1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
|
/**CFile****************************************************************
FileName [darRefact.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [DAG-aware AIG rewriting.]
Synopsis [Refactoring.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - April 28, 2007.]
Revision [$Id: darRefact.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]
***********************************************************************/
#include "darInt.h"
#include "bool/kit/kit.h"
#include "bool/bdc/bdc.h"
#include "bool/bdc/bdcInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// the refactoring manager
typedef struct Ref_Man_t_ Ref_Man_t;
struct Ref_Man_t_
{
// input data
Dar_RefPar_t * pPars; // rewriting parameters
Aig_Man_t * pAig; // AIG manager
// computed cuts
Vec_Vec_t * vCuts; // the storage for cuts
// truth table and ISOP
Vec_Ptr_t * vTruthElem; // elementary truth tables
Vec_Ptr_t * vTruthStore; // storage for truth tables
Vec_Int_t * vMemory; // storage for ISOP
Vec_Ptr_t * vCutNodes; // storage for internal nodes of the cut
// various data members
Vec_Ptr_t * vLeavesBest; // the best set of leaves
Kit_Graph_t * pGraphBest; // the best factored form
int GainBest; // the best gain
int LevelBest; // the level of node with the best gain
// bi-decomposition
Bdc_Par_t DecPars; // decomposition parameters
Bdc_Man_t * pManDec; // decomposition manager
// node statistics
int nNodesInit; // the initial number of nodes
int nNodesTried; // the number of nodes tried
int nNodesBelow; // the number of nodes below the level limit
int nNodesExten; // the number of nodes with extended cut
int nCutsUsed; // the number of rewriting steps
int nCutsTried; // the number of cuts tries
// timing statistics
abctime timeCuts;
abctime timeEval;
abctime timeOther;
abctime timeTotal;
};
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Returns the structure with default assignment of parameters.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Dar_ManDefaultRefParams( Dar_RefPar_t * pPars )
{
memset( pPars, 0, sizeof(Dar_RefPar_t) );
pPars->nMffcMin = 2; // the min MFFC size for which refactoring is used
pPars->nLeafMax = 12; // the max number of leaves of a cut
pPars->nCutsMax = 5; // the max number of cuts to consider
pPars->fUpdateLevel = 0;
pPars->fUseZeros = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
}
/**Function*************************************************************
Synopsis [Starts the rewriting manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ref_Man_t * Dar_ManRefStart( Aig_Man_t * pAig, Dar_RefPar_t * pPars )
{
Ref_Man_t * p;
// start the manager
p = ABC_ALLOC( Ref_Man_t, 1 );
memset( p, 0, sizeof(Ref_Man_t) );
p->pAig = pAig;
p->pPars = pPars;
// other data
p->vCuts = Vec_VecStart( pPars->nCutsMax );
p->vTruthElem = Vec_PtrAllocTruthTables( pPars->nLeafMax );
p->vTruthStore = Vec_PtrAllocSimInfo( 1024, Kit_TruthWordNum(pPars->nLeafMax) );
p->vMemory = Vec_IntAlloc( 1 << 16 );
p->vCutNodes = Vec_PtrAlloc( 256 );
p->vLeavesBest = Vec_PtrAlloc( pPars->nLeafMax );
// alloc bi-decomposition manager
p->DecPars.nVarsMax = pPars->nLeafMax;
p->DecPars.fVerbose = pPars->fVerbose;
p->DecPars.fVeryVerbose = 0;
// p->pManDec = Bdc_ManAlloc( &p->DecPars );
return p;
}
/**Function*************************************************************
Synopsis [Prints out the statistics of the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Dar_ManRefPrintStats( Ref_Man_t * p )
{
int Gain = p->nNodesInit - Aig_ManNodeNum(p->pAig);
printf( "NodesBeg = %8d. NodesEnd = %8d. Gain = %6d. (%6.2f %%).\n",
p->nNodesInit, Aig_ManNodeNum(p->pAig), Gain, 100.0*Gain/p->nNodesInit );
printf( "Tried = %6d. Below = %5d. Extended = %5d. Used = %5d. Levels = %4d.\n",
p->nNodesTried, p->nNodesBelow, p->nNodesExten, p->nCutsUsed, Aig_ManLevels(p->pAig) );
ABC_PRT( "Cuts ", p->timeCuts );
ABC_PRT( "Eval ", p->timeEval );
ABC_PRT( "Other ", p->timeOther );
ABC_PRT( "TOTAL ", p->timeTotal );
}
/**Function*************************************************************
Synopsis [Stops the rewriting manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Dar_ManRefStop( Ref_Man_t * p )
{
if ( p->pManDec )
Bdc_ManFree( p->pManDec );
if ( p->pPars->fVerbose )
Dar_ManRefPrintStats( p );
Vec_VecFree( p->vCuts );
Vec_PtrFree( p->vTruthElem );
Vec_PtrFree( p->vTruthStore );
Vec_PtrFree( p->vLeavesBest );
Vec_IntFree( p->vMemory );
Vec_PtrFree( p->vCutNodes );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ref_ObjComputeCuts( Aig_Man_t * pAig, Aig_Obj_t * pRoot, Vec_Vec_t * vCuts )
{
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ref_ObjPrint( Aig_Obj_t * pObj )
{
printf( "%d", pObj? Aig_Regular(pObj)->Id : -1 );
if ( pObj )
printf( "(%d) ", Aig_IsComplement(pObj) );
}
/**Function*************************************************************
Synopsis [Counts the number of new nodes added when using this graph.]
