/* * This file is part of the flashrom project. * * Copyright (C) 2010 Carl-Daniel Hailfinger * Copyright (C) 2015 Simon Glass * Copyright (C) 2015 Stefan Tauner * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include "flash.h" #include "chipdrivers.h" #include "programmer.h" #include "spi.h" /* LIBUSB_CALL ensures the right calling conventions on libusb callbacks. * However, the macro is not defined everywhere. m( */ #ifndef LIBUSB_CALL #define LIBUSB_CALL #endif #define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z) #define DEFAULT_TIMEOUT 3000 #define DEDIPROG_ASYNC_TRANSFERS 8 /* at most 8 asynchronous transfers */ #define REQTYPE_OTHER_OUT (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_OTHER) /* 0x43 */ #define REQTYPE_OTHER_IN (LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_OTHER) /* 0xC3 */ #define REQTYPE_EP_OUT (LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_ENDPOINT) /* 0x42 */ #define REQTYPE_EP_IN (LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_ENDPOINT) /* 0xC2 */ enum dediprog_devtype { DEV_UNKNOWN = 0, DEV_SF100 = 100, DEV_SF200 = 200, DEV_SF600 = 600, }; enum dediprog_leds { LED_INVALID = -1, LED_NONE = 0, LED_PASS = 1 << 0, LED_BUSY = 1 << 1, LED_ERROR = 1 << 2, LED_ALL = 7, }; /* IO bits for CMD_SET_IO_LED message */ enum dediprog_ios { IO1 = 1 << 0, IO2 = 1 << 1, IO3 = 1 << 2, IO4 = 1 << 3, }; enum dediprog_cmds { CMD_TRANSCEIVE = 0x01, CMD_POLL_STATUS_REG = 0x02, CMD_SET_VPP = 0x03, CMD_SET_TARGET = 0x04, CMD_READ_EEPROM = 0x05, CMD_WRITE_EEPROM = 0x06, CMD_SET_IO_LED = 0x07, CMD_READ_PROG_INFO = 0x08, CMD_SET_VCC = 0x09, CMD_SET_STANDALONE = 0x0A, CMD_SET_VOLTAGE = 0x0B, /* Only in firmware older than 6.0.0 */ CMD_GET_BUTTON = 0x11, CMD_GET_UID = 0x12, CMD_SET_CS = 0x14, CMD_IO_MODE = 0x15, CMD_FW_UPDATE = 0x1A, CMD_FPGA_UPDATE = 0x1B, CMD_READ_FPGA_VERSION = 0x1C, CMD_SET_HOLD = 0x1D, CMD_READ = 0x20, CMD_WRITE = 0x30, CMD_WRITE_AT45DB = 0x31, CMD_NAND_WRITE = 0x32, CMD_NAND_READ = 0x33, CMD_SET_SPI_CLK = 0x61, CMD_CHECK_SOCKET = 0x62, CMD_DOWNLOAD_PRJ = 0x63, CMD_READ_PRJ_NAME = 0x64, // New protocol/firmware only CMD_CHECK_SDCARD = 0x65, CMD_READ_PRJ = 0x66, }; enum dediprog_target { FLASH_TYPE_APPLICATION_FLASH_1 = 0, FLASH_TYPE_FLASH_CARD, FLASH_TYPE_APPLICATION_FLASH_2, FLASH_TYPE_SOCKET, }; enum dediprog_readmode { READ_MODE_STD = 1, READ_MODE_FAST = 2, READ_MODE_ATMEL45 = 3, READ_MODE_4B_ADDR_FAST = 4, READ_MODE_4B_ADDR_FAST_0x0C = 5, /* New protocol only */ }; enum dediprog_writemode { WRITE_MODE_PAGE_PGM = 1, WRITE_MODE_PAGE_WRITE = 2, WRITE_MODE_1B_AAI = 3, WRITE_MODE_2B_AAI = 4, WRITE_MODE_128B_PAGE = 5, WRITE_MODE_PAGE_AT26DF041 = 6, WRITE_MODE_SILICON_BLUE_FPGA = 7, WRITE_MODE_64B_PAGE_NUMONYX_PCM = 8, /* unit of 512 bytes */ WRITE_MODE_4B_ADDR_256B_PAGE_PGM = 9, WRITE_MODE_32B_PAGE_PGM_MXIC_512K = 10, /* unit of 512 bytes */ WRITE_MODE_4B_ADDR_256B_PAGE_PGM_0x12 = 11, WRITE_MODE_4B_ADDR_256B_PAGE_PGM_FLAGS = 12, }; enum dediprog_standalone_mode { ENTER_STANDALONE_MODE = 0, LEAVE_STANDALONE_MODE = 1, }; /* * These are not official designations; they are for use in flashrom only. * Order must be preserved so that comparison operators work. */ enum protocol { PROTOCOL_UNKNOWN, PROTOCOL_V1, PROTOCOL_V2, PROTOCOL_V3, }; static const struct dev_entry devs_dediprog[] = { {0x0483, 0xDADA, OK, "Dediprog", "SF100/SF200/SF600"}, {0}, }; struct dediprog_data { struct libusb_context *usb_ctx; libusb_device_handle *handle; int in_endpoint; int out_endpoint; int firmwareversion; enum dediprog_devtype devicetype; }; #if defined(LIBUSB_MAJOR) && defined(LIBUSB_MINOR) && defined(LIBUSB_MICRO) && \ LIBUSB_MAJOR <= 1 && LIBUSB_MINOR == 0 && LIBUSB_MICRO < 9 /* Quick and dirty replacement for missing libusb_error_name in libusb < 1.0.9 */ const char * LIBUSB_CALL libusb_error_name(int error_code) { if (error_code >= INT16_MIN && error_code <= INT16_MAX) { /* 18 chars for text, rest for number (16 b should be enough), sign, nullbyte. */ static char my_libusb_error[18 + 5 + 2]; sprintf(my_libusb_error, "libusb error code %i", error_code); return my_libusb_error; } else { return "UNKNOWN"; } } #endif static enum protocol protocol(const struct dediprog_data *dp_data) { /* Firmware version < 5.0.0 is handled explicitly in some cases. */ switch (dp_data->devicetype) { case DEV_SF100: case DEV_SF200: if (dp_data->firmwareversion < FIRMWARE_VERSION(5, 5, 0)) return PROTOCOL_V1; else return PROTOCOL_V2; case DEV_SF600: if (dp_data->firmwareversion < FIRMWARE_VERSION(6, 9, 0)) return PROTOCOL_V1; else if (dp_data->firmwareversion <= FIRMWARE_VERSION(7, 2, 21)) return PROTOCOL_V2; else return PROTOCOL_V3; default: return PROTOCOL_UNKNOWN; } } struct dediprog_transfer_status { int error; /* OK if 0, ERROR else */ unsigned int queued_idx; unsigned int finished_idx; }; static void LIBUSB_CALL dediprog_bulk_read_cb(struct libusb_transfer *const transfer) { struct dediprog_transfer_status *const status = (struct dediprog_transfer_status *)transfer->user_data; if (transfer->status != LIBUSB_TRANSFER_COMPLETED) { status->error = 1; msg_perr("SPI bulk read failed!