1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
|
/**CFile****************************************************************
FileName [extraBddCas.c]
PackageName [extra]
Synopsis [Procedures related to LUT cascade synthesis.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 2.0. Started - September 1, 2003.]
Revision [$Id: extraBddCas.c,v 1.0 2003/05/21 18:03:50 alanmi Exp $]
***********************************************************************/
#include "extra.h"
/*---------------------------------------------------------------------------*/
/* Constant declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Stucture declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Type declarations */
/*---------------------------------------------------------------------------*/
// the table to store cofactor operations
#define _TABLESIZE_COF 51113
typedef struct
{
unsigned Sign;
DdNode * Arg1;
} _HashEntry_cof;
_HashEntry_cof HHTable1[_TABLESIZE_COF];
// the table to store the result of computation of the number of minterms
#define _TABLESIZE_MINT 15113
typedef struct
{
DdNode * Arg1;
unsigned Arg2;
unsigned Res;
} _HashEntry_mint;
_HashEntry_mint HHTable2[_TABLESIZE_MINT];
typedef struct
{
int nEdges; // the number of in-coming edges of the node
DdNode * bSum; // the sum of paths of the incoming edges
} traventry;
// the signature used for hashing
static unsigned s_Signature = 1;
static int s_CutLevel = 0;
/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/
// because the proposed solution to the optimal encoding problem has exponential complexity
// we limit the depth of the branch and bound procedure to 5 levels
static int s_MaxDepth = 5;
static int s_nVarsBest; // the number of vars in the best ordering
static int s_VarOrderBest[32]; // storing the best ordering of vars in the "simple encoding"
static int s_VarOrderCur[32]; // storing the current ordering of vars
// the place to store the supports of the encoded function
static DdNode * s_Field[8][256]; // the size should be K, 2^K, where K is no less than MaxDepth
static DdNode * s_Encoded; // this is the original function
static DdNode * s_VarAll; // the set of all column variables
static int s_MultiStart; // the total number of encoding variables used
// the array field now stores the supports
static DdNode ** s_pbTemp; // the temporary storage for the columns
static int s_BackTracks;
static int s_BackTrackLimit = 100;
static DdNode * s_Terminal; // the terminal value for counting minterms
static int s_EncodingVarsLevel;
/*---------------------------------------------------------------------------*/
/* Macro declarations */
/*---------------------------------------------------------------------------*/
/**AutomaticStart*************************************************************/
/*---------------------------------------------------------------------------*/
/* Static function prototypes */
/*---------------------------------------------------------------------------*/
static DdNode * CreateTheCodes_rec( DdManager * dd, DdNode * bEncoded, int Level, DdNode ** pCVars );
static void EvaluateEncodings_rec( DdManager * dd, DdNode * bVarsCol, int nVarsCol, int nMulti, int Level );
// functions called from EvaluateEncodings_rec()
static DdNode * ComputeVarSetAndCountMinterms( DdManager * dd, DdNode * bVars, DdNode * bVarTop, unsigned * Cost );
static DdNode * ComputeVarSetAndCountMinterms2( DdManager * dd, DdNode * bVars, DdNode * bVarTop, unsigned * Cost );
unsigned Extra_CountCofactorMinterms( DdManager * dd, DdNode * bFunc, DdNode * bVarsCof, DdNode * bVarsAll );
static unsigned Extra_CountMintermsSimple( DdNode * bFunc, unsigned max );
static void CountNodeVisits_rec( DdManager * dd, DdNode * aFunc, st_table * Visited );
static void CollectNodesAndComputePaths_rec( DdManager * dd, DdNode * aFunc, DdNode * bCube, st_table * Visited, st_table * CutNodes );
/**AutomaticEnd***************************************************************/
/*---------------------------------------------------------------------------*/
/* Definition of exported functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Performs the binary encoding of the set of function using the given vars.]
Description [Performs a straight binary encoding of the set of functions using
the variable cubes formed from the given set of variables. ]
SideEffects []
SeeAlso []
******************************************************************************/
DdNode *
Extra_bddEncodingBinary(
DdManager * dd,
DdNode ** pbFuncs, // pbFuncs is the array of columns to be encoded
int nFuncs, // nFuncs is the number of columns in the array
DdNode ** pbVars, // pbVars is the array of variables to use for the codes
int nVars ) // nVars is the column multiplicity, [log2(nFuncs)]
{
int i;
DdNode * bResult;
DdNode * bCube, * bTemp, * bProd;
assert( nVars >= Extra_Base2Log(nFuncs) );
bResult = b0; Cudd_Ref( bResult );
for ( i = 0; i < nFuncs; i++ )
{
bCube = Extra_bddBitsToCube( dd, i, nVars, pbVars, 1 ); Cudd_Ref( bCube );
bProd = Cudd_bddAnd( dd, bCube, pbFuncs[i] ); Cudd_Ref( bProd );
Cudd_RecursiveDeref( dd, bCube );
bResult = Cudd_bddOr( dd, bProd, bTemp = bResult ); Cudd_Ref( bResult );
Cudd_RecursiveDeref( dd, bTemp );
Cudd_RecursiveDeref( dd, bProd );
}
Cudd_Deref( bResult );
return bResult;
} /* end of Extra_bddEncodingBinary */
/**Function********************************************************************
Synopsis [Solves the column encoding problem using a sophisticated method.]