Description [AIG nodes for the fanins should be assigned to pNode->pFunc
of the leaves of the graph before calling this procedure.
Returns -1 if the number of nodes and levels exceeded the given limit or
the number of levels exceeded the maximum allowed level.]
SideEffects []
SeeAlso []
***********************************************************************/
int Dar_RefactTryGraph( Aig_Man_t * pAig, Aig_Obj_t * pRoot, Vec_Ptr_t * vCut, Kit_Graph_t * pGraph, int NodeMax, int LevelMax )
{
Kit_Node_t * pNode, * pNode0, * pNode1;
Aig_Obj_t * pAnd, * pAnd0, * pAnd1;
int i, Counter, LevelNew, LevelOld;
// check for constant function or a literal
if ( Kit_GraphIsConst(pGraph) || Kit_GraphIsVar(pGraph) )
return 0;
// set the levels of the leaves
Kit_GraphForEachLeaf( pGraph, pNode, i )
{
pNode->pFunc = Vec_PtrEntry(vCut, i);
pNode->Level = Aig_Regular((Aig_Obj_t *)pNode->pFunc)->Level;
assert( Aig_Regular((Aig_Obj_t *)pNode->pFunc)->Level < (1<<24)-1 );
}
//printf( "Trying:\n" );
// compute the AIG size after adding the internal nodes
Counter = 0;
Kit_GraphForEachNode( pGraph, pNode, i )
{
// get the children of this node
pNode0 = Kit_GraphNode( pGraph, pNode->eEdge0.Node );
pNode1 = Kit_GraphNode( pGraph, pNode->eEdge1.Node );
// get the AIG nodes corresponding to the children
pAnd0 = (Aig_Obj_t *)pNode0->pFunc;
pAnd1 = (Aig_Obj_t *)pNode1->pFunc;
if ( pAnd0 && pAnd1 )
{
// if they are both present, find the resulting node
pAnd0 = Aig_NotCond( pAnd0, pNode->eEdge0.fCompl );
pAnd1 = Aig_NotCond( pAnd1, pNode->eEdge1.fCompl );
pAnd = Aig_TableLookupTwo( pAig, pAnd0, pAnd1 );
// return -1 if the node is the same as the original root
if ( Aig_Regular(pAnd) == pRoot )
return -1;
}
else
pAnd = NULL;
// count the number of added nodes
if ( pAnd == NULL || Aig_ObjIsTravIdCurrent(pAig, Aig_Regular(pAnd)) )
{
if ( ++Counter > NodeMax )
return -1;
}
// count the number of new levels
LevelNew = 1 + Abc_MaxInt( pNode0->Level, pNode1->Level );
if ( pAnd )
{
if ( Aig_Regular(pAnd) == Aig_ManConst1(pAig) )
LevelNew = 0;
else if ( Aig_Regular(pAnd) == Aig_Regular(pAnd0) )
LevelNew = (int)Aig_Regular(pAnd0)->Level;
else if ( Aig_Regular(pAnd) == Aig_Regular(pAnd1) )
LevelNew = (int)Aig_Regular(pAnd1)->Level;
LevelOld = (int)Aig_Regular(pAnd)->Level;
// assert( LevelNew == LevelOld );
}
if ( LevelNew > LevelMax )
return -1;
pNode->pFunc = pAnd;
pNode->Level = LevelNew;
/*
printf( "Checking " );
Ref_ObjPrint( pAnd0 );
printf( " and " );
Ref_ObjPrint( pAnd1 );
printf( " Result " );
Ref_ObjPrint( pNode->pFunc );
printf( "\n" );
*/
}
return Counter;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Obj_t * Dar_RefactBuildGraph( Aig_Man_t * pAig, Vec_Ptr_t * vCut, Kit_Graph_t * pGraph )
{
Aig_Obj_t * pAnd0, * pAnd1;
Kit_Node_t * pNode = NULL;
int i;
// check for constant function