\n"); } ++status->finished_idx; } static int dediprog_bulk_read_poll(struct libusb_context *usb_ctx, const struct dediprog_transfer_status *const status, const int finish) { if (status->finished_idx >= status->queued_idx) return 0; do { struct timeval timeout = { 10, 0 }; const int ret = libusb_handle_events_timeout(usb_ctx, &timeout); if (ret < 0) { msg_perr("Polling read events failed: %i %s!\n", ret, libusb_error_name(ret)); return 1; } } while (finish && (status->finished_idx < status->queued_idx)); return 0; } static int dediprog_read(libusb_device_handle *dediprog_handle, enum dediprog_cmds cmd, unsigned int value, unsigned int idx, uint8_t *bytes, size_t size) { return libusb_control_transfer(dediprog_handle, REQTYPE_EP_IN, cmd, value, idx, (unsigned char *)bytes, size, DEFAULT_TIMEOUT); } static int dediprog_write(libusb_device_handle *dediprog_handle, enum dediprog_cmds cmd, unsigned int value, unsigned int idx, const uint8_t *bytes, size_t size) { return libusb_control_transfer(dediprog_handle, REQTYPE_EP_OUT, cmd, value, idx, (unsigned char *)bytes, size, DEFAULT_TIMEOUT); } /* This function sets the GPIOs connected to the LEDs as well as IO1-IO4. */ static int dediprog_set_leds(int leds, const struct dediprog_data *dp_data) { if (leds < LED_NONE || leds > LED_ALL) leds = LED_ALL; /* Older Dediprogs with 2.x.x and 3.x.x firmware only had two LEDs, assigned to different bits. So map * them around if we have an old device. On those devices the LEDs map as follows: * bit 2 == 0: green light is on. * bit 0 == 0: red light is on. * * Additionally, the command structure has changed with the "new" protocol. * * FIXME: take IO pins into account */ int target_leds, ret; if (protocol(dp_data) >= PROTOCOL_V2) { target_leds = (leds ^ 7) << 8; ret = dediprog_write(dp_data->handle, CMD_SET_IO_LED, target_leds, 0, NULL, 0); } else { if (dp_data->firmwareversion < FIRMWARE_VERSION(5, 0, 0)) { target_leds = ((leds & LED_ERROR) >> 2) | ((leds & LED_PASS) << 2); } else { target_leds = leds; } target_leds ^= 7; ret = dediprog_write(dp_data->handle, CMD_SET_IO_LED, 0x9, target_leds, NULL, 0); } if (ret != 0x0) { msg_perr("Command Set LED 0x%x failed (%s)!\n", leds, libusb_error_name(ret)); return 1; } return 0; } static int dediprog_set_spi_voltage(libusb_device_handle *dediprog_handle, int millivolt) { int ret; uint16_t voltage_selector; switch (millivolt) { case 0: /* Admittedly this one is an assumption. */ voltage_selector = 0x0; break; case 1800: voltage_selector = 0x12; break; case 2500: voltage_selector = 0x11; break; case 3500: voltage_selector = 0x10; break; default: msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt); return 1; } msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000, millivolt % 1000); if (voltage_selector == 0) { /* Wait some time as the original driver does. */ programmer_delay(200 * 1000); } ret = dediprog_write(dediprog_handle, CMD_SET_VCC, voltage_selector, 0, NULL, 0); if (ret != 0x0) { msg_perr("Command Set SPI Voltage 0x%x failed!\n", voltage_selector); return 1; } if (voltage_selector != 0) { /* Wait some time as the original driver does. */ programmer_delay(200 * 1000); } return 0; } struct dediprog_spispeeds { const char *const name; const int speed; }; static const struct dediprog_spispeeds spispeeds[] = { { "24M", 0x0 }, { "12M", 0x2 }, { "8M", 0x1 }, { "3M", 0x3 }, { "2.18M", 0x4 }, { "1.5M", 0x5 }, { "750k", 0x6 }, { "375k", 0x7 }, { NULL, 0x0 }, }; static int dediprog_set_spi_speed(unsigned int spispeed_idx, const struct dediprog_data *dp_data) { if (dp_data->firmwareversion < FIRMWARE_VERSION(5, 0, 0)) { msg_pwarn("Skipping to set SPI speed because firmware is too old.\n"); return 0; } const struct dediprog_spispeeds *spispeed = &spispeeds[spispeed_idx]; msg_pdbg("SPI speed is %sHz\n", spispeed->name); int ret = dediprog_write(dp_data->handle, CMD_SET_SPI_CLK, spispeed->speed, 0, NULL, 0); if (ret != 0x0) { msg_perr("Command Set SPI Speed 0x%x failed!