1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
/**CFile****************************************************************
FileName [satMem.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT solver.]
Synopsis [Memory management.]
Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - January 1, 2004.]
Revision [$Id: satMem.h,v 1.0 2004/01/01 1:00:00 alanmi Exp $]
***********************************************************************/
#ifndef ABC__sat__bsat__satMem_h
#define ABC__sat__bsat__satMem_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include "misc/util/abc_global.h"
ABC_NAMESPACE_HEADER_START
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
//#define LEARNT_MAX_START_DEFAULT 0
#define LEARNT_MAX_START_DEFAULT 10000
#define LEARNT_MAX_INCRE_DEFAULT 1000
#define LEARNT_MAX_RATIO_DEFAULT 50
////////////////////////////////////////////////////////////////////////
/// STRUCTURE DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
//=================================================================================================
// Clause datatype + minor functions:
typedef struct clause_t clause;
struct clause_t
{
unsigned lrn : 1;
unsigned mark : 1;
unsigned partA : 1;
unsigned lbd : 8;
unsigned size : 21;
lit lits[0];
};
// learned clauses have "hidden" literal (c->lits[c->size]) to store clause ID
// data-structure for logging entries
// memory is allocated in 2^nPageSize word-sized pages
// the first 'word' of each page are stores the word limit
// although clause memory pieces are aligned to 64-bit words
// the integer clause handles are in terms of 32-bit unsigneds
// allowing for the first bit to be used for labeling 2-lit clauses
typedef struct Sat_Mem_t_ Sat_Mem_t;
struct Sat_Mem_t_
{
int nEntries[2]; // entry count
int BookMarkH[2]; // bookmarks for handles
int BookMarkE[2]; // bookmarks for entries
int iPage[2]; // current memory page
int nPageSize; // page log size in terms of ints
unsigned uPageMask; // page mask
unsigned uLearnedMask; // learned mask
int nPagesAlloc; // page count allocated
int ** pPages; // page pointers
};
static inline int Sat_MemLimit( int * p ) { return p[0]; }
static inline int Sat_MemIncLimit( int * p, int nInts ) { return p[0] += nInts; }
static inline void Sat_MemWriteLimit( int * p, int nInts ) { p[0] = nInts; }
static inline int Sat_MemHandPage( Sat_Mem_t * p, cla h ) { return h >> p->nPageSize; }
static inline int Sat_MemHandShift( Sat_Mem_t * p, cla h ) { return h & p->uPageMask; }
static inline int Sat_MemIntSize( int size, int lrn ) { return (size + 2 + lrn) & ~01; }
static inline int Sat_MemClauseSize( clause * p ) { return Sat_MemIntSize(p->size, p->lrn); }
static inline int Sat_MemClauseSize2( clause * p ) { return Sat_MemIntSize(p->size, 1); }
//static inline clause * Sat_MemClause( Sat_Mem_t * p, int i, int k ) { assert(i <= p->iPage[i&1] && k <= Sat_MemLimit(p->pPages[i])); return (clause *)(p->pPages[i] + k ); }
static inline clause * Sat_MemClause( Sat_Mem_t * p, int i, int k ) { assert( k ); return (clause *)(p->pPages[i] + k); }
//static inline clause * Sat_MemClauseHand( Sat_Mem_t * p, cla h ) { assert(Sat_MemHandPage(p, h) <= p->iPage[(h & p->uLearnedMask) > 0]); assert(Sat_MemHandShift(p, h) >= 2 && Sat_MemHandShift(p, h) < (int)p->uLearnedMask); return Sat_MemClause( p, Sat_MemHandPage(p, h), Sat_MemHandShift(p, h) ); }
static inline clause * Sat_MemClauseHand( Sat_Mem_t * p, cla h ) { return h ? Sat_MemClause( p, Sat_MemHandPage(p, h), Sat_MemHandShift(p, h) ) : NULL; }