Description [The encoding is based on the idea of deriving functions which
depend on only one variable, which corresponds to the case of non-disjoint
decompostion. It is assumed that the variables pCVars are ordered below the variables
representing the solumns, and the first variable pCVars[0] is the topmost one.]
SideEffects []
SeeAlso [Extra_bddEncodingBinary]
******************************************************************************/
DdNode *
Extra_bddEncodingNonStrict(
DdManager * dd,
DdNode ** pbColumns, // pbColumns is the array of columns to be encoded;
int nColumns, // nColumns is the number of columns in the array
DdNode * bVarsCol, // bVarsCol is the cube of variables on which the columns depend
DdNode ** pCVars, // pCVars is the array of variables to use for the codes
int nMulti, // nMulti is the column multiplicity, [log2(nColumns)]
int * pSimple ) // pSimple gets the number of code variables taken from the input varibles without change
{
DdNode * bEncoded, * bResult;
int nVarsCol = Cudd_SupportSize(dd,bVarsCol);
long clk;
// cannot work with more that 32-bit codes
assert( nMulti < 32 );
// perform the preliminary encoding using the straight binary code
bEncoded = Extra_bddEncodingBinary( dd, pbColumns, nColumns, pCVars, nMulti ); Cudd_Ref( bEncoded );
//printf( "Node count = %d", Cudd_DagSize(bEncoded) );
// set the backgroup value for counting minterms
s_Terminal = b0;
// set the level of the encoding variables
s_EncodingVarsLevel = dd->invperm[pCVars[0]->index];
// the current number of backtracks
s_BackTracks = 0;
// the variables that are cofactored on the topmost level where everything starts (no vars)
s_Field[0][0] = b1;
// the size of the best set of "simple" encoding variables found so far
s_nVarsBest = 0;
// set the relation to be accessible to traversal procedures
s_Encoded = bEncoded;
// the set of all vars to be accessible to traversal procedures
s_VarAll = bVarsCol;
// the column multiplicity
s_MultiStart = nMulti;
clk = clock();
// find the simplest encoding
if ( nColumns > 2 )
EvaluateEncodings_rec( dd, bVarsCol, nVarsCol, nMulti, 1 );
// printf( "The number of backtracks = %d\n", s_BackTracks );
// s_EncSearchTime += clock() - clk;
// allocate the temporary storage for the columns
s_pbTemp = (DdNode **) malloc( nColumns * sizeof(DdNode *) );
// clk = clock();
bResult = CreateTheCodes_rec( dd, bEncoded, 0, pCVars ); Cudd_Ref( bResult );
// s_EncComputeTime += clock() - clk;
// delocate the preliminarily encoded set
Cudd_RecursiveDeref( dd, bEncoded );
// Cudd_RecursiveDeref( dd, aEncoded );
free( s_pbTemp );
*pSimple = s_nVarsBest;
Cudd_Deref( bResult );
return bResult;
}
/**Function********************************************************************
Synopsis [Collects the nodes under the cut and, for each node, computes the sum of paths leading to it from the root.]
Description [The table returned contains the set of BDD nodes pointed to under the cut
and, for each node, the BDD of the sum of paths leading to this node from the root
The sums of paths in the table are referenced. CutLevel is the first DD level
considered to be under the cut.]
SideEffects []
SeeAlso [Extra_bddNodePaths]
******************************************************************************/
st_table * Extra_bddNodePathsUnderCut( DdManager * dd, DdNode * bFunc, int CutLevel )
{
st_table * Visited; // temporary table to remember the visited nodes
st_table * CutNodes; // the result goes here
st_table * Result; // the result goes here
DdNode * aFunc;
s_CutLevel = CutLevel;
Result = st_init_table(st_ptrcmp,st_ptrhash);
// the terminal cases
if ( Cudd_IsConstant( bFunc ) )
{
if ( bFunc == b1 )
{
st_insert( Result, (char*)b1, (char*)b1 );
Cudd_Ref( b1 );
Cudd_Ref( b1 );
}
else
{
st_insert( Result, (char*)b0, (char*)b0 );
Cudd_Ref( b0 );
Cudd_Ref( b0 );
}
return Result;
}
// create the ADD to simplify processing (no complemented edges)
aFunc = Cudd_BddToAdd( dd, bFunc ); Cudd_Ref( aFunc );
// Step 1: Start the tables and collect information about the nodes above the cut
// this information tells how many edges point to each node
Visited = st_init_table(st_ptrcmp,st_ptrhash);
CutNodes = st_init_table(st_ptrcmp,st_ptrhash);
CountNodeVisits_rec( dd, aFunc, Visited );
// Step 2: Traverse the BDD using the visited table and compute the sum of paths
CollectNodesAndComputePaths_rec( dd, aFunc, b1, Visited, CutNodes );
// at this point the table of cut nodes is ready and the table of visited is useless
{
st_generator * gen;
DdNode * aNode;
traventry * p;
st_foreach_item( Visited, gen, (char**)&aNode, (char**)&p )
{
Cudd_RecursiveDeref( dd, p->bSum );
free( p );
}
st_free_table( Visited );
}
// go through the table CutNodes and create the BDD and the path to be returned
{
st_generator * gen;
DdNode * aNode, * bNode, * bSum;
st_foreach_item( CutNodes, gen, (char**)&aNode, (char**)&bSum)
{
// aNode is not referenced, because aFunc is holding it
bNode = Cudd_addBddPattern( dd, aNode ); Cudd_Ref( bNode );
st_insert( Result, (char*)bNode, (char*)bSum );
// the new table takes both refs
}
st_free_table( CutNodes );
}
// dereference the ADD
Cudd_RecursiveDeref( dd, aFunc );
// return the table
return Result;
} /* end of Extra_bddNodePathsUnderCut */
/**Function********************************************************************
Synopsis [Collects the nodes under the cut in the ADD starting from the given set of ADD nodes.]