\n", spispeed->speed); return 1; } return 0; } static int prepare_rw_cmd( struct flashctx *const flash, uint8_t *data_packet, unsigned int count, uint8_t dedi_spi_cmd, unsigned int *value, unsigned int *idx, unsigned int start, int is_read) { const struct dediprog_data *dp_data = flash->mst->spi.data; if (count >= 1 << 16) { msg_perr("%s: Unsupported transfer length of %u blocks! " "Please report a bug at flashrom@flashrom.org\n", __func__, count); return 1; } /* First 5 bytes are common in both generations. */ data_packet[0] = count & 0xff; data_packet[1] = (count >> 8) & 0xff; data_packet[2] = 0; /* RFU */ data_packet[3] = dedi_spi_cmd; /* Read/Write Mode (currently READ_MODE_STD, WRITE_MODE_PAGE_PGM or WRITE_MODE_2B_AAI) */ data_packet[4] = 0; /* "Opcode". Specs imply necessity only for READ_MODE_4B_ADDR_FAST and WRITE_MODE_4B_ADDR_256B_PAGE_PGM */ if (protocol(dp_data) >= PROTOCOL_V2) { if (is_read && flash->chip->feature_bits & FEATURE_4BA_FAST_READ) { data_packet[3] = READ_MODE_4B_ADDR_FAST_0x0C; data_packet[4] = JEDEC_READ_4BA_FAST; } else if (dedi_spi_cmd == WRITE_MODE_PAGE_PGM && (flash->chip->feature_bits & FEATURE_4BA_WRITE)) { data_packet[3] = WRITE_MODE_4B_ADDR_256B_PAGE_PGM_0x12; data_packet[4] = JEDEC_BYTE_PROGRAM_4BA; } *value = *idx = 0; data_packet[5] = 0; /* RFU */ data_packet[6] = (start >> 0) & 0xff; data_packet[7] = (start >> 8) & 0xff; data_packet[8] = (start >> 16) & 0xff; data_packet[9] = (start >> 24) & 0xff; if (protocol(dp_data) >= PROTOCOL_V3) { if (is_read) { data_packet[10] = 0x00; /* address length (3 or 4) */ data_packet[11] = 0x00; /* dummy cycle / 2 */ } else { /* 16 LSBs and 16 HSBs of page size */ /* FIXME: This assumes page size of 256. */ data_packet[10] = 0x00; data_packet[11] = 0x01; data_packet[12] = 0x00; data_packet[13] = 0x00; } } } else { if (flash->chip->feature_bits & FEATURE_4BA_EAR_ANY) { if (spi_set_extended_address(flash, start >> 24)) return 1; } else if (start >> 24) { msg_cerr("Can't handle 4-byte address with dediprog.\n"); return 1; } /* * We don't know how the dediprog firmware handles 4-byte * addresses. So let's not tell it what we are doing and * only send the lower 3 bytes. */ *value = start & 0xffff; *idx = (start >> 16) & 0xff; } return 0; } /* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes. * @start start address * @len length * @return 0 on success, 1 on failure */ static int dediprog_spi_bulk_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) { int err = 1; const struct dediprog_data *dp_data = flash->mst->spi.data; /* chunksize must be 512, other sizes will NOT work at all. */ const unsigned int chunksize = 512; const unsigned int count = len / chunksize; struct dediprog_transfer_status status = { 0, 0, 0 }; struct libusb_transfer *transfers[DEDIPROG_ASYNC_TRANSFERS] = { NULL, }; struct libusb_transfer *transfer; if (len == 0) return 0; if ((start % chunksize) || (len % chunksize)) { msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug at flashrom@flashrom.org\n", __func__, start, len); return 1; } int command_packet_size; switch (protocol(dp_data)) { case PROTOCOL_V1: command_packet_size = 5; break; case PROTOCOL_V2: command_packet_size = 10; break; case PROTOCOL_V3: command_packet_size = 12; break; default: return 1; } uint8_t data_packet[command_packet_size]; unsigned int value, idx; if (prepare_rw_cmd(flash, data_packet, count, READ_MODE_STD, &value, &idx, start, 1)) return 1; int ret = dediprog_write(dp_data->handle, CMD_READ, value, idx, data_packet, sizeof(data_packet)); if (ret != (int)sizeof(data_packet)) { msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret, libusb_error_name(ret)); return 1; } /* * Ring buffer of bulk transfers. * Poll until at least one transfer is ready, * schedule next transfers until buffer is full. */ /* Allocate bulk transfers. */ unsigned int i; for (i = 0; i < MIN(DEDIPROG_ASYNC_TRANSFERS, count); ++i) { transfers[i] = libusb_alloc_transfer(0); if (!transfers[i]) { msg_perr("Allocating libusb transfer %i failed: %s!\n", i, libusb_error_name(ret)); goto err_free; } } /* Now transfer requested chunks using libusb's asynchronous interface. */ while (!status.error && (status.queued_idx < count)) { while ((status.queued_idx < count) && (status.queued_idx - status.finished_idx) < DEDIPROG_ASYNC_TRANSFERS) { transfer = transfers[status.queued_idx % DEDIPROG_ASYNC_TRANSFERS]; libusb_fill_bulk_transfer(transfer, dp_data->handle, 0x80 | dp_data->in_endpoint, (unsigned char *)buf + status.queued_idx * chunksize, chunksize, dediprog_bulk_read_cb, &status, DEFAULT_TIMEOUT); transfer->flags |= LIBUSB_TRANSFER_SHORT_NOT_OK; ret = libusb_submit_transfer(transfer); if (ret < 0) { msg_perr("Submitting SPI bulk read %i failed: %s!