static inline int Sat_MemEntryNum( Sat_Mem_t * p, int lrn ) { return p->nEntries[lrn]; }
static inline cla Sat_MemHand( Sat_Mem_t * p, int i, int k ) { return (i << p->nPageSize) | k; }
static inline cla Sat_MemHandCurrent( Sat_Mem_t * p, int lrn ) { return (p->iPage[lrn] << p->nPageSize) | Sat_MemLimit( p->pPages[p->iPage[lrn]] ); }
static inline int Sat_MemClauseUsed( Sat_Mem_t * p, cla h ) { return h < p->BookMarkH[(h & p->uLearnedMask) > 0]; }
static inline double Sat_MemMemoryHand( Sat_Mem_t * p, cla h ) { return 1.0 * ((Sat_MemHandPage(p, h) + 2)/2 * (1 << (p->nPageSize+2)) + Sat_MemHandShift(p, h) * 4); }
static inline double Sat_MemMemoryUsed( Sat_Mem_t * p, int lrn ) { return Sat_MemMemoryHand( p, Sat_MemHandCurrent(p, lrn) ); }
static inline double Sat_MemMemoryAllUsed( Sat_Mem_t * p ) { return Sat_MemMemoryUsed( p, 0 ) + Sat_MemMemoryUsed( p, 1 ); }
static inline double Sat_MemMemoryAll( Sat_Mem_t * p ) { return 1.0 * (p->iPage[0] + p->iPage[1] + 2) * (1 << (p->nPageSize+2)); }
// p is memory storage
// c is clause pointer
// i is page number
// k is page offset
// print problem clauses NOT in proof mode
#define Sat_MemForEachClause( p, c, i, k ) \
for ( i = 0; i <= p->iPage[0]; i += 2 ) \
for ( k = 2; k < Sat_MemLimit(p->pPages[i]) && ((c) = Sat_MemClause( p, i, k )); k += Sat_MemClauseSize(c) ) if ( i == 0 && k == 2 ) {} else
// print problem clauses in proof mode
#define Sat_MemForEachClause2( p, c, i, k ) \
for ( i = 0; i <= p->iPage[0]; i += 2 ) \
for ( k = 2; k < Sat_MemLimit(p->pPages[i]) && ((c) = Sat_MemClause( p, i, k )); k += Sat_MemClauseSize2(c) ) if ( i == 0 && k == 2 ) {} else
#define Sat_MemForEachLearned( p, c, i, k ) \
for ( i = 1; i <= p->iPage[1]; i += 2 ) \
for ( k = 2; k < Sat_MemLimit(p->pPages[i]) && ((c) = Sat_MemClause( p, i, k )); k += Sat_MemClauseSize(c) )
////////////////////////////////////////////////////////////////////////
/// GLOBAL VARIABLES ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
static inline int clause_from_lit( lit l ) { return l + l + 1; }
static inline int clause_is_lit( cla h ) { return (h & 1); }
static inline lit clause_read_lit( cla h ) { return (lit)(h >> 1); }
static inline int clause_learnt_h( Sat_Mem_t * p, cla h ) { return (h & p->uLearnedMask) > 0; }
static inline int clause_learnt( clause * c ) { return c->lrn; }
static inline int clause_id( clause * c ) { return c->lits[c->size]; }
static inline void clause_set_id( clause * c, int id ) { c->lits[c->size] = id; }
static inline int clause_size( clause * c ) { return c->size; }
static inline lit * clause_begin( clause * c ) { return c->lits; }
static inline lit * clause_end( clause * c ) { return c->lits + c->size; }
static inline void clause_print_( clause * c )
{
int i;
printf( "{ " );
for ( i = 0; i < clause_size(c); i++ )
printf( "%d ", (clause_begin(c)[i] & 1)? -(clause_begin(c)[i] >> 1) : clause_begin(c)[i] >> 1 );
printf( "}\n" );
}
////////////////////////////////////////////////////////////////////////
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Allocating vector.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Sat_MemCountL( Sat_Mem_t * p )
{
clause * c;
int i, k, Count = 0;
Sat_MemForEachLearned( p, c, i, k )
Count++;
return Count;
}
/**Function*************************************************************
Synopsis [Allocating vector.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Sat_MemAlloc_( Sat_Mem_t * p, int nPageSize )
{