Description [Takes the array, paNodes, of ADD nodes to start the traversal,
the array, pbCubes, of BDD cubes to start the traversal with in each node,
and the number, nNodes, of ADD nodes and BDD cubes in paNodes and pbCubes.
Returns the number of columns found. Fills in paNodesRes (pbCubesRes)
with the set of ADD columns (BDD paths). These arrays should be allocated
by the user.]
SideEffects []
SeeAlso [Extra_bddNodePaths]
******************************************************************************/
int Extra_bddNodePathsUnderCutArray( DdManager * dd, DdNode ** paNodes, DdNode ** pbCubes, int nNodes, DdNode ** paNodesRes, DdNode ** pbCubesRes, int CutLevel )
{
st_table * Visited; // temporary table to remember the visited nodes
st_table * CutNodes; // the nodes under the cut go here
int i, Counter;
s_CutLevel = CutLevel;
// there should be some nodes
assert( nNodes > 0 );
if ( nNodes == 1 && Cudd_IsConstant( paNodes[0] ) )
{
if ( paNodes[0] == a1 )
{
paNodesRes[0] = a1; Cudd_Ref( a1 );
pbCubesRes[0] = pbCubes[0]; Cudd_Ref( pbCubes[0] );
}
else
{
paNodesRes[0] = a0; Cudd_Ref( a0 );
pbCubesRes[0] = pbCubes[0]; Cudd_Ref( pbCubes[0] );
}
return 1;
}
// Step 1: Start the table and collect information about the nodes above the cut
// this information tells how many edges point to each node
CutNodes = st_init_table(st_ptrcmp,st_ptrhash);
Visited = st_init_table(st_ptrcmp,st_ptrhash);
for ( i = 0; i < nNodes; i++ )
CountNodeVisits_rec( dd, paNodes[i], Visited );
// Step 2: Traverse the BDD using the visited table and compute the sum of paths
for ( i = 0; i < nNodes; i++ )
CollectNodesAndComputePaths_rec( dd, paNodes[i], pbCubes[i], Visited, CutNodes );
// at this point, the table of cut nodes is ready and the table of visited is useless
{
st_generator * gen;
DdNode * aNode;
traventry * p;
st_foreach_item( Visited, gen, (char**)&aNode, (char**)&p )
{
Cudd_RecursiveDeref( dd, p->bSum );
free( p );
}
st_free_table( Visited );
}
// go through the table CutNodes and create the BDD and the path to be returned
{
st_generator * gen;
DdNode * aNode, * bSum;
Counter = 0;
st_foreach_item( CutNodes, gen, (char**)&aNode, (char**)&bSum)
{
paNodesRes[Counter] = aNode; Cudd_Ref( aNode );
pbCubesRes[Counter] = bSum;
Counter++;
}
st_free_table( CutNodes );
}
// return the number of cofactors found
return Counter;
} /* end of Extra_bddNodePathsUnderCutArray */
/**Function*************************************************************
Synopsis [Collects all the BDD nodes into the table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void extraCollectNodes( DdNode * Func, st_table * tNodes )
{
DdNode * FuncR;
FuncR = Cudd_Regular(Func);
if ( st_find_or_add( tNodes, (char*)FuncR, NULL ) )
return;
if ( cuddIsConstant(FuncR) )
return;
extraCollectNodes( cuddE(FuncR), tNodes );
extraCollectNodes( cuddT(FuncR), tNodes );
}
/**Function*************************************************************
Synopsis [Collects all the nodes of one DD into the table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
st_table * Extra_CollectNodes( DdNode * Func )
{
st_table * tNodes;
tNodes = st_init_table( st_ptrcmp, st_ptrhash );
extraCollectNodes( Func, tNodes );
return tNodes;
}
/**Function*************************************************************
Synopsis [Updates the topmost level from which the given node is referenced.]
Description [Takes the table which maps each BDD nodes (including the constants)
into the topmost level on which this node counts as a cofactor. Takes the topmost
level, on which this node counts as a cofactor (see Extra_ProfileWidthFast().
Takes the node, for which the table entry should be updated.]