if ( Kit_GraphIsConst(pGraph) )
return Aig_NotCond( Aig_ManConst1(pAig), Kit_GraphIsComplement(pGraph) );
// set the leaves
Kit_GraphForEachLeaf( pGraph, pNode, i )
pNode->pFunc = Vec_PtrEntry(vCut, i);
// check for a literal
if ( Kit_GraphIsVar(pGraph) )
return Aig_NotCond( (Aig_Obj_t *)Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) );
// build the AIG nodes corresponding to the AND gates of the graph
//printf( "Building (current number %d):\n", Aig_ManObjNumMax(pAig) );
Kit_GraphForEachNode( pGraph, pNode, i )
{
pAnd0 = Aig_NotCond( (Aig_Obj_t *)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl );
pAnd1 = Aig_NotCond( (Aig_Obj_t *)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl );
pNode->pFunc = Aig_And( pAig, pAnd0, pAnd1 );
/*
printf( "Checking " );
Ref_ObjPrint( pAnd0 );
printf( " and " );
Ref_ObjPrint( pAnd1 );
printf( " Result " );
Ref_ObjPrint( pNode->pFunc );
printf( "\n" );
*/
}
// complement the result if necessary
return Aig_NotCond( (Aig_Obj_t *)pNode->pFunc, Kit_GraphIsComplement(pGraph) );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Dar_ManRefactorTryCuts( Ref_Man_t * p, Aig_Obj_t * pObj, int nNodesSaved, int Required )
{
Vec_Ptr_t * vCut;
Kit_Graph_t * pGraphCur;
int k, RetValue, GainCur, nNodesAdded;
unsigned * pTruth;
p->GainBest = -1;
p->pGraphBest = NULL;
Vec_VecForEachLevel( p->vCuts, vCut, k )
{
if ( Vec_PtrSize(vCut) == 0 )
continue;
// if ( Vec_PtrSize(vCut) != 0 && Vec_PtrSize(Vec_VecEntry(p->vCuts, k+1)) != 0 )
// continue;
p->nCutsTried++;
// get the cut nodes
Aig_ObjCollectCut( pObj, vCut, p->vCutNodes );
// get the truth table
pTruth = Aig_ManCutTruth( pObj, vCut, p->vCutNodes, p->vTruthElem, p->vTruthStore );
if ( Kit_TruthIsConst0(pTruth, Vec_PtrSize(vCut)) )
{
p->GainBest = Aig_NodeMffcSupp( p->pAig, pObj, 0, NULL );
p->pGraphBest = Kit_GraphCreateConst0();
Vec_PtrCopy( p->vLeavesBest, vCut );
return p->GainBest;
}
if ( Kit_TruthIsConst1(pTruth, Vec_PtrSize(vCut)) )
{
p->GainBest = Aig_NodeMffcSupp( p->pAig, pObj, 0, NULL );
p->pGraphBest = Kit_GraphCreateConst1();
Vec_PtrCopy( p->vLeavesBest, vCut );
return p->GainBest;
}
// try the positive phase
RetValue = Kit_TruthIsop( pTruth, Vec_PtrSize(vCut), p->vMemory, 0 );
if ( RetValue > -1 )
{
pGraphCur = Kit_SopFactor( p->vMemory, 0, Vec_PtrSize(vCut), p->vMemory );
/*
{
int RetValue;
RetValue = Bdc_ManDecompose( p->pManDec, pTruth, NULL, Vec_PtrSize(vCut), NULL, 1000 );
printf( "Graph = %d. Bidec = %d.\n", Kit_GraphNodeNum(pGraphCur), RetValue );
}
*/
nNodesAdded = Dar_RefactTryGraph( p->pAig, pObj, vCut, pGraphCur, nNodesSaved - !p->pPars->fUseZeros, Required );
if ( nNodesAdded > -1 )
{
GainCur = nNodesSaved - nNodesAdded;
if ( p->GainBest < GainCur || (p->GainBest == GainCur &&
