summaryrefslogtreecommitdiffstats
path: root/src/opt/ret/retDelay.c
blob: 92680cd08952a31132bedefa7468e213224ef851 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/**CFile****************************************************************

  FileName    [retDelay.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Retiming package.]

  Synopsis    [Incremental retiming for optimum delay.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - Oct 31, 2006.]

  Revision    [$Id: retDelay.c,v 1.00 2006/10/31 00:00:00 alanmi Exp $]

***********************************************************************/

#include "retInt.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static int Abc_NtkRetimeMinDelayTry( Abc_Ntk_t * pNtk, int nDelayLim, int fForward, int fInitial, int nIterLimit, int * pIterBest, int fVerbose );
static int Abc_NtkRetimeTiming( Abc_Ntk_t * pNtk, int fForward, Vec_Ptr_t * vCritical );
static int Abc_NtkRetimeTiming_rec( Abc_Obj_t * pObj, int fForward );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Retimes incrementally for minimum delay.]

  Description [This procedure cannot be called in the application code
  because it assumes that the network is preprocessed by removing LIs/LOs.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRetimeMinDelay( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkCopy, int nDelayLim, int nIterLimit, int fForward, int fVerbose )
{
    int IterBest, DelayBest;
    int IterBest2, DelayBest2;
    // try to find the best delay iteration on a copy
    DelayBest = Abc_NtkRetimeMinDelayTry( pNtkCopy, nDelayLim, fForward, 0, nIterLimit, &IterBest, fVerbose );
    if ( IterBest == 0 )
        return 1;
    // perform the given number of iterations on the original network
    DelayBest2 = Abc_NtkRetimeMinDelayTry( pNtk, nDelayLim, fForward, 1, IterBest, &IterBest2, fVerbose );
    assert( DelayBest == DelayBest2 );
    assert( IterBest == IterBest2 );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Returns the best delay and the number of best iteration.]

  Description [] 
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRetimeMinDelayTry( Abc_Ntk_t * pNtk, int nDelayLim, int fForward, int fInitial, int nIterLimit, int * pIterBest, int fVerbose )
{
    Abc_Ntk_t * pNtkNew = NULL;
    Vec_Ptr_t * vCritical;
    Vec_Int_t * vValues = NULL; // Suppress "might be used uninitialized"
    Abc_Obj_t * pObj;
    int i, k, IterBest, DelayCur, DelayBest;
    int DelayStart = -1; // Suppress "might be used uninitialized"
    int LatchesBest;
    // transfer intitial values
    if ( fInitial )
    {
        if ( fForward )
            Abc_NtkRetimeTranferToCopy( pNtk );
        else
        {
            // save initial value of the latches
            vValues = Abc_NtkRetimeCollectLatchValues( pNtk );
            // start the network for initial value computation
            pNtkNew = Abc_NtkRetimeBackwardInitialStart( pNtk );
        }
    }

    if ( fVerbose && !fInitial )
        printf( "Performing analysis:\n" );
    // find the best iteration
    DelayBest = ABC_INFINITY; IterBest = 0; LatchesBest = Abc_NtkLatchNum(pNtk);
    vCritical = Vec_PtrAlloc( 100 );
    for ( i = 0; ; i++ )
    {
        // perform moves for the timing-critical nodes
        DelayCur = Abc_NtkRetimeTiming( pNtk, fForward, vCritical );
        if ( i == 0 )
            DelayStart = DelayCur;
        // record this position if it has the best delay
        if ( DelayBest > DelayCur )
        {
if ( fVerbose && !fInitial )
    printf( "%s Iter = %3d. Delay = %3d. Latches = %5d. Delta = %6.2f. Ratio = %4.2f %%\n", 
        fForward ? "Fwd": "Bwd", i, DelayCur, Abc_NtkLatchNum(pNtk), 
        1.0*(Abc_NtkLatchNum(pNtk)-LatchesBest)/(DelayBest-DelayCur), 
        100.0*(Abc_NtkLatchNum(pNtk)-LatchesBest)/Abc_NtkLatchNum(pNtk)/(DelayBest-DelayCur) );

            DelayBest = DelayCur;
            IterBest = i;
            LatchesBest = Abc_NtkLatchNum(pNtk);
        }
        // quit after timing analysis
        if ( i == nIterLimit )
            break;
        // skip if 10 interations did not give improvement
        if ( i - IterBest > 20 )
            break;
        // skip if delay limit is reached
        if ( nDelayLim > 0 && DelayCur <= nDelayLim )
            break;
        // try retiming to improve the delay
        Vec_PtrForEachEntry( Abc_Obj_t *, vCritical, pObj, k )
            if ( Abc_NtkRetimeNodeIsEnabled(pObj, fForward) )
                Abc_NtkRetimeNode( pObj, fForward, fInitial );
        // share latches
        if ( !fForward )
            Abc_NtkRetimeShareLatches( pNtk, fInitial );    
    }
    Vec_PtrFree( vCritical );
    // transfer the initial state back to the latches
    if ( fInitial )
    {
        if ( fForward )
            Abc_NtkRetimeTranferFromCopy( pNtk );
        else
        {
            Abc_NtkRetimeBackwardInitialFinish( pNtk, pNtkNew, vValues, fVerbose );
            Abc_NtkDelete( pNtkNew );
            Vec_IntFree( vValues );
        }
    }
    if ( fVerbose && !fInitial )
        printf( "%s : Starting delay = %3d.  Final delay = %3d.  IterBest = %2d (out of %2d).\n",
            fForward? "Forward " : "Backward", DelayStart, DelayBest, IterBest, nIterLimit );
    *pIterBest = (nIterLimit == 1) ? 1 : IterBest;
    return DelayBest;
}

/**Function*************************************************************

  Synopsis    [Returns the set of timing-critical nodes.]