SideEffects []
SeeAlso []
***********************************************************************/
void extraProfileUpdateTopLevel( st_table * tNodeTopRef, int TopLevelNew, DdNode * node )
{
int * pTopLevel;
if ( st_find_or_add( tNodeTopRef, (char*)node, (char***)&pTopLevel ) )
{ // the node is already referenced
// the current top level should be updated if it is larger than the new level
if ( *pTopLevel > TopLevelNew )
*pTopLevel = TopLevelNew;
}
else
{ // the node is not referenced
// its level should be set to the current new level
*pTopLevel = TopLevelNew;
}
}
/**Function*************************************************************
Synopsis [Fast computation of the BDD profile.]
Description [The array to store the profile is given by the user and should
contain at least as many entries as there is the maximum of the BDD/ZDD
size of the manager PLUS ONE.
When we say that the widths of the DD on level L is W, we mean the following.
Let us create the cut between the level L-1 and the level L and count the number
of different DD nodes pointed to across the cut. This number is the width W.
From this it follows the on level 0, the width is equal to the number of external
pointers to the considered DDs. If there is only one DD, then the profile on
level 0 is always 1. If this DD is rooted in the topmost variable, then the width
on level 1 is always 2, etc. The width at the level equal to dd->size is the
number of terminal nodes in the DD. (Because we consider the first level #0
and the last level #dd->size, the profile array should contain dd->size+1 entries.)
]
SideEffects [This procedure will not work for BDDs w/ complement edges, only for ADDs and ZDDs]
SeeAlso []
***********************************************************************/
int Extra_ProfileWidth( DdManager * dd, DdNode * Func, int * pProfile, int CutLevel )
{
st_generator * gen;
st_table * tNodeTopRef; // this table stores the top level from which this node is pointed to
st_table * tNodes;
DdNode * node;
DdNode * nodeR;
int LevelStart, Limit;
int i, size;
int WidthMax;
// start the mapping table
tNodeTopRef = st_init_table(st_ptrcmp,st_ptrhash);
// add the topmost node to the profile
extraProfileUpdateTopLevel( tNodeTopRef, 0, Func );
// collect all nodes
tNodes = Extra_CollectNodes( Func );
// go though all the nodes and set the top level the cofactors are pointed from
// Cudd_ForeachNode( dd, Func, genDD, node )
st_foreach_item( tNodes, gen, (char**)&node, NULL )
{
// assert( Cudd_Regular(node) ); // this procedure works only with ADD/ZDD (not BDD w/ compl.edges)
nodeR = Cudd_Regular(node);
if ( cuddIsConstant(nodeR) )
continue;
// this node is not a constant - consider its cofactors
extraProfileUpdateTopLevel( tNodeTopRef, dd->perm[node->index]+1, cuddE(nodeR) );
extraProfileUpdateTopLevel( tNodeTopRef, dd->perm[node->index]+1, cuddT(nodeR) );
}
st_free_table( tNodes );
// clean the profile
size = ddMax(dd->size, dd->sizeZ) + 1;
for ( i = 0; i < size; i++ )
pProfile[i] = 0;
// create the profile
st_foreach_item( tNodeTopRef, gen, (char**)&node, (char**)&LevelStart )
{
nodeR = Cudd_Regular(node);
Limit = (cuddIsConstant(nodeR))? dd->size: dd->perm[nodeR->index];
for ( i = LevelStart; i <= Limit; i++ )
pProfile[i]++;
}
if ( CutLevel != -1 && CutLevel != 0 )
size = CutLevel;
// get the max width
WidthMax = 0;
for ( i = 0; i < size; i++ )
if ( WidthMax < pProfile[i] )
WidthMax = pProfile[i];
// deref the table
st_free_table( tNodeTopRef );
return WidthMax;
} /* end of Extra_ProfileWidth */
/*---------------------------------------------------------------------------*/
/* Definition of internal functions */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Definition of static functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Computes the non-strict codes when evaluation is finished.]
Description [The information about the best code is stored in s_VarOrderBest,
which has s_nVarsBest entries.]
SideEffects [None]
******************************************************************************/
DdNode * CreateTheCodes_rec( DdManager * dd, DdNode * bEncoded, int Level, DdNode ** pCVars )
// bEncoded is the preliminarily encoded set of columns
// Level is the current level in the recursion
// pCVars are the variables to be used for encoding
{
DdNode * bRes;
if ( Level == s_nVarsBest )
{ // the terminal case, when we need to remap the encoded function
// from the preliminary encoded variables to the new ones
st_table * CutNodes;
int nCols;
// double nMints;
/*
#ifdef _DEBUG
{
DdNode * bTemp;
// make sure that the given number of variables is enough
bTemp = Cudd_bddExistAbstract( dd, bEncoded, s_VarAll ); Cudd_Ref( bTemp );
// nMints = Cudd_CountMinterm( dd, bTemp, s_MultiStart );
nMints = Extra_CountMintermsSimple( bTemp, (1<<s_MultiStart) );
if ( nMints > Extra_Power2( s_MultiStart-Level ) )
{ // the number of minterms is too large to encode the columns
// using the given minimum number of encoding variables
assert( 0 );
}
Cudd_RecursiveDeref( dd, bTemp );
}
#endif
*/
// get the columns to be re-encoded
CutNodes = Extra_bddNodePathsUnderCut( dd, bEncoded, s_EncodingVarsLevel );
// LUT size is the cut level because because the temporary encoding variables
// are above the functional variables - this is not true!!!