\n", status.queued_idx, libusb_error_name(ret)); goto err_free; } ++status.queued_idx; } if (dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 0)) goto err_free; } /* Wait for transfers to finish. */ if (dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 1)) goto err_free; /* Check if everything has been transmitted. */ if ((status.finished_idx < count) || status.error) goto err_free; err = 0; err_free: dediprog_bulk_read_poll(dp_data->usb_ctx, &status, 1); for (i = 0; i < DEDIPROG_ASYNC_TRANSFERS; ++i) if (transfers[i]) libusb_free_transfer(transfers[i]); return err; } static int dediprog_spi_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) { int ret; /* chunksize must be 512, other sizes will NOT work at all. */ const unsigned int chunksize = 0x200; unsigned int residue = start % chunksize ? min(len, chunksize - start % chunksize) : 0; unsigned int bulklen; const struct dediprog_data *dp_data = flash->mst->spi.data; dediprog_set_leds(LED_BUSY, dp_data); if (residue) { msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", start, residue); ret = default_spi_read(flash, buf, start, residue); if (ret) goto err; } /* Round down. */ bulklen = (len - residue) / chunksize * chunksize; ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue, bulklen); if (ret) goto err; len -= residue + bulklen; if (len != 0) { msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n", start, len); ret = default_spi_read(flash, buf + residue + bulklen, start + residue + bulklen, len); if (ret) goto err; } dediprog_set_leds(LED_PASS, dp_data); return 0; err: dediprog_set_leds(LED_ERROR, dp_data); return ret; } /* Bulk write interface, will write multiple chunksize byte chunks aligned to chunksize bytes. * @chunksize length of data chunks, only 256 supported by now * @start start address * @len length * @dedi_spi_cmd dediprog specific write command for spi bus * @return 0 on success, 1 on failure */ static int dediprog_spi_bulk_write(struct flashctx *flash, const uint8_t *buf, unsigned int chunksize, unsigned int start, unsigned int len, uint8_t dedi_spi_cmd) { /* USB transfer size must be 512, other sizes will NOT work at all. * chunksize is the real data size per USB bulk transfer. The remaining * space in a USB bulk transfer must be filled with 0xff padding. */ const unsigned int count = len / chunksize; const struct dediprog_data *dp_data = flash->mst->spi.data; /* * We should change this check to * chunksize > 512 * once we know how to handle different chunk sizes. */ if (chunksize != 256) { msg_perr("%s: Chunk sizes other than 256 bytes are unsupported, chunksize=%u!\n" "Please report a bug at flashrom@flashrom.org\n", __func__, chunksize); return 1; } if ((start % chunksize) || (len % chunksize)) { msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug " "at flashrom@flashrom.org\n", __func__, start, len); return 1; } /* No idea if the hardware can handle empty writes, so chicken out. */ if (len == 0) return 0; int command_packet_size; switch (protocol(dp_data)) { case PROTOCOL_V1: command_packet_size = 5; break; case PROTOCOL_V2: command_packet_size = 10; break; case PROTOCOL_V3: command_packet_size = 14; break; default: return 1; } uint8_t data_packet[command_packet_size]; unsigned int value, idx; if (prepare_rw_cmd(flash, data_packet, count, dedi_spi_cmd, &value, &idx, start, 0)) return 1; int ret = dediprog_write(dp_data->handle, CMD_WRITE, value, idx, data_packet, sizeof(data_packet)); if (ret != (int)sizeof(data_packet)) { msg_perr("Command Write SPI Bulk failed, %s!\n", libusb_error_name(ret)); return 1; } unsigned int i; for (i = 0; i < count; i++) { unsigned char usbbuf[512]; memcpy(usbbuf, buf + i * chunksize, chunksize); memset(usbbuf + chunksize, 0xff, sizeof(usbbuf) - chunksize); // fill up with 0xFF int transferred; ret = libusb_bulk_transfer(dp_data->handle, dp_data->out_endpoint, usbbuf, 512, &transferred, DEFAULT_TIMEOUT); if ((ret < 0) || (transferred != 512)) { msg_perr("SPI bulk write failed, expected %i, got %s!