(Kit_GraphIsConst(pGraphCur) || Kit_GraphRootLevel(pGraphCur) < Kit_GraphRootLevel(p->pGraphBest))) )
{
p->GainBest = GainCur;
if ( p->pGraphBest )
Kit_GraphFree( p->pGraphBest );
p->pGraphBest = pGraphCur;
Vec_PtrCopy( p->vLeavesBest, vCut );
}
else
Kit_GraphFree( pGraphCur );
}
else
Kit_GraphFree( pGraphCur );
}
// try negative phase
Kit_TruthNot( pTruth, pTruth, Vec_PtrSize(vCut) );
RetValue = Kit_TruthIsop( pTruth, Vec_PtrSize(vCut), p->vMemory, 0 );
// Kit_TruthNot( pTruth, pTruth, Vec_PtrSize(vCut) );
if ( RetValue > -1 )
{
pGraphCur = Kit_SopFactor( p->vMemory, 1, Vec_PtrSize(vCut), p->vMemory );
/*
{
int RetValue;
RetValue = Bdc_ManDecompose( p->pManDec, pTruth, NULL, Vec_PtrSize(vCut), NULL, 1000 );
printf( "Graph = %d. Bidec = %d.\n", Kit_GraphNodeNum(pGraphCur), RetValue );
}
*/
nNodesAdded = Dar_RefactTryGraph( p->pAig, pObj, vCut, pGraphCur, nNodesSaved - !p->pPars->fUseZeros, Required );
if ( nNodesAdded > -1 )
{
GainCur = nNodesSaved - nNodesAdded;
if ( p->GainBest < GainCur || (p->GainBest == GainCur &&
(Kit_GraphIsConst(pGraphCur) || Kit_GraphRootLevel(pGraphCur) < Kit_GraphRootLevel(p->pGraphBest))) )
{
p->GainBest = GainCur;
if ( p->pGraphBest )
Kit_GraphFree( p->pGraphBest );
p->pGraphBest = pGraphCur;
Vec_PtrCopy( p->vLeavesBest, vCut );
}
else
Kit_GraphFree( pGraphCur );
}
else
Kit_GraphFree( pGraphCur );
}
}
return p->GainBest;
}
/**Function*************************************************************
Synopsis [Returns 1 if a non-PI node has nLevelMin or below.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Dar_ObjCutLevelAchieved( Vec_Ptr_t * vCut, int nLevelMin )
{
Aig_Obj_t * pObj;
int i;
Vec_PtrForEachEntry( Aig_Obj_t *, vCut, pObj, i )
if ( !Aig_ObjIsCi(pObj) && (int)pObj->Level <= nLevelMin )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Dar_ManRefactor( Aig_Man_t * pAig, Dar_RefPar_t * pPars )
{
// Bar_Progress_t * pProgress;
Ref_Man_t * p;
Vec_Ptr_t * vCut, * vCut2;
Aig_Obj_t * pObj, * pObjNew;
int nNodesOld, nNodeBefore, nNodeAfter, nNodesSaved, nNodesSaved2;
int i, Required, nLevelMin;
abctime clkStart, clk;
// start the manager
p = Dar_ManRefStart( pAig, pPars );
// remove dangling nodes
Aig_ManCleanup( pAig );
// if updating levels is requested, start fanout and timing
Aig_ManFanoutStart( pAig );
if ( p->pPars->fUpdateLevel )
Aig_ManStartReverseLevels( pAig, 0 );
// resynthesize each node once
clkStart = Abc_Clock();
vCut = Vec_VecEntry( p->vCuts, 0 );
vCut2 = Vec_VecEntry( p->vCuts, 1 );
p->nNodesInit = Aig_ManNodeNum(pAig);
nNodesOld = Vec_PtrSize( pAig->vObjs );
// pProgress = Bar_ProgressStart( stdout, nNodesOld );
Aig_ManForEachObj( pAig, pObj, i )
{
// Bar_ProgressUpdate( pProgress, i, NULL );
if ( !Aig_ObjIsNode(pObj) )
continue;
if ( i > nNodesOld )
break;
if ( pAig->Time2Quit && !(i & 256) && Abc_Clock() > pAig->Time2Quit )