assert( nPageSize > 8 && nPageSize < 32 );
memset( p, 0, sizeof(Sat_Mem_t) );
p->nPageSize = nPageSize;
p->uLearnedMask = (unsigned)(1 << nPageSize);
p->uPageMask = (unsigned)((1 << nPageSize) - 1);
p->nPagesAlloc = 256;
p->pPages = ABC_CALLOC( int *, p->nPagesAlloc );
p->pPages[0] = ABC_ALLOC( int, (int)(((word)1) << p->nPageSize) );
p->pPages[1] = ABC_ALLOC( int, (int)(((word)1) << p->nPageSize) );
p->iPage[0] = 0;
p->iPage[1] = 1;
Sat_MemWriteLimit( p->pPages[0], 2 );
Sat_MemWriteLimit( p->pPages[1], 2 );
}
static inline Sat_Mem_t * Sat_MemAlloc( int nPageSize )
{
Sat_Mem_t * p;
p = ABC_CALLOC( Sat_Mem_t, 1 );
Sat_MemAlloc_( p, nPageSize );
return p;
}
/**Function*************************************************************
Synopsis [Resetting vector.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Sat_MemRestart( Sat_Mem_t * p )
{
p->nEntries[0] = 0;
p->nEntries[1] = 0;
p->iPage[0] = 0;
p->iPage[1] = 1;
Sat_MemWriteLimit( p->pPages[0], 2 );
Sat_MemWriteLimit( p->pPages[1], 2 );
}
/**Function*************************************************************
Synopsis [Sets the bookmark.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Sat_MemBookMark( Sat_Mem_t * p )
{
p->BookMarkE[0] = p->nEntries[0];
p->BookMarkE[1] = p->nEntries[1];
p->BookMarkH[0] = Sat_MemHandCurrent( p, 0 );
p->BookMarkH[1] = Sat_MemHandCurrent( p, 1 );
}
static inline void Sat_MemRollBack( Sat_Mem_t * p )
{
p->nEntries[0] = p->BookMarkE[0];
p->nEntries[1] = p->BookMarkE[1];
p->iPage[0] = Sat_MemHandPage( p, p->BookMarkH[0] );
p->iPage[1] = Sat_MemHandPage( p, p->BookMarkH[1] );
Sat_MemWriteLimit( p->pPages[p->iPage[0]], Sat_MemHandShift( p, p->BookMarkH[0] ) );
Sat_MemWriteLimit( p->pPages[p->iPage[1]], Sat_MemHandShift( p, p->BookMarkH[1] ) );
}
/**Function*************************************************************
Synopsis [Freeing vector.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Sat_MemFree_( Sat_Mem_t * p )
{
int i;
for ( i = 0; i < p->nPagesAlloc; i++ )
ABC_FREE( p->pPages[i] );
ABC_FREE( p->pPages );
}
static inline void Sat_MemFree( Sat_Mem_t * p )
{
Sat_MemFree_( p );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Creates new clause.]
Description [The resulting clause is fully initialized.]
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Sat_MemAppend( Sat_Mem_t * p, int * pArray, int nSize, int lrn, int fPlus1 )
{
clause * c;
int * pPage = p->pPages[p->iPage[lrn]];
int nInts = Sat_MemIntSize( nSize, lrn | fPlus1 );
assert( nInts + 3 < (1 << p->nPageSize) );
// need two extra at the begining of the page and one extra in the end
if ( Sat_MemLimit(pPage) + nInts + 2 >= (1 << p->nPageSize) )
{
p->iPage[lrn] += 2;
if ( p->iPage[lrn] >= p->nPagesAlloc )
{
p->pPages = ABC_REALLOC( int *, p->pPages, p->nPagesAlloc * 2 );
memset( p->pPages + p->nPagesAlloc, 0, sizeof(int *) * p->nPagesAlloc );
p->nPagesAlloc *= 2;
}
if ( p->pPages[p->iPage[lrn]] == NULL )
p->pPages[p->iPage[lrn]] = ABC_ALLOC( int, (int)(((word)1) << p->nPageSize) );
pPage = p->pPages[p->iPage[lrn]];
Sat_MemWriteLimit( pPage, 2 );
}
pPage[Sat_MemLimit(pPage)] = 0;
c = (clause *)(pPage + Sat_MemLimit(pPage));
c->size = nSize;
c->lrn = lrn;
if ( pArray )
memcpy( c->lits, pArray, sizeof(int) * nSize );
if ( lrn | fPlus1 )
c->lits[c->size] = p->nEntries[lrn];
p->nEntries[lrn]++;
Sat_MemIncLimit( pPage, nInts );
return Sat_MemHandCurrent(p, lrn) - nInts;
}
/**Function*************************************************************
Synopsis [Shrinking vector size.]