\n", 512, libusb_error_name(ret)); return 1; } update_progress(flash, FLASHROM_PROGRESS_WRITE, i + 1, count); } return 0; } static int dediprog_spi_write(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len, uint8_t dedi_spi_cmd) { int ret; const unsigned int chunksize = flash->chip->page_size; unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0; unsigned int bulklen; const struct dediprog_data *dp_data = flash->mst->spi.data; dediprog_set_leds(LED_BUSY, dp_data); if (chunksize != 256) { msg_pdbg("Page sizes other than 256 bytes are unsupported as " "we don't know how dediprog\nhandles them.\n"); /* Write everything like it was residue. */ residue = len; } if (residue) { msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n", start, residue); /* No idea about the real limit. Maybe 16 including command and address, maybe more. */ ret = spi_write_chunked(flash, buf, start, residue, 11); if (ret) { dediprog_set_leds(LED_ERROR, dp_data); return ret; } } /* Round down. */ bulklen = (len - residue) / chunksize * chunksize; ret = dediprog_spi_bulk_write(flash, buf + residue, chunksize, start + residue, bulklen, dedi_spi_cmd); if (ret) { dediprog_set_leds(LED_ERROR, dp_data); return ret; } len -= residue + bulklen; if (len) { msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n", start, len); ret = spi_write_chunked(flash, buf + residue + bulklen, start + residue + bulklen, len, 11); if (ret) { dediprog_set_leds(LED_ERROR, dp_data); return ret; } } dediprog_set_leds(LED_PASS, dp_data); return 0; } static int dediprog_spi_write_256(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) { return dediprog_spi_write(flash, buf, start, len, WRITE_MODE_PAGE_PGM); } static int dediprog_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) { return dediprog_spi_write(flash, buf, start, len, WRITE_MODE_2B_AAI); } static int dediprog_spi_send_command(const struct flashctx *flash, unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { int ret; const struct dediprog_data *dp_data = flash->mst->spi.data; msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt); if (writecnt > flash->mst->spi.max_data_write) { msg_perr("Invalid writecnt=%i, aborting.\n", writecnt); return 1; } if (readcnt > flash->mst->spi.max_data_read) { msg_perr("Invalid readcnt=%i, aborting.\n", readcnt); return 1; } unsigned int idx, value; /* New protocol has options and timeout combined as value while the old one used the value field for * timeout and the index field for options. */ if (protocol(dp_data) >= PROTOCOL_V2) { idx = 0; value = readcnt ? 0x1 : 0x0; // Indicate if we require a read } else { idx = readcnt ? 0x1 : 0x0; // Indicate if we require a read value = 0; } ret = dediprog_write(dp_data->handle, CMD_TRANSCEIVE, value, idx, writearr, writecnt); if (ret != (int)writecnt) { msg_perr("Send SPI failed, expected %i, got %i %s!\n", writecnt, ret, libusb_error_name(ret)); return 1; } if (readcnt == 0) // If we don't require a response, we are done here return 0; /* The specifications do state the possibility to set a timeout for transceive transactions. * Apparently the "timeout" is a delay, and you can use long delays to accelerate writing - in case you * can predict the time needed by the previous command or so (untested). In any case, using this * "feature" to set sane-looking timouts for the read below will completely trash performance with * SF600 and/or firmwares >= 6.0 while they seem to be benign on SF100 with firmwares <= 5.5.2. *shrug* * * The specification also uses only 0 in its examples, so the lesson to learn here: * "Never trust the description of an interface in the documentation but use the example code and pray." const uint8_t read_timeout = 10 + readcnt/512; if (protocol() >= PROTOCOL_V2) { idx = 0; value = min(read_timeout, 0xFF) | (0 << 8) ; // Timeout in lower byte, option in upper byte } else { idx = (0 & 0xFF); // Lower byte is option (0x01 = require SR, 0x02 keep CS low) value = min(read_timeout, 0xFF); // Possibly two bytes but we play safe here } ret = dediprog_read(dp_data->dediprog_handle, CMD_TRANSCEIVE, value, idx, readarr, readcnt); */ ret = dediprog_read(dp_data->handle, CMD_TRANSCEIVE, 0, 0, readarr, readcnt); if (ret != (int)readcnt) { msg_perr("Receive SPI failed, expected %i, got %i %s!\n", readcnt, ret, libusb_error_name(ret)); return 1; } return 0; } static int dediprog_check_devicestring(struct dediprog_data *dp_data) { int ret; char buf[0x11]; /* Command Receive Device String. */ ret = dediprog_read(dp_data->handle, CMD_READ_PROG_INFO, 0, 0, (uint8_t *)buf, 0x10); if (ret != 0x10) { msg_perr("Incomplete/failed Command Receive Device String!