break;
Vec_VecClear( p->vCuts );
//printf( "\nConsidering node %d.\n", pObj->Id );
// get the bounded MFFC size
clk = Abc_Clock();
nLevelMin = Abc_MaxInt( 0, Aig_ObjLevel(pObj) - 10 );
nNodesSaved = Aig_NodeMffcSupp( pAig, pObj, nLevelMin, vCut );
if ( nNodesSaved < p->pPars->nMffcMin ) // too small to consider
{
p->timeCuts += Abc_Clock() - clk;
continue;
}
p->nNodesTried++;
if ( Vec_PtrSize(vCut) > p->pPars->nLeafMax ) // get one reconv-driven cut
{
Aig_ManFindCut( pObj, vCut, p->vCutNodes, p->pPars->nLeafMax, 50 );
nNodesSaved = Aig_NodeMffcLabelCut( p->pAig, pObj, vCut );
}
else if ( Vec_PtrSize(vCut) < p->pPars->nLeafMax - 2 && p->pPars->fExtend )
{
if ( !Dar_ObjCutLevelAchieved(vCut, nLevelMin) )
{
if ( Aig_NodeMffcExtendCut( pAig, pObj, vCut, vCut2 ) )
{
nNodesSaved2 = Aig_NodeMffcLabelCut( p->pAig, pObj, vCut );
assert( nNodesSaved2 == nNodesSaved );
}
if ( Vec_PtrSize(vCut2) > p->pPars->nLeafMax )
Vec_PtrClear(vCut2);
if ( Vec_PtrSize(vCut2) > 0 )
{
p->nNodesExten++;
// printf( "%d(%d) ", Vec_PtrSize(vCut), Vec_PtrSize(vCut2) );
}
}
else
p->nNodesBelow++;
}
p->timeCuts += Abc_Clock() - clk;
// try the cuts
clk = Abc_Clock();
Required = pAig->vLevelR? Aig_ObjRequiredLevel(pAig, pObj) : ABC_INFINITY;
Dar_ManRefactorTryCuts( p, pObj, nNodesSaved, Required );
p->timeEval += Abc_Clock() - clk;
// check the best gain
if ( !(p->GainBest > 0 || (p->GainBest == 0 && p->pPars->fUseZeros)) )
{
if ( p->pGraphBest )
Kit_GraphFree( p->pGraphBest );
continue;
}
//printf( "\n" );
// if we end up here, a rewriting step is accepted
nNodeBefore = Aig_ManNodeNum( pAig );
pObjNew = Dar_RefactBuildGraph( pAig, p->vLeavesBest, p->pGraphBest );
assert( (int)Aig_Regular(pObjNew)->Level <= Required );
// replace the node
Aig_ObjReplace( pAig, pObj, pObjNew, p->pPars->fUpdateLevel );
// compare the gains
nNodeAfter = Aig_ManNodeNum( pAig );
assert( p->GainBest <= nNodeBefore - nNodeAfter );
Kit_GraphFree( p->pGraphBest );
p->nCutsUsed++;
// break;
}
p->timeTotal = Abc_Clock() - clkStart;
p->timeOther = p->timeTotal - p->timeCuts - p->timeEval;
// Bar_ProgressStop( pProgress );
// put the nodes into the DFS order and reassign their IDs
// Aig_NtkReassignIds( p );
// fix the levels
Aig_ManFanoutStop( pAig );
if ( p->pPars->fUpdateLevel )
Aig_ManStopReverseLevels( pAig );
/*
Aig_ManForEachObj( p->pAig, pObj, i )
if ( Aig_ObjIsNode(pObj) && Aig_ObjRefs(pObj) == 0 )
{
printf( "Unreferenced " );
Aig_ObjPrintVerbose( pObj, 0 );
printf( "\n" );
}
*/
// remove dangling nodes (they should not be here!)
Aig_ManCleanup( pAig );
// stop the rewriting manager
Dar_ManRefStop( p );
// Aig_ManCheckPhase( pAig );
if ( !Aig_ManCheck( pAig ) )
{
printf( "Dar_ManRefactor: The network check has failed.\n" );
return 0;
}
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|