// the temporary variables are below!
// put the entries from the table into the temporary array
{
st_generator * gen;
DdNode * bColumn, * bCode;
nCols = 0;
st_foreach_item( CutNodes, gen, (char**)&bCode, (char**)&bColumn )
{
if ( bCode == b0 )
{ // the unused part of the columns
Cudd_RecursiveDeref( dd, bColumn );
Cudd_RecursiveDeref( dd, bCode );
continue;
}
else
{
s_pbTemp[ nCols ] = bColumn; // takes ref
Cudd_RecursiveDeref( dd, bCode );
nCols++;
}
}
st_free_table( CutNodes );
// assert( nCols == (int)nMints );
}
// encode the columns
if ( s_MultiStart-Level == 0 ) // we reached the bottom level of recursion
{
assert( nCols == 1 );
// assert( (int)nMints == 1 );
bRes = s_pbTemp[0]; Cudd_Ref( bRes );
}
else
{
bRes = Extra_bddEncodingBinary( dd, s_pbTemp, nCols, pCVars+Level, s_MultiStart-Level ); Cudd_Ref( bRes );
}
// deref the columns
{
int i;
for ( i = 0; i < nCols; i++ )
Cudd_RecursiveDeref( dd, s_pbTemp[i] );
}
}
else
{
// cofactor the problem as specified in the best solution
DdNode * bCof0, * bCof1;
DdNode * bRes0, * bRes1;
DdNode * bProd0, * bProd1;
DdNode * bTemp;
DdNode * bVarNext = dd->vars[ s_VarOrderBest[Level] ];
bCof0 = Cudd_Cofactor( dd, bEncoded, Cudd_Not( bVarNext ) ); Cudd_Ref( bCof0 );
bCof1 = Cudd_Cofactor( dd, bEncoded, bVarNext ); Cudd_Ref( bCof1 );
// call recursively
bRes0 = CreateTheCodes_rec( dd, bCof0, Level+1, pCVars ); Cudd_Ref( bRes0 );
bRes1 = CreateTheCodes_rec( dd, bCof1, Level+1, pCVars ); Cudd_Ref( bRes1 );
Cudd_RecursiveDeref( dd, bCof0 );
Cudd_RecursiveDeref( dd, bCof1 );
// compose the result using the identity (bVarNext <=> pCVars[Level]) - this is wrong!
// compose the result as follows: x'y'F0 + xyF1
bProd0 = Cudd_bddAnd( dd, Cudd_Not(bVarNext), Cudd_Not(pCVars[Level]) ); Cudd_Ref( bProd0 );
bProd1 = Cudd_bddAnd( dd, bVarNext , pCVars[Level] ); Cudd_Ref( bProd1 );
bProd0 = Cudd_bddAnd( dd, bTemp = bProd0, bRes0 ); Cudd_Ref( bProd0 );
Cudd_RecursiveDeref( dd, bTemp );
Cudd_RecursiveDeref( dd, bRes0 );
bProd1 = Cudd_bddAnd( dd, bTemp = bProd1, bRes1 ); Cudd_Ref( bProd1 );
Cudd_RecursiveDeref( dd, bTemp );
Cudd_RecursiveDeref( dd, bRes1 );
bRes = Cudd_bddOr( dd, bProd0, bProd1 ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( dd, bProd0 );
Cudd_RecursiveDeref( dd, bProd1 );
}
Cudd_Deref( bRes );
return bRes;
}
/**Function********************************************************************
Synopsis [Computes the current set of variables and counts the number of minterms.]
Description [Old implementation.]
