summaryrefslogtreecommitdiffstats
path: root/src/proof/fra/fraCec.c
blob: 6cdaa24887299bf8b4babd309ae1313b799e052e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/**CFile****************************************************************

  FileName    [fraCec.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [New FRAIG package.]

  Synopsis    [CEC engined based on fraiging.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 30, 2007.]

  Revision    [$Id: fraCec.c,v 1.00 2007/06/30 00:00:00 alanmi Exp $]

***********************************************************************/

#include "fra.h"
#include "sat/cnf/cnf.h"
#include "sat/bsat/satSolver2.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int nLearnedStart, int nLearnedDelta, int nLearnedPerce, int fFlipBits, int fAndOuts, int fNewSolver, int fVerbose )
{
    if ( fNewSolver )
    {
        extern void * Cnf_DataWriteIntoSolver2( Cnf_Dat_t * p, int nFrames, int fInit );
        extern int    Cnf_DataWriteOrClause2( void * pSat, Cnf_Dat_t * pCnf );

        sat_solver2 * pSat;
        Cnf_Dat_t * pCnf;
        int status, RetValue = 0;
        abctime clk = Abc_Clock();
        Vec_Int_t * vCiIds;

        assert( Aig_ManRegNum(pMan) == 0 );
        pMan->pData = NULL;

        // derive CNF
        pCnf = Cnf_Derive( pMan, Aig_ManCoNum(pMan) );
    //    pCnf = Cnf_DeriveSimple( pMan, Aig_ManCoNum(pMan) );

        if ( fFlipBits ) 
            Cnf_DataTranformPolarity( pCnf, 0 );

        if ( fVerbose )
        {
            printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
            Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
        }

        // convert into SAT solver
        pSat = (sat_solver2 *)Cnf_DataWriteIntoSolver2( pCnf, 1, 0 );
        if ( pSat == NULL )
        {
            Cnf_DataFree( pCnf );
            return 1;
        }

        if ( fAndOuts )
        {
            // assert each output independently
            if ( !Cnf_DataWriteAndClauses( pSat, pCnf ) )
            {
                sat_solver2_delete( pSat );
                Cnf_DataFree( pCnf );
                return 1;
            }
        }
        else
        {
            // add the OR clause for the outputs
            if ( !Cnf_DataWriteOrClause2( pSat, pCnf ) )
            {
                sat_solver2_delete( pSat );
                Cnf_DataFree( pCnf );
                return 1;
            }
        }
        vCiIds = Cnf_DataCollectPiSatNums( pCnf, pMan );
        Cnf_DataFree( pCnf );


        printf( "Created SAT problem with %d variable and %d clauses. ", sat_solver2_nvars(pSat), sat_solver2_nclauses(pSat) );
        ABC_PRT( "Time", Abc_Clock() - clk );

        // simplify the problem
        clk = Abc_Clock();
        status = sat_solver2_simplify(pSat);
//        printf( "Simplified the problem to %d variables and %d clauses. ", sat_solver2_nvars(pSat), sat_solver2_nclauses(pSat) );
//        ABC_PRT( "Time", Abc_Clock() - clk );
        if ( status == 0 )
        {
            Vec_IntFree( vCiIds );
            sat_solver2_delete( pSat );
    //        printf( "The problem is UNSATISFIABLE after simplification.\n" );
            return 1;
        }

        // solve the miter
        clk = Abc_Clock();
        if ( fVerbose )
            pSat->verbosity = 1;
        status = sat_solver2_solve( pSat, NULL, NULL, (ABC_INT64_T)nConfLimit, (ABC_INT64_T)nInsLimit, (ABC_INT64_T)0, (ABC_INT64_T)0 );
        if ( status == l_Undef )
        {
    //        printf( "The problem timed out.\n" );
            RetValue = -1;
        }
        else if ( status == l_True )
        {
    //        printf( "The problem is SATISFIABLE.\n" );
            RetValue = 0;
        }
        else if ( status == l_False )
        {
    //        printf( "The problem is UNSATISFIABLE.\n" );
            RetValue = 1;
        }
        else
            assert( 0 );

    //    Abc_Print( 1, "The number of conflicts = %6d.  ", (int)pSat->stats.conflicts );
    //    Abc_PrintTime( 1, "Solving time", Abc_Clock() - clk );
 
