1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
|
/**CFile****************************************************************
FileName [rwrDec.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [DAG-aware AIG rewriting package.]
Synopsis [Evaluation and decomposition procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: rwrDec.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "rwr.h"
#include "dec.h"
#include "ivy.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static Dec_Graph_t * Rwr_CutEvaluate( Rwr_Man_t * p, Abc_Obj_t * pRoot, Cut_Cut_t * pCut, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest, int fPlaceEnable );
static int Rwr_CutIsBoolean( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves );
static int Rwr_CutCountNumNodes( Abc_Obj_t * pObj, Cut_Cut_t * pCut );
static int Rwr_NodeGetDepth_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Performs rewriting for one node.]
Description [This procedure considers all the cuts computed for the node
and tries to rewrite each of them using the "forest" of different AIG
structures precomputed and stored in the RWR manager.
Determines the best rewriting and computes the gain in the number of AIG
nodes in the final network. In the end, p->vFanins contains information
about the best cut that can be used for rewriting, while p->pGraph gives
the decomposition dag (represented using decomposition graph data structure).
Returns gain in the number of nodes or -1 if node cannot be rewritten.]
SideEffects []
SeeAlso []
***********************************************************************/
int Rwr_NodeRewrite( Rwr_Man_t * p, Cut_Man_t * pManCut, Abc_Obj_t * pNode, int fUpdateLevel, int fUseZeros, int fPlaceEnable )
{
int fVeryVerbose = 0;
Dec_Graph_t * pGraph;
Cut_Cut_t * pCut;//, * pTemp;
Abc_Obj_t * pFanin;
unsigned uPhase;
unsigned uTruthBest = 0; // Suppress "might be used uninitialized"
unsigned uTruth;
char * pPerm;
int Required, nNodesSaved;
int nNodesSaveCur = -1; // Suppress "might be used uninitialized"
int i, GainCur, GainBest = -1;
int clk, clk2;//, Counter;
p->nNodesConsidered++;
// get the required times
Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;
// get the node's cuts
clk = clock();
pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCut, pNode, 0, 0 );
assert( pCut != NULL );
p->timeCut += clock() - clk;
//printf( " %d", Rwr_CutCountNumNodes(pNode, pCut) );
/*
Counter = 0;
for ( pTemp = pCut->pNext; pTemp; pTemp = pTemp->pNext )
Counter++;
printf( "%d ", Counter );
*/
// go through the cuts
clk = clock();
for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
{
// consider only 4-input cuts
if ( pCut->nLeaves < 4 )
continue;
// Cut_CutPrint( pCut, 0 ), printf( "\n" );
// get the fanin permutation
uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
pPerm = p->pPerms4[ (int)p->pPerms[uTruth] ];
uPhase = p->pPhases[uTruth];
// collect fanins with the corresponding permutation/phase
Vec_PtrClear( p->vFaninsCur );
Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
{
pFanin = Abc_NtkObj( pNode->pNtk, pCut->pLeaves[(int)pPerm[i]] );
if ( pFanin == NULL )
break;
pFanin = Abc_ObjNotCond(pFanin, ((uPhase & (1<<i)) > 0) );
Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
}
if ( i != (int)pCut->nLeaves )
{
p->nCutsBad++;
continue;
}
p->nCutsGood++;
{
int Counter = 0;
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
if ( Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) == 1 )
Counter++;
if ( Counter > 2 )
continue;
}
clk2 = clock();
/*
printf( "Considering: (" );
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
printf( "%d ", Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) );
printf( ")\n" );
*/
// mark the fanin boundary
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
Abc_ObjRegular(pFanin)->vFanouts.nSize++;
// label MFFC with current ID
Abc_NtkIncrementTravId( pNode->pNtk );
nNodesSaved = Abc_NodeMffcLabelAig( pNode );
// unmark the fanin boundary