SideEffects []
SeeAlso []
******************************************************************************/
void EvaluateEncodings_rec( DdManager * dd, DdNode * bVarsCol, int nVarsCol, int nMulti, int Level )
// bVarsCol is the set of remaining variables
// nVarsCol is the number of remaining variables
// nMulti is the number of encoding variables to be used
// Level is the level of recursion, from which this function is called
// if we successfully finish this procedure, Level also stands for how many encoding variabled we saved
{
int i, k;
int nEntries = (1<<(Level-1)); // the number of entries in the field of the previous level
DdNode * bVars0, * bVars1; // the cofactors
unsigned nMint0, nMint1; // the number of minterms
DdNode * bTempV;
DdNode * bVarTop;
int fBreak;
// there is no need to search above this level
if ( Level > s_MaxDepth )
return;
// if there are no variables left, quit the research
if ( bVarsCol == b1 )
return;
if ( s_BackTracks > s_BackTrackLimit )
return;
s_BackTracks++;
// otherwise, go through the remaining variables
for ( bTempV = bVarsCol; bTempV != b1; bTempV = cuddT(bTempV) )
{
// the currently tested variable
bVarTop = dd->vars[bTempV->index];
// put it into the array
s_VarOrderCur[Level-1] = bTempV->index;
// go through the entries and fill them out by cofactoring
fBreak = 0;
for ( i = 0; i < nEntries; i++ )
{
bVars0 = ComputeVarSetAndCountMinterms( dd, s_Field[Level-1][i], Cudd_Not(bVarTop), &nMint0 );
Cudd_Ref( bVars0 );
if ( nMint0 > Extra_Power2( nMulti-1 ) )
{
// there is no way to encode - dereference and return
Cudd_RecursiveDeref( dd, bVars0 );
fBreak = 1;
break;
}
bVars1 = ComputeVarSetAndCountMinterms( dd, s_Field[Level-1][i], bVarTop, &nMint1 );
Cudd_Ref( bVars1 );
if ( nMint1 > Extra_Power2( nMulti-1 ) )
{
// there is no way to encode - dereference and return
Cudd_RecursiveDeref( dd, bVars0 );
Cudd_RecursiveDeref( dd, bVars1 );
fBreak = 1;
break;
}
// otherwise, add these two cofactors
s_Field[Level][2*i + 0] = bVars0; // takes ref
s_Field[Level][2*i + 1] = bVars1; // takes ref
}
if ( !fBreak )
{
DdNode * bVarsRem;
// if we ended up here, it means that the cofactors w.r.t. variable bVarTop satisfy the condition
// save this situation
if ( s_nVarsBest < Level )
{
s_nVarsBest = Level;
// copy the variable assignment
for ( k = 0; k < Level; k++ )
s_VarOrderBest[k] = s_VarOrderCur[k];
}
// call recursively
// get the new variable set
if ( nMulti-1 > 0 )
{
bVarsRem = Cudd_bddExistAbstract( dd, bVarsCol, bVarTop ); Cudd_Ref( bVarsRem );
EvaluateEncodings_rec( dd, bVarsRem, nVarsCol-1, nMulti-1, Level+1 );
Cudd_RecursiveDeref( dd, bVarsRem );
}
}
// deref the contents of the array
for ( k = 0; k < i; k++ )
{
Cudd_RecursiveDeref( dd, s_Field[Level][2*k + 0] );
Cudd_RecursiveDeref( dd, s_Field[Level][2*k + 1] );
}
// if the solution is found, there is no need to continue
if ( s_nVarsBest == s_MaxDepth )
return;
// if the solution is found, there is no need to continue
if ( s_nVarsBest == s_MultiStart )
return;
}
// at this point, we have tried all possible directions in the space of variables
}
/**Function********************************************************************
Synopsis [Computes the current set of variables and counts the number of minterms.]
Description []
SideEffects []
SeeAlso []
******************************************************************************/
DdNode * ComputeVarSetAndCountMinterms( DdManager * dd, DdNode * bVars, DdNode * bVarTop, unsigned * Cost )
// takes bVars - the variables cofactored so far (some of them may be in negative polarity)
// bVarTop - the topmost variable w.r.t. which to cofactor (may be in negative polarity)
// returns the cost and the new set of variables (bVars & bVarTop)
{
DdNode * bVarsRes;
// get the resulting set of variables
bVarsRes = Cudd_bddAnd( dd, bVars, bVarTop ); Cudd_Ref( bVarsRes );
// increment signature before calling Cudd_CountCofactorMinterms()
s_Signature++;
*Cost = Extra_CountCofactorMinterms( dd, s_Encoded, bVarsRes, s_VarAll );
Cudd_Deref( bVarsRes );
// s_CountCalls++;
return bVarsRes;
}
/**Function********************************************************************
Synopsis [Computes the current set of variables and counts the number of minterms.]
Description [The old implementation, which is approximately 4 times slower.]
SideEffects []
SeeAlso []
******************************************************************************/
DdNode * ComputeVarSetAndCountMinterms2( DdManager * dd, DdNode * bVars, DdNode * bVarTop, unsigned * Cost )
{
DdNode * bVarsRes;
DdNode * bCof, * bFun;
bVarsRes = Cudd_bddAnd( dd, bVars, bVarTop ); Cudd_Ref( bVarsRes );
bCof = Cudd_Cofactor( dd, s_Encoded, bVarsRes ); Cudd_Ref( bCof );
bFun = Cudd_bddExistAbstract( dd, bCof, s_VarAll ); Cudd_Ref( bFun );
*Cost = (unsigned)Cudd_CountMinterm( dd, bFun, s_MultiStart );
Cudd_RecursiveDeref( dd, bFun );
Cudd_RecursiveDeref( dd, bCof );
Cudd_Deref( bVarsRes );
// s_CountCalls++;
return bVarsRes;
}
/**Function********************************************************************
Synopsis [Counts the number of encoding minterms pointed to by the cofactor of the function.]
