_Next (Flist : Flist_Type) return Flist_Type is begin return Flist_Type (Els.Table (Flistt.Table (Flist).Els)); end Free_Next; function Create_Flist (Len : Natural) return Flist_Type is Res : Flist_Type; Prev : Flist_Type; Next : Flist_Type; begin if Len >= Free_Flists'Last then -- Large length. Res := Free_Flists (Free_Flists'Last); Prev := Null_Flist; while Res /= Null_Flist and then Length (Res) /= Len loop Prev := Res; Res := Free_Next (Res); end loop; if Res /= Null_Flist then Next := Free_Next (Res); if Prev = Null_Flist then Free_Flists (Free_Flists'Last) := Next; else Els.Table (Flistt.Table (Prev).Els) := El_Type (Next); end if; end if; else -- Small length. The Len field contains the next free list. Res := Free_Flists (Len); if Res /= Null_Flist then Free_Flists (Len) := Flist_Type (Flistt.Table (Res).Len); Flistt.Table (Res).Len := Nat32 (Len); elsif Len = 0 then -- Quick case for len = 0. Res := Flistt.Allocate (1); Flistt.Table (Res) := (Els => 0, Len => 0); return Res; end if; end if; if Res = Null_Flist then Res := Flistt.Allocate (1); Flistt.Table (Res) := (Els => Els.Allocate (Len), Len => Nat32 (Len)); end if; -- Clear the list. declare Idx : constant El_Index_Type := Flistt.Table (Res).Els; begin Els.Table (Idx .. Idx + El_Index_Type (Len) - 1) := (others => 0); end; return Res; end Create_Flist; procedure Destroy_Flist (Flist : in out Flist_Type) is Len : constant Natural := Length (Flist); Prev : Flist_Type; begin -- Prepend to the array of free flists. if Len >= Free_Flists'Last then Prev := Free_Flists (Free_Flists'Last); Free_Flists (Free_Flists'Last) := Flist; Els.Table (Flistt.Table (Flist).Els) := El_Type (Prev); else Prev := Free_Flists (Len); Free_Flists (Len) := Flist; Flistt.Table (Flist).Len := Nat32 (Prev); end if; Flist := Null_Flist; end Destroy_Flist; function Flast (Flist : Flist_Type) return Integer is begin return Integer (Flistt.Table (Flist).Len - 1); end Flast; function Length (Flist : Flist_Type) return Natural is begin return Natural (Flistt.Table (Flist).Len); end Length; function Get_Nth_Element (Flist : Flist_Type; N : Natural) return El_Type is E : Entry_Type renames Flistt.Table (Flist); begin pragma Assert (N < Natural (E.Len)); return Els.Table (E.Els + El_Index_Type (N)); end Get_Nth_Element; procedure Set_Nth_Element (Flist : Flist_Type; N : Natural; V : El_Type) is E : Entry_Type renames Flistt.Table (Flist); begin pragma Assert (N < Natural (E.Len)); Els.Table (E.Els + El_Index_Type (N)) := V; end Set_Nth_Element; end Flists; 6' href='#n6'>6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179