Description []
SideEffects [This procedure does not update the number of entries.]
SeeAlso []
***********************************************************************/
static inline void Sat_MemShrink( Sat_Mem_t * p, int h, int lrn )
{
assert( clause_learnt_h(p, h) == lrn );
assert( h && h <= Sat_MemHandCurrent(p, lrn) );
p->iPage[lrn] = Sat_MemHandPage(p, h);
Sat_MemWriteLimit( p->pPages[p->iPage[lrn]], Sat_MemHandShift(p, h) );
}
/**Function*************************************************************
Synopsis [Compacts learned clauses by removing marked entries.]
Description [Returns the number of remaining entries.]
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Sat_MemCompactLearned( Sat_Mem_t * p, int fDoMove )
{
clause * c, * cPivot = NULL;
int i, k, iNew = 1, kNew = 2, nInts, fStartLooking, Counter = 0;
int hLimit = Sat_MemHandCurrent(p, 1);
if ( hLimit == Sat_MemHand(p, 1, 2) )
return 0;
if ( fDoMove && p->BookMarkH[1] )
{
// move the pivot
assert( p->BookMarkH[1] >= Sat_MemHand(p, 1, 2) && p->BookMarkH[1] <= hLimit );
// get the pivot and remember it may be pointed offlimit
cPivot = Sat_MemClauseHand( p, p->BookMarkH[1] );
if ( p->BookMarkH[1] < hLimit && !cPivot->mark )
{
p->BookMarkH[1] = cPivot->lits[cPivot->size];
cPivot = NULL;
}
// else find the next used clause after cPivot
}
// iterate through the learned clauses
fStartLooking = 0;
Sat_MemForEachLearned( p, c, i, k )
{
assert( c->lrn );
// skip marked entry
if ( c->mark )
{
// if pivot is a marked clause, start looking for the next non-marked one
if ( cPivot && cPivot == c )
{
fStartLooking = 1;
cPivot = NULL;
}
continue;
}
// if we started looking before, we found it!
if ( fStartLooking )
{
fStartLooking = 0;
p->BookMarkH[1] = c->lits[c->size];
}
// compute entry size
nInts = Sat_MemClauseSize(c);
assert( !(nInts & 1) );
// check if we need to scroll to the next page
if ( kNew + nInts >= (1 << p->nPageSize) )
{
// set the limit of the current page
if ( fDoMove )
Sat_MemWriteLimit( p->pPages[iNew], kNew );
// move writing position to the new page
iNew += 2;
kNew = 2;
}
if ( fDoMove )
{
// make sure the result is the same as previous dry run
assert( c->lits[c->size] == Sat_MemHand(p, iNew, kNew) );
// only copy the clause if it has changed
if ( i != iNew || k != kNew )
{
memmove( p->pPages[iNew] + kNew, c, sizeof(int) * nInts );
// c = Sat_MemClause( p, iNew, kNew ); // assersions do not hold during dry run
c = (clause *)(p->pPages[iNew] + kNew);
assert( nInts == Sat_MemClauseSize(c) );
}
// set the new ID value
c->lits[c->size] = Counter;
}
else // remember the address of the clause in the new location
c->lits[c->size] = Sat_MemHand(p, iNew, kNew);
// update writing position
kNew += nInts;
assert( iNew <= i && kNew < (1 << p->nPageSize) );
// update counter
Counter++;
}
if ( fDoMove )
{
// update the counter
p->nEntries[1] = Counter;
// update the page count
p->iPage[1] = iNew;
// set the limit of the last page
Sat_MemWriteLimit( p->pPages[iNew], kNew );
// check if the pivot need to be updated
if ( p->BookMarkH[1] )
{
if ( cPivot )
{
p->BookMarkH[1] = Sat_MemHandCurrent(p, 1);
p->BookMarkE[1] = p->nEntries[1];
}
else
p->BookMarkE[1] = clause_id(Sat_MemClauseHand( p, p->BookMarkH[1] ));
}
}
return Counter;
}
ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|