Description []
SideEffects [None]
******************************************************************************/
unsigned Extra_CountCofactorMinterms( DdManager * dd, DdNode * bFunc, DdNode * bVarsCof, DdNode * bVarsAll )
// this function computes how many minterms depending on the encoding variables
// are there in the cofactor of bFunc w.r.t. variables bVarsCof
// bFunc is assumed to depend on variables s_VarsAll
// the variables s_VarsAll should be ordered above the encoding variables
{
unsigned HKey;
DdNode * bFuncR;
// if the function is zero, there are no minterms
// if ( bFunc == b0 )
// return 0;
// if ( st_lookup(Visited, (char*)bFunc, NULL) )
// return 0;
// HKey = hashKey2c( s_Signature, bFuncR );
// if ( HHTable1[HKey].Sign == s_Signature && HHTable1[HKey].Arg1 == bFuncR ) // this node is visited
// return 0;
// check the hash-table
bFuncR = Cudd_Regular(bFunc);
// HKey = hashKey2( s_Signature, bFuncR, _TABLESIZE_COF );
HKey = hashKey2( s_Signature, bFunc, _TABLESIZE_COF );
for ( ; HHTable1[HKey].Sign == s_Signature; HKey = (HKey+1) % _TABLESIZE_COF )
// if ( HHTable1[HKey].Arg1 == bFuncR ) // this node is visited
if ( HHTable1[HKey].Arg1 == bFunc ) // this node is visited
return 0;
// if the function is already the code
if ( dd->perm[bFuncR->index] >= s_EncodingVarsLevel )
{
// st_insert(Visited, (char*)bFunc, NULL);
// HHTable1[HKey].Sign = s_Signature;
// HHTable1[HKey].Arg1 = bFuncR;
assert( HHTable1[HKey].Sign != s_Signature );
HHTable1[HKey].Sign = s_Signature;
// HHTable1[HKey].Arg1 = bFuncR;
HHTable1[HKey].Arg1 = bFunc;
return Extra_CountMintermsSimple( bFunc, (1<<s_MultiStart) );
}
else
{
DdNode * bFunc0, * bFunc1;
DdNode * bVarsCof0, * bVarsCof1;
DdNode * bVarsCofR = Cudd_Regular(bVarsCof);
unsigned Res;
// get the levels
int LevelF = dd->perm[bFuncR->index];
int LevelC = cuddI(dd,bVarsCofR->index);
int LevelA = dd->perm[bVarsAll->index];
int LevelTop = LevelF;
if ( LevelTop > LevelC )
LevelTop = LevelC;
if ( LevelTop > LevelA )
LevelTop = LevelA;
// the top var in the function or in cofactoring vars always belongs to the set of all vars
assert( !( LevelTop == LevelF || LevelTop == LevelC ) || LevelTop == LevelA );
// cofactor the function
if ( LevelTop == LevelF )
{
if ( bFuncR != bFunc ) // bFunc is complemented
{
bFunc0 = Cudd_Not( cuddE(bFuncR) );
bFunc1 = Cudd_Not( cuddT(bFuncR) );
}
else
{
bFunc0 = cuddE(bFuncR);
bFunc1 = cuddT(bFuncR);
}
}
else // bVars is higher in the variable order
bFunc0 = bFunc1 = bFunc;
// cofactor the cube
if ( LevelTop == LevelC )
{
if ( bVarsCofR != bVarsCof ) // bFunc is complemented
{
bVarsCof0 = Cudd_Not( cuddE(bVarsCofR) );
bVarsCof1 = Cudd_Not( cuddT(bVarsCofR) );
}
else
{
bVarsCof0 = cuddE(bVarsCofR);
bVarsCof1 = cuddT(bVarsCofR);
}
}
else // bVars is higher in the variable order
bVarsCof0 = bVarsCof1 = bVarsCof;
// there are two cases:
// (1) the top variable belongs to the cofactoring variables
// (2) the top variable does not belong to the cofactoring variables
// (1) the top variable belongs to the cofactoring variables
Res = 0;
if ( LevelTop == LevelC )
{
if ( bVarsCof1 == b0 ) // this is a negative cofactor
{
if ( bFunc0 != b0 )
Res = Extra_CountCofactorMinterms( dd, bFunc0, bVarsCof0, cuddT(bVarsAll) );
}
else // this is a positive cofactor
{
if ( bFunc1 != b0 )
Res = Extra_CountCofactorMinterms( dd, bFunc1, bVarsCof1, cuddT(bVarsAll) );
}
}
else
{
if ( bFunc0 != b0 )
Res += Extra_CountCofactorMinterms( dd, bFunc0, bVarsCof0, cuddT(bVarsAll) );
if ( bFunc1 != b0 )
Res += Extra_CountCofactorMinterms( dd, bFunc1, bVarsCof1, cuddT(bVarsAll) );
}
// st_insert(Visited, (char*)bFunc, NULL);
// HHTable1[HKey].Sign = s_Signature;
// HHTable1[HKey].Arg1 = bFuncR;
// skip through the entries with the same signatures
// (these might have been created at the time of recursive calls)
for ( ; HHTable1[HKey].Sign == s_Signature; HKey = (HKey+1) % _TABLESIZE_COF );
assert( HHTable1[HKey].Sign != s_Signature );
HHTable1[HKey].Sign = s_Signature;
// HHTable1[HKey].Arg1 = bFuncR;
HHTable1[HKey].Arg1 = bFunc;
return Res;
}
}
/**Function********************************************************************
Synopsis [Counts the number of minterms.]
Description [This function counts minterms for functions up to 32 variables
using a local cache. The terminal value (s_Termina) should be adjusted for
BDDs and ADDs.]