\n"); return 1; } buf[0x10] = '\0'; msg_pdbg("Found a %s\n", buf); if (memcmp(buf, "SF100", 0x5) == 0) dp_data->devicetype = DEV_SF100; else if (memcmp(buf, "SF200", 0x5) == 0) dp_data->devicetype = DEV_SF200; else if (memcmp(buf, "SF600", 0x5) == 0) dp_data->devicetype = DEV_SF600; else { msg_perr("Device not a SF100, SF200, or SF600!\n"); return 1; } int sfnum; int fw[3]; if (sscanf(buf, "SF%d V:%d.%d.%d ", &sfnum, &fw[0], &fw[1], &fw[2]) != 4 || sfnum != (int)dp_data->devicetype) { msg_perr("Unexpected firmware version string '%s'\n", buf); return 1; } /* Only these major versions were tested. */ if (fw[0] < 2 || fw[0] > 7) { msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0], fw[1], fw[2]); return 1; } dp_data->firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]); if (protocol(dp_data) == PROTOCOL_UNKNOWN) { msg_perr("Internal error: Unable to determine protocol version.\n"); return 1; } return 0; } /* * Read the id from the dediprog. This should return the numeric part of the * serial number found on a sticker on the back of the dediprog. Note this * number is stored in writable eeprom, so it could get out of sync. Also note, * this function only supports SF100 at this time, but SF600 support is not too * much different. * @return the id on success, -1 on failure */ static int dediprog_read_id(libusb_device_handle *dediprog_handle) { int ret; uint8_t buf[3]; ret = libusb_control_transfer(dediprog_handle, REQTYPE_OTHER_IN, 0x7, /* request */ 0, /* value */ 0xEF00, /* index */ buf, sizeof(buf), DEFAULT_TIMEOUT); if (ret != sizeof(buf)) { msg_perr("Failed to read dediprog id, error %d!\n", ret); return -1; } return buf[0] << 16 | buf[1] << 8 | buf[2]; } /* * This command presumably sets the voltage for the SF100 itself (not the * SPI flash). Only use this command with firmware older than V6.0.0. Newer * (including all SF600s) do not support it. */ /* This command presumably sets the voltage for the SF100 itself (not the SPI flash). * Only use dediprog_set_voltage on SF100 programmers with firmware older * than V6.0.0. Newer programmers (including all SF600s) do not support it. */ static int dediprog_set_voltage(libusb_device_handle *dediprog_handle) { unsigned char buf[1] = {0}; int ret = libusb_control_transfer(dediprog_handle, REQTYPE_OTHER_IN, CMD_SET_VOLTAGE, 0x0, 0x0, buf, 0x1, DEFAULT_TIMEOUT); if (ret < 0) { msg_perr("Command Set Voltage failed (%s)!\n", libusb_error_name(ret)); return 1; } if ((ret != 1) || (buf[0] != 0x6f)) { msg_perr("Unexpected response to init!\n"); return 1; } return 0; } static int dediprog_standalone_mode(const struct dediprog_data *dp_data) { int ret; if (dp_data->devicetype != DEV_SF600) return 0; msg_pdbg2("Disabling standalone mode.\n"); ret = dediprog_write(dp_data->handle, CMD_SET_STANDALONE, LEAVE_STANDALONE_MODE, 0, NULL, 0); if (ret) { msg_perr("Failed to disable standalone mode: %s\n", libusb_error_name(ret)); return 1; } return 0; } #if 0 /* Something. * Present in eng_detect_blink.log with firmware 3.1.8 * Always preceded by Command Receive Device String */ static int dediprog_command_b(libusb_device_handle *dediprog_handle) { int ret; char buf[0x3]; ret = usb_control_msg(dediprog_handle, REQTYPE_OTHER_IN, 0x7, 0x0, 0xef00, buf, 0x3, DEFAULT_TIMEOUT); if (ret < 0) { msg_perr("Command B failed (%s)!\n", libusb_error_name(ret)); return 1; } if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) || (buf[2] != 0xff)) { msg_perr("Unexpected response to Command B!\n"); return 1; } return 0; } #endif static int set_target_flash(libusb_device_handle *dediprog_handle, enum dediprog_target target) { int ret = dediprog_write(dediprog_handle, CMD_SET_TARGET, target, 0, NULL, 0); if (ret != 0) { msg_perr("set_target_flash failed (%s)!\n", libusb_error_name(ret)); return 1; } return 0; } #if 0 /* Returns true if the button is currently pressed. */ static bool dediprog_get_button(libusb_device_handle *dediprog_handle) { char buf[1]; int ret = usb_control_msg(dediprog_handle, REQTYPE_EP_IN, CMD_GET_BUTTON, 0, 0, buf, 0x1, DEFAULT_TIMEOUT); if (ret != 0) { msg_perr("Could not get button state (%s)!\n", libusb_error_name(ret)); return 1; } return buf[0] != 1; } #endif static int parse_voltage(char *voltage) { char *tmp = NULL; int i; int millivolt = 0, fraction = 0; if (!voltage || !strlen(voltage)) { msg_perr("Empty voltage= specified.