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
Abc_ObjRegular(pFanin)->vFanouts.nSize--;
p->timeMffc += clock() - clk2;
// evaluate the cut
clk2 = clock();
pGraph = Rwr_CutEvaluate( p, pNode, pCut, p->vFaninsCur, nNodesSaved, Required, &GainCur, fPlaceEnable );
p->timeEval += clock() - clk2;
// check if the cut is better than the current best one
if ( pGraph != NULL && GainBest < GainCur )
{
// save this form
nNodesSaveCur = nNodesSaved;
GainBest = GainCur;
p->pGraph = pGraph;
p->fCompl = ((uPhase & (1<<4)) > 0);
uTruthBest = 0xFFFF & *Cut_CutReadTruth(pCut);
// collect fanins in the
Vec_PtrClear( p->vFanins );
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
Vec_PtrPush( p->vFanins, pFanin );
}
}
p->timeRes += clock() - clk;
if ( GainBest == -1 )
return -1;
/*
if ( GainBest > 0 )
{
printf( "Class %d ", p->pMap[uTruthBest] );
printf( "Gain = %d. Node %d : ", GainBest, pNode->Id );
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanins, pFanin, i )
printf( "%d ", Abc_ObjRegular(pFanin)->Id );
Dec_GraphPrint( stdout, p->pGraph, NULL, NULL );
printf( "\n" );
}
*/
// printf( "%d", nNodesSaveCur - GainBest );
/*
if ( GainBest > 0 )
{
if ( Rwr_CutIsBoolean( pNode, p->vFanins ) )
printf( "b" );
else
{
printf( "Node %d : ", pNode->Id );
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanins, pFanin, i )
printf( "%d ", Abc_ObjRegular(pFanin)->Id );
printf( "a" );
}
}
*/
/*
if ( GainBest > 0 )
if ( p->fCompl )
printf( "c" );
else
printf( "." );
*/
// copy the leaves
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanins, pFanin, i )
Dec_GraphNode((Dec_Graph_t *)p->pGraph, i)->pFunc = pFanin;
/*
printf( "(" );
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanins, pFanin, i )
printf( " %d", Abc_ObjRegular(pFanin)->vFanouts.nSize - 1 );
printf( " ) " );
*/
// printf( "%d ", Rwr_NodeGetDepth_rec( pNode, p->vFanins ) );
p->nScores[p->pMap[uTruthBest]]++;
p->nNodesGained += GainBest;
if ( fUseZeros || GainBest > 0 )
{
p->nNodesRewritten++;
}
// report the progress
if ( fVeryVerbose && GainBest > 0 )
{
printf( "Node %6s : ", Abc_ObjName(pNode) );
printf( "Fanins = %d. ", p->vFanins->nSize );
printf( "Save = %d. ", nNodesSaveCur );
printf( "Add = %d. ", nNodesSaveCur-GainBest );
printf( "GAIN = %d. ", GainBest );
printf( "Cone = %d. ", p->pGraph? Dec_GraphNodeNum((Dec_Graph_t *)p->pGraph) : 0 );
printf( "Class = %d. ", p->pMap[uTruthBest] );
printf( "\n" );
}
return GainBest;
}
/**Function*************************************************************
Synopsis [Evaluates the cut.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Dec_Graph_t * Rwr_CutEvaluate( Rwr_Man_t * p, Abc_Obj_t * pRoot, Cut_Cut_t * pCut, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest, int fPlaceEnable )
{
extern int Dec_GraphToNetworkCount( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax );
Vec_Ptr_t * vSubgraphs;
Dec_Graph_t * pGraphBest = NULL; // Suppress "might be used uninitialized"
Dec_Graph_t * pGraphCur;
Rwr_Node_t * pNode, * pFanin;
int nNodesAdded, GainBest, i, k;
unsigned uTruth;
float CostBest;//, CostCur;
// find the matching class of subgraphs
uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
vSubgraphs = (Vec_Ptr_t *)Vec_VecEntry( p->vClasses, p->pMap[uTruth] );
p->nSubgraphs += vSubgraphs->nSize;
// determine the best subgraph
GainBest = -1;
CostBest = ABC_INFINITY;
Vec_PtrForEachEntry( Rwr_Node_t *, vSubgraphs, pNode, i )
{
// get the current graph
pGraphCur = (Dec_Graph_t *)pNode->pNext;
// copy the leaves
Vec_PtrForEachEntry( Rwr_Node_t *, vFaninsCur, pFanin, k )
Dec_GraphNode(pGraphCur, k)->pFunc = pFanin;
// detect how many unlabeled nodes will be reused
nNodesAdded = Dec_GraphToNetworkCount( pRoot, pGraphCur, nNodesSaved, LevelMax );
if ( nNodesAdded == -1 )
continue;
assert( nNodesSaved >= nNodesAdded );
/*
// evaluate the cut
if ( fPlaceEnable )
{
extern float Abc_PlaceEvaluateCut( Abc_Obj_t * pRoot, Vec_Ptr_t * vFanins );
float Alpha = 0.5; // ???