SideEffects [None]
******************************************************************************/
unsigned Extra_CountMintermsSimple( DdNode * bFunc, unsigned max )
{
unsigned HKey;
// normalize
if ( Cudd_IsComplement(bFunc) )
return max - Extra_CountMintermsSimple( Cudd_Not(bFunc), max );
// now it is known that the function is not complemented
if ( cuddIsConstant(bFunc) )
return ((bFunc==s_Terminal)? 0: max);
// check cache
HKey = hashKey2( bFunc, max, _TABLESIZE_MINT );
if ( HHTable2[HKey].Arg1 == bFunc && HHTable2[HKey].Arg2 == max )
return HHTable2[HKey].Res;
else
{
// min = min0/2 + min1/2;
unsigned min = (Extra_CountMintermsSimple( cuddE(bFunc), max ) >> 1) +
(Extra_CountMintermsSimple( cuddT(bFunc), max ) >> 1);
HHTable2[HKey].Arg1 = bFunc;
HHTable2[HKey].Arg2 = max;
HHTable2[HKey].Res = min;
return min;
}
} /* end of Extra_CountMintermsSimple */
/**Function********************************************************************
Synopsis [Visits the nodes.]
Description [Visits the nodes above the cut and the nodes pointed to below the cut;
collects the visited nodes, counts how many times each node is visited, and sets
the path-sum to be the constant zero BDD.]
SideEffects []
SeeAlso []
******************************************************************************/
void CountNodeVisits_rec( DdManager * dd, DdNode * aFunc, st_table * Visited )
{
traventry * p;
char **slot;
if ( st_find_or_add(Visited, (char*)aFunc, &slot) )
{ // the entry already exists
p = (traventry*) *slot;
// increment the counter of incoming edges
p->nEdges++;
return;
}
// this node has not been visited
assert( !Cudd_IsComplement(aFunc) );
// create the new traversal entry
p = (traventry *) malloc( sizeof(traventry) );
// set the initial sum of edges to zero BDD
p->bSum = b0; Cudd_Ref( b0 );
// set the starting number of incoming edges
p->nEdges = 1;
// set this entry into the slot
*slot = (char*)p;
// recur if the node is above the cut
if ( cuddI(dd,aFunc->index) < s_CutLevel )
{
CountNodeVisits_rec( dd, cuddE(aFunc), Visited );
CountNodeVisits_rec( dd, cuddT(aFunc), Visited );
}
} /* end of CountNodeVisits_rec */
/**Function********************************************************************
Synopsis [Revisits the nodes and computes the paths.]
Description [This function visits the nodes above the cut having the goal of
summing all the incomming BDD edges; when this function comes across the node
below the cut, it saves this node in the CutNode table.]
SideEffects []
SeeAlso []
******************************************************************************/
void CollectNodesAndComputePaths_rec( DdManager * dd, DdNode * aFunc, DdNode * bCube, st_table * Visited, st_table * CutNodes )
{
// find the node in the visited table
DdNode * bTemp;
traventry * p;
char **slot;
if ( st_find_or_add(Visited, (char*)aFunc, &slot) )
{ // the node is found
// get the pointer to the traversal entry
p = (traventry*) *slot;
// make sure that the counter of incoming edges is positive
assert( p->nEdges > 0 );
// add the cube to the currently accumulated cubes
p->bSum = Cudd_bddOr( dd, bTemp = p->bSum, bCube ); Cudd_Ref( p->bSum );
Cudd_RecursiveDeref( dd, bTemp );
// decrement the number of visits
p->nEdges--;
// if more visits to this node are expected, return
if ( p->nEdges )
return;
else // if ( p->nEdges == 0 )
{ // this is the last visit - propagate the cube
// check where this node is
if ( cuddI(dd,aFunc->index) < s_CutLevel )
{ // the node is above the cut
DdNode * bCube0, * bCube1;
// get the top-most variable
DdNode * bVarTop = dd->vars[aFunc->index];
// compute the propagated cubes
bCube0 = Cudd_bddAnd( dd, p->bSum, Cudd_Not( bVarTop ) ); Cudd_Ref( bCube0 );
bCube1 = Cudd_bddAnd( dd, p->bSum, bVarTop ); Cudd_Ref( bCube1 );
// call recursively
CollectNodesAndComputePaths_rec( dd, cuddE(aFunc), bCube0, Visited, CutNodes );
CollectNodesAndComputePaths_rec( dd, cuddT(aFunc), bCube1, Visited, CutNodes );
// dereference the cubes
Cudd_RecursiveDeref( dd, bCube0 );
Cudd_RecursiveDeref( dd, bCube1 );
return;
}
else
{ // the node is below the cut
// add this node to the cut node table, if it is not yet there
// DdNode * bNode;
// bNode = Cudd_addBddPattern( dd, aFunc ); Cudd_Ref( bNode );
if ( st_find_or_add(CutNodes, (char*)aFunc, &slot) )
{ // the node exists - should never happen
assert( 0 );
}
*slot = (char*) p->bSum; Cudd_Ref( p->bSum );
// the table takes the reference of bNode
return;
}
}
}
// the node does not exist in the visited table - should never happen
assert(0);
} /* end of CollectNodesAndComputePaths_rec */
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|