\n"); return -1; } millivolt = (int)strtol(voltage, &tmp, 0); voltage = tmp; /* Handle "," and "." as decimal point. Everything after it is assumed * to be in decimal notation. */ if ((*voltage == '.') || (*voltage == ',')) { voltage++; for (i = 0; i < 3; i++) { fraction *= 10; /* Don't advance if the current character is invalid, * but continue multiplying. */ if ((*voltage < '0') || (*voltage > '9')) continue; fraction += *voltage - '0'; voltage++; } /* Throw away remaining digits. */ voltage += strspn(voltage, "0123456789"); } /* The remaining string must be empty or "mV" or "V". */ tolower_string(voltage); /* No unit or "V". */ if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) { millivolt *= 1000; millivolt += fraction; } else if (!strncmp(voltage, "mv", 2) || !strncmp(voltage, "milliv", 6)) { /* No adjustment. fraction is discarded. */ } else { /* Garbage at the end of the string. */ msg_perr("Garbage voltage= specified.\n"); return -1; } return millivolt; } static int dediprog_shutdown(void *data) { int ret = 0; struct dediprog_data *dp_data = data; /* URB 28. Command Set SPI Voltage to 0. */ if (dediprog_set_spi_voltage(dp_data->handle, 0x0)) { ret = 1; goto out; } if (libusb_release_interface(dp_data->handle, 0)) { msg_perr("Could not release USB interface!\n"); ret = 1; goto out; } libusb_close(dp_data->handle); libusb_exit(dp_data->usb_ctx); out: free(data); return ret; } static struct spi_master spi_master_dediprog = { .features = SPI_MASTER_NO_4BA_MODES, .max_data_read = 16, /* 18 seems to work fine as well, but 19 times out sometimes with FW 5.15. */ .max_data_write = 16, .command = dediprog_spi_send_command, .multicommand = default_spi_send_multicommand, .read = dediprog_spi_read, .write_256 = dediprog_spi_write_256, .write_aai = dediprog_spi_write_aai, .shutdown = dediprog_shutdown, .probe_opcode = default_spi_probe_opcode, }; /* * Open a dediprog_handle with the USB device at the given index. * @index index of the USB device * @return 0 for success, -1 for error, -2 for busy device */ static int dediprog_open(int index, struct dediprog_data *dp_data) { const uint16_t vid = devs_dediprog[0].vendor_id; const uint16_t pid = devs_dediprog[0].device_id; int ret; dp_data->handle = usb_dev_get_by_vid_pid_number(dp_data->usb_ctx, vid, pid, (unsigned int) index); if (!dp_data->handle) { msg_perr("Could not find a Dediprog programmer on USB.\n"); libusb_exit(dp_data->usb_ctx); return -1; } ret = libusb_set_configuration(dp_data->handle, 1); if (ret != 0) { msg_perr("Could not set USB device configuration: %i %s\n", ret, libusb_error_name(ret)); libusb_close(dp_data->handle); return -2; } ret = libusb_claim_interface(dp_data->handle, 0); if (ret < 0) { msg_perr("Could not claim USB device interface %i: %i %s\n", 0, ret, libusb_error_name(ret)); libusb_close(dp_data->handle); return -2; } return 0; } static int dediprog_init(const struct programmer_cfg *cfg) { char *param_str; int spispeed_idx = 1; int millivolt = 3500; int id = -1; /* -1 defaults to enumeration order */ int found_id; long usedevice = 0; long target = FLASH_TYPE_APPLICATION_FLASH_1; int i, ret; param_str = extract_programmer_param_str(NULL, "spispeed"); if (param_str) { for (i = 0; spispeeds[i].name; ++i) { if (!strcasecmp(spispeeds[i].name, param_str)) { spispeed_idx = i; break; } } if (!spispeeds[i].name) { msg_perr("Error: Invalid spispeed value: '%s'.\n", param_str); free(param_str); return 1; } free(param_str); } param_str = extract_programmer_param_str(NULL, "voltage"); if (param_str) { millivolt = parse_voltage(param_str); free(param_str); if (millivolt < 0) return 1; msg_pinfo("Setting voltage to %i mV\n", millivolt); } param_str = extract_programmer_param_str(NULL, "id"); if (param_str) { char prefix0, prefix1; if (sscanf(param_str, "%c%c%d", &prefix0, &prefix1, &id) != 3) { msg_perr("Error: Could not parse dediprog 'id'.\n"); msg_perr("Expected a string like SF012345 or DP012345.\n"); free(param_str); return 1; } if (id < 0 || id >= 0x1000000) { msg_perr("Error: id %s is out of range!\n", param_str); free(param_str); return 1; } if (!(prefix0 == 'S' && prefix1 == 'F') && !(prefix0 == 'D' && prefix1 == 'P')) { msg_perr("Error: %s is an invalid id!\n", param_str); free(param_str); return 1; } msg_pinfo("Will search for dediprog id %s.\n", param_str); } free(param_str); param_str = extract_programmer_param_str(NULL, "device"); if (param_str) { char *dev_suffix; if (id != -1) { msg_perr("Error: Cannot use 'id' and 'device'.\n"); } errno = 0; usedevice = strtol(param_str, &dev_suffix, 10); if (errno != 0 || param_str == dev_suffix) { msg_perr("Error: Could not convert 'device'.