float PlaceCost;
// get the placement cost of the cut
PlaceCost = Abc_PlaceEvaluateCut( pRoot, vFaninsCur );
// get the weigted cost of the cut
CostCur = nNodesSaved - nNodesAdded + Alpha * PlaceCost;
// do not allow uphill moves
if ( nNodesSaved - nNodesAdded < 0 )
continue;
// decide what cut to use
if ( CostBest > CostCur )
{
GainBest = nNodesSaved - nNodesAdded; // pure node cost
CostBest = CostCur; // cost with placement
pGraphBest = pGraphCur; // subgraph to be used for rewriting
// score the graph
if ( nNodesSaved - nNodesAdded > 0 )
{
pNode->nScore++;
pNode->nGain += GainBest;
pNode->nAdded += nNodesAdded;
}
}
}
else
*/
{
// count the gain at this node
if ( GainBest < nNodesSaved - nNodesAdded )
{
GainBest = nNodesSaved - nNodesAdded;
pGraphBest = pGraphCur;
// score the graph
if ( nNodesSaved - nNodesAdded > 0 )
{
pNode->nScore++;
pNode->nGain += GainBest;
pNode->nAdded += nNodesAdded;
}
}
}
}
if ( GainBest == -1 )
return NULL;
*pGainBest = GainBest;
return pGraphBest;
}
/**Function*************************************************************
Synopsis [Checks the type of the cut.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Rwr_CutIsBoolean_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves, int fMarkA )
{
if ( Vec_PtrFind(vLeaves, pObj) >= 0 || Vec_PtrFind(vLeaves, Abc_ObjNot(pObj)) >= 0 )
{
if ( fMarkA )
pObj->fMarkA = 1;
else
pObj->fMarkB = 1;
return;
}
assert( !Abc_ObjIsCi(pObj) );
Rwr_CutIsBoolean_rec( Abc_ObjFanin0(pObj), vLeaves, fMarkA );
Rwr_CutIsBoolean_rec( Abc_ObjFanin1(pObj), vLeaves, fMarkA );
}
/**Function*************************************************************
Synopsis [Checks the type of the cut.]
Description [Returns 1(0) if the cut is Boolean (algebraic).]
SideEffects []
SeeAlso []
***********************************************************************/
int Rwr_CutIsBoolean( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves )
{
Abc_Obj_t * pTemp;
int i, RetValue;
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pTemp, i )
{
pTemp = Abc_ObjRegular(pTemp);
assert( !pTemp->fMarkA && !pTemp->fMarkB );
}
Rwr_CutIsBoolean_rec( Abc_ObjFanin0(pObj), vLeaves, 1 );
Rwr_CutIsBoolean_rec( Abc_ObjFanin1(pObj), vLeaves, 0 );
RetValue = 0;
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pTemp, i )
{
pTemp = Abc_ObjRegular(pTemp);
RetValue |= pTemp->fMarkA && pTemp->fMarkB;
pTemp->fMarkA = pTemp->fMarkB = 0;
}
return RetValue;
}
/**Function*************************************************************
Synopsis [Count the nodes in the cut space of a node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Rwr_CutCountNumNodes_rec( Abc_Obj_t * pObj, Cut_Cut_t * pCut, Vec_Ptr_t * vNodes )
{
int i;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
if ( pCut->pLeaves[i] == pObj->Id )
{
// check if the node is collected
if ( pObj->fMarkC == 0 )
{
pObj->fMarkC = 1;
Vec_PtrPush( vNodes, pObj );
}
return;
}
assert( Abc_ObjIsNode(pObj) );
// check if the node is collected
if ( pObj->fMarkC == 0 )
{
pObj->fMarkC = 1;
Vec_PtrPush( vNodes, pObj );
}
// traverse the fanins
Rwr_CutCountNumNodes_rec( Abc_ObjFanin0(pObj), pCut, vNodes );
Rwr_CutCountNumNodes_rec( Abc_ObjFanin1(pObj), pCut, vNodes );