        // if the problem is SAT, get the counterexample
        if ( status == l_True )
        {
            pMan->pData = Sat_Solver2GetModel( pSat, vCiIds->pArray, vCiIds->nSize );
        }
        // free the sat_solver2
        if ( fVerbose )
            Sat_Solver2PrintStats( stdout, pSat );
    //sat_solver2_store_write( pSat, "trace.cnf" );
    //sat_solver2_store_free( pSat );
        sat_solver2_delete( pSat );
        Vec_IntFree( vCiIds );
        return RetValue;
    }
    else
    {
        sat_solver * pSat;
        Cnf_Dat_t * pCnf;
        int status, RetValue = 0;
        abctime clk = Abc_Clock();
        Vec_Int_t * vCiIds;

        assert( Aig_ManRegNum(pMan) == 0 );
        pMan->pData = NULL;

        // derive CNF
        pCnf = Cnf_Derive( pMan, Aig_ManCoNum(pMan) );
    //    pCnf = Cnf_DeriveSimple( pMan, Aig_ManCoNum(pMan) );

        if ( fFlipBits ) 
            Cnf_DataTranformPolarity( pCnf, 0 );

        if ( fVerbose )
        {
            printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
            Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
        }

        // convert into SAT solver
        pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 );
        if ( pSat == NULL )
        {
            Cnf_DataFree( pCnf );
            return 1;
        }

        if ( nLearnedStart )
            pSat->nLearntStart = pSat->nLearntMax = nLearnedStart;
        if ( nLearnedDelta )
            pSat->nLearntDelta = nLearnedDelta;
        if ( nLearnedPerce )
            pSat->nLearntRatio = nLearnedPerce;
        if ( fVerbose )
            pSat->fVerbose = fVerbose;

        if ( fAndOuts )
        {
            // assert each output independently
            if ( !Cnf_DataWriteAndClauses( pSat, pCnf ) )
            {
                sat_solver_delete( pSat );
                Cnf_DataFree( pCnf );
                return 1;
            }
        }
        else
        {
            // add the OR clause for the outputs
            if ( !Cnf_DataWriteOrClause( pSat, pCnf ) )
            {
                sat_solver_delete( pSat );
                Cnf_DataFree( pCnf );
                return 1;
            }
        }
        vCiIds = Cnf_DataCollectPiSatNums( pCnf, pMan );
        Cnf_DataFree( pCnf );


    //    printf( "Created SAT problem with %d variable and %d clauses. ", sat_solver_nvars(pSat), sat_solver_nclauses(pSat) );
    //    ABC_PRT( "Time", Abc_Clock() - clk );

        // simplify the problem
        clk = Abc_Clock();
        status = sat_solver_simplify(pSat);
    //    printf( "Simplified the problem to %d variables and %d clauses. ", sat_solver_nvars(pSat), sat_solver_nclauses(pSat) );
    //    ABC_PRT( "Time", Abc_Clock() - clk );
        if ( status == 0 )
        {
            Vec_IntFree( vCiIds );
            sat_solver_delete( pSat );
    //        printf( "The problem is UNSATISFIABLE after simplification.\n" );
            return 1;
        }

        // solve the miter
        clk = Abc_Clock();
//        if ( fVerbose )
//            pSat->verbosity = 1;
        status = sat_solver_solve( pSat, NULL, NULL, (ABC_INT64_T)nConfLimit, (ABC_INT64_T)nInsLimit, (ABC_INT64_T)0, (ABC_INT64_T)0 );
        if ( status == l_Undef )
        {
    //        printf( "The problem timed out.\n" );
            RetValue = -1;
        }
        else if ( status == l_True )
        {
    //        printf( "The problem is SATISFIABLE.\n" );
            RetValue = 0;
        }
        else if ( status == l_False )
        {
    //        printf( "The problem is UNSATISFIABLE.\n" );
            RetValue = 1;
        }
        else
            assert( 0 );

    //    Abc_Print( 1, "The number of conflicts = %6d.  ", (int)pSat->stats.conflicts );
    //    Abc_PrintTime( 1, "Solving time", Abc_Clock() - clk );
 
        // if the problem is SAT, get the counterexample
        if ( status == l_True )
        {
            pMan->pData = Sat_SolverGetModel( pSat, vCiIds->pArray, vCiIds->nSize );
        }
        // free the sat_solver
        if ( fVerbose )
            Sat_SolverPrintStats( stdout, pSat );
    //sat_solver_store_write( pSat, "trace.cnf" );
    //sat_solver_store_free( pSat );
        sat_solver_delete( pSat );
        Vec_IntFree( vCiIds );
        return RetValue;
    }
}

/**Function*************************************************************

  Synopsis    [Recognizes what nodes are inputs of the EXOR.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Aig_ManCountXors( Aig_Man_t * p )
{
    Aig_Obj_t * pObj, * pFan0, * pFan1;
    int i, Counter = 0;
    Aig_ManForEachNode( p, pObj, i )
        if ( Aig_ObjIsMuxType(pObj) && Aig_ObjRecognizeExor(pObj, &pFan0, &pFan1) )
            Counter++;
    return Counter;