\n"); free(param_str); return 1; } if (usedevice < 0 || usedevice > INT_MAX) { msg_perr("Error: Value for 'device' is out of range.\n"); free(param_str); return 1; } if (strlen(dev_suffix) > 0) { msg_perr("Error: Garbage following 'device' value.\n"); free(param_str); return 1; } msg_pinfo("Using device %li.\n", usedevice); } free(param_str); param_str = extract_programmer_param_str(NULL, "target"); if (param_str) { char *target_suffix; errno = 0; target = strtol(param_str, &target_suffix, 10); if (errno != 0 || param_str == target_suffix) { msg_perr("Error: Could not convert 'target'.\n"); free(param_str); return 1; } if (target < 1 || target > 2) { msg_perr("Error: Value for 'target' is out of range.\n"); free(param_str); return 1; } if (strlen(target_suffix) > 0) { msg_perr("Error: Garbage following 'target' value.\n"); free(param_str); return 1; } switch (target) { case 1: msg_pinfo("Using target %s.\n", "FLASH_TYPE_APPLICATION_FLASH_1"); target = FLASH_TYPE_APPLICATION_FLASH_1; break; case 2: msg_pinfo("Using target %s.\n", "FLASH_TYPE_APPLICATION_FLASH_2"); target = FLASH_TYPE_APPLICATION_FLASH_2; break; default: break; } } free(param_str); struct dediprog_data *dp_data = calloc(1, sizeof(*dp_data)); if (!dp_data) { msg_perr("Unable to allocate space for SPI master data\n"); return 1; } dp_data->firmwareversion = FIRMWARE_VERSION(0, 0, 0); dp_data->devicetype = DEV_UNKNOWN; /* Here comes the USB stuff. */ ret = libusb_init(&dp_data->usb_ctx); if (ret) { msg_perr("Could not initialize libusb!\n"); goto init_err_exit; } if (id != -1) { for (i = 0; ; i++) { ret = dediprog_open(i, dp_data); if (ret == -1) { /* no dev */ goto init_err_exit; } else if (ret == -2) { /* busy dev */ continue; } /* Notice we can only call dediprog_read_id() after * libusb_set_configuration() and * libusb_claim_interface(). When searching by id and * either configuration or claim fails (usually the * device is in use by another instance of flashrom), * the device is skipped and the next device is tried. */ found_id = dediprog_read_id(dp_data->handle); if (found_id < 0) { msg_perr("Could not read id.\n"); libusb_release_interface(dp_data->handle, 0); libusb_close(dp_data->handle); continue; } msg_pinfo("Found dediprog id SF%06d.\n", found_id); if (found_id != id) { libusb_release_interface(dp_data->handle, 0); libusb_close(dp_data->handle); continue; } break; } } else { if (dediprog_open(usedevice, dp_data)) { goto init_err_exit; } found_id = dediprog_read_id(dp_data->handle); } if (found_id >= 0) { msg_pinfo("Using dediprog id SF%06d.\n", found_id); } /* Try reading the devicestring. If that fails and the device is old (FW < 6.0.0, which we can not know) * then we need to try the "set voltage" command and then attempt to read the devicestring again. */ if (dediprog_check_devicestring(dp_data)) { if (dediprog_set_voltage(dp_data->handle)) goto init_err_cleanup_exit; if (dediprog_check_devicestring(dp_data)) goto init_err_cleanup_exit; } /* SF100/SF200 uses one in/out endpoint, SF600 uses separate in/out endpoints */ dp_data->in_endpoint = 2; switch (dp_data->devicetype) { case DEV_SF100: case DEV_SF200: dp_data->out_endpoint = 2; break; default: dp_data->out_endpoint = 1; break; } /* Set all possible LEDs as soon as possible to indicate activity. * Because knowing the firmware version is required to set the LEDs correctly we need to this after * dediprog_check_devicestring() has queried the device. */ dediprog_set_leds(LED_ALL, dp_data); /* Select target/socket, frequency and VCC. */ if (set_target_flash(dp_data->handle, target) || dediprog_set_spi_speed(spispeed_idx, dp_data) || dediprog_set_spi_voltage(dp_data->handle, millivolt)) { dediprog_set_leds(LED_ERROR, dp_data); goto init_err_cleanup_exit; } if (dediprog_standalone_mode(dp_data)) goto init_err_cleanup_exit; if ((dp_data->devicetype == DEV_SF100) || (dp_data->devicetype == DEV_SF600 && protocol(dp_data) == PROTOCOL_V3)) spi_master_dediprog.features &= ~SPI_MASTER_NO_4BA_MODES; if (protocol(dp_data) >= PROTOCOL_V2) spi_master_dediprog.features |= SPI_MASTER_4BA; if (dediprog_set_leds(LED_NONE, dp_data)) goto init_err_cleanup_exit; return register_spi_master(&spi_master_dediprog, dp_data); init_err_cleanup_exit: dediprog_shutdown(dp_data); return 1; init_err_exit: free(dp_data); return 1; } const struct programmer_entry programmer_dediprog = { .name = "dediprog", .type = USB, .devs.dev = devs_dediprog, .init = dediprog_init, .map_flash_region = fallback_map, .unmap_flash_region = fallback_unmap, .delay = internal_delay, };