  Description [Performs static timing analysis on the network. Uses 
  unit-delay model.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRetimeTiming( Abc_Ntk_t * pNtk, int fForward, Vec_Ptr_t * vCritical )
{
    Vec_Ptr_t * vLatches;
    Abc_Obj_t * pObj, * pNext;
    int i, k, LevelCur, LevelMax = 0;
    // mark all objects except nodes
    Abc_NtkIncrementTravId(pNtk);
    vLatches = Vec_PtrAlloc( Abc_NtkLatchNum(pNtk) );
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        if ( Abc_ObjIsLatch(pObj) )
            Vec_PtrPush( vLatches, pObj );
        if ( Abc_ObjIsNode(pObj) )
            continue;
        pObj->Level = 0;
        Abc_NodeSetTravIdCurrent( pObj );
    }
    // perform analysis from CIs/COs
    if ( fForward )
    {
        Vec_PtrForEachEntry( Abc_Obj_t *, vLatches, pObj, i )
        {
            Abc_ObjForEachFanout( pObj, pNext, k )
            {
                LevelCur = Abc_NtkRetimeTiming_rec( pNext, fForward );
                if ( LevelMax < LevelCur )
                    LevelMax = LevelCur;
            }
        }
        Abc_NtkForEachPi( pNtk, pObj, i )
        {
            Abc_ObjForEachFanout( pObj, pNext, k )
            {
                LevelCur = Abc_NtkRetimeTiming_rec( pNext, fForward );
                if ( LevelMax < LevelCur )
                    LevelMax = LevelCur;
            }
        }
    }
    else
    {
        Vec_PtrForEachEntry( Abc_Obj_t *, vLatches, pObj, i )
        {
            LevelCur = Abc_NtkRetimeTiming_rec( Abc_ObjFanin0(pObj), fForward );
            if ( LevelMax < LevelCur )
                LevelMax = LevelCur;
        }
        Abc_NtkForEachPo( pNtk, pObj, i )
        {
            LevelCur = Abc_NtkRetimeTiming_rec( Abc_ObjFanin0(pObj), fForward );
            if ( LevelMax < LevelCur )
                LevelMax = LevelCur;
        }
    }
    // collect timing critical nodes, which should be retimed forward/backward
    Vec_PtrClear( vCritical );
    Abc_NtkIncrementTravId(pNtk);
    if ( fForward )
    {
        Vec_PtrForEachEntry( Abc_Obj_t *, vLatches, pObj, i )
        {
            Abc_ObjForEachFanout( pObj, pNext, k )
            {
                if ( Abc_NodeIsTravIdCurrent(pNext) )
                    continue;
                if ( LevelMax != (int)pNext->Level )
                    continue;
                // new critical node
                Vec_PtrPush( vCritical, pNext );
                Abc_NodeSetTravIdCurrent( pNext );
            }
        }
    }
    else
    {
        Vec_PtrForEachEntry( Abc_Obj_t *, vLatches, pObj, i )
        {
            Abc_ObjForEachFanin( pObj, pNext, k )
            {
                if ( Abc_NodeIsTravIdCurrent(pNext) )
                    continue;
                if ( LevelMax != (int)pNext->Level )
                    continue;
                // new critical node
                Vec_PtrPush( vCritical, pNext );
                Abc_NodeSetTravIdCurrent( pNext );
            }
        }
    }
    Vec_PtrFree( vLatches );
    return LevelMax;
}

/**Function*************************************************************

  Synopsis    [Recursively performs timing analysis.]

  Description [Performs static timing analysis on the network. Uses 
  unit-delay model.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRetimeTiming_rec( Abc_Obj_t * pObj, int fForward )
{
    Abc_Obj_t * pNext;
    int i, LevelCur, LevelMax = 0;
    // skip visited nodes
    if ( Abc_NodeIsTravIdCurrent(pObj) )
        return pObj->Level;
    Abc_NodeSetTravIdCurrent(pObj);
    // visit the next nodes
    if ( fForward )
    {
        Abc_ObjForEachFanout( pObj, pNext, i )
        {
            LevelCur = Abc_NtkRetimeTiming_rec( pNext, fForward );
            if ( LevelMax < LevelCur )
                LevelMax = LevelCur;
        }
    }
    else
    {
        Abc_ObjForEachFanin( pObj, pNext, i )
        {
            LevelCur = Abc_NtkRetimeTiming_rec( pNext, fForward );
            if ( LevelMax < LevelCur )
                LevelMax = LevelCur;
        }
    }
//    printf( "Node %3d -> Level %3d.\n", pObj->Id, LevelMax + 1 );
    pObj->Level = LevelMax + 1;
    return pObj->Level;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END