}
/**Function*************************************************************
Synopsis [Count the nodes in the cut space of a node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Rwr_CutCountNumNodes( Abc_Obj_t * pObj, Cut_Cut_t * pCut )
{
Vec_Ptr_t * vNodes;
int i, Counter;
// collect all nodes
vNodes = Vec_PtrAlloc( 100 );
for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
Rwr_CutCountNumNodes_rec( pObj, pCut, vNodes );
// clean all nodes
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
pObj->fMarkC = 0;
// delete and return
Counter = Vec_PtrSize(vNodes);
Vec_PtrFree( vNodes );
return Counter;
}
/**Function*************************************************************
Synopsis [Returns depth of the cut.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Rwr_NodeGetDepth_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves )
{
Abc_Obj_t * pLeaf;
int i, Depth0, Depth1;
if ( Abc_ObjIsCi(pObj) )
return 0;
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pLeaf, i )
if ( pObj == Abc_ObjRegular(pLeaf) )
return 0;
Depth0 = Rwr_NodeGetDepth_rec( Abc_ObjFanin0(pObj), vLeaves );
Depth1 = Rwr_NodeGetDepth_rec( Abc_ObjFanin1(pObj), vLeaves );
return 1 + ABC_MAX( Depth0, Depth1 );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Rwr_ScoresClean( Rwr_Man_t * p )
{
Vec_Ptr_t * vSubgraphs;
Rwr_Node_t * pNode;
int i, k;
for ( i = 0; i < p->vClasses->nSize; i++ )
{
vSubgraphs = (Vec_Ptr_t *)Vec_VecEntry( p->vClasses, i );
Vec_PtrForEachEntry( Rwr_Node_t *, vSubgraphs, pNode, k )
pNode->nScore = pNode->nGain = pNode->nAdded = 0;
}
}
static int Gains[222];
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Rwr_ScoresCompare( int * pNum1, int * pNum2 )
{
if ( Gains[*pNum1] > Gains[*pNum2] )
return -1;
if ( Gains[*pNum1] < Gains[*pNum2] )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Rwr_ScoresReport( Rwr_Man_t * p )
{
extern void Ivy_TruthDsdComputePrint( unsigned uTruth );
int Perm[222];
Vec_Ptr_t * vSubgraphs;
Rwr_Node_t * pNode;
int i, iNew, k;
unsigned uTruth;
// collect total gains
assert( p->vClasses->nSize == 222 );
for ( i = 0; i < p->vClasses->nSize; i++ )
{
Perm[i] = i;
Gains[i] = 0;
vSubgraphs = (Vec_Ptr_t *)Vec_VecEntry( p->vClasses, i );
Vec_PtrForEachEntry( Rwr_Node_t *, vSubgraphs, pNode, k )
Gains[i] += pNode->nGain;
}
// sort the gains
qsort( Perm, 222, sizeof(int), (int (*)(const void *, const void *))Rwr_ScoresCompare );
// print classes
for ( i = 0; i < p->vClasses->nSize; i++ )
{
iNew = Perm[i];
if ( Gains[iNew] == 0 )
break;
vSubgraphs = (Vec_Ptr_t *)Vec_VecEntry( p->vClasses, iNew );
printf( "CLASS %3d: Subgr = %3d. Total gain = %6d. ", iNew, Vec_PtrSize(vSubgraphs), Gains[iNew] );
uTruth = (unsigned)p->pMapInv[iNew];
Extra_PrintBinary( stdout, &uTruth, 16 );
printf( " " );
Ivy_TruthDsdComputePrint( (unsigned)p->pMapInv[iNew] | ((unsigned)p->pMapInv[iNew] << 16) );
Vec_PtrForEachEntry( Rwr_Node_t *, vSubgraphs, pNode, k )
{
if ( pNode->nScore == 0 )
continue;
printf( " %2d: S=%5d. A=%5d. G=%6d. ", k, pNode->nScore, pNode->nAdded, pNode->nGain );
Dec_GraphPrint( stdout, (Dec_Graph_t *)pNode->pNext, NULL, NULL );
}
}
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|