}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_FraigCec( Aig_Man_t ** ppAig, int nConfLimit, int fVerbose )
{
    int nBTLimitStart =        300;   // starting SAT run
    int nBTLimitFirst =          2;   // first fraiging iteration
    int nBTLimitLast  = nConfLimit;   // the last-gasp SAT run

    Fra_Par_t Params, * pParams = &Params;
    Aig_Man_t * pAig = *ppAig, * pTemp;
    int i, RetValue;
    abctime clk;

    // report the original miter
    if ( fVerbose )
    {
        printf( "Original miter:   Nodes = %6d.\n", Aig_ManNodeNum(pAig) );
    }
    RetValue = Fra_FraigMiterStatus( pAig );
//    assert( RetValue == -1 );
    if ( RetValue == 0 )
    {
        pAig->pData = ABC_ALLOC( int, Aig_ManCiNum(pAig) );
        memset( pAig->pData, 0, sizeof(int) * Aig_ManCiNum(pAig) );
        return RetValue;
    }

    // if SAT only, solve without iteration
clk = Abc_Clock();
    RetValue = Fra_FraigSat( pAig, (ABC_INT64_T)2*nBTLimitStart, (ABC_INT64_T)0, 0, 0, 0, 1, 0, 0, 0 );
    if ( fVerbose )
    {
        printf( "Initial SAT:      Nodes = %6d.  ", Aig_ManNodeNum(pAig) );
ABC_PRT( "Time", Abc_Clock() - clk );
    }
    if ( RetValue >= 0 )
        return RetValue;

    // duplicate the AIG
clk = Abc_Clock();
    pAig = Dar_ManRwsat( pTemp = pAig, 1, 0 );
    Aig_ManStop( pTemp );
    if ( fVerbose )
    {
        printf( "Rewriting:        Nodes = %6d.  ", Aig_ManNodeNum(pAig) );
ABC_PRT( "Time", Abc_Clock() - clk );
    }

    // perform the loop
    Fra_ParamsDefault( pParams );
    pParams->nBTLimitNode = nBTLimitFirst;
    pParams->nBTLimitMiter = nBTLimitStart;
    pParams->fDontShowBar = 1;
    pParams->fProve = 1;
    for ( i = 0; i < 6; i++ )
    {
//printf( "Running fraiging with %d BTnode and %d BTmiter.\n", pParams->nBTLimitNode, pParams->nBTLimitMiter );
        // try XOR balancing
        if ( Aig_ManCountXors(pAig) * 30 > Aig_ManNodeNum(pAig) + 300 )
        {
clk = Abc_Clock();
            pAig = Dar_ManBalanceXor( pTemp = pAig, 1, 0, 0 );
            Aig_ManStop( pTemp );
            if ( fVerbose )
            {
                printf( "Balance-X:        Nodes = %6d.  ", Aig_ManNodeNum(pAig) );
ABC_PRT( "Time", Abc_Clock() - clk );
            } 
        }

        // run fraiging
clk = Abc_Clock();
        pAig = Fra_FraigPerform( pTemp = pAig, pParams );
        Aig_ManStop( pTemp );
        if ( fVerbose )
        {
            printf( "Fraiging (i=%d):   Nodes = %6d.  ", i+1, Aig_ManNodeNum(pAig) );
ABC_PRT( "Time", Abc_Clock() - clk );
        }

        // check the miter status
        RetValue = Fra_FraigMiterStatus( pAig );
        if ( RetValue >= 0 )
            break;

        // perform rewriting
clk = Abc_Clock();
        pAig = Dar_ManRewriteDefault( pTemp = pAig );
        Aig_ManStop( pTemp );
        if ( fVerbose )
        {
            printf( "Rewriting:        Nodes = %6d.  ", Aig_ManNodeNum(pAig) );
ABC_PRT( "Time", Abc_Clock() - clk );
        } 

        // check the miter status
        RetValue = Fra_FraigMiterStatus( pAig );
        if ( RetValue >= 0 )
            break;
        // try simulation

        // set the parameters for the next run
        pParams->nBTLimitNode = 8 * pParams->nBTLimitNode;
        pParams->nBTLimitMiter = 2 * pParams->nBTLimitMiter;
    }

    // if still unsolved try last gasp
    if ( RetValue == -1 )
    {
clk = Abc_Clock();
        RetValue = Fra_FraigSat( pAig, (ABC_INT64_T)nBTLimitLast, (ABC_INT64_T)0, 0, 0, 0, 1, 0, 0, 0 );
        if ( fVerbose )
        {
            printf( "Final SAT:        Nodes = %6d.  ", Aig_ManNodeNum(pAig) );
ABC_PRT( "Time", Abc_Clock() - clk );
        }
    }

    *ppAig = pAig;
    return RetValue;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_FraigCecPartitioned( Aig_Man_t * pMan1, Aig_Man_t * pMan2, int nConfLimit, int nPartSize, int fSmart, int fVerbose )
{
    Aig_Man_t * pAig;
    Vec_Ptr_t * vParts;
    int i, RetValue = 1, nOutputs;
    // create partitions
    vParts = Aig_ManMiterPartitioned( pMan1, pMan2, nPartSize, fSmart );
    // solve the partitions
    nOutputs = -1;
    Vec_PtrForEachEntry( Aig_Man_t *, vParts, pAig, i )
    {
        nOutputs++;
        if ( fVerbose )
        {
            printf( "Verifying part %4d  (out of %4d)  PI = %5d. PO = %5d. And = %6d. Lev = %4d.\r", 
                i+1, Vec_PtrSize(vParts), Aig_ManCiNum(pAig), Aig_ManCoNum(pAig), 
                Aig_ManNodeNum(pAig), Aig_ManLevelNum(pAig) );
            fflush( stdout );
        }
        RetValue = Fra_FraigMiterStatus( pAig );
        if ( RetValue == 1 )
            continue;
        if ( RetValue == 0 )
            break;
        RetValue = Fra_FraigCec( &pAig, nConfLimit, 0 );
        Vec_PtrWriteEntry( vParts, i, pAig );
        if ( RetValue == 1 )
            continue;
        if ( RetValue == 0 )
            break;
        break;
    }
    // clear the result
    if ( fVerbose )
    {
        printf( "                                                                                          \r" );
        fflush( stdout );
    }
    // report the timeout
    if ( RetValue == -1 )
    {
        printf( "Timed out after verifying %d partitions (out of %d).\n", nOutputs, Vec_PtrSize(vParts) );
        fflush( stdout );
    }
    // free intermediate results
    Vec_PtrForEachEntry( Aig_Man_t *, vParts, pAig, i )
        Aig_ManStop( pAig );
    Vec_PtrFree( vParts );
    return RetValue;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_FraigCecTop( Aig_Man_t * pMan1, Aig_Man_t * pMan2, int nConfLimit, int nPartSize, int fSmart, int fVerbose )
{
    Aig_Man_t * pTemp;
    //Abc_NtkDarCec( pNtk1, pNtk2, fPartition, fVerbose );
    int RetValue;
    abctime clkTotal = Abc_Clock();

    if ( Aig_ManCiNum(pMan1) != Aig_ManCiNum(pMan1) )
    {
        printf( "Abc_CommandAbc8Cec(): Miters have different number of PIs.\n" );
        return 0;
    }
    if ( Aig_ManCoNum(pMan1) != Aig_ManCoNum(pMan1) )
    {
        printf( "Abc_CommandAbc8Cec(): Miters have different number of POs.\n" );
        return 0;
    }
    assert( Aig_ManCiNum(pMan1) == Aig_ManCiNum(pMan1) );
    assert( Aig_ManCoNum(pMan1) == Aig_ManCoNum(pMan1) );

    // make sure that the first miter has more nodes
    if ( Aig_ManNodeNum(pMan1) < Aig_ManNodeNum(pMan2) )
    {
        pTemp = pMan1;
        pMan1 = pMan2;
        pMan2 = pTemp;
    }
    assert( Aig_ManNodeNum(pMan1) >= Aig_ManNodeNum(pMan2) );

    if ( nPartSize )
        RetValue = Fra_FraigCecPartitioned( pMan1, pMan2, nConfLimit, nPartSize, fSmart, fVerbose );
    else // no partitioning
        RetValue = Fra_FraigCecPartitioned( pMan1, pMan2, nConfLimit, Aig_ManCoNum(pMan1), 0, fVerbose );

    // report the miter
    if ( RetValue == 1 )
    {
        printf( "Networks are equivalent.  " );
ABC_PRT( "Time", Abc_Clock() - clkTotal );
    }
    else if ( RetValue == 0 )
    {
        printf( "Networks are NOT EQUIVALENT.  " );
ABC_PRT( "Time", Abc_Clock() - clkTotal );
    }
    else
    {
        printf( "Networks are UNDECIDED.  " );
ABC_PRT( "Time", Abc_Clock() - clkTotal );
    }
    fflush( stdout );
    return RetValue;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END